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Abstract. We consider a simple diffusion equation with a delayed Laplacian operator to

model the time required for spatial movement. Such an equation defines a semiflows on

a Frechét space and the associated infinitesimal generator has a quite interesting spectral

property so that the associated unstable and stable subspaces are both infinitely dimen-

sional, and there is a sequence of eigenvalues of the generator that approaches the imaginary

axis.
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1 Introduction

Motivated by a simple looking linear parabolic equation with delay in the
Laplacian operator, we consider here semiflows on general Frechét spaces.
The need for such a framework instead of C0-semigroups on Banach spaces is
due to the fact that solutions of the aforementioned equation become less and
less smooth (with respect to space) as time increases, and hence the space of
smooth initial conditions is required in order for the abstract Cauchy initial
value problem to be well-posed.

Here we present a case study of the simplest possible diffusion equation
where diffusion occurs with a delay, and we show that such an equation
generates a semigroup of bounded operators in a carefully chosen Frechét
space whose metric is induced by a family of semi-norms. The generator
of such a semiflow can be calculated, and we show its spectrum contains
a sequence of points with unbounded positive real part, and hence both
stable subspaces and unstable subspaces of the semiflow must be of infinite
dimensions. Our analysis shows the lack of exponential dichtomy as there is
a sequence of eigenvalues of the generator that approach the imaginary axis.
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The prototype equation is ∂u(t,x)
∂t = ∂2

∂x2 u(t − 1, x) subject to a certain
boundary condition. This arises when we consider random movement of a
biological species and when we assume the spatial movement of the species
is delayed (with the delay normalized to 1), as noted in [2]. Naturally, more
realistic biological models should incorporate the term describing the birth
and death processes that are usually nonlinear, see [4], but the aforemen-
tioned prototype equation shows the complexity of the study and our work
here should be regarded as a preliminary work towards a more comprehensive
investigation of the dynamics of reaction diffusion equations with time delay
in the diffusion term.

Remark: It appears that every time when the delay appears in the highest
spatial derivative in the evolution equation, that term seems to be considered
as a singular perturbation, if the delay is near zero. We noticed some similar
behaviour in the wave equation when the delay, r > 0, is present in the term
∂2

∂x2 u(t− r, x).

2 Linear C0-semigroups on Frechét spaces.

Let X be a Frechét space with distance d.

2.1 The semigroup.

Let t ∈ R+. We say that T (t) is a C0-semigroup on Frechét space X, if the
following conditions are satisfied:

1. T (t) : X → X, is a continuous linear operator, for each t ≥ 0;

2. If x ∈ X and s ∈ [0,∞),then limt→s T (t)x = T (s)x;

3. If t, s ≥ 0, x ∈ X, then T (t + s)x = T (t)T (s)x.

2.2 The infinitesimal generator.

If T (t) is a co-semigroup on Frechét space X, we define:

(A) := {x ∈ X : lim
h→0+

T (h)x− x

h
exists inX}.

If x ∈ (A), we define Ax := limh→0+
T (h)x−x

h and we say that A is the
infinitesimal generator of T (t).

It follows from Komura [3] that A is a closed operator and that (A) is
dense in X.

We now discuss a special class of Frechét spaces that will be helpful to
treat our examples.
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We suppose that for each p ∈ Z+, Xp is a Banach space with norm ‖ · ‖p,
Xp+1 ⊂ Xp and for every x ∈ Xp+1 we have that ‖x‖p ≤ ‖x‖p+1.

Let X := ∩∞p=0Xp. In X we define the following distance: for x, y ∈ X

d(x, y) =
∞∑

p=0

1
2p

‖x− y‖p

1 + ‖x− y‖p
.

We remark that this distance is invariant by translations.
The following lemma is obvious but we present a short proof of it.

Lemma 2.1. With the above distance, X is a complete space and so it is a
Frechét space.

Proof: If (xn) is a Cauchy sequence in X then it is also a Cauchy sequence
in Xp for every p ∈ Z+. Therefore, this sequence will converge in Xp and
the above assumptions imply that the limit x is independent of p. Therefore,
x ∈ X and xn → x in X.

Exemple 2.1. We are interested in the following boundary value problem:
{

∂u(t,x)
∂t = ∂2

∂x2 u(t− 1, x),
ux(t, 0) = ux(t, π) = 0.

(2.1)

Consider the following spaces

X := {φ(t, x) =
∞∑

n=0

an(t) cos(nx); an : [−1, 1] → R is continuous for each

n ∈ Z+, ‖φ‖p : = sup
t∈[−1,0]

[
∞∑

n=0

(np|an(t)|)2]1/2 < ∞,∀p ∈ Z+}

and for each p ∈ Z+

Xp := {φ(t, x) =
∞∑

n=0

an(t) cos(nx); an : [−1, 1] → R is continuous for each

n ∈ Z+, ‖φ‖p : = sup
t∈[−1,0]

[
∞∑

n=0

(np|an(t)|)2]1/2 < ∞}.

Then X = ∩∞p=0Xp. Morever, we observe that if φ ∈ X, then ‖φ‖p ≤
‖φ‖p+1 for every p ∈ Z+.

In the space X, we consider the following distance, for φ, ψ ∈ X:

d(φ, ψ) :=
∞∑

p=0

1
2p

‖φ− ψ‖p

1 + ‖φ− ψ‖p
.

By Lemma 2.1, X is a Frechét space.
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If we substitute φ(t, x) =
∑∞

n=0 yn(t) cos(nx) to the equation (2.1), we
see that yn(t) must be a solution of the ordinary retarded equation:

d

dt
yn(t) = −n2yn(t− 1). (2.2)

This equation can be solved for all t ≥ 0, as long as the initial condition on
the space C([−1, 0],R) is given.

Let us suppose that φ ∈ X is given with φ(t, x) =
∑∞

n=0 an(t) cos(nx),
where an ∈ C([−1, 0],R). Let yn(t) be the solution of (2.2) such that yn = an

on [−1, 0].
Clearly, T (t)φ =

∑∞
n=0(yn)t cos(nx) is the mild solution of (2.1), with

initial condition φ.
We point out that if φ ∈ X then T (t)φ belongs to the space X. In fact,

if φ(t, x) = a0 +
∑∞

n=1 an(t) cos(nx) for t ∈ [−1, 0], the solution for t ∈ [0, 1]
is given by

u(t, x) = a0(0) +
∞∑

n=1

yn(t) cos(nx),

where yn(t) = yn(0) − n2
∫ t

0
an(s − 1)ds. Therefor, T (t)φ ∈ X for t ∈ [0, 1],

because

‖ut‖p ≤
[
‖a0‖2∞ +

∞∑
n=1

(np(1 + n2)‖an‖∞)2
]1/2

= 2‖φ‖p+2 < ∞.

We can proceed step by step to obtain the u(t, x) in the subsequent interval
[1, 2], [2, 3],.... We now note that for each fixed t ∈ [0,∞), T (t) is a continuous
operator from X to X. In fact, since the distance is invariant by translations,
if φ ∈ X and t ∈ [0, 1], then

d(T (t)φ, 0)) =
∞∑

p=0

1
2p

‖T (t)φ‖p

1 + ‖T (t)φ‖p
≤

∞∑
p=0

1
2p

2‖φ‖p+2

1 + 2‖φ‖p+2

≤ 23
∞∑

p=0

1
2(p+2)

‖φ‖p+2

1 + ‖φ‖p+2
≤ 23d(φ, 0).

Similarly, if t ≥ 0, then there exists a q ∈ Z+ such that t ∈ [q, q + 1] and
hence

‖T (t)φ‖p ≤ 22(q+1)‖φ‖p+2(q+1).
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d(T (t)φ, 0) =
∞∑

p=0

1
2p

‖T (t)φ‖p

1 + ‖T (t)φ‖p

≤
∞∑

p=0

1
2p

22(q+1)‖φ‖p+2(q+1)

1 + 22(q+1)‖φ‖p+2(q+1)

≤ 24(q+1)
∞∑

p=0

1
2(p+2(q+1))

‖φ‖p+2(q+1)

1 + ‖φ‖p+2(q+1)

≤ 24(q+1)d(φ, 0) ≤ 24(t+1)d(φ, 0)

Therefore, for t ≥ 0 we have

d(T (t)φ, 0) ≤ 24e(4 log 2)td(φ, 0).

Finally, we remark that the mapping t ∈ [0,∞) → ut(·, x) = a0(0) +∑∞
n=1 ynt cos(nx), is continuous. This follows from the fact that the series

u(t, x) = a0(0) +
∑∞

n=1 yn(t) cos(nx) converges uniformly for t on bounded
closed intervals of [−1,∞) and that t ∈ [−1,∞) → a0(0)+

∑∞
n=1 yn(t)cos(nx) ∈

R is continuous.

2.3 Infinite Dimensional Stable and Unstable Subspaces
and Non-Splitting

The characteristic equation is given by

λ = −n2e−λ

for every positive integer n.
Let λ = x + iy with reals x and y. We get

ex(x cos y − y sin y) = −n2,
ex(x sin y + y cos y) = 0.

In the above system, sin y = 0 implies that y = 0 and the unique solution
will be (x, y) = (0, 0), obtained by taking n = 0.

For sin y 6= 0, we have,

x = h(y) := −y
cos y

sin y
(2.3)

and
f(y) := e−y cos y

sin y
y

sin y
= n2. (2.4)

Both h and f are even functions on y.
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Figure 1. The graph of h and f .

It is thus necessary to consider the graph of z = f(y) above the y-axis.
This part of the graph has infinite number of branches: the branch on the in-
terval [0, π) (denoted by z = f0(y)) starts at 1/e and monotonically increases
to infinity, and the branch (denoted by z = fk(y)) for each fixed interval
(2kπ, 2kπ + π), with k = 1, 2, · · · , starts from 0 and monotonically increases
to infinity. As such, for each nonnegative integer k and for each positive
integer n, the equation (2.4) has a unique solution yn,k ∈ (2kπ, 2kπ + π).
Moreover, we have yn,k → 2kπ + π as n →∞.

Similarly we denote by x = hk(y) for each fixed interval (2kπ, 2kπ + π)
with k = 0, 1, 2, · · · .

Substituting yn,k into (2.3), we then get xn,k = −ynk

cos yn,k

sin yn,k
and xn,k →

+∞ as n →∞, and xn,k → −∞ as k →∞.
We now consider the possibility that if we can get a sequence of (x, y)

that solves (2.3), (2.4) and x + iy approaches the imaginary axis. For this
purpose, we write fk(y) in terms of a shifted variable y = 2kπ + s as follows

gk(s) = fk(y) := e−(2kπ+s) cos s
sin s

2kπ + s

sin s
.

Note that gk(π
2 ) = 2kπ+ π

2 , we conclude that if Nk is the largest integer that
is less than or equal to

√
2kπ + π

2 and if n ≥ Nk + 1, then equation (3.2)
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has a solution yn,k on the interval (2kπ + π
2 , 2kπ + π). In particular, letting

nk = NK + 1 and sn,k = yn,k − 2kπ, we get

(nk + 1)2

2kπ + snk,k
= e

−(2kπ+snk,k)
cos snk,k

sin snk,k
1

sin snk,k
. (2.5)

It now becomes clear that snk,k → π
2 as k →∞. For otherwise, if there is

a subsequence that converges s∗ ∈ (π
2 , π], we will get a contradiction in (2.5):

the left-hand side converges to 1 while the right-hand side converges to ∞.
It also follows from (2.5) that

e
−(2kπ+snk,k)

cos snk,k

sin snk,k → 1

from which we conclude that xnk,k → 0+ as k →∞.
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