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Abstract. During flu season, respiratory infections can cause non-specific
influenza-like-illnesses (ILIs) in up to one-half of the general population. If a
future SARS outbreak were to coincide with flu season, it would become excep-
tionally difficult to distinguish SARS rapidly and accurately from other ILIs,
given the non-specific clinical presentation of SARS and the current lack of a
widely available, rapid, diagnostic test. We construct a deterministic compart-
mental model to examine the potential impact of preemptive mass influenza
vaccination on SARS containment during a hypothetical SARS outbreak coin-
ciding with a peak flu season. Our model was developed based upon the events
of the 2003 SARS outbreak in Toronto, Canada. The relationship of different
vaccination rates for influenza and the corresponding required quarantine rates
for individuals who are exposed to SARS was analyzed and simulated under
different assumptions. The study revealed that a campaign of mass influenza
vaccination prior to the onset of flu season could aid the containment of a
future SARS outbreak by decreasing the total number of persons with ILIs
presenting to the health-care system, and consequently decreasing nosocomial
transmission of SARS in persons under investigation for the disease.
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1. Introduction. When a previously unrecognized infectious disease like SARS
emerges, initial control and containment options are often hindered by limited in-
formation about the disease’s clinical presentation and the absence of a diagnostic
test to detect the new pathogen rapidly and accurately. Moreover, the development
of a vaccine to prevent disease can take years before becoming available in clini-
cal trials. Thus, early outbreak prevention and control measures typically include
developing a case definition for the disease, tracing suspected cases and contacts,
isolating persons with compatible symptoms, and quarantining potential contacts.
However, if the new disease has a very non-specific clinical presentation, developing
an accurate case definition can be problematic [1], thereby significantly compromis-
ing downstream public health efforts to identify and control the disease.

As observed during the 2003 SARS outbreak in Toronto, health-care providers
were unable to definitively distinguish SARS from other common influenza-like-
illnesses (ILIs) by excluding infection with the SARS-associated coronavirus through
diagnostic testing. This inability led to the mass isolation and quarantine of thou-
sands of individuals, a process which significantly contributed to public anxiety,
had damaging economic consequences, and proved very inefficient in controlling
the spread of the disease. An alternate control strategy that was frequently uti-
lized was to confirm the presence of another likely pathogen, such as the influenza
virus, as the cause of a particular illness and thus indirectly rule out infection with
SARS. Thus, early control efforts can be directed at the new disease itself, or, in
some circumstances, towards other diseases with which the new disease might be
confused.

This work was inspired by two previous studies: an analysis identifying the most
effective and cost-effective strategies to contain a hypothetical outbreak of SARS
in New York City during peak respiratory infection season [2]; and a deterministic
model focusing on nosocomial transmission of SARS in health-care institutions in
Toronto [3]. We should mention here that nosocomial transmission of SARS has
been modeled and investigated by others [4, 5, 6, 7, 8, 9, 10, 11].

Herein we examine the potential role of targeting influenza infection as an indi-
rect means to control the transmission of SARS during peak flu season. Specifically,
we explore the impact of mass influenza vaccination with the trivalent vaccine prior
to the onset of flu season. By significantly reducing the number of ILIs circulating
in the general population, fewer persons with ILIs would require medical attention
in high risk settings for SARS, thereby minimizing the possibility of ongoing noso-
comial transmission. For our analysis, we developed a deterministic compartmental
model focusing on the management of persons with non-specific ILIs (a majority of
whom would have illnesses other than SARS, such as influenza) who are potentially
at risk of developing SARS during their investigation and workup in the health-
care setting. Thus, in our model an important parameter is the total number of
individuals with ILIs who subsequently seek medical attention in the outpatient or
inpatient health-care setting.

2. Setting up the model. A deterministic compartmental model, a system of
ordinary differential equations, is proposed to describe the dynamics at work that
resulted in rapid epidemic growth during the period observed in Toronto. To address
the issue of nosocomial transmission, we partitioned the total population into two
groups: (1) the general public (GP) and (2) high risk individuals(HR) in health-
care settings. We define high risk individuals as patients with clinical symptoms
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Figure 1. Schematic diagram for the transmission of a specific
emerging infectious disease in a population divided into the com-
munity of the general public and the community of high risk indi-
viduals, with each community being further partitioned into com-
partments.

compatible with SARS and health-care workers working with such patients. In the
following, sub-indices g refers to the group of general public and h refers to the
(HR) community. Each group consists of susceptible(S), Exposed(E), Infective(I),
Quarantined Infective(Q)–infective individuals who are still under the separation
and restriction of movement before they are admitted into(or never admitted to) the
health-care setting, Cared Infective(U)–infective who are under the care of health-
care workers (these individuals are not considered to pose any risk to the general
public, but may infect others in HR), and Removed(R)–individuals who have been
either exposed or infective, or have died, and who are considered to no longer be
susceptible. The model describes the flow, depicted in Figure 1, obtained for the
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specific emerging infectious disease:




d
dtSg(t) = −agSg(t)

(
Ig(t) + Ih(t)

)
;

d
dtSh(t) = −ahSh(t)

(
Ig(t) + Ih(t)

)
− auSh(t)

(
Uh(t) + Ug(t)

)
;

d
dtEg(t) = agSg(t)

(
Ig(t) + Ih(t)

)
− qgbgEg(t)− (1− qg)bgEg(t);

d
dtEh(t) = ahSh(t)

(
Ig(t) + Ih(t)

)

+auSh(t)
(
Uh(t) + Ug(t)

)
− qhbhEh(t)− (1− qh)bhEh(t);

d
dtQg(t) = qgbgEg(t)− cgQg(t)− rgQg(t);

d
dtQh(t) = qhbhEh(t)− chQh(t)− rhQh(t);

d
dtIg(t) = (1− qg)bgEg(t)− cgIg(t)− rgIg(t);

d
dtIh(t) = (1− qh)bhEh(t)− chIh(t)− rhIh(t);

d
dtUg(t) = rg(Ig(t) + Qg(t))− εgUg(t);

d
dtUh(t) = rh(Ih(t) + Qh(t))− εhUh(t).

(1)

The time scale considered in the above model is assumed to be so short that changes
in the values of demographic parameters over time can be ignored, and that the
simple mass action law can be used here for the sake of simplicity.

The parameters involved are listed below:

ag, ah: the transmission coefficients of infectives for the general public and HR
respectively;

au: the transmission coefficient of cared infective for HR;
bg, bh: the transition coefficients of exposed individuals to the infective class;
cg, ch: the transition coefficients of infective individuals to the removed class;
rg, rh: the transition coefficients of infectives to the category of cared infectives;
εg, εh: the transition coefficients to the removed class. These terms measure the

effectiveness of the treatment;
qg, qh: the percentages of exposed general public and HR that have been quar-

antined, respectively.

Table 1 gives values of some parameters, identified mainly from the 2003 Toronto
SARS data, to be used for our simulation purpose.

In this model, we tie several control strategies to parameters such as the quar-
antine rate (q), and the ratio (α) of the number of initial HR susceptible over the
number of initial susceptible in the community of GP (α = Sh(0)

Sg(0) ) can be affected
by the different vaccination rates for influenza.

The daily cumulative number of reported probable cases X(t), the total cumula-
tive number of infected and cared infected individuals at time t, from February 23 to
May 14, 2003, in Toronto, are available through official reports or statistics in hospi-
tal settings (see Figure 2) [14, 15]. We developed our model to correspond to the two
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Table 1. Partial list of the parameters, from the available sources
[12, 13], for the 2003 SARS outbreak in Toronto.

bg 1/6 the median time from self-reported exposure to
bh 1/6 onset of symptoms was 6 days (3-10 days)
rg 1/3 the median time until these infective individuals were
rh 1/3 admitted to the hospitals was 3 days (2-5 days)
cg 0.003 SARS-induced mortality per day is 0.003
ch 0.003
εg 0.1 among patients who survived, the median hospital stay
εh 0.1 was 10 days (6-15 days)

Figure 2. The curve of the number of probable cases for the 2003
SARS outbreak in Toronto.

stages of the SARS outbreak in Toronto: stage I (February 23 through March 30,
2003) when no quarantine measures were implemented; stage II (March 31 through
May 14, 2003) when implementation of strict infection control precautions in in-
stitutional settings, isolation of cases and symptomatic contacts and quarantining
asymptomatic close contacts were enforced. We chose the data period February 23
through May 14 for reasons of expediency: it reflects what truly happened clinically
and in hospital settings during the first SARS outbreak in Toronto.

To simplify our estimation procedure, we discard the time dependence of each
parameter, thus considering the parameters as mean estimates of the variable pa-
rameters over the period considered. We use the least squares procedure to estimate
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the value of unknown parameters such as contact rates ag, ah and au in stage I and
stage II, respectively.

It should be emphasized that though our model parameters are identified from
the 2003 SARS outbreak in Toronto, the methods and techniques developed in
this work could be applied to future outbreaks of novel infectious diseases such as
pandemic influenza.

3. Qualitative analysis. Using the model, we calculated the basic control repro-
duction number R0 (the average number of secondary cases of infection generated
by a typical infectious individual in a population of susceptible individuals) under
the control measures implemented [9, 16, 17] and study how this number changes
when the control parameters vary. The total number of the cumulative probable
cases X(∞) during the whole course of the SARS epidemic was calculated and
expressed implicitly as a function of the control parameters α and q. The func-
tional relationship between vaccination rate against influenza and quarantine rate
for SARS was then analyzed, using the formula.

3.1. The basic control reproduction number: R0. Recall that α = Sh(0)
Sg(0) ,

Sg(0) + Sh(0) = S(0). Let

A = agεgSg + ahεgSh + aurgSh,
B = agεgSgqg + ahεgShqh,
C = (cg + rg)εg.

Using the standard method developed in [18], we obtain

R0 =
1

2C
[(A−B) +

√
(A−B)2 − 4agεgSgaurgSh(qh − qg)] (2)

for model (1), where we assume bg = bh, cg = ch, rg = rh, and εg = εh.
If we let qg = qh = q, then R0 can be simplified as

R0 =
[ aurg

(cg + rg)εg

α

1 + α
+

ah(1− q)
cg + rg

α

1 + α
+

ag(1− q)
cg + rg

1
1 + α

]
S(0). (3)

It is evident from the above formulae that strengthening hospital infection con-
trol measures (decreasing au) and enforcing quarantine measures (increasing q) can
render R0 < 1 if α is fixed. Reducing α can also decrease R0 significantly.

3.2. The best scenario. The model allows us to calculate and predict the number
of accumulative probable cases X(t), which includes the accumulative number of
cared infective, recovered individuals, and deaths.

We denote E∞
g =

∫∞
0

Eg(s)ds, and define Q∞g , I∞g , U∞
g , E∞

h , Q∞
h , I∞h , U∞

h simi-
larly. We also assume that

b = bg = bh, ε = εg = εh, r = rg = rh, c = cg = ch, q = qg = qh, η = cg +rg = ch+rh,

Qg(0) = Qh(0) = 0, I(0) = Ig(0)+Ih(0), U(0) = Ug(0)+Uh(0), E(0) = Eg(0)+Eh(0),

E∞ = E∞
g + E∞

h .
Therefore, if we consider X(∞) as a function of the two control parameters α and
q, we get

Xα,q(∞) = X(0) + I(0) + bE∞, (4)
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where E∞ is solved implicitly, using the following relation:

bE∞ = E(0) + Sg(0)(1− e−
ag
η I(0)e−

ag
η (1−q)bE∞)

+Sh(0)(1− e−
ah
η I(0)e−

au
εη rI(0)− au

ε U(0)e−
ah
η (1−q)bE∞e−

au
εη rbE∞).

(5)

Obviously, Xα,q(∞) is a very useful index for policy-makers to decide whether
massive quarantine is worthwhile. For example, from the above equation, we can
calculate the best scenario when perfect quarantine and hospital procedures can be
achieved (i.e., au = 0 and q = 1). This gives

Xbest
α,1 : = Xα,1(∞)

= X(0) + I(0) + E(0) + 1
1+αS(0)(1− e−

ag
η I(0))

+ α
1+αS(0)(1− e−

ah
η I(0)).

3.3. Functional relationship between vaccination rate against influenza
and quarantine rate (for SARS). During a hypothetical SARS outbreak in
flu season, α can be quite large, while this ratio can be reduced by preemptive
mass vaccination against influenza. A critical issue is the comparison of costs of
mass influenza vaccination with quarantine (for those exposed to SARS). For this
purpose, we need to answer the following question: When α is increased to γα with
γ > 1, how much should we increase q (to δq with δ > 1) to achieve the same
Xα,q(∞)? In other words, given γ > 1, what is δ (δ > 1) such that

Xγα,δq(∞) = Xα,q(∞)?

Using (4) and (5), we obtain
1

1+γαS(0)(1− e−
ag
η I(0)e−

ag
η (1−δq)bE∞)

+ γα
1+γαS(0)(1− e−

ah
η I(0)e−

au
εη rI(0)− au

ε U(0)e−
ah
η (1−δq)bE∞e−

au
εη rbE∞)

− 1
1+αS(0)(1− e−

ag
η I(0)e−

ag
η (1−q)bE∞)

− α
1+αS(0)(1− e−

ah
η I(0)e−

au
εη rI(0)− au

ε U(0)e−
ah
η (1−q)bE∞e−

au
εη rbE∞)

= 0.

(6)

This relationship between γ and δ is important because γ and δ are closely related
to the societal costs of strategies for managing a SARS outbreak during a flu season.

4. Results. The parameters estimated are ag, ah (the contact rates of infectives for
the general public and HR respectively) and au(the contact rate of cared infective
for HR, the latter of which reflects the level of nosocomial transmission) for stage I
and stage II respectively.

We start with stage I. In this case, ag = ah is a good approximation. Among the
144 early patients, 111 (77 %) were exposed to SARS in the health-care setting dur-
ing the first stage [12, 19, 20]. The exposures occurred in association with the care
of patients who were not diagnosed with SARS but were not practising isolation
precautions, and also in association with family members accompanying or visiting
the patients in the hospitals. Besides that, clinicians who were initially unaware
of the modes of transmission of the SARS coronavirus, had used positive pressure
ventilation methods to alleviate respiratory symptoms, inadvertently augmenting
dispersion of contagious droplets, which is believed to be one source of transmis-
sion of SARS within the hospital settings. Because the changes in the number of
susceptible Sg and Sh are very small in the first stage, we can ignore the small
changes and treat Sg and Sh as constants. Then we can combine ag and Sg as one
parameter Ag = agSg, which means an average infective makes contact sufficient to
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transmit infection with Ag persons in GP per unit time. Similarly, we can define
another parameter Au = auSh. Also, ah and Sh are very small, we can ignore the
effect of ahSh in the model. The total population in GTA is 5081826 [Peel: 988948,
Toronto: 2481494, York: 729,254, Halton: 375229, Durham: 506901][21]. This,
coupled with reported data from Public Health Agency of Canada [14, 19], gives
the initial population data in Table 4.

Table 2. Initial conditions for the simulations of stage I (February
23 through March 30), based on 2003 SARS outbreak in Toronto.

Eg(0) Eh(0) Ig(0) Ih(0) Ug(0) Uh(0) Xg(0) Xh(0)
6 3 0 0 1 0 1 0

The least square method was used to estimate the parameters Ag = 0.0723
and Au = 0.2843. Using the parameter values, we carried out some numerical
simulations, reported in Figure 3(a), that provide a very good agreement with the
actual data of X(t) in Toronto for the first five weeks of the outbreak. We calculate
that R0 ≈ 3.048 > 1, which would result in further transmission of SARS and a
subsequent outbreak of the disease. The percentage of those getting an infection
from HR is Au/(Au + Ag) = 0.2843/(0.2843 + 0.0723) = 0.797. This calculation
is in excellent agreement with the report [12] for the first stage of the 2003 SARS
outbreak in Toronto.

The role of nosocomial transmission was then recognized, and hospitals and other
health settings became an obvious focus for SARS control efforts, with particular
concern for preventing dispersion of the disease from hospitals back into the sur-
rounding communities. This new focus marked the beginning of the second stage of
2003 SARS outbreak in Toronto (March 31 through May 14, 2003): implementation
of strict infection control precautions in institutional settings, isolation of cases and
symptomatic contacts, and the quarantining of asymptomatic close contacts.

It is then necessary to estimate the impact of these control measures on au, and
on q = qg = qh. From 2132 potential cases of SARS investigated by Toronto Public
Health, 23,103 contacts are identified of SARS patients as requiring quarantine,
among them 13,291 were confirmed to be in compliance with the quarantine [15],
which indicates quarantine rate q = qg = qh = 57.5%. The estimation based on
the least square method yields Ag = 0.0701 and Au = 0.0009, based on the initial
conditions for stage II given in Table 4, a table from the combined sources of the
reported data from Public Health Agency of Canada [14, 19] and the simulated
values in stage I.

Table 3. Initial conditions for the simulations of stage II (March
31- May 14) based on 2003 SARS outbreak in Toronto.

Eg(0) Eh(0) Qg(0) Qh(0) Ig(0) Ih(0) Ug(0) Uh(0) Xg(0) Xh(0)
21 16 0 0 7 15 10 44 22 69

Figure 3(b) compares the numerical calculation based on the estimated param-
eters with the actual reported data for the second stage. Using the formulae in
section 3, we obtain that the best outcome (after the initial outbreak) would be
Xbest

α = 154 when a perfect quarantine (q = 1) and isolation measure (au = 0) can
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(a) Stage I (February 23 through March 30, 2003).
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(b) Stage II (March 31 through May 14, 2003).

Figure 3. Comparison of the simulation of probable cases with
real data.

be realized. Note that the total reported number is X = 166. The excellent agree-
ment of the simulation with the actual data also provides additional validation of
the model and the good estimation of the parameters. The sharp reduction of Au re-
flects the effectiveness of the strict control measures within the health-care settings,
and the value of q = 57.5% indicates a very effective, albeit inefficient, quarantine.
This reduction of Au coupled with a moderate value of q yields a small control
reproduction number (R0 = 0.1). The combination of the moderate quarantine
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and strict hospital infection control procedures were the keys to the containment of
SARS in Toronto.

To investigate the potential impact of preemptive mass influenza vaccination on
SARS containment during a hypothetical outbreak that coincides with peak flu
season, we make the following assumptions:

(1). epidemiologic linkages between SARS cases are not well defined;
(2). SARS cannot reliably be distinguished from other ILIs on clinical grounds

alone;
(3). no proven effective treatment for SARS currently exists;
(4). the vaccination is 67 percent effective for preventing influenza;
(5). 10 percent of heath-care workers in the health-care setting are at high risk of

contact with SARS.

Our goal is to describe the final outcome Xα,q,au
(45) on May 14, 2003, as a function

of q, α and au. Because the total population in GTA is 5081826 [21], we estimate
that ag is about 10−8 in terms of ag = Ag/Sg. We assume ag = 5× 10−8, based on
the reality that the people in the community still keep their normal social activities
and life style. If a SARS outbreak coincides with flu season, patients with SARS
or influenza may seek treatment in the same health-care settings. However, it is
difficult to know the exact population size in HR. Here we set a baseline of α, then
let α vary in a sensitivity analysis. We denote the baseline of α = 6×10−4. Because
there are about 10 percent of 69,866 health-care workers, including LPN (licensed
practical nurses), MD (medical doctors), RN (registered nurses), RT (respiratory
therapists), working with patients at high risk for SARS in health-care settings
throughout Ontario, and the population of Ontario was approximately 11,410,046
in the year 2001 [22]. Thus the feasible range of α could be in [6×10−4, 1.2×10−3],
here the upper boundary is chosen according to Table 2 in [2], which shows that the
ratio of persons in the general population presenting with influenza to the health-
care system coupled with health-care workers working with patients at high risk for
SARS during flu season is around 1.2× 10−3 (see Appendix 6.1).

We first consider the case where au is fixed (au = 2×10−6, the moderate reduction
of au based on the simulation on first stage). Figure 4(a) gives a three-dimensional
figure for the dependence of X(45) on q and α. Figure 4(b) shows the relation of
X(45) with γ and δ. Note that (γ, δ) are correlated in such a way that increasing
the ratio α to γα(γ > 1) must be compensated by increasing the quarantine rate q
to δq (δ > 1) to ensure that the total number of infectives remains unchanged (see
section 3). The nearly linear relation between γ and δ shown in Figure 4(b) seems
to indicate the insignificant role of preemptive mass vaccination against influenza
in the battle against SARS. This is, unfortunately, true only when au = 2 × 10−6

is held unchanged whether or not SARS occurs during a respiratory season.
The fact is that when a hypothetical SARS outbreak occurs concurrently with an

influenza season, Sh becomes very large as it includes not only health-care workers
but also patients with clinical presentations that mimic the symptoms of SARS. If a
large number of individuals seek medical attention, difficulties arise in implementing
hospital infection control protocols, as such au will increase proportionally. Precise
relation of au on Sh(0) is hard to obtain, we shall assume that if α increases to
n × α, then au increases to n2 × au. This assumption can be justified following
the ideas developed in [17](see Appendix 6.2). So the range for au can be taken as
[2× 10−6, 8× 10−6], based on the feasible range of α.
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(a) The simulation of (α, q, X(45)) at time t = 45 (May 14) with a
fixed au.
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δ

(b) the relationship between γ and δ in order to achieve
the same level of infection.

Figure 4. The simulations when the transmission rate is fixed
(au = 2×10−6) within the HR community. This rate indicates the
insignificant role of preemptive mass vaccination against influenza
in the battle against SARS.

The simulation results are summarized in Figures 5(a) and 5(b) and show a
significant change. Increasing α to the realistic value 9 × 10−4 yields close to 200
total infections even when the quarantine rate is 100%. When the quarantine rate is
40% (a very high rate of quarantine, considering the large number of individuals with
symptoms that are compatible with SARS during flu season), over 250 infections
will result.

With α = 6× 10−4, the relationship between γ and δ becomes highly nonlinear,
and δ must be over 1.4 when γ is close to 1.6, which corresponds to a required
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(a) The simulation of (α, q, X(45)) at time t = 45 (May 14) but
with an increased au.
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Figure 5. The simulations for an increased transmission rate au,
where au increases to n2 × au when α increases to n×α and base-
line of au is 2 × 10−6. These two graphs show that by increasing
influenza vaccination coverage to a particular threshold among the
general population prior the onset of flu season, the need for quar-
antine to control SARS could be reduced significantly.

quarantine rate 0.575 × 1.4 = 80.5%. From Appendix 6.1, we know γ = 1.70,
1.56, 1.47, 1.23 corresponding to zero, 30%, 50%, 100% vaccination for influenza
respectively, and having 0.67 influenza vaccine effectiveness. It shows that without
effective vaccination coverage and in the absence of a reliable and rapid test to dis-
tinguish SARS from other common ILIs, mass quarantine becomes the only feasible
control strategy, despite its enormous socioeconomic burden for the increase of δ.
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5. Conclusions and discussions. We examine a hypothetical situation where a
SARS outbreak coincides with flu season. Because of the lack of widely available
and reliable, rapid diagnostic tests, it is exceptionally difficult to distinguish SARS
rapidly and accurately from other ILIs, given the non-specific clinical presentation
of SARS.

In a hypothetical SARS outbreak coinciding with the flu season, the combined to-
tal number of both flu and SARS patients seeking treatment in the same health-care
settings would increase. This would then increase the nosocomial transmission of
SARS substantially. We formulate a deterministic mathematical model to address
such a scenario and explore the functional relationship between vaccination rate
against influenza and quarantine rate for SARS. Doing so allows us to discuss the
qualitative impact of mass influenza vaccination on the containment of SARS. Our
simulations and analysis show that the combination of effective vaccination coverage
for influenza and moderate quarantine would be important strategies in containing
an outbreak of SARS that coincides with flu season. By increasing influenza vac-
cination coverage to a particular threshold among the general population prior the
onset of flu season, the need for quarantine to control SARS could be reduced sig-
nificantly, thereby saving lives and valuable public health resources. Conversely,
without effective influenza vaccination coverage, massive quarantine may be the
only feasible control strategy for SARS, despite its enormous costs and practical
limitations.

6. Appendix.

6.1. Influenza vaccination rate. Here, we calculate the corresponding γ for dif-
ferent influenza vaccination rates, with a baseline rate of 30%. Effectiveness of the
vaccine is estimated to be 0.67 [2], while approximately 0.33 of the general popu-
lation would become infected with some ILIs during flu season. Among all ILIs,
0.33 are estimated to be resulting from the influenza virus (meaning an estimated
0.1089 of the total population would become infected with influenza).

According to Table 2 in [2], if we assume 0% vaccination coverage for influenza,
the proportion of the total population that would likely develop influenza is

0.1089
1− 0.30× 0.67

= 0.1363.

Similarly, for 50% vaccination, 0.1363× (1− 0.5× 0.67) = 0.09064 of population
would become infected with influenza; and for 100% vaccination, 0.1363× (1− 1×
0.67) = 0.045 of population would become infected with influenza.

We estimated that 33.4%(33% outpatient, 0.4% inpatient) of the individuals
with influenza would seek medical attention. We assume that outpatients would be
managed on the same day, while the median stay for inpatients would be ten days
[2], and the period for flu season is about 120 days (from the beginning of November
to the end of February). Thus the total number of individuals with influenza in the
health-care setting per day during flu season would be, in the case of 0% vaccination,
calculated as follows:

[0.1363× 0.33× 1 + 0.1363× 0.004× 10]/120 = 4.21× 10−4.

Similarly, the total number of individuals with influenza in the health-care setting
would be, for 30%, 50% and 100% vaccination percentage, 3.35× 10−4, 2.80× 10−4

and 1.39× 10−4, respectively.
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Thus, basing on the baseline α = 6 × 10−4, we have the corresponding γ as
(6+4.21)/6 = 1.70, (6+3.35)/6 = 1.56, (6+2.80)/6 = 1.47 and (6+1.39)/6 = 1.23,
to the vaccination rate 0%, 30%, 50% and 100%, respectively.

6.2. The relation between au and α. We now justify the statement that if α
increases to n× α, then au increases to n2 × au.

To justify the statement, we need to introduce a few notations following [17].
Th: expected “handling time” of a susceptible that has been “caught” (the period

between being “caught” and being “infected”, or called contact duration);
T : total time available to an infective for searching and “infecting”;

Ns: the susceptible density within health-care setting;
N : the total population;
a: effective search rate (also called search efficiency) within health-care setting;

Ts: the actual search time (or called search duration);
Z: the number of susceptible “caught” by an infective in time T within a health-

care setting.
According to the above definition, we have

Ts = T − ThZ. (7)

By Holling’s assumption [17], we have

Z = aNsTs. (8)

Using equations (7) and (8), we obtain

Z =
aNsT

1 + aNsTh
.

Therefore,
Z

T
=

aNs

1 + aNsTh
,

where Z/T is the number of susceptible persons caught per unit of time by an
infective within the health-care setting. Let C(Ns) = Z/T , an average infective
makes contact sufficient to transmit infection with aNs/(1 + aNsTh) susceptible
within health-care setting per unit of time. Since

C(Ns)(Sh/N)I = auShI,

where Sh/N is the probability that a random contact by an infective with a sus-
ceptible, we have

au =
C(Ns)

N
=

1
N

aNs

(1 + aNsTh)
.

Because the contact duration is very short for respiratory illness, we can assume
Th → 0, and hence we obtain

au =
aNs

N
(9)

In [17], the effective search rate a is the product of the area covered per unit of
time while searching and the probability that a susceptible existing in this area is
actually “caught”. Since the area is fixed, but the probability that a susceptible
individual in this area is actually “caught” is proportional to the patient’s time in
the health care setting which is proportional to the density Ns, we argue that a is
proportional to Ns. Therefore, from equation (9), au is proportional to N2

s , a fact
which implies that if α increases to n× α, then au increases to n2 × au.



CONTROLLING A SARS OUTBREAK DURING FLU SEASON 753

Acknowledgments. This work was partially supported by Mathematics for In-
formation Technology and Complex Systems (MITACS), by Natural Sciences and
Engineering Research Council of Canada (NSERC), Canadian Foundation of In-
novation (CFI) and Ontario Innovation Trust (OIT), by Canada Research Chairs
Program, and by Community Coalition Concerned About SARS.

REFERENCES

[1] T. H. Rainer, P. A. Cameron, D. Smit, K. L. Ong, A. N. W. Hung, D. C. P. Nin, et al.,
Evaluation of WHO criteria for identifying patients with severe acute respiratory
syndrome out of hospital: prospective observational study. BMJ 326 (2003), 1354-
1358.

[2] K. Khan, P. Muennig, M. Gardam, J. G. Zivin, et al., Managing Febrile Respiratory Ill-
nesses during a Hypothetical SARS Outbreak. Emerging Infectious Diseases 11(2): 191-
200, 2005. Available online at: http://www.cdc.gov/ncidod/EID/vol11no02/04-0524.htm.

[3] G. F. Webb, M. J. Blaser, H. Zhu, S. Ardal, J. Wu, Critical Role of Nosocomial Trans-
mission in the Toronto SARS Outbreak. Math. Biosc & Eng. 1 (2004), 1-13.

[4] M. Lipsitch, T. Cohen, B. Cooper, J. M. Robbins, S. Ma, J. Lyn, et al., Transmission
dynamics and control of severe acute respiratory syndrome. Science 300 (2003) 1966-
70.

[5] S. Riley, C. Fraser, C. A. Donnelly, A. C. Ghani, L. J. Abu-Raddad, A. J. Hedley, et al.,
Transmission Dynamics of the Etiological Agent of SARS in Hong Kong: Impact of
Public Health Interventions. Science 300 (2003) 1961-66.

[6] G. Chowell, P. W. Fenimore, M. A. Castillo-Garsow, and C. Castillo-Chavez, SARS out-
breaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation
as a control mechanism. J Theoret Biol 224 (2003), 1-8.

[7] G. Chowell, C. Castillo-Chavez, P. W. Fenimore, C. M. Kribs-Zaleta, L. Arriola, J .M. Hyman,
Model Parameters and Outbreak Control for SARS. Emerging Infectious Diseases
10(7): 1258-1263, 2004. Available online at: http://www.cdc.gov/ncidod/EID/vol10no7/03-
0647.htm.

[8] W. Wang, S. Ruan, Simulating the SARS outbreak in Beijing with limited data. J.
Theoret. Biol. 227 (2004), 369-379.

[9] A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, J. Wu, et
al.,Modelling strategies for controlling SARS outbreaks. Proc.R.Soc.Lond.B, 2004
(doi:10.1098/rspb.2004.2800).

[10] Y. H. Hsieh, C. W. S. Chen, S. B. Hsu, SARS outbreak, Taiwan, 2003. Emerging Infectious
Diseases. 10(2): 201-206, 2004. Available online at:
http://www.cdc.gov/ncidod/eid/vol10no2/03-0515.htm.

[11] Y. H. Hsieh, C. C. King, C. W. S. Chen, M. S. Ho, J. Y. Lee, et al., Quarantine for SARS,
Taiwan. Emerging Infectious Diseases 11 (2): 278-282, 2005. Available online at:
http://www.cdc.gov/ncidod/EID/vol11no02/04-0190.htm.

[12] C. M. Booth, L. M. Matukas, G. A. Tomlinson, A. R. Rachlis, D. B. Rose, H. A. Dwosh,
et al., Clinical features and short-term outcomes of 144 patients with SARS in the
Greater Toronto area. JAMA 289(2003) 2801-10.

[13] BBC news, Ministers may review SARS status. 2003.
http://news.bbc.co.uk/1/hi/health/2979623.stm.

[14] Public Health Agency of Canada, 2003a. Archive Reports: Severe Acute Respiratory
Syndrome(SARS) Cases, Canada and International. http://www.phac-aspc.gc.ca/sars-
sras/sars.html#numbers.

[15] T. Svoboda, B. Henry, L. Shulman, E. Kennedy, E. Rea, T. Wallington, et al., Public Health
Measures to Control the Spread of the Severe Acute Respiratory Syndrome during
the Outbreak in Toronto. N. Engl. J. Med., 350 (2004), 2352-2361.

[16] R. M. Anderson, & R. M. May, Infectious Diseases of Humans. Oxford University Press,
London, 1991.

[17] O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Dis-
eases: Model Building, Analysis and Interpretation. Wiley, New York, 2000.



754 Q. ZENG, K. KHAN, J. WU, AND H. ZHU

[18] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission. Math. Biosci. 180 (2002),
29-48.

[19] Public Health Agency of Canada, 2003b. SARS Epidemiologic Summaries: April 26, 2003.
http://www.phac-aspc.gc.ca/sars-sras/pef-dep/sars-es20030426 e.html.

[20] CDC (Centers for Disease Control), Severe Acute Respiratory Syndrome (SARS). 2003.
http://www.cdc.gov/ncidod/sars/index.htm.

[21] Census (2001 Census information), 2001 Census GTA Population Comparison. 2001.
http://www.region.peel.on.ca/planning/stats/2001/2001 pop gta.htm.

[22] CIHI(Canadian Institute for Health Information), Health Personnel Trend in Canada,
1993-2002. 2004.

Received on November 1, 2006. Revised on April 27, 2007.

E-mail address: qlzeng@mathstat.yorku.ca

E-mail address: km.khan@utoronto.ca

E-mail address: wujh@mathstat.yorku.ca

E-mail address: huaiping@mathstat.yorku.ca


