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Abstract We derive appropriate mathematical models to assess the effective-
ness of culling as a tool to eradicate vector-borne diseases. The model, focused
on the culling strategies determined by the stages during the development of
the vector, becomes either a system of autonomous delay differential equations
with impulses (in the case where the adult vector is subject to culling) or a
system of nonautonomous delay differential equations where the time-varying
coefficients are determined by the culling times and rates (in the case where
only the immature vector is subject to culling). Sufficient conditions are derived
to ensure eradication of the disease, and simulations are provided to compare
the effectiveness of larvicides and insecticide sprays for the control of West Nile
virus. We show that eradication of vector-borne diseases is possible by culling
the vector at either the immature or the mature phase, even though the size of
the vector is oscillating and above a certain level.
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1 Introduction

Culling has been a common method for pest control and ecosystem
management. Despite different formats such as shooting, trapping and crop
spraying, culling often takes place at certain particular times only. These
culling times are regulated by many factors including the maturation sta-
tus of individuals of the species involved. For example, crop spraying may
be exercised at certain times coinciding with critical stages in the insects’
development.

Culling has also been a widely adopted tool to control vector-borne diseases in
the hope that culling the vector at carefully chosen times may intervene the
transmission cycle and reduce the infection. A specific example is larvicides and
insecticide sprays as techniques in the war against mosquitoes, the vector for
many mosquito-born diseases including West Nile virus (WNv) and Dengue
fever.

One purpose of this article is to qualitatively assess the effectiveness of larvi-
cides and insecticide sprays in the control of West Nile virus in North America.
The virus was isolated in the West Nile district of Uganda in 1937 [11], and has
been maintained in an enzootic cycle involving culicine mosquitoes and birds
[3,4] in the eastern hemisphere. In North America, the WNv activities were
first recorded in the borough of Queens, New York City, in 1999 [2,7], and the
virus has expanded spatially so rapidly within the subsequent 5 years that it
has become a permanent fixture of the North America medical landscape [8].
Various techniques have been used in the war against mosquitoes, from the
rolled up newspaper to sprayer trucks. But for speed and effectiveness, few
techniques compare to larvicides, substances that destroy mosquito larva, the
pre-adult insects that breed and mature in standing water. Biological larvicides
are made from the bacteria Bacillus thuringiensis israaelensis or Bacillus sph-
aericus. The bacteria produce a crystal which is poisonous to mosquito larvae,
but virtually harmless to other forms of aquatic life. Unfortunately, as with
many insect species, the larva can be difficult to find. An alternative to larvi-
cides is insecticide sprays to kill adult mosquitoes. Called adulticides and used
in many residential areas, some kill both mosquitoes and “good insects” that
eat mosquitoes. Another drawback, in addition to limited effect, is the per-
ceived public health implication. Large numbers of mosquitoes survive adulti-
cide sprays by flying away or finding shelter in gutter downspouts and eaves,
under foliage, and other protected areas (http://www.rifleco.org/Parks/mosqui-
toes.htm). Therefore, it is highly desirable to develop appropriate models so
that we can qualitatively examine the effectiveness of larvicides and insecticide
sprays.

We start, in Sect. 2, to describe the impact of culling of the immature indi-
viduals on the dynamics of the adult population in a single population with two
stages: immature and mature. This is important for the later model formulation
of the vector-borne disease transmission when the vector also has two stages and
when the immature of the vector does not participate in the transmission cycle.
We show that the adult population is governed by a certain nonautonomous



Control of vector-borne diseases 311

delay differential equation. The growth rate of the adult population is the bal-
ance of the death rate and the maturation rate. The latter is the birth rate
exactly at the maturation length ago, corrected to allow for juvenile mortality.
Mortality of juveniles may be attributed either to “natural” mortality, or to
culling. The former is accounted for by a factor depending on the per-capita
natural death rate of juveniles and the maturation period. Mortality attribut-
able to culling is accounted for by a certain time dependent factor representing
the probability that an individual will survive every attempt to kill it before it
becomes an adult. Our model is quite general in that it does not require the culls
to occur at equally spaced times, nor every cull to remove the same proportion
of individuals. Indeed, even if the culls are equally spaced in time, as time t
progresses the interval [t − τ , t] will not always contain the same number of
culls. Thus different cohorts of juveniles may be subjected to different numbers
of culls. These considerations lead to a nonautonomous delay equation for the
total number of adults.

In Sect. 3, we formulate the model equation for the vector-borne disease
transmission under the assumption that (i) the vector (thinking of mosquitoes
as the vector) involves two stages—immature and mature, and the immature
will not get infected through the reservoir species (birds, perhaps) and there
is no vertical transmission within the vector; (ii) the total population of the
reservoir species remains relatively constant in time. We shall consider culling
either the immature and or the mature, and the resulted model is a system of
delay differential equations for the susceptible matured vector, the infected
matured vector and the infected birds. In the case where culling takes place for
immature only, the model becomes a nonautonomous system of delay differ-
ential equations; while in the case of culling the mature vector, we end up with
an autonomous system of delay differential equations subject to impulses at
fixed times. In either case, we derive some sufficient conditions under which the
infected vector and reservoir species become extinct.

Section 4 provides the results of some numerical simulations. These simula-
tions show that the analytically obtained sufficient conditions for eradicating
the disease are feasible under a wide range of culling strategies, and eradica-
tion of the disease can be achieved by culling even when the vector population
oscillates periodically with a large amplitude. The simulations also illustrate the
relative effectiveness of larvicides and adulticides.

2 Culling of immatures: model derivation

In a recent paper, Simons and Gourley [9] studied a time dependent stage struc-
tured population in which the adults (but not juveniles) are subject to culling or
trapping which occurs only at certain particular times t1, t2, t3, . . .. Their model
equation is

u′
m(t) = e−μτ b(um(t − τ)) − d(um(t)) −

∞∑

j=1

bjum(t−j )δ(t − tj), t > 0 (2.1)
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where μ > 0 represents juvenile mortality, um(t) is the total number of adults at
time t, um(t−j ) is the population just before the impulsive cull at time tj, τ is the
maturation time, bj is the proportion of the mature species trapped or culled at
time tj and δ denotes the Dirac delta function. In (2.1), b(um(t)) is a function
representing the birth rate of the immature species while d(um(t)) is the natural
death rate of the mature species. The e−μτ b(um(t − τ)) term is the rate at which
immature individuals become mature. This term incorporates the delay τ and
equals the birth rate τ time units ago, corrected to allow for juvenile mortality.

In their derivation of (2.1), Simons and Gourley [9] assumed the immature
population was not subject to culling. In some situations this may be a rea-
sonable assumption especially if the immature members are well hidden and
protected and therefore difficult to access. However, particularly where it is
necessary to eradicate a species completely, it is sometimes as important to find
and destroy the immature members as the adults. Indeed, in insect infestations
isolated efforts aimed only at destroying the flying adults (e.g., by spraying)
might not eliminate the infestation if there remain large numbers of eggs and
larvae that are unaffected by the nature of the eradication efforts. In insect
species adults typically lay many hundreds of eggs during their (usually short)
lives.

In this section we will develop these ideas further by examining a stage-struc-
tured model for a single species population in which only the immatures are
culled. Even if the adults are not culled, this strategy can result in eradication
as long as the adults have some intrinsic death rate. Following Simons and
Gourley [9], culling occurs only at certain discrete times tj. However, in this
section it is the immatures that are culled rather than the matures.

Let u(t, a) be the density of individuals of age a at time t. We will assume that

∂u
∂t

+ ∂u
∂a

= −μ(a)u −
∞∑

j=1

bj(a)u(t−j , a)δ(t − tj), 0 < a < τ (2.2)

where τ is the age at which an individual becomes a mature reproducing adult,
μ(a) is the natural death rate for immatures, bj(a) ∈ [0, 1] is the fraction of
individuals of age a that are removed at the cull at time tj and δ is the Dirac
delta function. The superscript “−” on the variable tj in u(t−j , a) denotes the
limit of u(t, a) as t approaches tj from below (in other words, the population
just prior to the cull at time tj). We shall frequently also need the right limit,
denoted using a superscript +, to refer to the situation immediately after a cull.

We shall assume that
u(t, 0) = b(um(t)) (2.3)

where b(·) is the birth function and um(t) is the total number of adults, given by

um(t) =
∞∫

τ

u(t, a) da. (2.4)
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Equation (2.3) states that the birth rate u(t, 0) is some function of the total
number of adults.

The solution of (2.2) will be continuous in time except for discontinuous
jumps at the particular times tj when culls occur. To see that bj(a) does indeed
have the interpretation of being the fraction of age a removed at time tj, inte-
grate (2.2) from time t−j to t+j to obtain

u
(
t+j , a

) = (
1 − bj(a)

)
u
(
t−j , a

)
. (2.5)

This result will be important later.
In this section we will assume that the adults are not subject to culling and

also that their intrinsic death rate is a constant, μm. Thus

∂u
∂t

+ ∂u
∂a

= −μmu, for a > τ (2.6)

where μm is some constant. Recall that um(t) is defined by (2.4). Differentiating
this expression and assuming that u(t, ∞) = 0 gives

dum(t)
dt

=
∞∫

τ

(
−∂u

∂a
− μmu(t, a)

)
da = u(t, τ) − μmum(t) (2.7)

and thus the aim is to try to find u(t, τ) in terms of the function um. This is a
little tricky in that the culls do not have to be equally spaced in time, and so as
time progresses the issue is mainly one of keeping track of how many culls have
occurred in the previous τ units of time. We will develop the ideas as follows.
Fortunately, the intermediate steps can all be interpreted ecologically in terms
of probabilities and this aids the understanding.

Let us assume t > a (eventually we shall set a = τ ) and define

uξ (a) = u(ξ + a, a).

Then

duξ

da
=

[
∂u
∂t

+ ∂u
∂a

]

t=ξ+a

=
⎡

⎣−μ(a)u(t, a) −
∞∑

j=1

bj(a)u(t−j , a)δ(t − tj)

⎤

⎦

t=ξ+a

so that
duξ

da
= −μ(a)uξ (a) −

∞∑

j=1

bj(a)u(t−j , a)δ(a + ξ − tj). (2.8)



314 S. A. Gourley et al.

We will deal with the culls shortly, but let us first understand something about
the evolution of the immatures in the period between the culls at times ti−1 and
ti. We will integrate (2.8) for a between t+i−1 − ξ and t−i − ξ [an interval of values
of a throughout which the summation term in (2.8) plays no role]. This gives, in
terms of the original variable u,

u(t−i , t−i − ξ) = exp

⎛

⎜⎜⎝−
t−i −ξ∫

t+i−1−ξ

μ(s) ds

⎞

⎟⎟⎠ u
(
t+i−1, t+i−1 − ξ

)
(2.9)

or, letting ξ = ti − a and dropping superscripts on the ti where they are not
needed,

u(t−i , a) = exp

⎛

⎜⎝−
a∫

a−(ti−ti−1)

μ(s) ds

⎞

⎟⎠ u
(
t+i−1, a − (ti − ti−1)

)
. (2.10)

Using (2.5), this becomes

u(t−i , a) = exp

⎛

⎜⎝−
a∫

a−(ti−ti−1)

μ(s) ds

⎞

⎟⎠
(
1−bi−1(a−(ti−ti−1))

)
u
(
t−i−1, a−(ti−ti−1)

)

(2.11)
which deals with the cull at time ti−1 and can be understood as follows. The term
in the left-hand side is those of age a at time t−i , so that the cull at time ti is immi-
nent. The individuals alive at this time have survived the previous cull which
occurred at time ti−1 (at which time these individuals were of age a − (ti − ti−1))
and have also not died naturally. The probability of an age a − (ti − ti−1) indi-
vidual surviving the cull at time ti−1 is precisely 1 − bi−1(a − (ti − ti−1)), and
the probability of surviving naturally (i.e. not dying a natural death) from age
a − (ti − ti−1) to age a is

exp

⎛

⎜⎝−
a∫

a−(ti−ti−1)

μ(s) ds

⎞

⎟⎠

and the expression in (2.11) arises from multiplying these probabilities.
One can replace i by i − 1 and a by a − (ti − ti−1) in (2.11) to give

u(t−i , a) = exp

⎛

⎜⎝−
a∫

a−(ti−ti−2)

μ(s) ds

⎞

⎟⎠ × (
1 − bi−1(a − (ti − ti−1))

)

×(
1 − bi−2(a − (ti − ti−2))

)
u
(
t−i−2, a − (ti − ti−2)

)
(2.12)
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which can be interpreted in a similar probabilistic way. This pattern can of
course be continued to include even earlier culls. There will be only a finite
number of them over the interval of time of length τ during which an individual
is immature, but the actual culls involved and the number of them (they do not
have to be equally spaced in time) will vary from cohort to cohort depending
on the time of birth.

What is really needed is an expression for u(t, τ) (with t not necessarily one of
the ti). Such an expression is expected essentially to be the birth rate τ units of
time ago, which is u(t − τ , 0) or b(um(t − τ)), corrected for egg to adult survival.
The expressions (2.11) and (2.12) suggest how this correction will be achieved,
the main changes being adaptation of the arguments of the bi, and appropriate
notation to keep track of how the relevant culls change as time progresses. At
a general time t, only culls that occurred between times t − τ and t are relevant.

For a general time t, we shall let

i(t) = max{i : ti ≤ t} (2.13)

and
k(t) = min{i : ti > t − τ }, (2.14)

then, for a given t, relevant culls are those at the times tj with j between k(t)
and i(t) inclusive. The expression for u(t, τ) is then the following, in which the
exponential term is the probability of not dying a natural death during the
maturation phase from age 0 to τ :

u(t, τ) = u(t − τ , 0) exp

⎛

⎝−
τ∫

0

μ(s) ds

⎞

⎠
i(t)∏

j=k(t)

(
1 − bj(τ − (t − tj))

)

= b(um(t − τ)) exp

⎛

⎝−
τ∫

0

μ(s) ds

⎞

⎠
i(t)∏

j=k(t)

(
1−bj(τ −(t − tj))

)
. (2.15)

Thus, the delay differential equation (2.7) for the total number of adults um(t)
becomes

dum(t)
dt

= S(t) exp

⎛

⎝−
τ∫

0

μ(s) ds

⎞

⎠ b(um(t − τ)) − μmum(t) (2.16)

where

S(t) =
i(t)∏

j=k(t)

(
1 − bj(τ − (t − tj))

)
(2.17)

with i(t) and k(t) given by (2.13) and (2.14). All information relating to culling is
embodied in the function S(t) and features nowhere else. Note that 0 ≤ S(t) ≤ 1
for all t > τ , so that lim supt→∞ S(t) exists. The total number of adults evolves
according to a nonautonomous delay differential equation (2.16).
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3 The West Nile virus

3.1 Culling of immature mosquitoes

In this section we shall formulate a mathematical model for the situation when
only immature (larval) mosquitoes are culled. By solving the von Foerster equa-
tion for the larval mosquitoes, we can formulate a model involving only three
state variables: MS(t), MI(t) and BI(t) which denote respectively the total num-
bers of susceptible adult mosquitoes, infected adult mosquitoes and infected
birds.

Larval mosquitoes l(t, a) are assumed not to interact with the adults or the
birds. The larval stage (considered as the only stage prior to adulthood) is
of duration τ . Larvae are culled and so, following the modelling described in
Sect. 2, their evolution equation is taken to be of the form

∂l
∂t

+ ∂l
∂a

= −μ(a)l −
∞∑

j=1

bj(a)l(t−j , a)δ(t − tj), 0 < a < τ , (3.1)

where the tj are the times at which culls happen. Both susceptible and infected
mosquitoes may lay eggs but the virus is not passed on to offspring. The birth
rate l(t, 0) of mosquitoes is therefore assumed to be a function of the total
number of adult mosquitoes MS(t) + MI(t), so that

l(t, 0) = b(MS(t) + MI(t)) (3.2)

where b(·) is the birth rate function. Susceptible adult mosquitoes are assumed
to satisfy an equation of the form

dMS

dt
= l(t, τ) − γ BIMS − dSMS

where l(t, τ) is the rate at which mosquitoes becomes mature. In this equation,
γ BIMS is the rate at which susceptible mosquitoes becomes infected mosqui-
toes (a mosquito becomes infected when it bites an infected bird) and dSMS is
the death rate for susceptible mosquitoes. By analogy with the earlier analysis
for a single species,

l(t, τ) = l(t − τ , 0) exp

⎛

⎝−
τ∫

0

μ(s) ds

⎞

⎠ S(t)

= b(MS(t − τ) + MI(t − τ)) exp

⎛

⎝−
τ∫

0

μ(s) ds

⎞

⎠ S(t)
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where S(t) is again defined by (2.17). Thus, the equation for the susceptible
mosquitoes is

dMS

dt
= S(t) exp

⎛

⎝−
τ∫

0

μ(s) ds

⎞

⎠ b(MS(t−τ)+MI(t−τ))−γ BIMS−dSMS, (3.3)

which we now couple with the following equations for the infected mosquitoes
and the infected birds respectively:

dMI

dt
= γ BIMS − dIMI , (3.4)

dBI

dt
= β(NB − BI)MI − dBBI . (3.5)

The meaning of the terms in (3.4) is obvious. As regards (3.5), we are assuming
that the total number of birds is some constant NB > 0, so that NB − BI is the
number of susceptible birds. Thus β(NB − BI)MI is the rate at which suscepti-
ble birds become infected birds, assumed to be given by the law of mass action.
A bird becomes infected when it is bitten by an infected mosquito.

Our aim is to understand something about the dynamics of the nonauton-
omous system consisting of Eqs. (3.3), (3.4) and (3.5) for t > 0, where S(t) is
given by (2.17). The system is solved subject to the following initial data:

MS(θ) = M0
S(θ) ≥ 0, θ ∈ [−τ , 0],

MI(θ) = M0
I (θ) ≥ 0, θ ∈ [−τ , 0],

BI(0) = B0
I ∈ [0, NB]

(3.6)

where M0
S(θ), M0

I (θ) and B0
I are prescribed. Note that all the information about

the culling of larval mosquitoes is contained within the function S(t), and so,
unlike in Sect. 3.2 of this paper where we consider culling of adult mosquitoes,
the system is not supplemented by impulse conditions at the times tj. We will
first prove the following proposition on non-negativity of solutions.

Proposition 3.1 Let the birth function b(·) satisfy b(0) = 0 and b(M) > 0 for all
M > 0. Then the solution of system (3.3), (3.4) and (3.5) for t > 0, subject to
(3.6), satisfies MS(t) ≥ 0, MI(t) ≥ 0, BI(t) ∈ [0, NB] for all t > 0.

Proof We first prove that BI(t) never exceeds NB. If this is false then there
exists a first time t1 (which could in principle be zero) with BI(t1) = NB and
B′

I(t1) ≥ 0. Evaluation of (3.5) at time t1 immediately gives a contradiction.
Next we shall prove that MS(t) ≥ 0 for all t > 0. This is by the method

of steps, and the result will first be established for t ∈ (0, τ ]. On this interval,
from (3.3),
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dMS

dt
≥ −γ BIMS − dSMS.

Hence

MS(t) ≥ M0
S(0) exp

⎛

⎝−
t∫

0

(γ BI(ξ) + dS) dξ

⎞

⎠

and so MS(t) ≥ 0 for all t ∈ (0, τ ]. Repeating this analysis shows that MS(t) ≥ 0
for all t ∈ (τ , 2τ ] and the argument can be continued to include all positive
times.

It remains to prove that MI(t) ≥ 0 and BI(t) ≥ 0 for t > 0. But, having shown
that BI(t) ≤ NB, the variable (MI(t), BI(t)) can be interpreted as satisfying a
system of the form (3.4), (3.5) in which MS(t) is now a prescribed non-negative
function. The resulting system generates a monotone dynamical system and
the results by Smith [10, p. 32] immediately assure us that (MI(t), BI(t)) cannot
leave the closed first quadrant of the (MI , BI) plane. The proof is complete.

We will now prove the following theorem which provides conditions suffi-
cient for the eradication of the disease.

Theorem 3.2 Consider system (3.3), (3.4) and (3.5) for t > 0, subject to (3.6).
Suppose the birth function b(·) satisfies b(0) = 0 and b(M) > 0 for all M > 0,
and let S(t) be defined by (2.17). Let S∞ = lim supt→∞ S(t). Assume that either

min(dI , dS) > S∞b′
max exp

⎛

⎝−
τ∫

0

μ(s) ds

⎞

⎠ (3.7)

or

dIdB >
γβNBbmaxS∞ exp

(− ∫ τ

0 μ(s) ds
)

min(dI , dS)
(3.8)

where bmax = supm≥0 b(m) and b′
max = supm≥0 b′(m). Then BI(t) → 0 and

MI(t) → 0 as t → ∞.

Proof Denote the total number of adult mosquitoes by MT(t) = MS(t)+MI(t).
We will establish that MI(t) → 0 under condition (3.7) by showing that, under
this condition, MT(t) → 0. By adding (3.3) and (3.4) we see that

dMT

dt
= S(t) exp

⎛

⎝−
τ∫

0

μ(s) ds

⎞

⎠ b(MT(t − τ)) − dIMI − dSMS

≤ S(t) exp

⎛

⎝−
τ∫

0

μ(s) ds

⎞

⎠ b(MT(t − τ)) − MT(t)min(dI , dS). (3.9)
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Let ε > 0 be sufficiently small that

min(dI , dS) > (S∞ + ε)b′
max exp

⎛

⎝−
τ∫

0

μ(s) ds

⎞

⎠ (3.10)

and choose T1 > 0 sufficiently large that, when t ≥ T1, S(t) ≤ S∞ + ε. Apply-
ing this bound in (3.9), and also the mean value theorem to find a bound on
b(MT(t − τ)), we have, for t ≥ T1,

dMT

dt
≤ (S∞ + ε) exp

⎛

⎝−
τ∫

0

μ(s) ds

⎞

⎠ b′
maxMT(t − τ) − MT(t)min(dI , dS)

which is a linear delay differential inequality from which we can infer from well
known results (see [5]) that, by virtue of (3.10), MT(t) → 0 as t → ∞. Hence
also MI(t) → 0, and this knowledge enables us to conclude from (3.5) that
BI(t) → 0.

Next we prove the conclusion of the theorem under hypothesis (3.8). Let
ε > 0 be arbitrary. There exists T2 > 0 such that, for all t ≥ T2, S(t) ≤ S∞ + ε.
Then, for t ≥ T2,

dMT

dt
≤ (S∞ + ε) exp

⎛

⎝−
τ∫

0

μ(s) ds

⎞

⎠ b(MT(t − τ)) − dIMI − dSMS

≤ (S∞ + ε) exp

⎛

⎝−
τ∫

0

μ(s) ds

⎞

⎠ bmax − MT(t)min(dI , dS).

Hence

lim sup
t→∞

MT(t) ≤ (S∞ + ε) exp
(− ∫ τ

0 μ(s) ds
)

bmax

min(dI , dS)
.

This holds for all ε > 0. Also MS(t) ≤ MT(t). Hence

lim sup
t→∞

MS(t) ≤ S∞ exp
(− ∫ τ

0 μ(s) ds
)

bmax

min(dI , dS)
.

Let ε > 0 be sufficiently small that

dIdB − γβNB

(
bmaxS∞ exp

(− ∫ τ

0 μ(s) ds
)

min(dI , dS)
+ ε

)
> 0 (3.11)
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which is possible by (3.8). There exists T3 > 0 such that, for all t ≥ T3,

MS(t) ≤ S∞ exp
(− ∫ τ

0 μ(s) ds
)

bmax

min(dI , dS)
+ ε.

Then, for t ≥ T3,

dMI

dt
≤ γ BI

(
S∞ exp

(− ∫ τ

0 μ(s) ds
)

bmax

min(dI , dS)
+ ε

)
− dIMI ,

dBI

dt
≤ βNBMI − dBBI .

By the theory of monotone systems [10], we conclude from this that MI(t) ≤
M̃I(t) and BI(t) ≤ B̃I(t) where M̃I and B̃I satisfy

dM̃I

dt
= γ B̃I

(
S∞ exp

(− ∫ τ

0 μ(s) ds
)

bmax

min(dI , dS)
+ ε

)
− dIM̃I ,

dB̃I

dt
= βNBM̃I − dBB̃I

subject to M̃I(0) = MI(0), B̃I(0) = BI(0). This linear system has solutions with
temporal dependence exp(λt) where λ satisfies

λ2 + (dI + dB)λ + dIdB − γβNB

(
bmaxS∞ exp

(− ∫ τ

0 μ(s) ds
)

min(dI , dS)
+ ε

)
= 0.

In view of (3.11), the roots of this quadratic both have negative real parts. Hence
MI(t) and BI(t) approach zero as t → ∞. The proof of the theorem is complete.

3.2 Culling of mature mosquitoes

As in the previous subsection we assume that the total number of birds in an
area is some constant NB. If birds are divided into two classes: uninfected BS
and infected BI , then BS = NB − BI . Then the change rate of infected birds is
increased through infection of uninfected birds when they are bitten by infected
mosquitoes and reduced by the natural death and disease-induced death (at a
rate dB). Thus,

dBI

dt
= β(NB − BI)MI − dBBI , (3.12)

where β is the contact rate between infected mosquitoes and uninfected birds (β
equals the multiplication of the biting rate of mosquitoes and the transmission
possibility between infected mosquitoes and uninfected birds).
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As far as mosquitoes are concerned, in this section we assume that only the
adults are subject to culling. Adult mosquitoes are divided into two classes:
uninfected MS and infected MI . Since it would be difficult in practice to cull
only infected ones, culling will be applied equally to both classes. The total
number of adult mosquitoes will be denoted by MT = MS + MI . Culling occurs
only at the particular prescribed times tj, j = 1, 2, 3, . . ., satisfying the assump-
tions below. At the cull which occurs at time tj a proportion cj of the adult
mosquito population is culled, causing a sharp decrease in the population and
consequently a discontinuity in the evolution of MS(t) and MI(t) at each time
tj. The following assumption is made:

0 < t1 < t2 < · · · < tj < · · · with tj → ∞ as j → ∞,

inf j≥1 δj > 0, where δj = tj − tj−1,

cj ∈ (0, 1] for each j = 1, 2, 3, . . ..

(3.13)

Note that no cj is allowed to be zero (we can of course eliminate any “null
culls” by relabelling the sequence tj to include only “genuine” culls with cj > 0,
and we are assuming that this has been done). The evolution of BI(t) (infected
birds) will remain continuous in time, but its derivative will have discontinuities
at the times tj.

Let l(t, a) be the density of larval mosquitoes at time t of age a, and assume
that a mosquito becomes mature on reaching the age τ . In this subsection
immature mosquitoes are not subject to culling but only to natural death. Thus

∂l
∂t

+ ∂l
∂a

= −dLl, t > 0, 0 < a < τ (3.14)

with dL > 0 constant. The birth rate l(t, 0) is a function of the total number of
adult mosquitoes, so that

l(t, 0) = b(MT(t)). (3.15)

We assume there is no vertical transmission between mosquitoes, so the unin-
fected mosquitoes population is increased via the maturation rate l(t, τ). It is
diminished by infection, which may be acquired when uninfected mosquitoes
feed from the blood of infected birds, by natural death at a rate dM and by
culling at the times tj, j = 1, 2, 3, . . .. Thus

dMS

dt
= l(t, τ) − γ MSBI − dMMS −

∞∑

j=1

cjMS(t−j )δ(t − tj), (3.16)

where γ is the contact rate between uninfected mosquitoes and infected birds (γ
equals the multiplication of the biting rate of mosquitoes and the transmission
possibility between uninfected mosquitoes and infected birds).

The infected mosquito population is generated via the infection of uninfected
mosquitoes by infected birds and diminished by natural death at a rate dM and
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culling at the times tj, j = 1, 2, 3, . . .. Thus,

dMI

dt
= γ MSBI − dMMI −

∞∑

j=1

cjMI(t
−
j )δ(t − tj). (3.17)

It is assumed that the uninfected mosquitoes and infected mosquitoes are
equally mixed, so that at each cull the proportions of each class removed are
the same.

From (3.14) and (3.15),

l(t, τ) = b(MT(t − τ))e−dLτ .

Our model for culling of adult mosquitoes but not larvae thus takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dBI

dt
= β(NB − BI)MI − dBBI ,

dMS

dt
= b(MT(t − τ))e−dLτ − γ MSBI − dMMS −

∞∑

j=1

cjMS(t−j )δ(t − tj),

dMI

dt
= γ MSBI − dMMI −

∞∑

j=1

cjMI(t
−
j )δ(t − tj)

(3.18)

to be solved for t > 0 subject to initial conditions of the form (3.6). By inte-
grating the second and third equations of (3.18) from t−j to t+j , we obtain the
following alternative version of model (3.18):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dBI

dt
= β(NB − BI)MI − dBBI ,

dMS

dt
= b(MT(t − τ))e−dLτ − γ MSBI − dMMS, t �= tj,

MS(t+j ) = (1 − cj)MS(t−j ),

dMI

dt
= γ MSBI − dMMI , t �= tj,

MI(t
+
j ) = (1 − cj)MI(t

−
j )

(3.19)

again subject to (3.6). Next, we establish non-negativity of solutions.

Proposition 3.3 Assume (3.13) holds, and let the birth function b(·) satisfy b(0) =
0 and b(M) > 0 for all M > 0. Then the solution of system (3.19) for t > 0, subject
to (3.6), satisfies MS(t) ≥ 0, MI(t) ≥ 0, BI(t) ∈ [0, NB] for all t > 0.

Proof For any time t ∈ (0, τ ] other than one of the ti, we have

dMS

dt
≥ −γ MSBI − dMMS
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and this means that, provided MS(t) is non-negative immediately after a cull,
we are assured that MS(t) remains non-negative until the next cull. We then
only have to observe that, since cj ∈ (0, 1], the instantaneous effect of a cull is
that MS(t) changes from a non-negative value to a non-negative value. Thus,
MS(t) ≥ 0 for all t ∈ (0, τ ]. The method of steps is then applied to conclude
MS(t) ≥ 0 for all t > 0.

Proving that BI(t) ≤ NB is straightforward. It remains to show MI(t) ≥ 0
and BI(t) ≥ 0. Whenever t is in the open interval between two successive culls
we observe, similarly to the proof of Proposition 3.1, that (MI(t), BI(t)) can be
interpreted as satisfying equations which form a monotone system. Therefore,
if (MI(t), BI(t)) is in the closed first quadrant in the (MI , BI) plane immediately
after a cull, it will still be there when the next cull is imminent. We then only
have to observe that, at a cull, (MI(t), BI(t)) is repositioned from one point to
another in the closed first quadrant of the (MI , BI) plane. The proof is complete.

In the remainder of the present subsection the following assumptions will be
made regarding the birth function:

b(0) = 0, b(·) is strictly monotonically increasing, there exists M∗
T > 0 such

that e−dLτ b(M) > dMM when M < M∗
T and e−dLτ b(M) < dMM when

M > M∗
T .

⎫
⎬

⎭

(3.20)

From system (3.19), note that the total number MT(t) of adult mosquitoes obeys

dMT

dt
= b(MT(t − τ))e−dLτ − dMMT(t),

MT(t+j ) = (1 − cj)MT(t−j ).
(3.21)

In the absence of culling, the quantity M∗
T > 0 referred to in (3.20) is an equi-

librium of (3.21) and MT(t) → M∗
T as t → ∞ (see [5]). Due to the assumptions

in (3.20) which imply that the differential equation in (3.21) has the properties
of a monotone system, solutions of (3.21) with culling are bounded above by the
corresponding solutions without culling. It is therefore easy to appreciate that,
with culling, there exists a finite time beyond which MT(t) ≤ M∗

T , and hence also
MS(t) ≤ M∗

T . Our next aim is to generate from this an improved upper bound
for MS(t) which involves the cj and an upper bound δsup on the amount of time
that elapses between two successive culls. This will be important for the later
analysis because, as we would anticipate, such quantities will play an important
role in the design of culling strategies that result in disease eradication.

Proposition 3.4 Assume (3.13) and (3.20) hold, and let

cinf = inf
j≥1

cj, δsup = sup
j≥1

(tj+1 − tj)
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and assume cinf > 0 and δsup < ∞. Then solutions MT(t) of (3.21) satisfy

MT(t) ≤ M∗∗ := M∗
T(1 − cinfe

−dMδsup) (3.22)

for all t sufficiently large. Consequently, MS(t) ≤ M∗∗ for t sufficiently large.

Proof As explained above, there exists some finite time T beyond which
MT(t) ≤ M∗

T . For t ≥ T + τ ,

dMT

dt
≤ b(M∗

T)e−dLτ − dMMT(t).

By integrating this differential inequality over the interval (tj, t) with t ∈ (tj, tj+1],
assuming j is large enough that tj ≥ T + τ , we obtain that

MT(t) ≤ e−dM(t−tj)MT(t+j ) + b(M∗
T)e−dLτ

dM

(
1 − e−dM(t−tj)

)

for t ∈ (tj, tj+1]. However, for j sufficiently large,

MT(t+j ) = (1 − cj)MT(t−j ) ≤ (1 − cj)M∗
T

and, from (3.20), e−dLτ b(M∗
T) = dMM∗

T . Hence

MT(t) ≤ M∗
T

(
1 − cje−dM(t−tj)

)
for t ∈ (tj, tj+1]

≤ M∗
T

(
1 − cje−dM(tj+1−tj)

)

giving

MT(t) ≤ M∗
T(1 − cinfe

−dMδsup) for t ∈ (tj, tj+1].

This bound is independent of j and holds for all j sufficiently large. The proof of
Proposition 3.4 is complete.

Our next theorems give conditions sufficient for disease eradication.

Theorem 3.5 Suppose (3.13) and (3.20) hold, and that

dBdM > γβNBM∗∗ (3.23)

where M∗∗ is defined by (3.22). Then BI(t) → 0 and MI(t) → 0 as t → ∞, where
BI(t) and MI(t) satisfy (3.19) subject to (3.6).
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Proof By Proposition 3.4 we know that, for sufficiently large times,

dBI

dt
≤ βNBMI − dBBI ,

dMI

dt
≤ γ M∗∗BI − dMMI , t �= tj,

MI(t
+
j ) = (1 − cj)MI(t

−
j ).

(3.24)

The differential inequalities in (3.24) have the structure of a monotone system.
Solutions with culling will be bounded above by the corresponding solutions
without. Hence, we can say that BI(t) ≤ B̃I(t) and MI(t) ≤ M̃I(t), where B̃I(t)
and M̃I(t) satisfy the following linear problem without impulses:

dB̃I

dt
= βNBM̃I − dBB̃I ,

dM̃I

dt
= γ M∗∗B̃I − dMM̃I .

(3.25)

This being a linear system it is trivial to show that, under condition (3.23), B̃I(t)
and M̃I(t) tend to zero, and hence so do BI(t) and MI(t), as t → ∞. The proof
is complete.

Remarks Condition (3.23) makes sense, in that it predicts disease eradication
when death rates are high, contact rates are low, the total number of birds is
low, and the quantity M∗∗ is low. Recall that this latter quantity, being defined
by (3.22), involves information about the culling and is low when large frac-
tions are removed at each cull and the culls are frequent. Thus, even though
the above proof apparently does not utilize information about the culling, such
information is present in the analysis via M∗∗.

If condition (3.23) is violated then solutions of (3.25) will not decay to zero.
Appending the culling condition to (3.25) may of course change things. This
makes things algebraically more complicated but yields additional insight.

Theorem 3.6 Suppose (3.13) and (3.20) hold, that δsup = supj≥1(tj+1 − tj) < ∞
and that cinf > 0 where cinf = inf j≥1 cj. Suppose also that dBdM ≤ γβNBM∗∗
and

sup
j≥1

[
(λ2(1 − cj) − λ1)e

λ1δj + (λ2 + (cj − 1)λ1)e
λ2δj + cjdM(eλ2δj − eλ1δj)

− (λ2 − λ1)(1 − cj)e−(dB+dM)δj
]

< λ2 − λ1 (3.26)

where λ1 < 0 and λ2 ≥ 0 satisfy

λ2 + (dB + dM)λ + (
dBdM − γβNBM∗∗) = 0. (3.27)

Then BI(t) → 0 and MI(t) → 0 as t → ∞, where BI(t) and MI(t) satisfy (3.19)
subject to (3.6).
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Proof The proof begins in much the same way as that of Theorem 3.5, but this
time we retain the culling conditions in the system for B̃I(t) and M̃I(t). In other
words, we study the system

dB̃I

dt
= βNBM̃I − dBB̃I ,

dM̃I

dt
= γ M∗∗B̃I − dMM̃I , t �= tj (3.28)

M̃I(t
+
j ) = (1 − cj)M̃I(t

−
j ).

On each interval t ∈ (tj, tj+1) the solution of (3.28) will be of the form

M̃I(t) = Ajeλ1(t−tj) + Bjeλ2(t−tj) (3.29)

B̃I(t) = 1
γ M∗∗

(
(λ1 + dM)Ajeλ1(t−tj) + (λ2 + dM)Bjeλ2(t−tj)

)
(3.30)

where λ1 and λ2 satisfy (3.27). Under the hypotheses these numbers λi are
either real and of opposite sign, or one is zero and the other negative.

Solving (3.28) therefore involves patching together the solutions for each
interval (tj, tj+1), i.e. expressions (3.29) and (3.30) above, using the culling con-
dition on M̃I at each tj and the fact that B̃I is continuous for all t. This procedure
yields (

Aj
Bj

)
= Wj

(
Aj−1
Bj−1

)
(3.31)

where the matrix Wj is given by

Wj = 1
λ2 − λ1

×
(
((1−cj)(λ2+dM)−(λ1+dM))eλ1δj −cj(λ2 + dM)eλ2δj

cj(λ1 + dM)eλ1δj (λ2+dM−(1−cj)(λ1+dM))eλ2δj

)

with

δj = tj − tj−1.

Since supj≥1(tj+1 − tj) < ∞ the exponential terms in (3.29) and (3.30) cannot
grow as time proceeds. Therefore to complete the proof of the theorem it is
sufficient to show that Aj and Bj tend to zero as j → ∞. A sufficient condition
for this is that there exist j0 ∈ N and a real number ρ∗ ∈ (0, 1) such that

ρ(Wj) ≤ ρ∗ < 1 for all j ≥ j0 (3.32)
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where ρ(Wj) is the spectral radius of Wj. The eigenvalues μj of Wj satisfy

μ2
j −

(
(λ2 − λ1 − cj(λ2 + dM))eλ1δj + (λ2 − λ1 + cj(λ1 + dM))eλ2δj

λ2 − λ1

)
μj

+ (1 − cj)e−(dB+dM)δj = 0

where we have used that λ1 + λ2 = −(dB + dM).
The Jury conditions state that the eigenvalues μj of Wj will lie strictly in the

unit circle for a particular j if

|trace Wj| < 1 + det Wj < 2. (3.33)

However, merely lying strictly in the unit circle for each j is not enough, since
we must have existence of the number ρ∗ < 1 in (3.32). It is easy to see that
we can achieve this by requiring, instead of (3.33), the stronger condition that
there exist real numbers ρ1, ρ2 ∈ (0, 1) such that

det Wj ≤ ρ1 < 1 for each j (3.34)

and, since trace Wj can be shown to be non-negative,

trace Wj − det Wj ≤ ρ2 < 1 for each j. (3.35)

Condition (3.34) certainly holds, since

det Wj = (1 − cj)e−(dB+dM)δj ≤ (1 − cinf) < 1.

It is hypothesis (3.26) which guarantees (3.35), the quantity ρ2 being the left
hand side of (3.26) divided by λ2 − λ1. The proof is complete.

Remarks One has to address the question of whether the hypotheses of Theo-
rem 3.6 can be satisfied. The quantities involved can be worked out explicitly
and conveniently in the particular case when dBdM = γβNBM∗∗. In this case,
λ1 = −(dB + dM) and λ2 = 0, and condition (3.26) can after some algebra be
written in the alternative infimum form:

inf
j≥1

cj
(
1 − e−(dB+dM)δj

)
> 0

which holds automatically since cinf > 0 and the δj satisfy (3.13). Theorem 3.6
tells us that the disease is eradicated for any culling consistent with dBdM =
γβNBM∗∗, so that the theorem builds on Theorem 3.5.
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4 Simulations and discussion

In this section we present the results of some numerical simulations to compare
the effectiveness of larval culling versus adult culling. Larval culling is described
by system (3.3), (3.4) and (3.5), and let us recall that for larval culling all infor-
mation about the culling is embodied in the function S(t) defined by (2.17).
Culling of adults is described by system (3.19).

In the simulations we take the birth function of mosquitoes as

b(M) = bMe−aM (4.36)

which we feel to be an ecologically reasonable choice, being linear in M only
for small densities M, levelling off as a consequence of intraspecific competi-
tion working to reduce per capita fecundity, and then actually dropping at very
large densities M due to the available resources in these circumstances being
utilized by the adults only for their own physiological maintenance and not
reproduction.

Figures 1, 2, 3 and 4 are intended to compare larval culling with adult culling
in a variety of culling regimes. Each figure contains nine plots in all; these being
the variables MS(t), MI(t) and BI(t) in each of the situations of no culling, cull-
ing of adult mosquitoes and culling of larval mosquitoes. Where a simulation
is of a variable with adult mosquito culling, the simulation is of model (3.19)
with the cj value shown in the caption. Where larval culling is mentioned the
simulation is of system (3.3), (3.4) and (3.5) with the bj given in the caption. In
all simulations the culls are at equally spaced times, although we do examine
the effect of different spacings, i.e. different frequencies of culling. The interval
between two consecutive culls we shall denote as �t. The cull times are given
by tj = t0 + j�t, j = 1, 2, 3, . . . with t0 = 4. The initial conditions were taken to
be

MS(t) = 5000, MI(t) = 600, BI(t) = 100

for t ∈ [−τ , 0]. Table 1 gives the meanings and the values used for the various
parameters. Note that the parameter b is that which appears in our choice for
the birth rate function (4.36) and equals the maximum daily egg production per
adult mosquito.

From Figs. 1, 2, 3 and 4 and other simulations we made the following general
observations:

• Under the same culling rates (i.e. if bj = cj) and frequencies, adulticide
seems to be more effective than larvicide. However, for the reasons given
below, adulticide is more difficult in practice. Larvicide alone is perfectly
capable of eradicating the disease. If the culling frequency is such that a typ-
ical larval cohort is likely to experience only one cull, then a large fraction
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Fig. 1 Parameter values are
bj = 0.95, cj = 0.4, b = 10,
�t = 7 and other parameters
have the values shown in
Table 1
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Fig. 2 Parameter values are
bj = 0.5, cj = 0.65, b = 10,
�t = 7 and other parameters
have the values shown in
Table 1
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Fig. 3 Parameter values are
bj = 1, cj = 0.93, b = 10,
�t = 14 and other parameters
have the values shown in
Table 1
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Fig. 4 Parameter values are
bj = 0.7, cj = 0.7, b = 20,
�t = 50 and other parameters
have the values shown in
Table 1
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Table 1 Parameter values used for the simulations

Para. Meaning Value

dL Per capita death rate of mosquito larva (per day) 0.1
τ Maturation time of mosquito larva (days) 10
dM Per capita natural death rate of mosquito (per day) 0.05
dB Disease-induced death rate of infected bird (per day) 0.1
NB Total number of birds 500
β Contact rate between infected mosquito and susceptible birds 0.0144/NB
γ Contact rate between susceptible mosquito and infected birds 0.0792/NB
b Maximum per capita daily egg production rate variable
1/a Size of mosquito population at which egg laying is maximized 2,500
bj Fraction of larva removed at the cull at time tj Variable
cj Fraction of adult mosquito removed at the cull at time tj Variable
1/�t Culling frequency Variable

The data was obtained from [12,6,1]. Those that vary from simulation to simulation are shown in
the figure captions

of the larvae have to be killed at each cull. The fraction that have to be
destroyed drops quickly as the culling frequency increases.

• If we increase the culling frequency (i.e. decrease �t), the effect of both
larvicide and adulticide increases. If the culling frequency is high enough
the disease dies out.

• In the cases of both larvicide and adulticide, the disease dies out for suffi-
ciently large proportions bj and cj respectively provided, in the case of
larvicide, that the intervals between culls are such that a larval cohort can
never escape a cull.

• Very infrequent culling could be counterproductive, as illustrated by Fig. 4
in particular.

The purpose of Figs. 3 and 4 is to illustrate what happens if the interval
between successive culls is larger than the maturation delay τ = 10, a situation
that is not really covered by the analytical results. If this happens, certain larva
cohorts may completely escape a cull. Figure 3 shows that, as a consequence
of this, the disease can persist even when larva culling is maximized (bj = 1).
The disease can still be eradicated via adult culling but only with a very high
proportion cj = 0.93 removed each time. The number of susceptible mosqui-
toes oscillates wildly. Figure 4 illustrates that if the interval between culls is very
high indeed compared to the maturation delay (we have used �t = 50 days with
τ = 10 days), then the culling is not having any useful effect at all. Indeed, with
culling of adults at 50 day intervals, the number of infected mosquitoes appears
to oscillate with an even higher mean than the oscillation with no culling at all.
Note that the oscillation in Fig. 4 has entrained to the culling as it has the same
frequency. What appears to be happening is that each cull reduces the mosquito
numbers to a level that is actually better for them from an egg laying point of
view (recall the reasons we gave for the choice (4.36) for the birth function);
after the 10 day maturation a period of rapid exponential growth occurs, and
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just after the numbers start to drop off the next cull occurs. Infrequent culling is
thus less beneficial than nature’s own methods of regulating mosquito numbers.
Without the interruption of culling, the number of infected mosquitoes follows
a typical infection curve: rapid exponential growth followed by slower decay.
When culling takes place but is inadequate there will be multiple exponential
growths (occurring after each culling) during the entire course of the epidemic,
thus increasing the mean. Note also from Fig. 4 that larval culling at 50 day
intervals has almost no effect, even when 70% of the larvae are removed each
time.

Finally let us remark that condition (3.8), though only a sufficient condition
for disease eradication, seems close in at least some parameter regimes to being
a necessary condition as well. If we take b = 10, �t = 7 and other param-
eter values given in Table 1, then condition (3.8) predicts disease eradication
if bj > 0.9676 for each j. Condition (3.8) is a sufficient condition. Trial and
error numerical simulation indicates that a necessary and sufficient condition
for eradication is approximately bj > 0.949 so that the critical bj is close to
the analytical estimate of 0.9676. Figure 1 gives the results when bj = 0.95,
showing that the disease slowly disappears in this case. This further emphasizes
our point that if the disease is to be eradicated via larval culling only, then
very large fractions of larvae have to be destroyed at each cull if we cull at a
frequency of once every 7 days (�t = 7). We chose this frequency to ensure
that every larval cohort (we have taken the larval stage as lasting 10 days) is
subject to at least one cull with some cohorts experiencing two (the function
S(t) defined by (2.17) takes care of this automatically). However, one could
of course increase the culling frequency. The function S(t), and therefore the
number S∞ in (3.8), goes down quickly as the culling becomes more frequent,
leading to vastly less stringent conditions on the bj.

In fact, effective mosquito control programs usually emphasize larval con-
trol. One knows where to look for mosquito breeding activity (a pool cover,
ornamental pool, bird bath, gutter or even an old tire is all they need). Larvi-
cides can provide up to a month of control (adulticides only a few hours) and
larvicides can be applied in such a way that there is less human exposure. In
WNv endemic areas of the US the use of mosquito adulticides is in fact usually
a measure of last resort because of health risks associated from exposure to
the insecticide, which is released into the atmosphere in the form of very fine
droplets. People need to be advised in advance and to be given precautions
such as remaining indoors during spraying and to take other precautions. To
justify the use of adulticides public health officials have to have reached the
view that the risks from WNv are higher than those associated with exposure to
the insecticide, and they need to inform the public and advise on precautions.
For these reasons it could be difficult in practice to do it as frequently as in our
simulations.
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