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Abstract

We develop a perturbation argument based on existing results on asymptotic autonomous systems and the
Fredholm alternative theory that yields the persistence of traveling wavefronts for reaction–diffusion equa-
tions with nonlocal and delayed nonlinearities, when the time lag is relatively small. This persistence result
holds when the nonlinearity of the corresponding ordinary reaction–diffusion system is either monostable
or bistable. We then illustrate this general result using five different models from population biology, epi-
demiology and bio-reactors.
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1. Introduction

Since the pioneering work of Fisher [19] and Kolmogorov, Petrowsky and Piscounov [31],
traveling wave solutions for reaction–diffusion equations have been extensively investigated,
and this investigation has also inspired rapid development in nonlinear analysis and nonlinear
dynamical systems, see [8,17,39,55] and the vast references therein.

The simplest scalar case is the following parabolic equation

ut = uxx + f (u) (1.1)

with the nonlinearity f satisfying the following conditions

f (0) = f (1) = 0, f ′(0) �= 0 > f ′(1).

Two prototypes of the nonlinearity have been considered: the monostable case (or the Fisher
nonlinearity) where f (u) > 0 for 0 < u < 1, f ′(0) > 0; and the bistable case (or the Huxley
nonlinearity) where there is a ∈ (0,1) such that f (u) < 0 for u ∈ (0, a) and f (u) > 0 for u ∈
(a,1), f ′(0) < 0. The existence of traveling waves of Eq. (1.1) can be studied using phase plane
analysis: in the monostable case, Eq. (1.1) has a family of traveling waves u = U(x − ct) for
all wave speed c � c∗(f ) = minimal speed, whereas in the bistable case, there exists a unique
traveling wave solution u = U(x − ct) for some constant c, see for example, [52] and [18].

The study of traveling waves for many systems of reaction–diffusion equations arising from
biological and physical applications becomes more complicated due to the lack of general tech-
niques for phase space analysis, and some other approaches such as monotone iteration schemes
[4,5], homotopy arguments [55] and perturbation analysis (for large speed waves) [1,39,48] have
been developed.

It has been recognized that some of the well-known existence results of traveling waves must
be extended to delay reaction–diffusion equations since time lags enter the dynamical models
in a very natural way due to the slow signal and biochemical processes in many biological and
physical systems, but such an extension becomes highly nontrivial. A fundamental difficulty
arises since the equations describing the waves are no-longer systems of ordinary differential
equations, but rather functional differential equations. Nevertheless, there has been substantial
progress. Notably, Schaaf [47] studied a scalar reaction–diffusion equation with a single discrete
delay in both the monostable case and bistable case by using ideas from phase space analysis,
and he obtained the existence of traveling wavefront(s) under quasimonotonicity condition of the
delayed nonlinearity. This quasimonotonicity also allows [59] to obtain the existence of travel-
ing wavefronts for a very general delayed reaction–diffusion system, via a monotone iteration
scheme coupled with the standard upper-lower solutions technique.

The difficulty in obtaining the existence of traveling waves for systems involving both spatial
diffusion and temporal time lags also arises from the recent observation (see [51]) that this in-
teraction of time lags and spatial diffusion leads to the so-called delay induced nonlocality and
the resulted models taking into account biological realities take the form of reaction–diffusion
equations with nonlocal and delayed nonlinearities: individuals have not been at the same point in
space at previous times. For example, So, Wu and Zou [51] adopted Smith–Thieme’s approach—
reduction from a structured population model—to obtain a functional differential equation for the
matured population in a biological system with two age classes [49] to the case of spatial dif-
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fusion in continuous and unbounded space, and they obtained the following reaction–diffusion
equation with time delay and nonlocal effects

∂w

∂t
= D

∂2w

∂x2
− dw + ε

∞∫
−∞

b
(
w(y, t − τ)

)
fα(x − y)dy, x ∈ (−∞,∞), (1.2)

where D,τ, d > 0 and 0 � ε � 1 are given constants, and the kernel function is given by fα(x) =
1√
4πα

e−x2/4α with α = τDI > 0, DI being the diffusion rate for the immature population, and

b(·) the nonlinear birth rate. One can easily show that the equation describing the waves is now
not only a functional differential equation, but also with mixed arguments (both advanced and
retarded arguments). We should mention that delayed nonlocal reaction–diffusion models similar
to (1.2) can also be obtained from predator–prey interaction and from the spread of infectious
diseases when the carriers of the diseases involve age structure and maturation time, See Gourley
and Kuang [21], and the two survey articles [22,24].

Due to the nonlocality and time lags, even for the model (1.2) the classical partition of nonlin-
earity and nonlinear dynamics into the monostable and bistable cases is no longer valid and we
can expect more complex patterns of traveling waves. For example, for (1.2) with a monotone
birth function b, we can obtain analogue existence results in both monostable and bistable cases
(see So, Wu and Zou [51], and Ma and Wu [37]). However, when the function b is no-longer
monotone (as it should be in order to reflect the crowding effect), we should expect oscillatory
waves (either periodic waves around a positive equilibrium, or a nonmonotone traveling wave
from the trivial solution to the positive equilibrium, see [23]).

Such an oscillatory pattern is associated with large delay. It is therefore very natural to ask if
“small delay is harmless” in the sense that traveling waves for Eq. (1.1) persist when the time τ

is incorporated in such an equation (note that Eq. (1.2) reduces to Eq. (1.1) when the matura-
tion τ approaches zero). Such a persistence issue or harmless small delay has been addressed in
other aspects of qualitative behaviors of delay differential equations. Despite simple biological
intuition, rigorous mathematical justification seems to be quite difficult and unresolved even for
the global stability of a unique positive equilibrium, see [20,46,54] and the book [32] by Kuang.

To describe precisely our goal in this paper about the persistence of traveling wavefront(s) of
an ordinary reaction–diffusion equation subject to the nonlocal interaction induced by a small
time lag, we consider the following system

∂u(x, t)

∂t
= D�u(x, t) + F

(
u(x, t),

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
u(x + y, t + θ)

))
, (1.3)

where x ∈ Rm, t � 0, u(x, t) ∈ Rn, D = diag(d1, . . . , dn) with positive constants di , i = 1, . . . , n,

� = ∑m
i=1

∂2

∂x2
i

is the Laplacian operator, τ is a positive constant, μτ is a bounded varia-

tion function on [−τ,0] × Ω ⊆ [−τ,0] × Rm with values in Rn×n and normalized so that∫ 0
−τ

∫
Ω

dμτ (θ, y) = 1, and this measure may be dependent on τ , F : Rn × Rn → Rn and
g : Rn → Rn are C2-smooth functions. Our result shows that Eq. (1.3) has traveling wavefronts
as long as the reduced version of an ordinary reaction–diffusion system, by setting τ = 0,

∂u(x, t) = D�u(x, t) + F
(
u(x, t), g

(
u(x, t)

))
,

∂t
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has ones: this is true in both monostable and bistable cases, and the quasimonotonicity condition
on F and g is no longer required. This general result can then find applications in a number of
models arising from ecology, biology and epidemiology, providing a framework and a systematic
solution in a very general setting.

We illustrate these applications by five models. The first one is about Eq. (1.2). Direct applica-
tions of our general results yield that in the monostable case where b(m) = pme−am, εp > d , for
any c � c∗

0 = 2
√

D(εp − d), Eq. (1.2) has a family of traveling wavefronts u = U(x − c∗
τ ct/c

∗
0)

when the maturation time τ is small, where the minimal speed c∗
τ is determined by the charac-

teristic equation associated with Eq. (1.2) at the equilibrium u = 0; in the bistable case where
b(m) = pm2e−am, εp > dae, Eq. (1.2) has a traveling wavefront u = U(x − ct) for some wave
speed c.

The second illustrative example is the following nonlocal Fisher model in the form of an
integro-differential reaction–diffusion equation

∂u(x, t)

∂t
= �u + u

[
1 + αu − (1 + α)g ∗ u

]
, x = (x1, x2, . . . , xm) ∈ Rm, t, u ∈ R, (1.4)

where α > 0 and g ∗ u represents a temporal-spatial convolution, given by

g ∗ u =
∫

Rm

e−‖y‖2/4τ

(4πτ)m/2
u(x − y, t − τ) dy.

This model was first proposed by Britton [9,10] and was recently studied by Wang, Li and
Ruan [56] in the scalar case by using a nonstandard ordering. By applying our general results,
we find that for any given c � 2, there exists a constant δ(c) > 0 so that for τ ∈ [0, δ), Eq. (1.4)
has a traveling wavefront u = U(ν · x − ct) which satisfying

lim
s→−∞U(s) = 1, lim

s→∞U(s) = 0,

where ν is a unit vector in Rm. This result improves the main conclusion in [56] that shows the
existence of traveling wavefronts for c � 2

√
1 + α for small delay τ .

We also consider a system associated with the spatial spread of rabies among red foxes in
Europe. Incorporating incubation time into a well-known model, we obtain the following delay
reaction–diffusion model

⎧⎪⎪⎨
⎪⎪⎩

∂S

∂t
= −KIS,

∂I

∂t
= D

∂2I

∂x2
+ e−dτKI (x, t − τ)S(x, t − τ) − μI,

(1.5)

where S and I are the susceptible and infective population densities respectively, τ is the incu-
bation period of rabies and the constant d is the death rate of susceptible foxes, the parameter
K is the transmission coefficient and μ is the death rate of the infective. Our result shows that
Eq. (1.5) has traveling wavefronts with the minimal speed being a decreasing function of τ when
the delay τ is small.
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The same idea and technique applies to the following bio-reactor model:

⎧⎪⎪⎨
⎪⎪⎩

St = −vSx − f (S)u,

ut = uxx − vux + e−dτ

∞∫
−∞

f
(
S(y − vτ, t − τ)

)
u(y − vτ, t − τ)fα(x − y)dy − ku

(1.6)

where fα(x) = 1√
4πα

e−x2/4α with α = τD > 0, S(x, t) and u(x, t) are the concentrations of
nutrient and microbial populations at position x and time t , respectively. Parameter v � 0 is the
flowing velocity, k > 0 is the cell death rate (or dilution rate) and d is the dilution rate of the
nutrient. In [58,60] the authors assumed that k = d . The constant τ � 0 denotes the time delay
involved in the conversion of nutrient to viable biomass. Our result shows again that if the non-
delay model has a wavefront, so does the delayed model, but with a new minimal speed which is
a function (decreasing) of τ .

The general results can also be extended to cover second-order hyperbolic–parabolic systems
with time delay. We demonstrate this using the following hyperbolic model arising from the
evolution of a single species by considering the time delay in the spatial movement of individuals
in the nonlocal model (1.2):

∂

∂t
m(x, t) + r1

∂2

∂t2
m(x, t)

= D
∂2

∂x2
m(x, t) − dm(x, t) + ε

∞∫
−∞

fα(x − y)b
(
m(y, t − τ)

)
dy

+ r1
∂

∂t

[
ε

∞∫
−∞

fα(x − y)b
(
m(y, t − τ)

)
dy

]
, (1.7)

where the new parameter r1 > 0 is related to the delay of the spatial movement. This is a nonlocal
hyperbolic model for which the maximum principle and the comparison theorem seem to be
unavailable, but the existence of traveling waves can be established using our general theory in
both monostable and bistable cases.

While there has been significant progress towards the existence of traveling wavefronts in
reaction–diffusion equations with nonlocal and delayed nonlinearities, very few general results
that can be applied to a wide range of models important for applications have been established,
with basically two exceptions: the celebrated work [35,53] for the case where the nonlinearity
satisfies the quasimonotonicity condition, and the recent work [16] (based on a perturbation ar-
gument developed in [1,39,48]) that ensures the existence of traveling waves with large wave
speeds in the neighborhood of a heteroclinic connecting orbit of a corresponding ordinary delay
differential equation obtained through spatial averaging. Our results do not require the quasi-
monotonicity condition on the nonlinearity, and ensure the existence of wavefronts with speeds
close to the minimal wave speed. Both seem to be significant, in particular, for applications since
most application problems involve nonmonotone nonlinearity, and wavefronts with the speeds
close to the minimal speed are more biologically relevant because the solutions of the corre-
sponding Cauchy initial value problem normally converge to these particular waves, see [39].
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The remaining part of this paper is organized as follows. In Section 2, we present the exis-
tence result of traveling wavefronts in the monostable case and in Section 3 we establish the
corresponding results in the bistable case. In Sections 4 and 5, we give the proofs of our main
results. The last section is devoted to the illustration of the main results by their applications to
the aforementioned models arising in ecology, biology and epidemiology.

2. Persistence of traveling wavefronts: monostable case

We consider the following system of reaction–diffusion equations with nonlocal and delayed
nonlinearity

∂u(x, t)

∂t
= D�u(x, t) + F

(
u(x, t),

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
u(x + y, t + θ)

))
, (2.1)

where x ∈ Rm, t � 0, u(x, t) ∈ Rn, D = diag(d1, . . . , dn) with positive constants di , i = 1, . . . , n,

� = ∑m
i=1

∂2

∂x2
i

is the Laplacian operator, τ is a positive constant, μτ is a bounded variation

measure with values on Rn×n, and this measure may be dependent on τ , F : Rn × Rn → Rn and
g : Rn → Rn are C2-smooth functions.

For later use, we introduce some notations. For a vector x ∈ Rn, we set ‖x‖ = ‖x‖Rn and for a
n × n matrix A, ‖A‖ = ‖A‖Rn denotes the norm of A as a linear operator. Let C = C(R,Rn) be
the Banach space of continuous and bounded functions from R to Rn equipped with the standard
norm ‖φ‖ = sup{‖φ(t)‖Rn , t ∈ R}. Denote C1 = C1(R,Rn) = {φ ∈ C: φ′ ∈ C}, C2 = {φ ∈
C: φ′′ ∈ C}, C0 = {φ ∈ C: limt→±∞ φ = 0} and C1

0 = {φ ∈ C0: φ′ ∈ C0}.
We let Fu(u, v),Fv(u, v) denote the partial derivatives of F with respect to the variables

u ∈ Rn and v ∈ Rn, and let gu(u) be the derivative of g with respect to the variable u ∈ Rn. Let
f (u) = F(u,g(u)). Then

f ′(u) = Fu(u,u) + Fv

(
u,g(u)

)
g′(u).

We assume that μτ satisfies the normalization condition

0∫
−τ

∫
Ω

dμτ (θ, y) = 1, (2.2)

and the limiting condition

lim
τ→0

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
u(x + y, t + θ)

) = g
(
u(x, t)

)

for any fixed x and t . Thus when τ → 0, Eq. (2.1) reduces to a standard reaction–diffusion
equation

∂u = D�u + F
(
u,g(u)

) = D�u + f (u), (2.3)

∂t
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that includes the well-known Fisher [19] and KPP [31] model as a special case.
We assume that Eq. (2.1) has only two equilibria E1 = 0 and E2 = K �= 0, where K is a

constant vector in Rn which is independent of τ . This assumption is reasonable because when
Eq. (2.1) has two equilibria E1 = K1(τ ) �= E2 = K2(τ ), we can always use the following linear
scaling transform

⎧⎨
⎩ ũi = ui − (E1)i

(E2)i − (E1)i
if (E2)i �= (E1)i ,

ũi = ui − (E1)i if (E2)i = (E1)i

to have a new system for ũ with two new equilibria E1 = 0 and E2 that are independent of τ .
Let u(x, t) = U0(s) with s = ν · x − ct be a traveling wave, where ν is a unit vector in Rm and

c is the wave speed. Then we have from (2.3) the following profile equation

−cU ′
0 = DU ′′

0 + f (U0). (2.4)

For Eq. (2.4), U0 = 0 is a solution. The behaviors of solutions near the equilibrium U0 = 0 are
determined by the linearization of (2.4) around the point U0 = 0:

−cU ′ = DU ′′ + f ′(0)U,

and the corresponding characteristic equation

Λ0
0(λ) := det

[
Dλ2 + cλI + f ′(0)

] = 0,

where I is the identity matrix. Similarly, we obtain the characteristic equation at E2 as follows

ΛK
0 (λ) := det

[
Dλ2 + cλI + f ′(K)

] = 0.

The following conditions are usually required for the existence of traveling waves connecting
the two equilibria E1 and E2 for the ordinary reaction–diffusion equation (2.3):

(H1) The equilibria E1 and E2 are hyperbolic in the sense that Λ0
0(iv) �= 0, ΛK

0 (iv) �= 0 for any
real number v.

(H2) There exists a constant c∗
0 > 0 so that for every c � c∗

0 , equation Λ0
0(λ) = 0 has a negative

real root. Moreover, E1 = 0 is a stable node of Eq. (2.4) in the sense that the real part of
every complex zero of equation Λ0

0(λ) = 0 is negative.
(H3) For any c � c∗

0 , Eq. (2.4) has a solution U0 satisfying

lim
s→−∞U0(s) = E2 = K, lim

s→∞U0(s) = E1 = 0. (2.5)

In addition, we shall require
(H4) μτ (θ, y) satisfies

0∫ ∫
dμτ (θ, y)(ν · y) = o(1) as τ → 0
−τ Ω



226 C. Ou, J. Wu / J. Differential Equations 235 (2007) 219–261
and

0∫
−τ

∫
Ω

dμτ (θ, y)θ = o(1) as τ → 0.

Remark 2.1. c∗
0 is called the minimal speed of the traveling wavefronts to Eq. (2.3). It is usually

defined as

c∗
0 = inf

{
c > 0

∣∣ Λ0
0(λ) = 0 has a negative real zero

}
.

Remark 2.2. In some applications, η may be a function of bounded variation from (−∞,0]×Ω

to the space Rn×n, satisfying the normalization condition

0∫
−∞

∫
Ω

dμτ (θ, y) = 1

instead of (2.2), see [21,42] and [45]. In this case, our main results below remain valid as long as

lim
τ→0

0∫
−∞

∫
Ω

dμτ (θ, y)g
(
u(x + y, t + θ)

) = g
(
u(x, t)

)
.

We want to seek traveling wavefronts for Eq. (2.1), that is, we suppose that u(x, t) = U(s),
s = ν · x − ct , and obtain a wave profile equation from Eq. (2.1):

−cU ′ = DU ′′ + F

(
U(s),

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
U(s + ν · y − cθ)

))
, s ∈ R. (2.6)

As usual, around E1 = 0, we linearize Eq. (2.6) and define the following function

Λ0
τ (λ) := det

[
λ2D + λcI + B1 + B2

0∫
−τ

∫
Ω

dμτ (θ, y)eλ(ν·y−cθ)

]
,

where λ is a complex variable and the two matrices B1 and B2 are

B1 = Fu

(
0, g(0)

)
, B2 = Fv

(
0, g(0)

)
g′(0).

Define the minimal speed c∗
τ as

c∗
τ = inf

{
c > 0

∣∣ Λ0
τ (λ) = 0 has a negative real zero

}
.
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Here we assume that

0∫
−τ

∫
Ω

dμτ (θ, y)eλ(ν·y−cθ)

is a continuous function of τ so that c∗
τ depends continuously on τ and

lim
τ→0

c∗
τ = c∗

0 .

Our main result can be stated as follows:

Theorem 2.1. For any given c � c∗
0 , there exists a constant δ = δ(c) > 0 so that for τ ∈ (0, δ),

Eq. (2.1) has a traveling wavefront u = U(ν · x − c∗
τ ct/c

∗
0) which satisfies

lim
s→−∞U(s) = E2 = K, lim

s→∞U(s) = E1 = 0.

In recent existence studies of traveling wavefronts, most authors assume that the delayed
nonlinearities Fv(u, v) and gu(u) are positive and these assumptions result in monotone travel-
ing wavefronts for system (2.1), see [11,12,33–36,41,47,57,59]. Our theorem addresses the long
standing issue on the existence of traveling wavefronts in the nonmonotone and nonlocal cases,
as shown in the next two examples.

A natural corollary of Theorem 2.1 for the following scalar equation

∂u(x, t)

∂t
= ∂2u(x, t)

∂x2
+ F

(
u(x, t), u(x, t − τ)

)
, x ∈ R, t � 0 (2.7)

can be derived, where F satisfies

F(0,0) = F(1,1) = 0 and F(s, t) > 0 for 0 < s, t < 1.

Suppose that α = Fu(0,0), β = Fv(0,0), α + β > 0 and Fu(1,1) + Fv(1,1) < 0. The character-
istic functions Λ0

τ (λ) and Λ0
0(λ) become

Λ0
τ (λ) = λ2 + λc + α + βeλcτ

and

Λ0
0(λ) = λ2 + λc + α + β.

Set

c∗
τ = inf

{
c > 0

∣∣ Λ0
τ (λ) = 0 has a real negative zero

}
.

By the implicit function theorem, it is readily seen that

dc∗
τ

dτ

∣∣∣∣ < 0

τ=0
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which means that the minimal speed is a decreasing function of τ for τ in some right neighbor-
hood of τ = 0.

As a corollary of Theorem 2.1, we have the following

Corollary 2.1. For any given c � c∗
0 = 2

√
α + β , there exists a constant δ = δ(c) > 0 so that for

τ ∈ [0, δ), Eq. (2.7) has a traveling wavefront u = U(x − c∗
τ ct/c

∗
0) which satisfies

lim
s→−∞U(s) = 1, lim

s→∞U(s) = 0.

We remark that we do not impose any monotonicity condition on the function of F(u, ·) :
R → R for any fixed u ∈ R.

We can also deal with a nonlocal hyperbolic equation with delay

∂u(x, t)

∂t
+ r1

∂2u(x, t)

∂t2
= D�u(x, t) + F

(
u(x, t),

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
u(x + y, t + θ)

))
, (2.8)

where x ∈ Rm, u ∈ Rn, r1 > 0, D = diag(d1, d2, . . . , dn) with positive constants di . At the solu-
tion u ≡ 0, the characteristic function is defined as

Λ0
τ,r1

(λ) := det

[
λ2(D − c2r1I

) + λcI + B1 + B2

0∫
−τ

∫
Ω

dμτ (θ, y)eλ(ν·y−cθ)

]
.

As above, define the minimal speed c∗
τ,r1

by

c∗
τ,r1

= inf
{
c > 0

∣∣ Λ0
τ,r1

(λ) = 0 has a negative real zero
}
,

and the minimal speed c∗
0,0 is defined by

c∗
0,0 = inf

{
c > 0

∣∣ det
[
λ2D + λcI + f ′(0)

] = 0 has a negative real zero
}
.

Then under the conditions (H1)–(H4), we have the following

Theorem 2.2. For any given c � c∗
0,0, there exist constants δ1 = δ1(c) and δ2 = δ2(c) > 0 so that

for τ ∈ [0, δ1) and r1 ∈ [0, δ2), Eq. (2.8) has a traveling wavefront u = U(ν · x − c∗
τ,r1

ct/c∗
0,0)

which satisfies

lim
s→−∞U(s) = E2 = K, lim

s→∞U(s) = E1 = 0.

3. Persistence of traveling wavefronts: bistable case

A natural question is whether or not we can obtain similar results about the persistence of
traveling wavefront in the bistable case. The answer is affirmative as shown in this section.
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Still consider the equation

∂u(x, t)

∂t
= D�u(x, t) + F

(
u(x, t),

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
u(x + y, t + θ)

))
(3.1)

and its reduced version when τ = 0

∂u

∂t
= D�u + F

(
u,g(u)

) = D�u + f (u), (3.2)

where x ∈ Rm, t � 0, u(x, t) ∈ Rn. Here all the parameters D, � = ∑m
i=1

∂2

∂x2
i

, τ , μτ are defined

the same as in Section 2, but the nonlinearities F and g have different behaviors. In the bistable
case, f (u) = F(u,g(u)) = 0 has three equilibria:

E1 = 0, E2 and E3 = K

where the vector E2∈ Rn is between 0 and K with respect to a certain ordering in Rn.
As before, by setting u(x, t) = U(ν · x − ct) and u(x, t) = U0(ν · x − c0t), traveling wave

profiles to Eqs. (3.1) and (3.2) are given respectively by

−cU ′(s) = DU ′′(s) + F

(
U(s),

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
U(s + ν · y − cθ)

))
, s ∈ R, (3.3)

and

−c0U
′
0 = DU ′′

0 + f (U0), s ∈ R. (3.4)

Equation (3.4) has neither time delay nor spatial averaging effect. We will assume that there
exists a traveling wavefront (U0, c0) for Eq. (3.4) connecting E1 and E3. For the presentation
of our results, we introduce a linear operator Q :C2 → C, accompanied by the linearization of
Eq. (3.4), as

Q(u)(s) = −c0u
′(s) − Du′′(s) − f ′(U0(s)

)
u(s), s ∈ R.

The adjoint operator of Q is given by

Q∗(u)(s) = c0u
′(s) − Du′′(s) − f ′(U0)

∗u(s), s ∈ R,

where f ′(U0)
∗ is the transpose of the matrix f ′(U0).

Our basic assumptions, about Eq. (3.4), are as follows:

(G1) When τ = 0, Eq. (3.4) has a wavefront U0 with the wave speed c0 satisfying

lim
s→−∞U0(s) = E3 = K, lim

s→∞U0(s) = E1 = 0.
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(G2) When τ = 0, the two equilibria E1 = 0 and E3 = K with the wavespeed c = c0 are hy-
perbolic in the sense that Λ0

0(iv) �= 0, ΛK
0 (iv) �= 0 for any real number v when c = c0.

Furthermore, there exists a unique (up to scalar multiple) bounded element p = U ′
0 such

that Q(p) = 0, and correspondingly a unique (up to scalar multiple) nontrivial bounded
element p∗ so that Q∗(p) = 0 and

∞∫
−∞

p(s) · p∗(s) ds �= 0.

Based on a combination of the Fredholm theory and the fixed-point theorem, we can obtain
the following result by a local continuation of the parameter τ :

Theorem 3.1. Under the conditions (G1), (G2) and (H4), there exists a δ > 0 so that for any
τ ∈ [0, δ), Eq. (3.1) has a traveling wavefront u = U(ν · x − ct) satisfying

lim
s→−∞U(s) = E3 = K, lim

s→∞U(s) = E1 = 0

for some c ∈ R.

As an example, we consider the scalar equation

∂u(x, t)

∂t
= ∂2u(x, t)

∂x2
+ F

(
u(x, t),

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
u(x + y, t + θ)

))
, (3.5)

where u(x, t) ∈ R and f (u) = F(u,g(u)) = u(u − a)(1 − u), 0 < a < 1. When τ = 0, from the
classical paper of Fife and McLeod [18], we know that equation

∂u(x, t)

∂t
= ∂2u(x, t)

∂x2
+ f

(
u(x, t)

)
(3.6)

has a unique traveling wavefront u = U0(x − c0t), where U0 is a strictly decreasing function.
By Lemma 3.1 in [15], we know that for the nonlinear function f (u) = u(u − a)(1 − u), condi-
tion (G2) is satisfied. Therefore, under condition (H4), we have the following

Corollary 3.1. There exists a δ > 0 so that for any τ ∈ [0, δ), scalar Eq. (3.5) has a traveling
wavefront u = U(x − ct) satisfying

lim
s→−∞U(s) = 1, lim

s→∞U(s) = 0

for some c ∈ R.
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We can also consider the nonlocal hyperbolic equation (2.8) in the bistable case when the
nonlinear function f (u) = F(u,g(u)) = 0 has three equilibria E1 = 0,E2 and E3 = K. The
wave profile equation becomes

−cU ′ = (
D − r1c

2)U ′′ + F

(
U(s),

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
U(s + ν · y − rcθ)

))
.

Under the conditions (G1), (G2) and (H4), we have

Theorem 3.2. There exist constants δ1 and δ2 > 0 so that for any τ ∈ [0, δ1) and r1 ∈ [0, δ2),
Eq. (3.1) has a traveling wavefront u = U(ν · x − ct) satisfying

lim
s→−∞U(s) = E3 = K, lim

s→∞U(s) = E1 = 0

for some c ∈ R.

4. Proofs: the monostable case

In this section, we give a proof of Theorem 2.1. Our main approach is based on a combi-
nation of some perturbation analysis, the Fredholm theory and the Banach fixed point theorem,
by showing that a traveling wavefront to Eq. (2.1) can be approximated by the corresponding
wavefront U0(z) of (2.4) when τ is small.

For any given c � c∗
0 , we want to show that Eq. (2.1) has a traveling wavefront u = U(s),

s = ν · x − rct , where r = c∗
τ /c

∗
0 which is dependent on τ and tends to 1 as τ → 0. That is, we

want to find a solution U to the following equation

−rcU ′ = DU ′′ + F

(
U(s),

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
U(s + ν · y − rcθ)

))
. (4.1)

We suppose that U can be approximated by U0, and hence we write U = U0 + W . It is then easy
to derive an equation for W :

−rcW ′ = DW ′′ + F

(
U0 + W,

0∫
−τ

∫
Ω

dμτ (θ, y)g
([U0 + W ](s + ν · y − rcθ)

))

− F
(
U0(s), g

(
U0(s)

)) + rcU ′
0 − cU ′

0 (4.2)

subject to

W(±∞) = 0.
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Expanding the term

F

(
U0(s) + W(s),

0∫
−τ

∫
Ω

dμτ (θ, y)g
([U0 + W ](s + ν · y − rcθ)

))

yields

F

(
U0(s) + W(s),

0∫
−τ

∫
Ω

dμτ (θ, y)g
([U0 + W ](s + ν · y − rcθ)

))

= F

(
U0(s),

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
U0(s + ν · y − rcθ)

))

+ Aτ (s)W + Bτ (s)Cτ (s,W) + R1(τ, s,W), (4.3)

with

Aτ (s) = Fu

(
U0(s),

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
U0(s + ν · y − rcθ)

))
, s ∈ R,

Bτ (s) = Fv

(
U0(s),

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
U0(s + ν · y − rcθ)

))
,

and

Cτ (s,W) =
0∫

−τ

∫
Ω

dμτ (θ, y)gu

(
U0(s + ν · y − rcθ)

)
W(s + ν · y − rcθ), (4.4)

where R1(τ, s,W) is the remainder of the higher orders, that is,

R1(τ, s,W) = F

(
U0(s) + W(s),

0∫
−τ

∫
Ω

dμτ (θ, y)g
([U0 + W ](s + ν · y − rcθ)

))

− F

(
U0(s),

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
U0(s + ν · y − rcθ)

))

− Aτ (s)W − Bτ (s)Cτ (s,W). (4.5)

Therefore, by (4.3) and the fact that

f ′(U0) = Fu

(
U0, g(U0)

) + Fv

(
U0, g(U0)

)
gu(U0),
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Eq. (4.1) becomes

−crW ′ = DW ′′ + f ′(U0)W + R1(τ, s,W) + R2(τ, s,W) + R3(τ, s,W), (4.6)

where

R2(τ, s,W) = F

(
U0(s),

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
U0(s + ν · y − rcθ)

))

− f (U0) + rcU ′
0 − cU ′

0,

R3(τ, s,W) = Aτ (s)W − A0(s)W(s) + Bτ (s)Cτ (s,W) − B0(s)gu

(
U0(s)

)
W(s) (4.7)

with

A0(s) = Fu

(
U0(s), g

(
U0(s)

))
, B0(s) = Fv

(
U0(s), g

(
U0(s)

))
gu

(
U0(s)

)
, s ∈ R.

Next we transform Eq. (4.6) into an integral equation. We re-write Eq. (4.6) as

di

d2Wi

ds2
+ cr

dWi

ds
− Wi = −Wi − [

f ′(U0)W
]
i
− [

R1(τ, s,W)
]
i

− [
R2(τ, s,W)

]
i
− [

R3(τ, s,W)
]
i
, 1 � i � n, (4.8)

where the index i denotes the ith component for the corresponding functions. Equation

di

d2Wi

ds2
+ cr

dWi

ds
− Wi = 0

has a characteristic equation

diλ
2 + crλ − 1 = 0

with two real roots

ατ
i = −cr − √

c2r2 + 4di

2di

< 0, βτ
i = −cr + √

c2r2 + 4di

2di

> 0

satisfying

lim
τ→0

ατ
i = α0

i := −c − √
c2 + 4di

2di

, lim
τ→0

βτ
i = β0

i := −c + √
c2 + 4di

2di

. (4.9)

We thus conclude that (4.8) is equivalent to the following integral equation
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Wi(s) = 1

di(β
τ
i − ατ

i )

s∫
−∞

eατ
i (s−t)

{
Wi + [

f ′(U0)W
]
i
+

3∑
j=1

[
Rj (τ, s,W)

]
i

}
dt

+ 1

di(β
τ
i − ατ

i )

∞∫
s

eβτ
i (s−t)

{
Wi + [

f ′(U0)W
]
i
+

3∑
j=1

[
Rj (τ, s,W)

]
i

}
dt, (4.10)

for i = 1,2, . . . , n. Recall that di(β
τ
i − ατ

i ) = √
c2r2 + 4di . Equation (4.10) can then be written

as

Wi(s) − 1√
c2 + 4di

s∫
−∞

eα0
i (s−t)

{
Wi + [

f ′(U0)W
]
i

}
dt

− 1√
c2 + 4di

∞∫
s

eβ0
i (s−t)

{
Wi + [

f ′(U0)W
]
i

}
dt

=
s∫

−∞

{
eατ

i (s−t)√
c2r2 + 4di

− eα0
i (s−t)√

c2 + 4di

}{
Wi + [

f ′(U0)W
]
i

}
dt

+
+∞∫
s

{
eβτ

i (s−t)√
c2r2 + 4di

− eβ0
i (s−t)√

c2 + 4di

}{
Wi + [

f ′(U0)W
]
i

}
dt

+ 1√
c2r2 + 4di

s∫
−∞

eατ
i (s−t)

3∑
j=1

[
Rj (τ, s,W)

]
i
dt

+ 1√
c2r2 + 4di

∞∫
s

eβτ
i (s−t)

3∑
j=1

[
Rj(τ, s,W)

]
i
dt (4.11)

with the boundary conditions

W(±∞) = 0.

To express (4.11) in a simple form, we introduce a number of matrices:

Eτ
1 (s) = diag

(
eατ

1 s√
c2r2 + 4d1

,
eατ

2 s√
c2r2 + 4d2

, . . . ,
eατ

ns√
c2r2 + 4dn

)
, s ∈ R,

Eτ
2 (s) = diag

(
eβτ

1 s√
c2r2 + 4d1

,
eβτ

2 s√
c2r2 + 4d2

, . . . ,
eβτ

n s√
c2r2 + 4dn

)
, s ∈ R,

E0
1(s) = diag

(
eα0

2s√
2

,
eα0

2s√
2

, . . . ,
eα0

ns√
2

)
, s ∈ R,
c + 4d1 c + 4d2 c + 4dn
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E0
2(s) = diag

(
eβ0

2 s√
c2 + 4d1

,
eβ0

2 s√
c2 + 4d2

, . . . ,
eβ0

ns√
c2 + 4dn

)
, s ∈ R,

Eτ
3 (s) = Eτ

1 (s) − E0
1(s), s ∈ R,

and

Eτ
4 (s) = Eτ

2 (s) − E0
2(s), s ∈ R.

Then Eq. (4.11) can be finally written as

W −
s∫

−∞
E0

1(s − t)
{
W(t) + f ′(U0)W(t)

}
dt

−
∞∫
s

E0
2(s − t)

{
W(t) + f ′(U0)W(t)

}
dt

= H(τ, s,W), W(±∞) = 0, (4.12)

where

H(τ, s,W) =
s∫

−∞
Eτ

3 (s − t)
{
W(t) + f ′(U0)W(t)

}
dt

+
+∞∫
s

Eτ
4 (s − t)

{
W(t) + f ′(U0)W(t)

}
dt

+
s∫

−∞
Eτ

1 (s − t)

3∑
j=1

Rj (τ, t,W)dt

+
∞∫
s

Eτ
1 (s − t)

3∑
j=1

Rj (τ, t,W)dt.

We will study the existence of the solution W to (4.11) or (4.12). Define a linear operator
L :C0 → C0 from the left side of (4.12) by

L(W)(s) = W(s) −
s∫

−∞
E0

1(s − t)
{
W(t) + f ′(U0)W(t)

}
dt

−
∞∫

E0
2(s − t)

{
W(t) + f ′(U0)W(t)

}
dt. (4.13)
s
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It is obvious that L(W) ∈ C0 if W ∈ C0. Now we establish some estimations for the integration
on the right side of (4.11).

Lemma 4.1. When τ → 0, we have

∣∣∣∣∣
s∫

−∞

{
eατ

i (s−t)√
c2r2 + 4di

− eα0
i (s−t)√

c2 + 4di

}{
Wi + [

f ′(U0)W
]
i

}
dt

∣∣∣∣∣ = o(1)‖W‖

and

∣∣∣∣∣
+∞∫
s

{
eβτ

i (s−t)√
c2r2 + 4di

− eβ0
i (s−t)√

c2 + 4di

}{
Wi + [

f ′(U0)W
]
i

}
dt

∣∣∣∣∣ = o(1)‖W‖.

Proof. Since ‖f ′(U0)‖ is bounded and independent of τ , we only need to prove that

∣∣∣∣∣
s∫

−∞

{
eατ

i (s−t)√
c2r2 + 4di

− eα0
i (s−t)√

c2 + 4di

}
dt

∣∣∣∣ = o(1) (4.14)

and

∣∣∣∣∣
+∞∫
s

{
eβτ

i (s−t)√
c2r2 + 4di

− eβ0
i (s−t)√

c2 + 4di

}
dt

∣∣∣∣∣ = o(1) (4.15)

as τ → 0. We will show that (4.14) is true and leave the proof of (4.15) to interested readers.
Using α0

i < ατ
i < 0, we have

∣∣∣∣∣
s∫

−∞

{
eατ

i (s−t)√
c2r2 + 4di

− eα0
i (s−t)√

c2 + 4di

}
dt

∣∣∣∣∣
�

s∫
−∞

∣∣∣∣ eατ
i (s−t)√

c2r2 + 4di

− eα0
i (s−t)√

c2r2 + 4di

∣∣∣∣dt +
s∫

−∞

∣∣∣∣ eα0
i (s−t)√

c2r2 + 4di

− eα0
i (s−t)√

c2 + 4di

∣∣∣∣dt

= 1√
c2r2 + 4di

(
− 1

ατ
i

+ 1

α0
i

)
+

∣∣∣∣ 1√
c2r2 + 4di

− 1√
c2 + 4di

∣∣∣∣
(

− 1

α0
i

)

= o(1)

as τ → 0. The proof of this lemma is complete. �
Lemma 4.2. For each δ > 0, there is a σ > 0 such that

∣∣[R1(s, τ,φ)
] − [

R1(s, τ, ϕ)
] ∣∣ � δ‖φ − ϕ‖C0 (4.16)
i i
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and

s∫
−∞

eατ
i (s−t)

∣∣[R1(t, τ,φ)
]
i
− [

R1(t, τ, ϕ)
]
i

∣∣dt

+
∞∫
s

eβτ
i (s−t)

∣∣[R1(t, τ,φ)
]
i
− [

R1(t, τ, ϕ)
]
i

∣∣dt

� δ‖φ − ϕ‖C0 (4.17)

uniformly for all φ,ϕ ∈ B(σ), where B(σ) is the ball in C0 with radius σ and center at the
origin.

Proof. It is obvious that the remainder [R1(s, τ,φ)]i satisfies∣∣[R1(s, τ,φ)
]
i

∣∣ = O
(‖φ‖2) as ‖φ‖ → 0. (4.18)

Therefore, as

1

βτ
i

− 1

ατ
i

=
√

c2r2 + 4di,

(4.16) and (4.17) follow from (4.18). �
Lemma 4.3. As τ → 0, we have

∣∣∣∣∣
s∫

−∞
eατ

i (s−t)
[
R2(t, τ,W)

]
i
ds +

∞∫
s

eβτ
i (s−t)

[
R2(t, τ,W)

]
i
dt

∣∣∣∣∣ = o(1).

Proof. It is obvious from the expression of R2(s, τ ) that R2(s, τ ) approach 0 as τ → 0. �
Lemma 4.4. There exists an M0 > 0 such that for all W ∈ C0, we have

∥∥∥∥∥
s∫

−∞
Eτ

1 (s − t)R3(t, τ,W)dt +
∞∫
s

Eτ
2 (s − t)R3(t, τ,W)dt

∥∥∥∥∥ = o(1)‖W‖C0 . (4.19)

Furthermore, for any two functions φ1 and φ2 in C0, we have

∥∥∥∥∥
s∫

−∞
Eτ

1 (s − t)
(
R3(t, τ,φ1) − R3(t, τ,φ1)

)
dt

+
∞∫
s

Eτ
2 (s − t)

(
R3(t, τ,φ1) − R3(t, τ,φ1)

)
dt

∥∥∥∥∥
= O(

√
τ )‖φ1 − φ2‖C0 . (4.20)
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Proof. We re-write R3 in (4.7) as

R3(s, τ,W) = (
Aτ (s) − A0(s)

)
W(s)

+ (
Bτ (s) − B0(s)

)
Cτ (s,W)

+ B0(s)W(s)
(
Cτ (s,1) − gu

(
U0(s)

))
+ B0(s)

(
Cτ (s,W) − Cτ (s,1)W(s)

)
, (4.21)

where

Cτ (s,1) =
0∫

−τ

∫
Ω

dτ (θ, y)gu

(
U0(s + ν · y − rcθ)

)
, s ∈ R. (4.22)

Since F is C2-smooth and U0 ∈ C1, by (H4) we have as τ → 0 that

Aτ (s) − A0(s) = Fu

(
U0(s),C

τ (s,1)
) − Fu

(
U0(s), g

(
U0(s)

)) = o(1),

Bτ (s) − B0(s) = o(1),

and

Cτ (s,1) − gu

(
U0(s)

) = o(1).

Therefore, for the integrations of the first three terms on the right-hand side of (4.21), we have
the following estimates:

∥∥∥∥∥
s∫

−∞
Eτ

1 (s − t)
(
Aτ (t) − A0(t)

)
W(t) dt

∥∥∥∥∥ = o(1)‖W‖, (4.23)

and

∥∥∥∥∥
∞∫
s

Eτ
2 (s − t)

(
Aτ (t) − A0(t)

)
W(t) dt

∥∥∥∥∥ = o(1)‖W‖, (4.24)

∥∥∥∥∥
s∫

−∞
Eτ

1 (s − t)
(
Bτ (t) − B0(t)

)(
Cτ (t,1)W(t + ν · y − rcθ)

)
dt

∥∥∥∥∥ = o(1)‖W‖, (4.25)

and

∥∥∥∥∥
∞∫

Eτ
2 (s − t)

(
Bτ (t) − B0(t)

)(
Cτ (t,1)W(t + ν · y − rcθ)

)
dt

∥∥∥∥∥ = o(1)‖W‖, (4.26)
s
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∥∥∥∥∥
s∫

−∞
Eτ

1 (s − t)B0(t)W(t)
(
Cτ (t,1) − gu

(
U0(t)

))
dt

∥∥∥∥∥ = o(1)‖W‖, (4.27)

∥∥∥∥∥
∞∫
s

Eτ
2 (s − t)B0(t)W(t)

(
Cτ (t,1) − gu

(
U0(t)

))
dt

∥∥∥∥∥ = o(1)‖W‖. (4.28)

Now we estimate the convolution integration of the last term in (4.21). We assume first that
W ∈ C1

0 . When W ∈ C1
0 , we have

W(t + ν · y − rcθ) − W(t) =
ν·y−rcθ∫

0

W ′(t + v)dv.

Using (4.4) and (4.22), and exchanging the order of integration and integration by parts, we
obtain

∥∥∥∥∥
s∫

−∞
Eτ

1 (s − t)B0(t)
(
Cτ (t,W) − Cτ (t,1)W(t)

)
dt

∥∥∥∥∥
=

∥∥∥∥∥
s∫

−∞
Eτ

1 (s − t)B0(t)Cτ (t,1)
(
W(t + ν · y − rcθ) − W(t)

)
dt

∥∥∥∥∥

=
∥∥∥∥∥

s∫
−∞

Eτ
1 (s − t)B0(t)Cτ (t,1)

ν·y−rcθ∫
0

W ′(t + v)dv dt

∥∥∥∥∥

=
∥∥∥∥∥

ν·y−rcθ∫
0

dv

s∫
−∞

Eτ
1 (s − t)B0(t)Cτ (t,1)W ′(t + v)dt

∥∥∥∥∥

�
∥∥∥∥∥

ν·y−rcθ∫
0

Eτ
1 (0)B0(s)Cτ (s,1)W(s + v)dv

∥∥∥∥∥

+
∥∥∥∥∥

ν·y−rcθ∫
0

dv

s∫
−∞

W(t + v)
d(Eτ

1 (s − t)B0(t)Cτ (t,1))

dt
dt

∥∥∥∥∥
= o(1)‖W‖. (4.29)

To obtain the above estimate, we have made use of the condition (H4). Similarly, we can prove
that

∥∥∥∥∥
∞∫

Eτ
2 (s − t)B0(t)Cτ (t,1)

(
W(t + ν · y − rcθ) − W(t)

)
dt

∥∥∥∥∥ = o(1)‖W‖. (4.30)
s
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Since C1
0 is dense in C0, we know that (4.29) and (4.30) hold for any W ∈ C0. Combining (4.23)–

(4.30), we obtain (4.19). Thus (4.20) holds due to the fact that R3(s, τ,W) is a linear functional
of W and the proof is complete. �

We are ready to reformulate Theorem 2.1 and present a proof.

Theorem 4.1. For any given c � c∗
0 , there exist a constant δ = δ(c) > 0 so that for any τ ∈ (0, δ),

Eq. (2.1) has a traveling wavefront u = U(ν · x − c∗
τ ct/c

∗
0) which satisfies

lim
s→−∞U(s) = E2 = K, lim

s→∞U(s) = E1 = 0.

Proof. Define an operator T :Ψ ∈ C2 → C from the homogeneous part of (4.6) as follows:

T Ψ (s) = −cΨ ′(s) − DΨ ′′(s) − f ′(U0(s)
)
Ψ (s). (4.31)

The formal adjoint equation of T Ψ = 0 is given by

cΦ ′(s) − DΦ ′′(s) − f ′(U0(s)
)
Φ(s) = 0, s ∈ R. (4.32)

We now divide our proof into following steps:
Step 1. We claim that if Φ ∈ C is a solution of (4.32) and Φ is C2-smooth, then Φ = 0.

Moreover, we have R(T ) = C where R(T ) is the range space of T .
Indeed, when s → ∞, U0(s) → 0 and f ′(U0(s)) → f ′(0). Then Eq. (4.32) asymptotically

tends to equation with a constant coefficients

cΦ ′(s) − DΦ ′′(s) − f ′(0)Φ(s) = 0. (4.33)

Since for (4.33) the solution 0 is a unstable node and all eigenvalues to (4.33) have positive
real parts, we conclude that any bounded solution to (4.33) must be the zero solution. So as
s → ∞, any solution to (4.32) other than the zero solution must grow exponentially for large s.
Then the only solution satisfying Φ(±∞) = 0 is the zero solution. By the Fredholm theory (see
Lemma 4.2 in [43]) we have that R(T ) = C.

Step 2. Let Θ ∈ C0 be given. If Ψ is a bounded solution to equation T Ψ = Θ , then we have
lims→±∞ Ψ (s) = 0.

Actually when s → ∞, equation

−cΨ ′(s) − DΨ ′′(s) − f ′(U0(s)
)
Ψ (s) = Θ (4.34)

asymptotically tends to

−cΨ ′(s) − DΨ ′′(s) − f ′(0)Ψ (s) = 0. (4.35)

Note for (4.35), the ω-limit set of every bounded solution is just the critical point Ψ = 0. Using
the result from [38], every bounded solution of (4.34) also satisfies

lim Ψ (s) = 0.

s→∞
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When s → −∞, Eq. (4.34) asymptotically tends to

−cΨ ′(s) − DΨ ′′(s) − f ′(K)Ψ (s) = 0. (4.36)

Since K is hyperbolic in the sense that the characteristic equation to (4.36) has no roots with zero
real parts, every bounded solution to (4.36) must satisfy

lim
s→−∞Ψ (s) = 0.

Reverting the time variable from s to −s and using the result in [38] again, we know that any
bounded solution to (4.34) satisfies lims→−∞ Ψ (s) = 0. The claim of this step is then verified.

Step 3. For a linear operator L :C0 → C0 defined in (4.13). We want to prove that R(L) = C0,
that is, for each Z(·) ∈ C0, we have a W(·) ∈ C0 so that

Wi(s) − 1

β0
i − α0

i

s∫
−∞

eα0
i (s−t)

{
Wi + [

f ′(U0)W
]
i

}
dt

− 1

β0
i − α0

i

∞∫
s

eβ0
i (s−t)

{
Wi + [

f ′(U0)W
]
i

}
dt

= Zi(s), i = 1,2, . . . , n.

To see this, we assume that ξ = W − Z and obtain a new equation for ξ as follows

ξi(s) = 1

β0
i − α0

i

( s∫
−∞

eα0
i (s−t)

(
ξi(t) + [

f ′(U0(t)
)
ξ(t)

]
i

)
dt

+
∞∫
s

eβ0
i (s−t)

(
ξi(t) + [

f ′(U0(t)
)
ξ(t)

]
i

)
dt

)

+ 1

β0
i − α0

i

( s∫
−∞

eα0
i (s−t)

(
Zi(t) + [

f ′(U0(t)
)
Z(t)

]
i

)
dt

+
∞∫
s

eλ2(s−t)
(
Zi(t) + [

f ′(U0(t)
)
Z(t)

]
i

)
ds

)
, i = 1,2, . . . , n.

Differentiating both sides twice yields

−cξ ′(z) − Dξ ′′(z) − f ′(U0(z)
)
ξ(z) = (

I + f ′(U0(z)
))

Z(z), z ∈ R. (4.37)

Using the results that R(T ) = C in Step 1 and Z ∈ C0, we obtain by results in Step 2 that
there exists a solution ξ satisfying (4.37) and ξ(±∞) = 0. Returning to the variable W , we have
W = ξ + Z ∈ C0.
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Step 4. Let N(L) be the null space of the operator L. Define the quotient space N⊥(L) as
N⊥(L) = C0/N(L). It is clear that N⊥(L) is a Banach space. If we let S = L|N⊥(L) be the
restriction of L to N⊥(L), then S : N⊥(L) → C0 is one-to-one and onto. By the well-known
Banach inverse operator theorem, we have that S−1 :C0 → C0/N(L) is a linear bound operator.

Step 5. When L is restricted to N⊥(L), Eq. (4.11) can be written as

S(W) = H(τ, s,W). (4.38)

Since the norm ‖S−1‖ is independent of τ but dependent on c, it follows from Lemmas 4.1–4.4
that there exist σ = σ(c) > 0, δ = δ(c) > 0 and ρ(c) with 0 < ρ < 1 such that for all τ ∈ (0, δ]
and W,ϕ,ψ ∈ B(σ) ⊂ N⊥(L),

∥∥S−1H(τ, s,W)
∥∥ � 1

3

(‖W‖ + σ
)

and

∥∥S−1H(τ, s,ϕ) − S−1H(τ, s,ψ)
∥∥ � ρ‖ϕ − ψ‖.

Hence, S−1H is a uniform contractive mapping for W ∈ N⊥(L) ∩ B(σ). By using the classical
fixed point theorem, it follows that for τ ∈ [0, δ], (4.38) has a unique solution W ∈ C0/N(L). Re-
turning to the original variable, W +U0 is a heteroclinic connection between the two equilibria K
and 0. This completes the proof. �
Remark 4.1. The uniform contraction mapping principle [13, pp. 25, 26] implies that the fixed
point W is continuous on (s, τ ) and C1-smooth on s.

Remark 4.2. In some applications, some of the diffusion coefficients are zero and thus we have
a hybrid system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x, t)

∂t
= D�w(x, t) + F

(
u(x, t),

0∫
−τ

∫
Ω

dμτ (θ, y)g1
(
w(x + y, t + θ)

))
,

∂v(x, t)

∂t
= G

(
w(x, t),

0∫
−τ

∫
Ω

dμτ (θ, y)g2
(
w(x + y, t + θ)

)) (4.39)

with u ∈ Rm1 , v ∈ Rm2 , and w = (u, v)T . We should mention that under the same assumptions
(H1)–(H4) on the nonlinearities F,G,g1, g2, our result remains true for the hybrid system (4.39).
Actually, in the above proof if for some index i, the coefficient di is zero, then (4.8) can be re-
written as

dWi

ds
+ Wi = Wi − 1

cr

[
f ′(U0)W

]
i
− 1

cr

[
R1(τ, s,W)

]
i

− 1 [
R2(τ, s,W)

]
i
− 1 [

R3(τ, s,W)
]
i
. (4.40)
cr cr
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This equation can be transformed into an integral equation as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wi −
s∫

−∞
e−(s−t)

{
Wi − 1

c

[
f ′(U0)W(t)

]
i

}
dt

=
s∫

−∞
e−(s−t)

{
1

c

[
f ′(U0)W(t)

]
i
− 1

cr

[
f ′(U0)W

]
i

}
dt

+
s∫

−∞
e−(s−t)

{
− 1

cr

[
R1(τ, t,W)

]
i
− 1

cr

[
R2(τ, t,W)

]
i
− 1

cr

[
R3(τ, t,W)

]
i

}
dt.

All other arguments remain virtually unchanged and thus Theorem 2.1 holds true for the hybrid
system (4.39).

It remains to prove the existence of traveling wavefronts in the hyperbolic system (2.8).
Despite the hyperbolic nature, we can obtain a similar profile equation as shown below. This
similarity guarantees that the above arguments work again.

Proof of Theorem 2.2. As in (4.1), a traveling wave of Eq. (2.8) satisfies

−rcU ′ = (
D − r1c

2)U ′′ + F

(
U(s),

0∫
−τ

∫
Ω

dμτ (θ, y)g
(
U(s + ν · y − rcθ)

))
.

Using the same arguments as in proof of Theorem 4.1, we can show that when r1 and τ are small,
the traveling wave can be approximated by U0 in (2.4) and thus we obtain the existence by minor
modification the proof of Theorem 4.1. We leave the details to interesting readers. �
Remark 4.3. Unfortunately, we cannot have an explicit formula for δ(c). This quantity is depen-
dent on the norm of the operator S−1.

5. Proofs: the bistable case

We now present a proof of Theorem 3.1, the proof of Theorem 3.2 is similar and is thus
omitted.

We start with Eqs. (3.3) and (3.4). As before, suppose that U = U0 + W and c = c0 + b, we
then have an equation for (W,b):

−(c0 + b)W ′ = DW ′′ + F

(
U0 + W,

0∫
−τ

∫
Ω

dμτ (θ, y)g
([U0 + W ](s + ν · y − cθ)

))

− F
(
U0(s), g

(
U0(s)

)) + bU ′
0, (5.1)

subject to W(±∞) = 0, and our goal is to prove the existence of a solution (W,b) to (5.1).
Using Eq. (3.4) and expanding the second term in the right side of (5.1), we have
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−(c0 + b)W ′ = DW ′′ + f ′(U0)W + bU ′
0 + R1(τ, s,W,b)

+ R2(τ, s,W,b) + R3(τ, s,W,b), (5.2)

where R1(τ, s,W,b) and R3(τ, s,W,b) are the same as in (4.5) and (4.7) with r = 1 and c =
c0 + b, and the functional R2(τ, s,W,b) is given by

R2(τ, s,W,b) = F

(
U0(s),

0∫
−τ

∫
Ω

dη(θ) dμτ (y)g
(
U0(s + ν · y − cθ)

)) − f (U0).

Now we transform Eq. (5.2) into an integral equation. We re-write Eq. (5.2) as

di

d2Wi

ds2
+ (c0 + b)

dWi

ds
− Wi = −Wi − [

f ′(U0)W
]
i
− [

bU ′
0

]
i
− [

R1(τ, s,W,b)
]
i

− [
R2(τ, s,W,b)

]
i
− [

R3(τ, s,W,b)
]
i
. (5.3)

Since the equation

di

d2Wi

ds2
+ (c0 + b)

dWi

ds
− Wi = 0

has a characteristic equation

diλ
2 + (c0 + b)λ − 1 = 0

with two real roots:

αb
i = −(c0 + b) − √

(c0 + b)2 + 4di

2di

< 0, βb
i = −(c0 + b) + √

(c0 + b)2 + 4di

2di

> 0

satisfying

lim
b→0

αb
i = α0

i =
−c0 −

√
c2

0 + 4di

2di

, lim
τ→0

βb
i = β0

i =
−c0 +

√
c2

0 + 4di

2di

, (5.4)

we conclude that (5.3) is equivalent to the following integral equation:

Wi(s) = 1

di(β
b
i − αb

i )

s∫
−∞

eαb
i (s−t)

(
Wi + [

f ′(U0)W + bU ′
0

]
i
+

3∑
j=1

[
Rj(τ, s,W,b)

]
i

)
dt

+ 1

di(β
b
i − αb

i )

∞∫
s

eβb
i (s−t)

(
Wi + [

f ′(U0)W + bU ′
0

]
i
+

3∑
j=1

[
Rj (τ, s,W,b)

]
i

)
dt,

for i = 1,2, . . . , n. Recall that di(β
b
i − αb

i ) = √
(c0 + b)2 + 4di . The above equation can also be

written as
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Wi(s) − 1√
c2

0 + 4di

s∫
−∞

eα0
i (s−t)

{
Wi + [

f ′(U0)W
]
i
+ [

bU ′
0

]
i

}
dt

− 1√
c2

0 + 4di

∞∫
s

eβ0
i (s−t)

{
Wi + [

f ′(U0)W
]
i
+ [

bU ′
0

]
i

}
dt

=
s∫

−∞

{
eαb

i (s−t)√
(c0 + b)2 + 4di

− eα0
i (s−t)√

c2
0 + 4di

}{
Wi + [

f ′(U0)W
]
i
+ [

bU ′
0

]
i

}
dt

+
+∞∫
s

{
eβb

i (s−t)√
(c0 + b)2 + 4di

− eβ0
i (s−t)√

c2
0 + 4di

}{
Wi + [

f ′(U0)W
]
i
+ [

bU ′
0

]
i

}
dt

+ 1√
(c0 + b)2 + 4di

s∫
−∞

eαb
i (s−t)

3∑
j=1

[
Rj (τ, s,W,b)

]
i
dt

+ 1√
(c0 + b)2 + 4di

∞∫
s

eβb
i (s−t)

3∑
j=1

[
Rj (τ, s,W,b)

]
i
dt. (5.5)

Set

Eb
1 (s) = diag

(
eαb

1 s√
(c0 + b)2 + 4d1

,
eαb

2 s√
(c0 + b)2 + 4d2

, . . . ,
eαb

ns√
(c0 + b)2 + 4dn

)
, s ∈ R,

and

Eb
2 (s) = diag

(
eβb

1 s√
(c0 + b)2 + 4d1

,
eβb

2 s√
(c0 + b)2 + 4d2

, . . . ,
eβb

ns√
(c0 + b)2 + 4dn

)
, s ∈ R,

E0
1(s) = diag

(
eα0

2s√
c2

0 + 4d1

,
eα0

2s√
c2

0 + 4d2

, . . . ,
eα0

ns√
c2

0 + 4dn

)
, s ∈ R,

E0
2(s) = diag

(
eβ0

2 s√
c2

0 + 4d1

,
eβ0

2 s√
c2

0 + 4d2

, . . . ,
eβ0

ns√
c2

0 + 4dn

)
, s ∈ R,

Eb
3 (s) = Eb

1 (s) − E0
1(s), s ∈ R,

and

Eb
4 (s) = Eb

2 (s) − E0
2(s), s ∈ R.

Then Eq. (5.5) can be written as
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W −
s∫

−∞
E0

1(s − t)
{
W(t) + f ′(U0)W(t) + bU ′

0

}
dt

−
∞∫
s

E0
2(s − t)

{
W(t) + f ′(U0)W(t) + bU ′

0

}
dt

= H(τ, s,W,b), W(±∞) = 0, (5.6)

where

H(τ, s,W,b) =
s∫

−∞
Eb

3 (s − t)
{
W(t) + f ′(U0)W(t) + bU ′

0

}
dt

+
+∞∫
s

Eb
4 (s − t)

{
W(t) + f ′(U0)W(t) + bU ′

0

}
dt

+
s∫

−∞
Eb

1 (s − t)

3∑
j=1

Rj (τ, t,W,b)dt

+
∞∫
s

Eb
1 (s − t)

3∑
j=1

Rj (τ, t,W,b)dt.

Now we need to study the existence of a solution (W,b) to (5.6). To this end, we define a
linear operator L : (W,b) ∈ C0 × R → C0 from the left side of (5.6) by

L(W,b)(s) = W(s) −
s∫

−∞
E0

1(s − t)
{
W(t) + f ′(U0)W(t) + bU ′

0

}
dt

−
∞∫
s

E0
2(s − t)

{
W(t) + f ′(U0)W(t) + bU ′

0

}
dt. (5.7)

It follows from a straightforward verification that L((W,b)) ∈ C0 if W ∈ C0. We need some
estimations for the right side of (5.6).

Lemma 5.1. We have

∣∣∣∣∣
s∫ {

eαb
i (s−t)√

(c0 + b)2 + 4di

− eα0
i (s−t)√

c2 + 4di

}{
Wi + [

f ′(U0)W
]
i

}
dt

∣∣∣∣∣ = O
(
b‖W‖)
−∞ 0
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and

∣∣∣∣∣
+∞∫
s

{
eβτ

i (s−t)√
(c0 + b)2 + 4di

− eβ0
i (s−t)√

c2
0 + 4di

}{
Wi + [

f ′(U0)W
]
i

}
dt

∣∣∣∣∣ = O
(
b‖W‖).

Lemma 5.2. For each δ > 0, there is a σ > 0 such that

∣∣[R1(s, τ,φ, b1)
]
i
− [

R1(s, τ, ϕ, b2)
]
i

∣∣ � δ
∥∥(φ, b1) − (ϕ, b2)

∥∥
and

s∫
−∞

eαb
i (s−t)

∣∣[R1(t, τ,φ, b1)
]
i
− [

R1(t, τ, ϕ, b2)
]
i

∣∣dt

+
∞∫
s

eβb
i (s−t)

∣∣[R1(t, τ,φ, b1)
]
i
− [

R1(t, τ, ϕ, b2)
]
i

∣∣dt

� δ
∥∥(φ, b1) − (ϕ, b2)

∥∥
for all (φ, b), (ϕ, b) ∈ B(σ), where B(σ) is the ball in C0 × R with radius σ and center at the
origin and

∥∥(φ, b1) − (ϕ, b2)
∥∥ = max

{‖φ − ϕ‖C0, |b2 − b1|
}
.

Lemma 5.3. As τ → 0, we have

∣∣∣∣∣
s∫

−∞
eαb

i (s−t)
[
R2(t, τ,W,b)

]
i
ds +

∞∫
s

eβb
i (s−t)

[
R2(t, τ,W,b)

]
i
dt

∣∣∣∣∣ = o(1) + o
(|b|).

Lemma 5.4. As τ → 0, there exists an M0 > 0 such that for all (W,b) ∈ B(σ) ∩ (C0 × R), we
have

∥∥∥∥∥
s∫

−∞
Eb

1 (s − t)R3(t, τ,W,b)dt +
∞∫
s

Eb
2 (s − t)R3(t, τ,W,b)dt

∥∥∥∥∥ = (
o(1) + o

(|b|))‖W‖C0 .

The above lemmas can be proved in a similar fashion to those analogues in Section 4. We can
now give a

Proof of Theorem 3.1. Define an operator T : (Ψ,b) ∈ C2 ×R → C from the homogeneous part
of (4.6) as follows:

T Ψ (s) = −c0Ψ
′(s) − DΨ ′′(s) − f ′(U0(s)

)
Ψ (s) − bU ′

0. (5.8)
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The formal adjoint equation of T Ψ = 0 is given by

c0Φ
′(s) − DΦ ′′(s) − f ′(U0(s)

)
Φ(s) − bU ′

0 = 0, s ∈ R. (5.9)

First of all, it is easy to know, by condition (G2) and the Fredholm theory in [43], that R(T ) =
C and Ker(T ) = span{U ′

0} × {0}. Furthermore, for given Θ ∈ C, if Ψ is a bounded solution of
equation

−c0Ψ
′(s) − DΨ ′′(s) − f ′(U0(s)

)
Ψ (s) − bU ′

0 = Θ,

we have from condition (G2) that b is uniquely determined by

b = −
∫

Θ(s) · p∗(s) ds∫
U ′

0(s) · p∗(s) ds

and lims→±∞ Ψ (s) = 0.
We now show that the linear operator L : (W,b) ∈ C0 × R → C0 defined in (5.7) satisfies

R(L) = C0, that is, for each Z(·) ∈ C0, we have a (W,b) ∈ C0 × R so that

Wi(s) − 1

β0
i − α0

i

s∫
−∞

eα0
i (s−t)

{
Wi + [

f ′(U0)W
]
i
+ [

bU ′
0

]
i

}
dt

− 1

β0
i − α0

i

∞∫
s

eβ0
i (s−t)

{
Wi + [

f ′(U0)W
]
i
+ [

bU ′
0

]
i

}
dt

= Zi(s), i = 1,2, . . . , n.

To see this, we assume that ξ = W − Z and obtain an equation for ξ as follows

ξi(s) = 1

β0
i − α0

i

( s∫
−∞

eα0
i (s−t)

(
ξi(t) + [

f ′(U0(t)
)
ξ(t)

]
i
+ [

bU ′
0

]
i

)
dt

+
∞∫
s

eβ0
i (s−t)

(
ξi(t) + [

f ′(U0(t)
)
ξ(t)

]
i
+ [

bU ′
0

]
i

)
dt

)

+ 1

β0
i − α0

i

( s∫
−∞

eα0
i (s−t)

(
Zi(t) + [

f ′(U0(t)
)
Z(t)

]
i

)
dt

+
∞∫
s

eλ2(s−t)
(
Zi(t) + [

f ′(U0(t)
)
Z(t)

]
i

)
ds

)
, i = 1,2, . . . , n.

Differentiating both sides twice yields

−cξ ′ − Dξ ′′(z) − f ′(U0(z)
)
ξ(z) − bU ′

0 = (
I + f ′(U0(z)

))
Z(z). (5.10)
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Using the results about the operator T , we obtain that there exists a solution (ξ, b) satisfy-
ing (5.10) and ξ(±∞) = 0. Returning to the variable W , we have W = ξ + Z ∈ C0.

Let N(L) be the null space of the operator L. As before, we set N⊥(L) = (C0 × R)/N(L)

and S = L|N⊥(L) to be the restriction of L. We have that S is invertible and Eq. (5.6) can be
re-written as

(W,b) = S−1[H(τ, s,W,b)
]
. (5.11)

Since the norm ‖S−1‖ is independent of τ , it follows from Lemmas 5.1–5.4 that there exist σ > 0,
δ > 0, and ρ ∈ (0,1) such that for all τ ∈ (0, δ] and (W,b), (ϕ, b1), (ψ,b2) ∈ B(σ) ⊂ N⊥(L),
we have

∥∥S−1H(τ, s,W,b)
∥∥ � 1

3

(∥∥(W,b)
∥∥ + σ

)

and

∥∥S−1H(τ, s,ϕ, b1) − S−1H(τ, s,ψ,b2)
∥∥ � ρ

∥∥(ϕ, b1) − (ψ,b2)
∥∥,

where ‖(W,b)‖ = max{‖W‖, |b|}. Hence L−1H is a uniform contractive mapping for (W,b) ∈
N⊥(L)∩B(σ). By using the classical fixed point theorem, we conclude that for τ ∈ [0, δ], (5.11)
has a unique solution (W,b). Returning to the original variable, (W +U0, b+c0) is a heteroclinic
connection between the two equilibria K and 0. This completes the proof. �
6. Applications

In this section, we apply our main result to some biological models: a reaction–diffusion
model for a single species with age structure, a nonlocal Fisher model, a model of spatial spread
of rabies among red foxes in Europe, a bio-reactor model and a hyperbolic model arising from
the slow movement of biological species.

6.1. A reaction–diffusion model for a single species with age structure

The first application is about our model (1.2)

∂w

∂t
= D

∂2w

∂x2
− dw + ε

∞∫
−∞

b
(
w(y, t − τ)

)
fα(x − y)dy, D,d > 0, x ∈ (−∞,∞), (6.1)

where 0 � ε � 1 and the kernel function fα(x) = 1√
4πα

e−x2/4α , α = τDI > 0, DI is the diffu-

sion rate for the immature population, and the function b(·) is the birth function of the species.
Our general result can be used to obtain the existence of traveling wave solutions even when

the birth function b(·) is not monotone.
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To illustrate this and as in [51], we consider first a particular birth function given by b(w) =
pwe−aw . This function has been used in the well-studied Nicholson’s blowflies equation [25].
With this birth function, Eq. (6.1) becomes

∂w

∂t
= D

∂2w

∂x2
− dw + εp

∞∫
−∞

w(y, t − τ)e−aw(y,t−τ)fα(x − y)dy. (6.2)

It is easily seen that when

εp/d > 1, (6.3)

Eq. (6.2) has two spatially homogeneous equilibria

E1 = 0, E2 = 1

a
ln

εp

d
.

By using the monotone iteration scheme and the method of upper-lower solutions, So, Wu and
Zou [51] proved the following

Theorem 6.1. If 1 <
εp
d

� e, then there is a c∗ > 0 such that for every c � c∗, Eq. (6.2) has
a traveling wavefront solution which connects the trivial equilibrium w1 = 0 to the positive
equilibrium w2 = 1

a
ln εp

d
.

Unfortunately, in the case when εp
d

> e, the method developed in [51] cannot apply, and so
far it seems the only result is about the existence of wavefronts with large wave speeds recently
proved in [16]. To be precise, we restate their result as follows.

Theorem 6.2. If εp
d

> e, then there exist a τ ∗ > 0 and a sufficiently large c∗ > 0 such that if
τ ∈ [0, τ ∗) then for every c > c∗, Eq. (6.2) has a traveling wavefront solution which connects the
trivial equilibrium w1 = 0 to the positive equilibrium w2 = 1

a
ln εp

d
.

However, the existence of traveling waves with speeds close to the minimal speed is still left
open. To address this issue, we first check the conditions (H1)–(H4) for Eq. (6.2). When τ = 0,
Eq. (6.2) reduces to

∂w

∂t
= D

∂2w

∂x2
− dw + εpwe−aw. (6.4)

This gives

Λ0
0(λ) = Dλ2 + cλ + εp − d,

and we know, with c∗
0 = 2

√
D(εp − d) that for every c � c∗

0 , equation Λ0
0(λ) = 0 has a real

zero. Moreover, we find that E1 = 0 is a stable node and E2 = 1
a

ln εp
d

is a saddle point. By
the classical phase-plane analysis (see [39]), it is easy to know that Eq. (6.4) has a traveling
wavefront U0 connecting E1 to E2. Thus all the conditions in Theorem 2.1 are satisfied.
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Define Λ0
τ (λ) and c∗

τ as

Λ0
τ (λ) = εpeαλ2+λcr + [

cλ − d + Dλ2]
and

c∗
τ = inf

{
c > 0

∣∣ Λ0
τ (λ) = 0 has a negative real zero

}
.

Applying Theorem 2.1, we have

Theorem 6.3. For any given c � c∗
0 = 2

√
D(εp − d) > 0, there exists a constant δ = δ(c) > 0 so

that for τ ∈ (0, δ), Eq. (6.2) has a traveling wavefront w = U(x − c∗
τ ct/c

∗
0) which satisfies

lim
s→−∞U(s) = E2, lim

s→∞U(s) = E1 = 0.

For the bistable case, we consider the birth function b(m) = pm2e−am as an illustration. Then
Eq. (6.1) becomes

∂w

∂t
= D

∂2w

∂x2
− dw + εp

∞∫
−∞

w2(y, t − τ)e−aw(y,t−τ)fα(x − y)dy. (6.5)

When the positive constants ε,p, a satisfying the inequality

εp > dae,

we have three constant solutions E1, E2 and E3 with

E1 = 0, 0 < E2 < E3. (6.6)

If τ = 0, Eq. (6.5) reduces to

∂w

∂t
= D

∂2w

∂x2
− dw + εpw2e−aw. (6.7)

By the classical result in [18] about the reaction–diffusion equation (6.7), it follows that there
exists a unique (up to translation) traveling wave w = U0(x − c0t) satisfying U ′

0 < 0 and

lim
s→−∞U0(s) = E3, lim

s→∞U0(s) = E1 = 0.

Therefore, the condition (G1) is satisfied. It remains to check the condition (G2). It is easy to
know that E1 and E3 are saddle points. Consider equation

−c0u
′ − Du′′ − f ′(U0)u = 0, (6.8)
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which has a bounded solution u = U ′
0. The other linearly independent solution to (6.8) is un-

bounded since E1 (or E3) is a saddle point. This means that Eq. (6.8) has a unique bounded
solution (up to scalar multiple). Similarly, we can know that the adjoint equation

c0u
′ − Du′′ − f ′(U0)u = 0

has a unique bounded solution p∗ so that (see also [15])

∞∫
−∞

U ′
0(s)p

∗(s) ds �= 0.

The conditions for Theorem 3.1 are satisfied and we have the following

Theorem 6.4. When εp > dae, there exists a constant δ > 0 so that for τ ∈ (0, δ), Eq. (6.5) has
a traveling wavefront w = U(x − ct) which satisfies

lim
s→−∞U(s) = E3, lim

s→∞U(s) = E1 = 0

for some constant c.

6.2. A nonlocal Fisher model

Britton [9,10] used random walk arguments to derive an integro-differential reaction–diffusion
population model

∂u(x, t)

∂t
= �u + u

(
1 + αu − (1 + α)g ∗ u

)
, x = (x1, x2, . . . , xm) ∈ Rm, t, u ∈ R, (6.9)

where α > 0 and g ∗ u represents a temporal-spatial convolution, and an example is

g ∗ u =
∫

Rm

e−‖y‖2/4τ

(4πτ)m/2
u(x − y, t − τ) dy,

where m is the dimension of the space. According to [10], we have the following justification:
the term αu with α > 0 represents an advantage in local aggregation, which could arise in many
reasons. First, there is evidence that animals group together as a protective measure against
predation, as in the case of grassland herds, schools of fish, or flock of birds, or Hamilton’s
[26] model of the aggregation of frogs. Second, there are advantages in grouping to optimize
foraging benefits, by reducing per capita search time, by reducing the variance of the realized
intakes, or by making available different food resources. Third, increased group size may result
in increased reproductive success. Fourth, there may be social advantages, for example, in the
utilization of the caste system by social insects. The term −(1 + α)g ∗ u with α > −1 represents
a disadvantage in global population levels being too high because of the resultant depletion of
resources. The reason that this must be a global term is that the members of the population are
moving (by diffusion) so that the force of intraspecies competition depends on population levels
in a neighborhood of the original position.
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Due to the nonmonotonicity of the nonlinearity, the existence of traveling wavefronts connect-
ing the equilibrium u = 0 and the equilibrium u = 1 has been an outstanding issue since 1990.
When τ = 0, we have g ∗ u = u and therefore Eq. (6.9) reduces to the classical Fisher equation

∂u(x, t)

∂t
= �u + u(1 − u). (6.10)

It is obvious that Eq. (6.10) has a traveling wavefront solution U0(ν · x − ct) for any c � 2. All
the conditions in Theorem 2.1 are satisfied and the characteristic function Λ0

τ (λ) is given by

Λ0
τ (λ) := det

[
λ2I + λcI + I

] = λ2 + λc + 1

which is independent of τ . Thus we obtain c∗
τ = c∗

0 = 2 and the following

Theorem 6.5. For any given c � c∗
0 = 2 > 0, there exists a constant δ = δ(c) > 0 so that for

τ ∈ (0, δ), Eq. (6.9) has a traveling wavefront u = U(ν · x − ct) which satisfies

lim
s→−∞U(s) = 1, lim

s→∞U(s) = 0.

6.3. Spatial spread of rabies by red foxes

We now apply Theorem 2.1 to a delay reaction–diffusion model concerning the spatial spread
of rabies in Europe carried by red foxes. For a related study of the spread of rabies worldwide,
see Allen et al. [2] and Daszak et al. [14]. Motivated by Anderson’s paper [3], we divide the fox
population into two groups: the infective and the susceptible. The basic facts and assumptions of
our proposed model can be found in [28] and [29]. Kallen et al. in [29] established a reaction–
diffusion model

⎧⎪⎪⎨
⎪⎪⎩

∂S

∂t
= −KIS,

∂I

∂t
= D

∂2I

∂x2
+ KIS − μI,

(6.11)

where S and I are the susceptible and infective population densities, respectively. Here the pa-
rameters K is the transmission coefficient and μ is the death rate of the infective foxes. The
diffusion term D ∂2I

∂x2 , where D > 0 is the diffusive coefficient, represents the random motion
of rabid foxes averaged out over the whole infective population. We should mention that the
infective foxes I here consists of both rabid foxes and those in the incubation stage.

Suppose that S0 is the initial (maximum) susceptible density. Kallen et al. [28,29] proved that
if μ > KS0, that is, the mortality rate is greater than the rate of recruitment of new infectives, the
infection dies out; otherwise, if μ < KS0, then the infective and susceptible foxes can coexist and
after the outbreak of the disease, the population of the susceptible foxes will tend monotonically
to a constant a, 0 < a < S0, where a is implicitly determined by the following equation

e−dτ a − μ
loga = e−dτ S0 − μ

logS0.

K K
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As the field observation in Europe showed the existence of periodic outbreak, model (6.11) de-
serves further refinement and Anderson et al. [3] speculated that oscillation may arise primarily
from the incubation period. Motivated by this speculation, we now consider⎧⎪⎪⎨

⎪⎪⎩
∂S

∂t
= −KIS,

∂I

∂t
= D

∂2I

∂x2
+ e−dτKI (x, t − τ)S(x, t − τ) − μI,

(6.12)

where τ is the period of the incubation of rabies and the constant d is the death rate of susceptible
foxes. Here I represents the density of rabid foxes excluding those in the incubation period.
When τ = 0, our delay model reduces to (6.11). We now look for a traveling wave solution
I (x, t) = f (z), S(x, t) = g(z), where z = x − ct and f and g are waveforms traveling to the
right at speed c. Substituting these relations into (6.12) gives

{
Df ′′ + cf ′ + e−dτKf (z + cτ)g(z + cτ) − μf = 0,

cg′ − Kfg = 0
(6.13)

subject to the boundary conditions

f (±∞) = 0, g(−∞) = a, g(+∞) = S0, (6.14)

where a is a constant to be found. Substituting the second equation of (6.13) into the first yields

D

c
f ′′ + f ′ + e−dτ g′(z + cτ) − μg′

Kg
= 0,

which on integration gives

D

c
f ′ + f + e−dτ g(z + cτ) − μ

K
logg = A, (6.15)

where A is a constant. Use the boundary condition at z = ∞ gives that A = e−dτ S0 − μ
K

logS0,
while the conditions at z = −∞ show that

e−dτ a − μ

K
loga = e−dτ S0 − μ

K
logS0.

To obtain a lower bound for the wavespeed, we consider the system

⎧⎪⎪⎨
⎪⎪⎩

f ′ = c

D

{
A − f − e−dτ g(z + cτ) + μ

K
logg

}
,

g′ = K

c
fg,

(6.16)

which has equilibria points at E1 = (0, S0) and E2 = (0, a). Linearizing at the point E1, we have

ΛE1
τ (λ) = λ2 + c

λ + KS0
(

e−dτ+λcτ − μ
)

.

D D KS0
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So the minimal speed c∗
τ is given by

c∗
τ = inf

{
c > 0

∣∣ ΛE1
τ (λ) = 0 has a negative real zero

}
.

When τ = 0, we get c∗
0 = 2

√
DKS0(1 − μ/KS0). It is easy to know that when τ = 0, (0, S0) is

a stable node and all conditions in Theorem 2.1 are satisfied. Therefore, we have the following

Theorem 6.6. For given c � c∗
0 = 2

√
DKS0(1 − μ/KS0), there exist a constant δ > 0 so that

for τ ∈ (0, δ), Eq. (6.12) has a traveling wavefront u = U(x − c∗
τ ct/c

∗
0) which connects the

equilibria E1 and E2.

Remark 6.1. From (6.16), we know that g′ = K
c
fg > 0 as long as f and g are positive. This

means that the density for the susceptible foxes is monotone in the wave spreading direction
and it removes the possibility of oscillation of the solution patterns (or periodic outbreak of the
disease). This is what we expect because we assume that in the disease free case, the deaths are
equally balanced by births, and thus when the disease outbreaks, the density of susceptible foxes
will decrease monotonically. We suspect that the occurrence of the periodic outbreak of rabies
comes from the large birth rate of the susceptible foxes when their population density is low. This
has been confirmed in our recent study [40].

6.4. A bio-reactor model

Traveling waves for bio-reactor models have been studied, see [6,7,27,30,50]. By using the
argument in [34], we can establish the following delayed reaction–advection–diffusion system

⎧⎪⎪⎨
⎪⎪⎩

St = −vSx − f (S)u,

ut = uxx − vux + e−dτ

∞∫
−∞

f
(
S(y − vτ, t − τ)

)
u(y − vτ, t − τ)fα(x − y)dy − ku,

(6.17)

where fα(x) = 1√
4πα

e−x2/4α with α = τD > 0, S(x, t) and u(x, t) are the concentrations of
nutrient and microbial populations at position x and time t , respectively. Parameter v � 0 is the
flowing velocity, k > 0 is the cell death rate (or dilution rate). The constant τ � 0 denotes the
time delay involved in the conversion of nutrient to viable biomass. To form viable biomass, the
incidence f (S(y − vτ, t − τ))u(x − vτ, t − τ) experiences an intermediate state with average
diffusion coefficient D which is between 0 (diffusion coefficient for the nutrient) and 1 (diffusion
coefficient for the microbial biomass). The parameter d is the dilution rate of the intermediate
state. In [58,60] the authors assumed that k = d . It should be noticed that if the intermediate state
is inactive like nutrient, i.e., D = 0, then our model reduces to{

St = −vSx − f (S)u,

ut = uxx − vux + e−dτ f
(
S(x − vτ, t − τ)

)
u(x − vτ, t − τ) − ku.

For the sake of simplicity, we suppose that

f (0) = 0, f ′(s) > 0 for s � 0,
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though the monotonicity of f is not essential in our discussion below.
We also assume there is a S∗ such that e−dτ f (S∗) = k. Define a function

G(S) = e−dτ S − k

S∫
S∗

1

f (s)
ds,

so that G(0) = +∞ and for any S0 > S∗, there is a unique S0 < S∗ such that

G(S0) = G
(
S0). (6.18)

When τ = 0, Eq. (6.17) reduces to

{
St = −vSx − f (S)u,

ut = uxx − vux + f (S)u(t) − ku

which was studied by Smith and Zhao [50] and the special case when v = 0 has been studied
by [30]. For the more general case without time delay, we refer to Huang [27]. We focus on
traveling wave solution

S = S(x + ct), u = u(x + ct)

where we expect that S(z) and u(z) satisfy

S(−∞) = S0, u(−∞) = 0, S(+∞) = S0 < S0, u(+∞) = 0,

and S0 > S∗ is the initial fresh concentration of nutrient and S0 is a positive constant determined
by (6.18). A direct substitution of S = S(z) = S(x + ct) and u = u(z) = u(x + ct) into (6.17)
gives

⎧⎪⎪⎨
⎪⎪⎩

0 = −(v + c)S′ − f (S)u,

0 = u′′ − (v + c)u′ + e−dτ

∞∫
−∞

f
(
S(y − vτ − cτ)

)
u(y − vτ − cτ)fα(z − y)dy − ku.

(6.19)

We are only interested in the nonnegative solution of Eq. (6.19). When τ = 0, we have a result
from [27] or [50]:

Theorem 6.7. When τ = 0, Eq. (6.19) has a positive traveling wave (S(z), u(z)) connecting
(S0,0) and (S0,0) provided c � c∗

0 = √
4(f (S0) − k) − v.

Reversing the “direction of time” in (6.19) by the change z → −z gives
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⎧⎪⎪⎨
⎪⎪⎩

0 = (v + c)S′ − f (S)u,

0 = u′′ + (v + c)u′ + e−dτ

∞∫
−∞

f
(
S(y + vτ + cτ)

)
u(y + vτ + cτ)fα(z − y)dy − ku.

(6.20)

Inserting the first of (6.20) into the second and integrating it, we have a new system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S′ = f (S)u

(v + c)
,

u′ = (v + c)

(
−u − e−dτ

∞∫
−∞

S(z + vτ + cτ)fα(z − y)dy + k

S∫
S0

ds

f (s)
+ e−dτ S0

)
.

(6.21)

The characteristic function of (6.21) at the point E1 = (S0,0) is given by

ΛE1
τ (λ) = λ2 + (v + c)λ + (

f
(
S0)eαλ2+λcτ+vτ−dτ − k

)
,

and we thus define

c∗
τ = inf

{
c > 0

∣∣ ΛE1
τ (λ) = 0 has a negative real zero

}
.

It is easy to know that when τ = 0, the equilibrium (S0,0) of (6.21) is a stable node. Using
Theorem 2.1, we have the following

Theorem 6.8. For c � c∗
0 = √

4(f (S0) − k)−v, there exist a constant δ > 0 so that for τ ∈ (0, δ),
Eq. (6.17) has a traveling wavefront S = S(x + c∗

τ ct/c
∗
0), u = u(x + c∗

τ ct/c
∗
0) which connects

the equilibria (S0,0) and (S0,0).

6.5. A hyperbolic model arising from the slow movement of individuals

We consider the following second order hyperbolic–parabolic equation

∂

∂t
m(x, t) + r1

∂2

∂t2
m(x, t)

= D
∂2

∂x2
m(x, t) − dm(x, t) + u(t, τ, x) − r1

(
2

∂

∂t
+ ∂

∂a

)
u(t, τ, x) (6.22)

for the density of adult population m(t, x) at time t and spatial location x ∈ R of a given single
species population with two age classes (the immature and the mature with maturation time
τ > 0 being a constant) that moves randomly in space with a time lag r1 > 0, where D, d > 0
are constant diffusion and death rates of the adult at time t and location x. This equation can be
obtained from the usual structured population model, see Raugel and Wu [44].
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The maturation rate u(t, τ, x) is determined by the biological process during the maturation
process. In [51], it was shown that if the immature moves instantaneously and if the birth rate is
given by a function b(m(x, t)), then

u(t, τ, x) = ε

∞∫
−∞

b
(
m(y, t − τ)

)
fα(x − y)dy (6.23)

where

ε = ε(τ ) = e− ∫ τ
0 d2(a) da ∈ (0,1]

is the survival rate during the maturation period and

fα(z) = 1√
4πα

e− z2
4α with α =

τ∫
0

DI (a)da

is the probability that a new born at time t − τ and location 0 moves to the location z after
maturation time τ .

We can show that

(
2

∂

∂t
+ ∂

∂a

)
u(t, τ, x) = d

dθ

∞∫
−∞

fα(x − y)b
(
m(y, θ)

)
dy

∣∣
θ=t−τ

.

Therefore, we obtain a closed system for the matured population

∂

∂t
m(x, t) + r1

∂2

∂t2
m(x, t) = D

∂2

∂x2
m(x, t) − dm(x, t)

+ ε

∞∫
−∞

fα(x − y)b
(
m(y, t − τ)

)
dy

+ r1
∂

∂t

[
ε

∞∫
−∞

fα(x − y)b
(
m(y, t − τ)

)
dy

]
. (6.24)

This is a second-order hyperbolic equation. When r = 0, Eq. (6.24) reduces to

∂

∂t
m(x, t) = D

∂2

∂x2
m(x, t) − dm(x, t) + ε

∞∫
−∞

fα(x − y)b
(
m(y, t − τ)

)
dy (6.25)

which is considered in Section 6.1. When r1 �= 0 and the birth function is monotone, Eq. (6.24)
has been studied in [44] and [41].

We now focus first on the birth function given by b(w) = pwe−aw as in Section 6.1. We
assume that εp > d so that Eq. (6.24) has two equilibria E1 = 0 and E2 = 1 ln εp .
a d
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Define the characteristic equation at the zero solution by

ΛE1
τ,r1

(λ) = (1 + λr1c)εpeαλ2+λcr + (
cλ − d + (

D − r1c
2)λ2)

and

c∗
τ,r1

= inf
{
c > 0

∣∣ ΛE1
τ,r1

(λ) = 0 has a negative real zero
}
.

It is easy to check that the conditions (H1)–(H4) are satisfied. We have

Theorem 6.9. For any given c � c∗
0,0 = 2

√
D(εp − d) > 0, there exist constants δ1 = δ1(c)

and δ2 = δ2(c) > 0 so that for τ ∈ (0, δ1) and r ∈ (0, δ2), Eq. (6.24) has a traveling wavefront
m = U(x − c∗

τ,r1
ct/c∗

0,0) which satisfies

lim
s→−∞U(s) = E2, lim

s→∞U(s) = E1 = 0.

In the bistable case when the birth function is given by b(w) = pw2e−aw with εp > dae, the
conditions (G1), (G2) and (H4) are satisfied and we have the following

Theorem 6.10. There exist constants δ1 and δ2 > 0 so that for τ ∈ (0, δ1) and r ∈ (0, δ2),
Eq. (6.24) has a traveling wavefront m = U(x − ct) for some c, which satisfies

lim
s→−∞U(s) = E3, lim

s→∞U(s) = E1 = 0

where E1 and E3 are given in (6.6).
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