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Abstract

The analogue of Black–Scholes formula for vanilla call option price in conditions of (B, S)-securities market with delayed
response is derived. A special case of continuous-time version of GARCH is considered. The results are compared with the results
of Black and Scholes.
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1. Introduction

In the early 1970s, Black and Scholes [3] made a major breakthrough by deriving pricing formulas for vanilla options
written on the stock. Their model and its extensions assume that the probability distribution of the underlying cash flow
at any given future time is lognormal. This assumption is not always satisfied by real-life options as the probability
distribution of an equity has a fatter left tail and thinner right tail than the lognormal distribution (see [16]), and the
assumption of constant volatility σ in financial model (such as the original Black–Scholes model) is incompatible with
derivatives prices observed in the market.

The above issues have been addressed and studied in several ways, such as

(i) volatility is assumed to be a deterministic function of the time: σ ≡ σ(t) (see [31]);
(ii) volatility is assumed to be a function of the time and the current level of the stock price S(t) : σ ≡ σ(t, S(t)) (see

[16]); the dynamics of the stock price satisfies the following stochastic differential equation:

dS(t) = μS(t) dt + σ(t, S(t))S(t) dW1(t),

where W1(t) is a standard Wiener process;
(iii) the time variation of the volatility involves an additional source of randomness represented by W2(t) and is given

by

dσ(t) = a(t, σ(t)) dt + b(t, σ(t)) dW2(t),
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where W2(t) and W1(t) (the initial Wiener process that governes the price process) may be correlated
(see [5,17]);

(iv) the volatility depends on a random parameter x such as σ(t) ≡ σ(x(t)), where x(t) is some random process (see
[13,27–29]).

In the approach (i), the volatility coefficient is independent of the current level of the underlying stochastic process
S(t). This is a deterministic volatility model, and the special case where σ is a constant reduces to the well-known
Black–Scholes model that suggests changes in stock prices are lognormally distributed. But the empirical test by
Bollerslev [4] seems to indicate otherwise. One explanation for this problem of a lognormal model is the possibility
that the variance of log(S(t)/S(t − 1)) changes randomly. This motivated the work of Chesney and Scott [7], where
the prices are analyzed for European options using the modified Black–Scholes model of foreign currency options and
a random variance model. In their works the results of Hull and White [17], Scott [24] and Wiggins [30] were used in
order to incorporate randomly changing variance rates.

In the approach (ii), several ways have been developed to derive the corresponding Black–Scholes formula: one can
obtain the formula by using stochastic calculus and, in particular, the Ito’s formula (see [23], for example). In the book
by Cox and Rubinstein [8], an alternative approach was developed: the Black–Scholes formula is interpreted as the
continuous-time limit of a binomial random model. A generalized volatility coefficient of the form σ(t, S(t)) is said to
be level-dependent. Because volatility and asset price are perfectly correlated, we have only one source of randomness
given by W1(t). A time and level-dependent volatility coefficient makes the arithmetic more challenging and usually
precludes the existence of a closed-form solution. However, the arbitrage argument based on portfolio replication and
a completeness of the market remain unchanged.

The situation becomes different if the volatility is influented by a second “nontradable”source of randomness. This
is addressed in the approach (iii) and (iv) and one usually obtains a stochastic volatility model, which is general
enough to include the deterministic model as a special case. The concept of stochastic volatility was introduced by
Hull and White [17], and subsequent development includes the work of Wiggins [30], Johnson and Shanno [18], Scott
[24], Stein and Stein [26] and Heston [14]. We also refer to Frey [11] for an excellent survey on level-dependent and
stochastic volatility models. We should mention that the approach (iv) is taken by, for example, Griego and Swishchuk
[13].

There is yet another approach connected with stochastic volatility, namely, uncertain volatility scenario (see [5]).
This approach is based on the uncertain volatility model developed in Avelanda et al. [2], where a concrete volatility
surface is selected among a candidate set of volatility surfaces. This approach addresses the sensitivity question by
computing an upper bound for the value of the portfolio under arbitrary candidate volatility, and this is achieved by
choosing the local volatility σ(t, S(t)) among two extremal values σmin and σmax such that the value of the portfolio is
maximized locally.

Assumption made implicitly by Black and Scholes [3] is that the historical performance of the (B, S)-securities
markets can be ignored. In particluar, the so-called efficient market hypothesis implies that all information available is
already reflected in the present price of the stock and the past stock performance gives no information that can aid in
predicting future perfromance. However, some statistical studies of stock prices (see [25,1]) indicate the dependence
on past returns. For example, Kind et al. [20] obtained a diffusion approximation result for processes satisfying some
equations with past-dependent coefficients, and they applied this result to a model of option pricing, in which the
underlying asset price volatility depends on the past evolution to obtain a generalized (asymptotic) Black–Scholes
formula. Hobson and Rogers [15] suggested a new class of nonconstant volatility models, which can be extended to
include the aforementioned level-dependent model and share many characteristics with the stochastic volatility model.
The volatility is nonconstant and can be regarded as an endogenous factor in the sense that it is defined in terms of
the past behavior of the stock price. This is done in such a way that the price and volatility form a multi-dimensional
Markov process.

Chang and Yoree [6] studied the pricing of an European contingent claim for the (B, S)-securities markets with a
hereditary price structure in the sense that the rate of change of the unit price of the bond account and rate of change
of the stock account S depend not only on the current unit price but also on their historical prices. The price dynamics
for the bank account and that of the stock account are described by a linear functional differential equation and a linear
stochastic functional differential equation, respectively. They show that the rational price for an European contingent
claim is independent of the mean growth rate of the stock.
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Fig. 1. The upper curve is the original Black–Scholes price and the lower curve is the option price given by the formula (5.5). Here S(0) = 100,
r = 0.05, σ(0) = 0.316, T = 1, V = 0.127, α = 0.0626, γ = 0.0428, τ = 0.002.

Other alternatives to the Black–Scholes model include models where a company’s equity is assumed to be an option
of its assets (see [12]); models of (B, S, X)-securities market with Markov or semi-Markov stochastic volatility σ(x(t))
(see [13,27]); models of fractional (B, S)-securities markets with Hurst index H > 1/2, H ∈ (0, 1) or combined with
the assumption of Markov or semi-Markov volatility (see [10]).

Clearly related to our work is the work by Mohammed et al. [22] devoted to the derivation of a delayed Black–
Scholes formula for the (B, S)-securities market using PDE approach. In their paper, the stock price satisfies the
following equation:

dS(t) = μS(t − a)S(t) dt + σ(S(t − b))S(t) dW(t),

where a and b are positive constants and σ is a continuous function, and the price of the option at time t has the form
F (t, S(t)).

The subject of our work is the study of stochastic delay differential equations (SDDE), which arise in the pricing
of options for security markets with delayed response. We show that a continuous-time equivalent of GARCH arises
as a stochastic volatility model with delayed dependence on the stock value. We derive an analogue of Ito’s lemma for
a general type of SDDEs and we obtain an integro-differential equation for a function of option price with boundary
conditions specified according to the type of option to be priced. This equation is solved using a simplifying assumption
and the graph of the closed-form solution is shown in Fig. 1. An implied volatility plot is generated to demonstrate the
difference between Black–Scholes model and our model (see Fig. 2). Hobson and Rogers [15] also observed in their
past-dependent model that the resulting implied volatility is U-shaped as a function of strike price. However, they dealt

Fig. 2. Implied volatility of the call option price computed by (5.5) vs. strike price. The set of parameters is the same as for Fig. 1.
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with only a special case where the model can be reduced to a system of SDEs. Unfortunately, not every past-dependent
model can be reduced to a system of SDEs, and a more sophisticated approach, as developed in this paper, is needed.

More precisely, we consider the model of S(t) with volatility σ depending on t and the path St = {S(t + θ), θ ∈
[−τ, 0]}. We call it a level-and-past-dependent volatility σ ≡ σ(t, St), contrary to the level-dependent volatility (that
is clearly a special case of the former one when the time delay parameter τ = 0). Our model of stochastic volatility
exhibits past-dependence: the behavior of a stock price right after a given time t not only depends on the situation at
t, but also on the whole past (history) of the process S(t) up to time t. This draws some similarities with fractional
Brownian motion models due to a long-range dependence property. Our work is also based on the GARCH(1,1) model
(see [4]) and the celebrated work of Duan [9] where he showed that it is possible to use the GARCH model as the
basis for an internally consistent option pricing model. We should mention that in the work of Kind et al. [20], a
past-dependent model was defined by diffusion approximation. In their model, the volatility depends on the quadratic
variation of the process, while our model deals with more general dependence of the volatility on the history of the
process over a finite interval.

In the future work, we wish to derive the continuous-time GARCH model for stochastic volatility with delayed
response which incorporates conditional expectation of log-returns, and we expect to develop also a method of esti-
mation of the time delay parameter (as well as all the other parameters). Some preliminary results of this paper have
been reported in conference proceedings (see [19])

2. Stochastic delay differential equations

For any path x : [−τ, ∞) → Rd at each t ≥ 0 define the segment xt : [−τ, 0] → Rd by

xt(s) := x(t + s), a.s., t ≥ 0, s ∈ [−τ, 0].

Denote by C := C([−τ, 0], Rd) the Banach space of all continuous paths η : [−τ, 0] → Rd equipped with the supremum
norm

‖η‖C := sup
s∈[−τ,0]

|η(s)|, η ∈ C.

Consider the following stochastic delay differential equation (see [21]){
dx(t) = H(t, xt) dt + G(t, xt) dW(t), t ≥ 0

x0 = φ ∈ C
(2.1)

on a filtered probability space (Ω,F, (Ft)t≥0, P) satisfying the usual conditions; that is, the filtration (Ft)t≥0 is right-
continuous and each Ft , t ≥ 0, contains all P-null sets in F. W(t) represents the m-dimensional Brownian motion.

The SDDE (2.1) has a drift coefficient function H : [0, T ] × C → Rd and a diffusion coefficient function G :
[0, T ] × C → Rd×m satisfying the following.

Hypotheses 2.1.

(i) H and G are Lipschitz on bounded sets of C uniformly with respect to the first variable, i.e. for each integer n ≥ 1,
there exists a constant Ln > 0 (independent of t ∈ [0, T ]) such that

|H(t, η1) − H(t, η2)| + ‖G(t, η1) − G(t, η2)‖ ≤ Ln‖η1 − η2‖C

for all t ∈ [0, T ] and η1, η2 ∈ C with ‖η1‖C ≤ n, ‖η2‖C ≤ n.
(ii) There is a constant K > 0 such that

|H(t, η)| + ‖G(t, η)‖ ≤ K(1 + ‖η‖C)

for all t ∈ [0, T ] and η ∈ C.

A solution of (2.1) is a measurable, sample-continuous process x : [−τ, T ] × Ω → Rd such that x|[0,T ] is (Ft)0≤t≤T -
adapted and x satisfies (2.1) almost surely.
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In Mohammed [21] it was shown that if Hypotheses 2.1 holds then for each φ ∈ C the SDDE (2.1) has a unique
solution xφ : [−τ, ∞) × Ω → Rd with xφ|[−τ,0] = φ ∈ C and [0, T ] 
 t → x

φ
t ∈ C being sample-continuous.

3. General formulation

The stock price value is assumed to satisfy the following SDDE:

dS(t) = rS(t) dt + σ(t, St)S(t) dW(t) (3.1)

with continuous deterministic initial data S0 = ϕ ∈ C := C([−τ, 0], R), here σ represents a volatility which is a con-
tinuous function of time and the elements of C.

As mentioned in last section, the existence and uniqueness of solution of (3.1) are guaranteed if the coefficients in
(3.1) satisfy the following local Lipschitz and growth conditions:

∀n ≥ 1 ∃Ln > 0 ∀t ∈ [0, T ] ∀η1, η2 ∈ C, ‖η1‖C ≤ n, ‖η2‖C ≤ n : |σ(t, η1) η1(t) − σ(t, η2) η2(t)|
≤ Ln‖η1 − η2‖C (3.2)

and

∃K > 0 ∀t ∈ [0, T ], η ∈ C : |σ(t, η) η(t)| ≤ K(1 + ‖η‖C). (3.3)

Note that the stock price values are positive with probability 1 if the initial data is positive, that is, ϕ(θ) > 0 for all
θ ∈ [−τ, 0].

We are primarily interested in an option price value, which is assumed to depend on the current and previous stock
price values in the following way:

F (t, St) =
∫ 0

−τ

e−rθH(S(t + θ), S(t), t) dθ, (3.4)

where H ∈ C0,2,1(R × R × R+). Such a representation is chosen since it includes sufficiently general functionals for
which an analogue of Ito’s lemma can be derived.

Lemma 3.1. Suppose a functional F : R+ × C → R has the following form

F (t, St) =
∫ 0

−τ

h(θ)H(St(θ), St(0), t) dθ,

for H ∈ C0,2,1(R × R × R+) and h ∈ C1([−τ, 0], R). Then

F (t, St) = F (0, ϕ) +
∫ t

0
AF (s, Ss) ds +

∫ t

0
σ(s, Ss)S(s)BF (s, Ss) dW(s), (3.5)

where for (t, x) ∈ R+ × C,

AF (t, x) = h(0)H(x(0), x(0), t) − h(−τ)H(x(−τ), x(0), t) −
∫ 0

−τ

h′(θ)H(x(θ), x(0), t) dθ

+
∫ 0

−τ

h(θ)LH(x(θ), x(0), t) dθ,

BF (t, x) =
∫ 0

−τ

h(θ)H ′
2(x(θ), x(0), t) dθ,

and

LH(x(θ), x(0), t) = rx(0)H ′
2(x(θ), x(0), t) + σ2(t, x)x2(0)

2
H ′′

22(x(θ), x(0), t) + H ′
3(x(θ), x(0), t),

where H ′
i , i = 1, 2, 3, represents the derivative of H(x(θ), x(0), t) with respect to ith argument.

Proof. We defer the detailed proof to the Appendix A. �
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In what follows, we assume that a riskless portfolio consisting of a position in the option and a position in the
underlying stock is set up. In the absence of arbitrage opportunities, the return from the portfolio must be risk-free
with the interest rate r. The portfolio Π has to be riskless during the time interval [t, t + dt] and must instantaneously
earn the same rate of return as other short-term risk-free securities. It follows that dΠ(t) = rΠ(t) dt and this will be
used in the proof of the following theorem.

Theorem 3.1. Suppose the functional F is given by (3.4) with S(t) satisfying (3.1) and H ∈ C0,2,1(R × R × R+).
Then, H(S(t + θ), S(t), t) satisfies the following equation

0 = H |θ=0 − e−rθH |θ=−τ +
∫ 0

−τ

e−rθ

(
H ′

3 + rS(t)H ′
2 + 1

2
σ2(t, St)S

2(t)H ′′
22

)
dθ (3.6)

for all t ∈ [0, T ].

Proof. To construct an equation for F, we need to consider a portfolio which consists of −1 derivative and BF (t, St)
shares. Then, the portfolio value Π(t) is equal to

Π(t) = −F (t, St) + BF (t, St)S(t),

and the associated infinitesimal change in the time interval [t, t + dt] is

dΠ = −dF + BF dS.

We should point out here that in the last statement we suppose that (BF ) is held constant during the time-step dt, and
hence term d(BF ) is equal to zero. If this were not the case then dΠ would contain term d(BF ).

Using (3.5) and (3.1), we obtain

dΠ = −AF dt − σSBF dW + BF (rS dt + σS dW).

Consideration of risk-free during the time dt then leads to

dΠ = rΠ dt,

that is,

−AF (t, St) + rS(t)BF (t, St) = r(−F (t, St) + BF (t, St)S(t)),

or

AF (t, St) = rF (t, St).

Therefore, the equation for H(S(t + θ), S(t), t) becomes

0 = H |θ=0 − e−rθH |θ=−τ +
∫ 0

−τ

e−rθ

(
H ′

3 + rS(t)H ′
2 + 1

2
σ2(t, St)S

2(t)H ′′
22

)
dθ.

This completes the proof. �

Consider a European call option with the final payoff max(S − K, 0) at the maturity time T Hull [16]. Then problem
(3.6) has the boundary condition at the time T, either

F (T, ST ) = max(S(T ) − K, 0) (3.7)

or, induced by the functional nature of F,

F (T, ST ) = 1

τ

∫ 0

−τ

max(e−rθST (θ) − K, 0) dθ, (3.8)

where 1/τ is a normalizing factor such that F (T, ST ) → max(S(T ) − K, 0) as τ → 0.
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4. A simplified problem

We now consider the simplified problem (3.6), assuming that H(S(t + θ), S(t), t) is a sum of two functions, one
of which depends on the current value of stock price S(t) and another depends on the previous values of stock price
{S(t + θ), θ ∈ [−τ, 0)}. That is, our option price (3.4) takes the form:

F (t, St) = h1(S(t), t) +
∫ 0

−τ

e−rθh2(S(t + θ), t) dθ, (4.1)

where h1(S(t), t) is a classical Black–Scholes call option price (see [3]) with the variance assumed equal to a long-run
variance rate V (it is known that the stock price variance rate exhibits the so-called mean reversion, see [16])

h1(S(t), t) = S(t)N(d1) − Ke−r(T−t)N(d2), (4.2)

where N(x) = (1/
√

2π)
∫ x

−∞ e−x2/2 dx and d1 and d2 are defined as

d1 = ln(S(t)/K) + (r + V/2)(T − t)√
V (T − t)

,

d2 = d1 − √
V (T − t).

Note that the functional (4.1) seems to be a natural choice since we are interested in the difference between the original
Black–Scholes option price and the one implied by the market with delayed response.

Theorem 4.1. Assume the functional F is given by (4.1) with h1 given by (4.2). Then,

F (t, St) = h1(S(t), t) + 1

2

∫ T

t

er(t−ξ)[σ2(ξ, St) − V ]S2(t)
∂2h1

∂S2 (S(t), ξ) dξ. (4.3)

Proof. Substituting (4.1) into (3.6) yields the following equation for h2.

h2(S(t), t) − erτh2(S(t − τ), t) +
∫ 0

−τ

e−rθ ∂h2

∂t
dθ = 1

2
(V − σ2(t, St))S

2(t)
∂2h1

∂S2 .

Also from (4.1) we derive that

dF

dt
= dh1

dt
+ d

dt

[∫ t

t−τ

e−r(s−t)h2(S(s), t) ds

]
= dh1

dt
+ h2(S(t), t) − erτh2(S(t − τ), t)

+
∫ t

t−τ

re−r(s−t)h2(S(s), t) ds +
∫ t

t−τ

e−r(s−t) ∂h2

∂t
ds.

Combining this expression with the one considered above we get the following equation for F:

∂F

∂t
+ rS(t)

∂h1

∂S
+ 1

2
σ2(t, St)S

2(t)
∂2h1

∂S2 = rF. (4.4)

We remark that the above equation is very similar to the well-known Black–Scholes PDE. Observing that h1 satisfies
the following PDE:

∂h1

∂t
+ rS(t)

∂h1

∂S
+ 1

2
VS2(t)

∂2h1

∂S2 = rh1,

we have a new PDE for f (t, St) := F (t, St) − h1(S(t), t) as follows

∂f

∂t
= rf + 1

2
[V − σ2(t, St)]S

2(t)
∂2h1

∂S2 (S(t), t).

We can easily solve the above equation by using the variation-of-constants formula to obtain (4.3). �
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5. Continuous-time version of GARCH model

Assume the σ2(t) satisfies the following equation

dσ2(t)

dt
= γV + α

τ
ln2

(
S(t)

S(t − τ)

)
− (α + γ)σ2(t), (5.1)

where V is a long-run average variance rate, and α and γ are positive constants such that α + γ < 1. Here, S(t) is a
solution of the SDDE (3.1) with positive initial data ϕ ∈ C.

Consider a grid −τ = t−l < t−l+1 < · · · < t0 = 0 < t1 < · · · < tN = T with the time step size Δl of the form

Δl = τ

l
,

where l ≥ 2. Then a discrete time analogue of (5.1) is

σ2
n = γV + α

l
ln2

(
Sn−1

Sn−1−l

)
+ (1 − α − γ)σ2

n−1,

where σ2
n = σ2(tn) and Sn = S(tn). Note that the process described by this difference equation is very similar to the

GARCH(1,1) model proposed by Bollerslev in 1986 (with returns assumed to have mean zero), which seems to provide
good explanation of stock price data,

σ2
n = γV + α ln2

(
Sn−1

Sn−2

)
+ (1 − α − γ)σ2

n−1. (5.2)

Now, using a variation of constants formula for (5.1) we obtain

σ2(t) = γV

α + γ
+

(
σ2(t0) − γV

α + γ

)
e−(α+γ)(t−t0) + α

τ

∫ t

t0

e(α+γ)(ξ−t) ln2
(

S(ξ)

S(ξ − τ)

)
dξ (5.3)

for t0 ≥ 0. It is then natural that we consider the following expression for variance:

σ̄2(t, St) = σ2(t0)e−(α+γ)(t−t0) +
[
γV + α

τ
ln2

(
S(t)

S(t − τ)

)]
1 − e−(α+γ)(t−t0)

α + γ
, (5.4)

since functions σ̄2 and σ2 are close to each other in the following sense:

σ2(t) = σ̄2(t) + O(|t − t0|), as t → t0.

Expression (5.4) for the volatility allows us to obtain a closed-form for a call option price involving delayed market
response.

Theorem 5.1. Assume that the stock price satisfies SDDE (3.1) with the initial data ϕ ∈ C and assume its volatility
is given by (5.4). Then, if the European call option price with the strike price K and maturity T at the time t can be
written in the form (4.1), it is given by

F (t, St) = h1(S(t), t) + (Σ(St) − V )I(r, t, S(t)) + (σ2(t) − Σ(St))I(r + α + γ, t, S(t)), (5.5)

where h1(S(t), t) is given by (4.2) and

Σ(St) = α

τ(α + γ)
ln2

(
S(t)

S(t − τ)

)
+ γV

α + γ
,

I(p, t, S(t)) = 1

2
S2(t)

∫ T

t

ep(t−ξ) ∂2h1

∂S2 (S(t), ξ) dξ, for p ≥ 0.
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Proof. Substituting the expression (5.4) for σ2 in (4.3), we obtain

F (t, St) = h1(S(t), t)+1

2
S2(t)

∫ T

t

er(t−ξ)[σ2(t0)e−(α+γ)(ξ−t0) + Σ(St)(1 − e−(α+γ)(ξ−t0)) − V ]
∂2h1

∂S2 (S(t), ξ) dξ,

which can be rewritten as

F (t, St) = h1(S(t), t) + (Σ(St) − V )
1

2
S2(t)

∫ T

t

er(t−ξ) ∂2h1

∂S2 (S(t), ξ) dξ + (σ2(t0)

− Σ(St))e
−(α+γ)(t−t0) 1

2
S2(t)

∫ T

t

e(r+α+γ)(t−ξ) ∂2h1

∂S2 (S(t), ξ) dξ,

which, in the case t = t0, is

F (t, St) = h1(S(t), t) + (Σ(St) − V )
1

2
S2(t)

∫ T

t

er(t−ξ) ∂2h1

∂S2 (S(t), ξ) dξ + (σ2(t)

− Σ(St))
1

2
S2(t)

∫ T

t

e(r+α+γ)(t−ξ) ∂2h1

∂S2 (S(t), ξ) dξ. �

6. Conclusion

In this article we derive an analogue (5.5) of Black–Scholes formula for a call option value in the market with
stock price satisfying a stochastic delay differential equation (3.1). The motivation for considering such a market with
delayed response comes from the continuous-time analogue of GARCH(1,1) model (see [4,9]). The implied volatility
plot is generated to show the difference between obtained closed-form solution and the Black–Scholes formula (see
Fig. 2).

Many related problems remain open. In particular, we would like to know how to find an option price value by
solving Eq. (3.6) in general form without our simplifying assumption. Moreover, it is desirable to estimate the time
delay τ involved and to consider the case where (3.1) experiences random Poisson jumps.

Acknowledgments

The authors acknowledge helpful suggestions from Jin-Chuan Duan, Tom Salisbury and the anonymous referee.
This work was partially supported by Natural Sciences and Engineering Research Council of Canada and by Canada
Research Chairs program.

Appendix A

Here we give a proof of Lemma 3.1. Fix t > 0 and denote C 
 x = St with S(t) satisfying (3.1). Then for a sufficiently
small s

[F (t + s, xs) − F (t, x)] = I1 + I2 + I3 + I4 + I5,
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where

I1 =
∫ 0

−τ

h(θ − s)[H(x(θ), x(s), t + s) − H(x(θ), x(s), t)] dθ,

I2 =
∫ 0

−τ

(h(θ − s) − h(θ))H(x(θ), x(s), t) dθ,

I3 =
∫ 0

−τ

h(θ)[H(x(θ), x(s), t) − H(x(θ), x(0), t)] dθ,

I4 =
∫ s

0
h(θ − s)H(x(θ), x(s), t + s) dθ,

I5 = −
∫ −τ+s

−τ

h(θ − s)H(x(θ), x(s), t + s) dθ.

Then, by letting s → 0,

I1 →
∫ 0

−τ

h(θ)H ′
3(x(θ), x(0), t) dθ dt,

I2 → −
∫ 0

−τ

h′(θ)H(x(θ), x(0), t) dθ dt,

I3 →
∫ 0

−τ

h(θ)TH(x(θ), x(0), t) dθ dt +
∫ 0

−τ

h(θ)σ(t, x)x(0)H ′
2(x(θ), x(0), t) dθ dW(t),

I4 → h(0)H(x(0), x(0), t) dt,

I5 → −h(−τ)H(x(−τ), x(0), t) dt,

where

TH(x(θ), x(0), t) = rx(0)H ′
2(x(θ), x(0), t) + σ2(t, x)x2(0)

2
H ′′

22(x(θ), x(0), t).

The limit for I3 is obtained by using the Ito’s lemma. Then expression (3.5) follows.
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