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Abstract. A general process of the immune system consists of effector stage
and memory stage. Current theoretical studies of the immune system often fo-
cus on the memory stage and pay less attention on the function of non-immune
system substances such as tissue cells in adjusting the dynamical behavior of
the immune system. We propose a mathematical population model to inves-
tigate the interaction between influenza A virus(IAV) susceptible tissue cells
and generic immune cells when the tissue is invaded by IAV. We carry out a
linear stability analysis and numerically study the Neimark-Sacker bifurcation
of the models. The behavior of the model system agrees with some important
experimental or clinical observations for IAV. However, we show that without
considering the space between tissue cells, the expected memory stage does not
form. By considering the space which allows antibodies to bind antigens, the
memory stage then forms without missing the property of the system in the
effector stage.

1. Introduction. A general immune process includes “effector stage” and “mem-
ory stage” (Ahmed & Gray, 1996; Antia et al., 1998; Badovinac & Harty, 2003).
In the effector stage, the population of antigen-specific immune cells first increases
rapidly due to the stimulation of the antigen and then decreases quickly because of
the lack of the stimulation–most antigens have been killed–and the limit turnover
of the most immune cells. The population of the immune cells will not decrease
to zero but stop decreasing and maintain at a certain level. The system then is
in the memory stage. One of the important and open questions in the study of
the immune system is how the system builds memory and maintains the immune
repertoire. The current theoretical study of the immune system focuses on the in-
teraction among the different kinds of immune cells while the function of antigens
on the immune system is often taken as either a simple form or an independent
form (McLean, 1992; Wodarz et al., 2001a; Antia et al., 1998, 2003). This method-
ology can simplify modelling equations and obtain some most important properties
of the immune system, for example, it has been known that the immune system
has equilibrium, periodic and even more complicated behavior. However, it is not
fully known whether and how these states can be connected in a whole immune
process. The work of Wodarz (2001b) and Antia et al. (1996) shows that when the
immunological pressure due to cytotoxic T-lymphocytes (CTLs) is strong, the virus
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can be cleared and the memory stage can be formed, and otherwise the virus can
attain a high density. Their simple models are logically robust, but because the
immune system is highly nonlinear and the function of antigens on the system can
be very complicated, it is useful to check the case in which tissue cells and viruses
are invited into immune response models. One of the advantages of such a “bigger”
system is that we can validate the model with clinical observations because many
observations are based on tissue cells. More importantly we may use the model to
explore, for instance, how the interaction between pathogens and tissue cells affect
the form of the memory stage in a more natural way.

Motivated by these considerations, in this work, we investigate how the dynamical
behavior of the immune system is effected by the more complicated form of the
function of the antigen, and particularly how the immune system optimally adjusts
itself to realize the memory stage. To achieve this, we build a population model
by utilizing the basic ideas in a cellular automata(CA) model in Beauchemin et

al. (2004) and focus on the immune response in our model. The reason for us to
adopt this CA model is that the results from this simple model agree with clinical
observations well for influenza A virus(IAV). In order to understand how the immune
system optimizes the immune process, we study the equilibria and their stability of
our model. It turns out that the system is periodic in the chosen parameter region.
This indicates that the virus-free equilibrium is unstable and the system is in a
repeated infection process, and thus the memory stage is not built up.

We show that there is a virus-persistent equilibrium between the virus-free equi-
librium and the periodic state, and that the virus-free and virus-persistent equilibria
are stable in some parameter region, and that the periodic and equilibria states can
be combined together by letting the infection rate of virus and cells be a monotonic
function because of antibodies. The general immune process is then realized in our
model and the mechanism of the switch between the effector stage and memory
stage is explained to some extent.

2. The model. Our model is built on the recently developed CA model in Beau-
chemin et al. (2004), and the basic ideas of the CA model are described below.

The CA model considers two kinds of cells: epithelial cells and immune cells.
The epithelial cells are fixed in a two-dimensional lattice map with each cell per
lattice, and the immune cells randomly walk on the map. An epithelial cell can
be in one of five states: healthy, infected, expressing, infectious and dead, while an
immune cell is in one of three states: virgin, mature and dead. The virus particles
are not explicitly considered in the model, though it is assumed that the infection
can spread from one epithelial cell to its neighbors. The healthy cell may become
infected if some of its nearest neighbors are infectious; the infected cell will develop
itself into an expressing state after some time(delay), and further into an infectious
state. When the cell is infectious, it can infect its healthy neighbors. The virgin
immune cell becomes mature once it encounters an expressing or infectious cell,
and the mature cell causes an encountered expressing or infectious cell to be dead
and meanwhile reproduces itself with some delay. The mature cells biologically
correspond to the antigen-specific immune cells but do not include the memory
cells. All the cells have ages and will die when they reach their lifespan. A dead
epithelial cell will be revived at some rate. All the number of cells can change with
time except the number of virgin immune cells that maintains a minimum density.



IMMUNE SYSTEM MEMORY REALIZATION 243

The values of parameters are mostly adopted from Bocharov and Romanyukha
(1994) and listed in Table 1.

Since we are interested in the immune process, we must incorporate memory cells
into our model formulation explicitly. For this purpose, we note that in the real
immune system, mature immune cells may transform into memory immune cells
if the mature cells have not been stimulated for some time (Perelson & Weisbuch,
1997; Bocharov & Romanyukha, 1994; Clough & Roth, 1998), or some memory cells
may be generated during the effector stage with or without the common precursors
as the mature immune cells (Clough & Roth 1998; Dooms & Abbas, 2002). The
memory cells have longer lifespan than the mature cells and may be more active than
the virgin immune cells (Gray, 2000; Veiga-Fernandez et al., 2000; Rocha, 2002)
although it is not fully understood how many of the mature cells will transform
into the memory cells (Clough & Roth, 1998) (if we consider the transformation
case) and how long the lifespan of the memory cells is (Borghans et al., 1999). In
the literature, it is estimated that 5%-10% mature cells will divide into memory
cells (Kaech et al., 2003) and the lifespan of the memory cells can be from several
days to years (Clough & Roth, 1998). Memory cells normally are in inactivated state
unless stimulated, and activated memory cells may have a similar effectiveness as
matured immune cells in killing virus. Thus, for simplicity, here we assume that (i)
memory cells are differentiated from mature cells, (ii) the total number of memory
cells differentiated from mature cells during the effector stage is about 10% of the
maximum number of the mature cells, (iii) as a whole, the effectiveness of memory
cells (inactivated and activated) in killing virus and infectious cells is less than the
effectiveness of mature cells, and (iv) the lifespan of memory cells is long enough
in our investigation period, that is, the number of memory cells increases as the
number of mature cells increases but does not decrease when the number of mature
cells decreases.

Next, we translate the CA model into a population or probability mathematical
model so that we can analyze the immune response mathematically. For conve-
nience, we consider the homogeneous case. The diagram of the population trans-
form between different states (except the memory state, see later) of cells is depicted
in Fig. 1 and the values of parameters are listed in Table 1. Because cells have lim-
ited lifespan and some transformation between states needs time, it is natural to
formulate an age-dependent population model.

The evolution of healthy epithelial cells from time t to t + 1 is

H(t + 1, 0) = τ−1
divD(t) ,

H(t + 1, i) = (1 −
γinf

N
PI2(t))H(t, i − 1) , i = 1, 2, · · · , τh ,

PH(t + 1) =

τh
∑

i=0

H(t + 1, i)

= (1 −
γinf

N
PI2(t))(PH(t) − H(t, τh)) + H(t + 1, 0) ,

(1)

where H(t, i) is the number of healthy epithelial cells at time t and age i, D(t)
the number of dead epithelial cells at t, PI2(t) and PH(t) are respectively the
population of infectious and healthy epithelial cells at t, and N the total number of
epithelial cells (including dead epithelial cells). Because a cell’s age, τh, is usually
much less than the lifespan of the host, we may treat N as a constant during the
immune process. Healthy new born cells (at age 0) come from the division of the
healthy cells. When N is a constant, the division happens only when there are one
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Figure 1. Block diagram of the population transform in our model.

or more dead cells. Further we assume that the number of healthy cells will not
be zero so that when dead cells exist there are always some healthy cells ready to
divide. In this case, we may say that if there is no dead cell, no new cell will be born,
and the more cells die, the more new cells will be born. Thus, we simply assume
that at t+1 the number of new born cells, H(t+1, 0), is directly proportional to the
number of dead cells at t. However, we note that in this case the division time, τdiv,
should be larger than the real cell’s division time, especially for our homogeneous
population model. This is because the healthy cells in a tissue may divide when the
nearest cell is dead; when most cells are died in a specific part of the tissue, which
often happens in IAV infection, it may take several division times for these dead
cells to be replaced by new healthy cells, but our homogeneous assumption treats
the healthy and dead cells uniformly mixed; therefore, if the number of healthy
cells is greater than the number of dead cells, in our model, these dead cells will
be replaced during one division time. By taking this consideration into our model,
we choose the value of τdiv to be 30 hours which is somewhat greater than the
upper bound of the real division time, 24 hours (Beauchemin et al. (2004)). For
the infection rate γinf we assume it is the same for each component of healthy and
infectious cells no matter what their age and amount are. More discussions will be
given later.

The infected cells (I1) are originally from the healthy epithelial cells that have
different ages. Thus, each infected cell has both the infected age (starting from the
time at which it was infected) and natural age (starting from the time at which it
was born). For convenience, we consider those with the same infected age i at time
t as a group expressed by I1(t, i). For every i ∈ [0, τex], I1(t, i) has a distribution
on the natural age, where τex is the typical time interval for the infected cells to
become expressing. Because the lifespan of infected cells is less than the lifespan
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Table 1. The parameters in our model for IAV

Parameter Value Description

τh 380h Lifespan of a healthy epithelial cell

γinf 1.3h−1 Infection rate between healthy and infectious cells

τex 4h Delay from infected to expressing

τin 2h Delay from expressing to infectious

τlin 24h Lifespan of an infected epithelial cell

τdiv 30h Duration of an epithelial cell division

τm 168h Lifespan of an immune cell

γinfm 6h−1 Encounter rate between mature immune and epithelial cells

γinfmm 0.6h−1 Encounter rate between memory immune and epithelial cells

τdivm 7h Delay of a mature immune cell reproduction

γdivm 0.25h−1 Rate of a mature immune cell reproduction

γm 1.5× 10−2 Minimum density of immune cells per epithelial cell

of healthy cells, we assume that originally healthy cells with age greater than τlin,
the lifespan of infected cells, are dead when they become infected. From t to t + 1,
or equivalently from the infected age i − 1 to i, those infected cells with natural
age τlin − i + 1 will die, and the number of infected cells at infected age i will be

proportional to
γinf

N

∑j=τlin−i
j=0 H(t, j). Therefore, from t to t + 1, we have

I1(t + 1, i) =

γinf

N

τlin−i
∑

j=0

H(t, j)

γinf

N

τlin−i+1
∑

j=0

H(t, j)

I1(t, i − 1) =

τlin−i
∑

j=0

H(t, j)

τlin−i+1
∑

j=0

H(t, j)

I1(t, i − 1) .

To simplify the expression above, here we assume that H is well distributed. (This
assumption is reasonable at the beginning of infection because before the infection
H is usually well distributed.) Thus

I1(t + 1, i) =
τlin − i + 1

τlin − i + 2
I1(t, i − 1) i = 1, 2, · · · , τex .

Because for IAV, τex ≪ τlin, we may further simplify the expression above as

I1(t + 1, i) = (1 −
1

τlin

)I1(t, i − 1) , i = 1, 2, · · · , τex .

Therefore, for the infected cells the evolution of their components from t to t + 1 is
expressed as

I1(t + 1, 0) =
γinf

N
PI2(t)(PH(t) − H(t, τh)) ,

I1(t + 1, i) = (1 − 1
τlin

)I1(t, i − 1) i = 1, 2, · · · , τex ,

P I1(t + 1) =

τex
∑

i=0

I1(t + 1, i)

= (1 − 1
τlin

)(PI1(t) − I1(t, τex)) + I1(t + 1, 0) .

(2)
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where PI1(t) is the population of infected cells at t. Similarly, when τlin ≫ τex+τin,
where τin is the typical time interval for the expressing cells to become infectious,
for the expressing cells (E) and infectious cells (I2) we may have

E(t + 1, 0) = (1 − 1
τlin

)I1(t, τex),

E(t + 1, i) = (1 − 1
τlin

)f(PM(t), PMM(t))E(t, i − 1) , i = 1, 2, · · · , τin,

PE(t + 1) = (1 − 1
τlin

)f(PM(t), PMM(t))(PE(t) − E(t, τin)) + E(t + 1, 0),

(3)

where f(PM, PMM) = 1 −
γinfm

N
PM −

γinfmm

N
PMM and PE(t), PM(t) and

PMM(t) are respectively the population of infected cells, mature immune cells and
memory immune cells at t, γinfm and γinfmm are respectively the encounter rates
of mature immune cells and memory immune cells with the expressing cells, and

I2(t + 1, 0) = (1 − 1
τlin

)f(PM(t), PMM(t))E(t, τin),

I2(t + 1, i) = (1 − 1
τlin

)f(PM(t), PMM(t))I2(t, i − 1) , i = 1, 2, · · · , τlin,

P I2(t + 1) = (1 − 1
τlin

)f(PM(t), PMM(t))(PI2(t) − I2(t, τlin) + E(t, τin)).

(4)

The total number of dead epithelial cells (D) at t + 1 is

D(t + 1) = N − PH(t + 1) − PI1(t + 1) − PE(t + 1) − PI2(t + 1) . (5)

We further assume that the virgin immune cells can be supplied by, say, the bone
marrow quickly so that the concentration of the virgin immune cells is maintained
without change. Denote the number of virgin immune cells by V , the mature
immune cells (M) evolves from t to t + 1 as follows:

V = γmN ,
M(t + 1, 0) =

γinfm

N
(PE(t) + PI2(t))V + γdivmM(t − τdivm, 0) ,

M(t + 1, i) = M(t, i − 1) , i = 1, 2, · · · , τm ,

PM(t + 1) = PM(t) − M(t, τm) + M(t + 1, 0) .

(6)

Here, γdivm is the reproduction rate of (activated) mature immune cells and τdivm

is the delay of the reproduction. The term γdivmM(t − τdivm, 0) comes from the
assumption that the mature immune cells reproduce only once. This assumption
can be relaxed by replacing the term by, say, γdivmPM(t − τdivm) so that the
cells can always reproduce during their life. For the single reproduction case, we
found that the value of γm should be taken as the permitted upper bound, 1.5 ×
10−2 (see later), while for the multiple reproduction case, γm should be at the lower
bound, 1.5 × 10−4, so that the results from our model agree with the experimental
and clinical observations for IAV, but our main result keeps unchanged about the
stability of virus-free equilibrium and the formation of memory stage.

For the total population of memory cells (PMM), we have

PMM(t + 1) =

{

0.1PM(t) ifPM(t + 1) > PM(t) ,

PMM(t) otherwise .
(7)

The expression for the dead immune cells is omitted because under our assumptions,
it will not affect the immune process.

The parameter values considered in our model are mostly adopted from (Bocharov
& Romanyukha, 1994; Beauchemin et al. 2004). It is noted that the value of N does
not affect the dynamical behavior of our model because it can be also explained as
a probability model. Some explanations are given below on the determination of
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parameter values, γinf and γm, which are somewhat different from those used in
the CA model (Beauchemin et al. 2004):

(1) γinf is used as a free parameter in our work, but the range of its value can be
estimated. For IAV, with 1% initial infection rate, the fraction of dead epithe-
lial cells reaches 40% on day 2 (Bocharov & Romanyukha, 1994). Therefore,
we may have γinf = 40%/1%/(24 ∼ 48) = 1.7 ∼ 0.9h−1.

(2) The permitted range of reactive virgin immune cells per epithelial cell is
γm = 1.5 × 10−4 ∼ 1.5 × 10−2 estimated as follows. There are about 15
intraepithelial lymphocytes per 100 epithelial cells and the probability for
an immune cell to recognize an epitope is about 10−5 (Beauchemin et al.,
2004), and for IAV, the number of specific high-affinity receptors of IFN varies
from 102 to 104 (Bocharov & Romanyukha, 1994), therefore, we may have
γm = (15/100)× 10−5 × (102 ∼ 104) = 1.5 × 10−4 ∼ 1.5 × 10−2.

To numerically simulate the system that consists of Eq. (1), we use the initial and
boundary conditions as follows. The ages of healthy epithelial cells are uniformly
distributed between 0 and τh inclusive, and so are the ages of infected cells but
between 0 and τlin inclusive. The number of infected cells is 1%N . The numerical
simulations of our model are displayed in Figures 2(a) and 2(b).

One can see from Fig. 2 that when t ∈ [0, 200] hours, the system is in the effector
stage. The numerical simulations at this stage agree following clinical observations
for IAV. (1) The infection reaches its peak on day 2 (Bocharov & Romanyukha,
1994; Hayden et al., 1998); (2) the fraction of dead epithelial cells is 10% on day 1,
40% on day 2 and 10% on day 5 (Bocharov & Romanyukha, 1994); (3) the virus
concentration declines to inoculation level on day 5± 2 (Bocharov & Romanyukha,
1994; Hayden et al., 1998; Fritz et al., 1999); (4) the concentration of immune cells
achieves its maximum between day 2 and day 7, and the maximum is 10-fold and
up to 102-fold greater than the normal concentration (Bocharov & Romanyukha,
1994). This seems to provide a convincing validation for our model. However, when
simulating our model into a long time, we find that the virus is not completely
suppressed but will break out periodically as shown in Fig. 2(b).

Interestingly, in our numerical simulation, if we enforce a condition that if the
number of infected cells, E(t, i), is much less than 1, say 10−16, the number is
set to be zero, then the periodic phenomenon no longer appears and the virus is
completely suppressed. Such an observation might be reasonable for population
models because the number of subjects is an integer, and might explain why the
periodic motion does not exist in the CA model (Beauchemin et al., 2004) where
the number of cells is an integer. However, it cannot explain the essential function
of the immune system because only if a small number of viruses (> 1) invade the
host during the memory stage, the whole immune process, namely the periodic
process, will be triggered again. This phenomenon is obviously opposite to clinical
and experimental findings, and actually the memory stage does not form although
the population of memory cells, PMM , is not small. We emphasize that a similar
problem also happens in other immune system models (Bocharov & Romanyukha,
1994) in which the parameter values are estimated from experiments. To solve the
problem calls for more detailed quantitative analysis, provided in the following.

3. The equilibria and their stability. The equilibria of the system that consists
of Eq. (1) – Eq. (7) can be determined in the following way. When letting the
variables of the system change neither with time nor with age, for instance, H(t, i) =
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Figure 2. (a) The population evolution of healthy epithelial
cells (PH), virus-containing epithelial cells (PI1 + PE + PI2),
dead epithelial cells (D) and immune cells (PM + PMM) when
t ∈ [0, 300] hours. (b) The periodic oscillation of the population of
healthy epithelial cells and immune cells when t ∈ [0, 5000] hours.

Ĥ, where Ĥ denotes the number of epithelial cells in the equilibrium state, we obtain
the equilibrium

(PĤ, P Î1, P Ê, P Î2, D̂, PM̂, P ˆMM) = (
(τh + 1)N

τh + 1 + τdiv

, 0, 0, 0,
τdivN

τh + 1 + τdiv

, 0, c) ,

which is called the virus-free equilibrium because all variables relative to the virus,
P Î1, P Ê, P Î2, are zero at the equilibrium. Here, c is the number of memory cells
during the memory stage. And when the variables of the system do not change
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with time but allowing the number of the repertoire (at different discrete ages) of

each variable to be different, for example, H(t, i) = Ĥ(i), where Ĥ(i) denotes the
number of epithelial cells at age i in the equilibrium state, we can obtain the virus-
persistent equilibrium where none of P Î1, P Ê, P Î2 is zero. The expression of the
equilibrium is complicated, and is omitted.

We are interested in these two equilibria because they correspond to two types
of memory states of the immune system: one is the ideal virus-free memory state
and the other is virus-persistent memory state for which much experimental and
theorectical work has been done (Kundig et al., 1996a, 1996b, Wodarz et al., 2000a,
2000b, 2001b) to investigate the role of CTLs. Also, from Fig. 2 we see that the
system approaches the virus-free equilibrium after the effector stage, and a virus-
persistent memory stage could be built around the virus-persistent equilibrium if
this equilibrium is stable. We shall see that the general immune process can be
realized in our system by switching the dynamical behavior of the system from the
effector stage to one of these two equilibria.

The stability of the virus-free equilibrium can be rigorously analyzed. At this
equilibrium, PMM(t) = c is a constant and the value of c may depend on all other
parameter values of the system and the boundary condition. The linearized system
of Eq. (1) – Eq. (6) at this equilibrium can be expressed as

δx(t + 1) =

[

A 0

B C

]

δx(t) , (8)

where

δx(t) = [ δI1(t, 0), · · · , δI1(t, τex), δE(t, 0), · · · ,
δE(t, τin), δI2(t, 0), · · · , δI2(t, τlin),
δH(t, 0), · · · , δH(t, τh), δD(t), δM(t, 0), · · · , δM(t, τm)]T

,

and

A =







































0 0 0 . . . 0 α . . . α α
β 0 0 . . . 0 0 . . . 0 0
0 β 0 . . . 0 0 . . . 0 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 0 . . . 0 0 β̄ 0







































,

C =

































0 0 . . . 0 τ−1
div 0 . . . 0 0

1 0 . . . 0 0 0 . . . 0 0
0 1 0 0 0 . . . 0 0
...

. . . 0 0 0 . . . 0 0
0 1 1 − τ−1

div 0 . . . 0 0
0 0 0 0
0 1 0 0
...

. . .
...

0 1 0

































,



250 JIANHONG WU, WEIGUANG YAO AND HUAIPING ZHU

and

B =











































0
... 0 0

... 0 0

0
... 0 −

γinf

N
h

... −
γinf

N
h −

γinf

N
h

...
...

...
...

...

0
... 0 −

γinf

N
h

... −
γinf

N
h −

γinf

N
h

τ−1
lin

... τ−1
lin τ−1

lin

... τ−1
lin β̄ + τ−1

lin

0
... 0 (1 + γm)

γinfm

N
V

... (1 + γm)
γinfm

N
V (1 + γm)

γinfm

N
V

0
... 0 0

... 0 0
...

...
...

...
...











































where
h = PĤ,

α = γinf
τh

τh+1+τdiv
,

β = 1 − 1
τlin

,

β̄ = β
(

1 −
γinfmmc

N

)

.

In matrix A, from right-up to left-down, there are first τex + 1 β’s, then τin +
τlin + 1 β̄’s. Therefore, the characteristic matrix of the system at the virus-free
equilibrium is reducible. The stability of the equilibrium is determined by the
eigenvalues, Λ’s, of matrices A and C. Denote the maximal modulus of Λ’s by
Λmax. If Λmax < 1, the equilibrium is stable; if Λmax > 1, the equilibrium is
unstable. If Λmax = 1, the equilibrium is critical.

The matrix A is a Leslie non-negative matrix whose eigenvalues satisfy

Λτex+τin+τlin+3 − ᾱβ̄τex+τin+τlin+2
τlin
∑

j=0

Λj β̄−j = 0 , (9)

where ᾱ = α(β/β̄)τex+1.
For the eigenvalues of matrix A, we have the following

Theorem 1: For Eq. (9), when ᾱ ∈ [0, ∞) and β̄ ∈ [0, 1), there is a Λ satisfying

|Λ| > 1 when ᾱ > α1 = 1−β̄

β̄τex+τin+2(1−β̄τlin+1)
.

Proof. Obviously, when ᾱ = 0, Λ = 0. Because of the continuity, there is a α0 > 0
so that when ᾱ < α0, |Λ| < 1.

Let Λ = ρeiθ where ρ ≥ 0, θ ∈ [0, 2π) and i2 = −1. Substituting it into Eq. (9),
we have

(ρeiθ)τex+τin+τlin+3 = ᾱβ̄τex+τin+τlin+2
∑τlin

j=0 ρeijθβ̄−j . (10)

Assume that when ᾱ = α1, |Λ| = ρ = 1. At ᾱ = α1, we have

cos(τex + τin + τlin + 3)θ
= α1β̄

τex+τin+τlin+2(1 + β̄−1 cos θ + · · · + β̄−τlin cos τlinθ) ,
(11)

and

sin(τex + τin + τlin + 3)θ
= α1β̄

τex+τin+τlin+2(β̄−1 sin θ + β̄−2 sin 2θ + · · · + β̄−τlin sin τlinθ) .
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From Eqs. (11) and (12), we can solve θ and α1. Obviously, θ = 0 is one of the
solutions of θ. Substituting θ = 0 into Eq. (11), we have

α1 =
1 − β̄

β̄τex+τin+2(1 − β̄τlin+1)
. (12)

One can see that α1 monotonically increases as τex + τin does, but decreases as τlin

increases and when τlin → ∞, α1 → 0.
Next, the derivative of ρ with respect to ᾱ on Eq. (10) at ᾱ = α1, namely,

θ = 0, ρ = 1 yields

∂ρ

∂ᾱ

∣

∣

∣

∣

α1

=

β̄τex+τin+2

τlin
∑

j=0

β̄τlin−j

τex + τin + τlin + 3 − α1β̄τex+τin+2

τlin
∑

j=0

jβ̄τlin−j

. (13)

Therefore, when

τex + τin + τlin + 3 > α1β̄
τex+τin+2

τlin
∑

j=0

jβ̄τlin−j

or, by using Eq. (12),

(τex + τin + 2)

τlin
∑

j=0

β̄j > −

τlin
∑

j=0

(j + 1)β̄j , (14)

∂ρ
∂ᾱ

|α1
> 0. Because Eq. (14) always holds for any value of parameters, at least one

Λ in Eq. (9) is of |Λ| > 1 when ᾱ > α1. This completes the proof.

We note that α1 may not be the first value of ᾱ for |Λ| = 1 when ᾱ increases
from 0. In this case, α0 < α1.

The eigenvalues of matrix C satisfies

Λτm+1
[

τ−1
div + (1 − τ−1

div − Λ)Λτh+1
]

= 0 . (15)

Hence Λ equals to zero or satisfies

τ−1
div + (1 − τ−1

div − Λ)Λτh+1 = 0 , (16)

for which we have the following
Theorem 2: When τ−1

div ∈ [0, 1] and τh ≥ 0, the possible maximal |Λ| for Eq. (16)
is one.

Proof. Let Λ = ρeiθ where ρ ≥ 0, θ ∈ [0, 2π) and i2 = −1. Substituting it into
Eq. (16) and taking the norm (modulus squared) on the both sides, we have

τ−2
div =

∣

∣1 − τ−1
div − ρ cos θ − iρ sin θ

∣

∣

2 ∣

∣ρeiθ
∣

∣

2τh+2

=
[

(1 − τ−1
div − ρ cos θ)2 + ρ2 sin2 θ

]

ρ2τh+2

=
[

(1 − τ−1
div)2 − 2ρ(1 − τ−1

div) + ρ2 + 2ρ(1 − τ−1
div) − 2ρ(1 − τ−1

div) cos θ
]

ρ2τh+2

=
[

(1 − τ−1
div − ρ)2 + 2ρ(1 − τ−1

div)(1 − cos θ)
]

ρ2τh+2

≥ (ρ − 1 + τ−1
div)2ρ2τh+2 .

Assume ρ > 1, we have
τ−2
div > τ−2

div ,

which is not true, therefore |Λ| = ρ ≤ 1.
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From the above analysis of the eigenvalues of matrices A and C, we can conclude
that the stability of the virus-free equilibrium is determined by the eigenvalues
of A. When ᾱ > α1 that satisfies Eq. (12), the equilibrium is unstable. Since
γinfmmc/N ≪ 1, we have ᾱ ≈ α and β̄ ≈ β. In our chosen parameter region, we
then have

α =
γinf τh

τh+1+τdiv
≈ 1.2 ,

α1 = 1−β

βτex+τin+2(1−βτlin+1)
≈ 0.089 .

The virus-free equilibrium is unstable. Our numerical simulations show that when
α = 1.2, the system has a periodic solution which indicates that a Neimark-Sacker
bifurcation [22] may occur for the system.

The analysis of the stability of the virus-persistent equilibrium is challenged due
to the complexity of the system. In this case the characteristic matrix of the system
is non-reducible, and the size of the matrix is too large for a formal analysis because
of the age structure of the system variables. Instead, we use numerical simulations
to test the stability. It is found that the equilibrium is unstable in the chosen
parameter region, and can be stable in some parameter regions. If γinf is chosen
as the bifurcation parameter, it is found that the system experiences from stable
virus-free state to stable virus-persistent state and then to periodic state when γinf

increases from 0.01 to 0.5 as shown in Fig. 3, and a Neimark-Sacker bifurcation
occurs near γinf = 0.1.

0 0.1 0.2 0.3 0.4 0.5
0

2000

4000

6000

8000

10000

γ 
inf

PM

Figure 3. Bifurcation diagram of PM + PMM showing that
our model system (1-7) is in virus-free equilibrium when γinf ∈
[0.01, 0.06), in virus-persistent equilibrium when γinf ∈ (0.06, 0.1),
and in periodic state when γinf ∈ (0.1, 0.5], a Neimark-Sacker bi-
furcation occurs near γinf = 0.1.

A more detailed numerical simulation shows that both the virus-free and virus-
persistent equilibria are unstable when γinf > 0.1 and the system is in a periodic
or chaotic state. Since the parameter values in our model are estimated from ex-
periment and the results of our model agree with some important experimental and
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clinical observations during the effector stage, we may say that these parameter val-
ues are reasonable. An interesting question arises: How does the immune system,
or more rigorously, our model system realize the memory stage from the effector
stage? We notice that there are many possible ways to realize the memory stage,
for instance, by considering the cross-reactive property of CTLs (Antia et al., 1998)
or by taking medicine (Wodarz and Lloyd, 2004). Here we give another maybe
reasonable way by incorporating the function of antibodies into our model.

4. The transform between the effector and memory stages. The antibody is
one of the immune substances. The variable, MM , in our model is for memory CTLs
but not for antibodies because of their distinct functions: CTLs kill the expressing
and infectious cells and antibodies bind virus particles so that the viruses lose their
ability in infecting healthy cells. To express the function of antibodies in our lattice
population model, we consider the spacial structure of tissue cells, or the lattices. In
Eq. (1), we assumed that the growth rate of infected cells is γinfPI2/N where γinf

is a constant. If we consider the function of antibodies in our model, this growth rate
should be modified. Healthy epithelial cells are infected by the viruses (antigens)
released from the infectious cells, PI2, and what we are interested in is how fast
the healthy epithelial cells are infected because of PI2. It is assumed that the
neutralized (bound) viruses (antigens) are unable to infect the healthy cells, and
only the free(un-bound) viruses (antigens) are able to infect healthy cells (Ahmed
et al., 2002). If there are antibodies between the infectious and healthy cells, some
antigens from the infectious cells will be bound by antibodies. Suppose that per
hour, each infectious cell releases αag antigens, and denote the total population of
antibodies, antigens and bound antigens by Ab, Ag, (Ag)b respectively. According
to Bell’s work (1970, 1971, 1973), the number of un-bound antigens that may reach
the healthy cells per hour is

Ag − (Ag)b = αagPI2(1 −
kAb

1 + k(Ab + αagPI2)
) = αag

1 + kαagPI2

1 + kAb + kαagPI2
PI2 ,

(17)
where k is usually a small constant. If the infection rate of healthy cells is propor-
tional to the number of un-bound antigens, we may have the form of the infection
rate as

γinf = γ0
1 + kαagPI2

1 + kAb + kαagPI2
, (18)

where γ0 is a constant, and can be further rewritten as

γinf = γ0
pq + PI2

q + PI2
, (19)

where p = 1
1+kAb

, q = 1+kAb
kαag

, and γ0 = 1.3 as the listed γinf in Table 1. γ0 describes

the characteristic of the virus in infection tissue cells, and therefore its value does
not change during the immune process (in practice, γ0 may change because of the

virus mutation), but the part, pq+PI2
q+PI2 , standing for the competition between the

antigen and antibody, could vary with time. Since p ∈ [0, 1), γinf decreases as q
increases. We assumed that γinf is proportional to the rate of un-bound antigens
over total antigens. Thus, when q increases, more antigens are bound by antibodies.
In other words, the strong ability of antibodies in binding antigens will cause a big
value of q, and therefore a small value of γinf . From Fig. 3, one can see that a
small value of γinf will result in the formation of memory stage. Similarly, the
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smaller p, the smaller γinf , the easier the formation of the memory stage. On the
other hand, the weak ability of antibodies will cause the difficulty of memory stage
formation. Therefore, the interaction between antigens and antibodies via tissue
cells plays an essential role in realizing the memory stage. This result is consistent
with the recent experimental findings on the important role of antibody in the
immune process (Ahmed et al., 2002).
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Figure 4. (a) The same as Fig. 2(a) except that γinf is the mono-
tonic function, (19). (b) The evolution of PH and D. p = 0.04
and q = 0.002N .

Particularly, if we take p = 0.04, when PI2 tends to 0 and ∞, γinf tends to,
respectively, 0.052 and 1.3 so that the immune system is, respectively, in the stable
virus-free equilibrium and periodic states. The value of q affects the slope of the
monotonic function, γinf , and is relative to N . When q = 0.002N , the system has
both the effector stage and memory stage as shown in Fig. 4 and Fig. 5(a). It is
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Figure 5. The evolution of PM+MM when γinf is the monotonic
function, (19), where the memory stage is in (a) stable virus-free
equilibrium state when p = 0.04, q = 0.002N , and (b) first unstable
virus-free equilibrium and then stable virus-persistent equilibrium
states when p = 0.06, q = 0.04N .

observed from Fig. 4(a) that the dynamical behavior of the system in the effector
stage is similar to that when γinf is fixed at 1.3 as shown in Fig. 2(a), and the
memory stage is formed when t > 200h (see Fig. 5(a)). If p = 0.06 and q = 0.04N
the system is in the virus-persistent memory stage as shown in Fig. 5(b). When
γinf is a step function, we obtained very similar results.

It is believed that other monotonic functions of γinf such as the recognition
probability function (Perelson & Oster, 1979) and the standard neuron feedback
function (Yao et al., 2001) would work well too. Further, it may also be interesting
to investigate the role of CTLs (= PM + PMM in our model) in the formation of
memory stage for our model system. To do this, we fix γinf = 1.3 and adjust γinfm
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Figure 6. Bifurcation diagram showing the role of CTLs (= PM+
PMM) in infection control: γinfm, increases from 0.01 to 70 to
simulate the various strength of CTLs.

to obtain the bifurcation diagrams of virus-containing cells (= PI1 + PE + PI2)
and CTLs (= PM +PMM) as depicted in Fig. 6. It follows from the diagram that
when γinfm < 2h−1, the system is in virus-persistent equilibrium, and the number
of virus-containing cells is rather high. Also, comparing Fig. 6(a) with (b) in this
regime (γinfm < 2), we find that there is a negative correlation between the virus-
containing cells and CTLs when γinfm < 0.3, and after that, a positive correlation.
In experiments, both the negative and positive correlations have been observed (Ogg
et al., 1998, Wodarz, 2001b) and studied by Bangham et al. (1999) and Wodarz
and Nowak (2000c). When γinfm > 2, the system is in periodic state. As γinfm

increases, the number of CTLs decreases and from Fig. 6(a), the number of infected
cells decreases slightly. This is because the generation of mature immune cells
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needs the stimulation from viruses. When γinfm increases, the viruses can be killed
more efficiently resulting in less chance for virgin immune cells to be stimulated.
This indicates that the strength of CTLs, (γinfmPM + γinfmmPMM)/N , is easily
saturated resulting in the limited role of CTLs in the clearance of viruses, even
though the memory CTLs are considered.

The above numerical simulations suggests that a Neimark-Sacker bifurcation oc-
curs in the new model system too. The results also seem to suggest that in the
absence of a humoral response there would be no cellular memory. In fact this
is not correct. Recent experiments have confirmed that unlike antibodies, CTLs
are cross-reactive (Antia et al., 1998). If we consider this property of CTLs,
the form of f in Eqs. (3) and (4) should be updated by f(PM, PMM, z) =
1−

γinfm

N
PM−

γinfmm

N
PMM−z, where z represents the strength of those CTLs gen-

erated by the stimulation from the other kinds of viruses. Because z is an external
variable, independent on the number of virus-containing cells (= PI1+PE +PI2),
when it is strong enough, it can clear out the virus-containing cells and the memory
stage can form even if there are no antibodies. However, the unique importance
of antibodies in the infection control cannot be ignored even if there are strong
cross-reactive CTLs. In addition, when γinf is not a fixed constant but a func-
tion of PI2, in our numerical simulations we need not enforce the condition that if
PI1 < 10−16, P I1 = 0 because either the virus-free or the virus-persistent equilib-
rium in the memory stage is stable. Thus, we can solve the problems of unstable
equilibrium and no memory stage in our model by letting γinf be a reasonable
function of PI2.

5. Discussions. The immune system can be taken as a complicated control system.
It evolves to incorporate the tissue cell infection process. During the effector stage,
the immune system might be in a non-equilibrium state so that the number of
specific immune cells increases more rapidly to deal with the infectious tissue cells
and viruses, while during the memory stage, the system is in a stable equilibrium
or quasi-equilibrium state. In this paper, we have built a mathematical model to
investigate how the immune system realizes the transformation from the periodic
state to the equilibrium state. The model considers the interaction between the
immune cells and tissue cells, and is at least partially validated by using influenza
A virus data. The simulations agree with some important clinical observations.
We have shown that the infection rate of healthy epithelial cells significantly effects
the dynamical behavior of the immune system, and should be taken as a function
of the concentration of infectious cells so that the both the effector stage and the
memory stage can be realized. Thus, our work indicates the necessity to consider
the effect of complicated forms of viruses, or complicated interaction between tissue
cells and immune cells, on the dynamical behavior of the immune system. Our
work also suggests that if a dynamical process of such a system as the immune
system and the control system of SARS (Webb et al., 2004) involves more than
one stage, the underlying mathematical model for the system could have a non-
constant parameter, and the dependence of this parameter on system’s states plays
an important role in transforming the system between different stages.

For both the two model systems, numerical simulations suggest the existence of
the Neimark-Sacker bifurcation. A systematic and analytical study of the bifurca-
tion in the model systems is interesting and essential, and we leave it for future
work.
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