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SPATIAL SPREAD OF RABIES REVISITED: INFLUENCE OF
AGE-DEPENDENT DIFFUSION ON NONLINEAR DYNAMICS∗

CHUNHUA OU† AND JIANHONG WU‡

Abstract. We consider the spatio-temporal patterns of disease spread involving structured
populations. We start with a general model framework in population biology and spatial ecology
where the individual’s spatial movement behaviors depend on its maturation status, and we show
how delayed reaction diffusion equations with nonlocal interactions arise naturally. We then con-
sider the impact of this delayed nonlocal interaction on the disease spread by revisiting the spatial
spread of rabies in continental Europe during the period between 1945 and 1985. We show how the
distinction of territorial patterns between juvenile and adult foxes, the main carriers of the rabies
under consideration, yields a class of partial differential equations involving delayed and nonlocal
terms that are implicitly defined by a hyperbolic-parabolic equation, and we show how incorporating
this distinction into the model leads to a formula describing the relation of the minimal wave speed
and the maturation time of foxes. We show how the homotopy argument developed by Chow, Lin,
and Mallet-Paret can be applied to obtain the existence of a heteroclinic orbit between a disease-free
equilibrium and an endemic state for the spatially averaged system of delay differential equations,
and we illustrate how the technique developed by Faria, Huang, and Wu can be used to establish
the existence of a family of traveling wavefronts in the neighborhood of the heteroclinic orbit for the
corresponding spatial model.
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1. Introduction. Spatial movement and reaction time lag are certainly two in-
trinsic features in biological systems; their interaction seems to be one of the many
factors for possible complicated spatio-temporal patterns in a single species popula-
tion without an external time-dependent forcing term. Modeling this interaction is
nevertheless a highly nontrivial task, and recent progress indicates diffusive (partial
or lattice) systems with nonlocal and delayed reaction nonlinearities arise very natu-
rally. Such systems were investigated in the earlier work of Yamada [34], Pozio [24, 25],
Redlinger [26, 27], and the modeling and analysis effort in the ground-breaking work
by Britton [3], Gourley and Britton [9], Smith and Thieme [28] marked the begin-
ning of the systematic study of a new class of nonlinear dynamical systems directly
motivated by consideration of biological realities [10, 11].

This new class of nonlinear dynamical systems can be derived from the classical
structured population model involving maturation-dependent spatial diffusion rates
and nonlinear birth and natural maturation processes. More specifically, if we use
u(t, x) to denote the total number of matured individuals in a single species population
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MODELS FOR SPATIAL SPREAD OF RABIES 139

and if we assume the maturation time is a fixed constant τ , then we have

∂

∂t
u(t, x) = D

∂2

∂x2
u(t, x) − du(t, x) + j(t, τ, x),(1.1)

where D and d are the diffusion and death rates of the adult population (that are
assumed to be age-independent), and j(t, τ, x) is the maturation rate that is given by
the rate where an individual was born exactly time t − τ ago in all possible spatial
locations but moved to the current position x upon maturation. This maturation
rate is thus regulated by the birth process and the dynamics of the individual during
the maturation phase. In the work of So, Wu, and Zou [29], this is derived from the
structured population model( ∂

∂t
+

∂

∂a

)
j(t, a, x) = DI

∂2

∂x2
j(t, a, x) − dIj(t, a, x)(1.2)

for the density j(t, a, x) of the immature individual with a ∈ (0, τ ] as the variable for
age, subject to some (spatial) boundary conditions (if the space is bounded) and the
following (age) boundary condition:

j(t, 0, x) = b(u(t, x)),(1.3)

where b is the birth rate function that is assumed to be dependent on the matured
population, and DI and dI are the diffusion and death rates of the immature individual
(these rates are allowed to depend on the age a in [29]). The maturation rate j(t, τ, x)
can be obtained by solving the linear hyperbolic-parabolic equation (1.2) subject to
the boundary condition (1.3). In the case of unbounded one-dimensional space, we
have

j(t, τ, x) = e−dIτ

∫
R

b(u(t− τ, y))f(x− y)dy.(1.4)

In other words, the maturation rate at time t and spatial location x is the sum of the
birth rate at time t − τ at the spatial location y, times the probability f(x − y) of
the individual moved from y to the current position x, and then times the survival
rate e−dIτ during the entire maturation phase. Incorporating (1.4) into (1.1), we
then obtain a closed system of reaction diffusion equations with nonlocal delayed
nonlinearity as follows:

∂

∂t
u(t, x) = D

∂2

∂x2
u(t, x) − du(t, x) + e−dIτ

∫
R

b(u(t− τ, y))f(x− y)dy,(1.5)

where

f(x) =
1√

4πDIτ
e

−x2

4DIτ .

For the existence of positive solutions to (1.5) with various initial and boundary con-
ditions, we refer to [19, 33]. Recently, there has been some rapid development towards
a qualitative theory for the asymptotic behaviors of solutions to the above equation
with various types of assumptions on the birth functions. Notably, in comparison
with the ordinary reaction diffusion analogue, we will have more prototypes than the
so-called monostable and bistable cases. See [11].

The analytic form above for f was derived in [29]. It is possible to obtain such
an analytic form here since the dynamical process during the maturation phase is
governed by a linear hyperbolic-parabolic equation with time-independent constant
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140 CHUNHUA OU AND JIANHONG WU

coefficients. Such a possibility disappears in an ecological system consisting of multiple
species with age- or stage-dependent diffusion rates when these species interact during
their maturation phases. This is also the case for the spread of a disease even if its main
carrier involves only a single species, since the model describing the infection process
must involve the transfers of individuals from one compartment to another, and some
of these transfers such as the force of infection from the susceptible compartment to
the infective compartment are nonlinear.

We will illustrate the above difficulty and usefulness of modeling the spread of
diseases involving stage-dependent spatial diffusion by considering the spatial spread
of rabies in continental Europe during the period 1945–1985. Our focus is on the front
of the epizootic wave of rabies, starting on the edge of the German/Polish border
and moved westward at an average speed of about 30–60 km a year. This traveling
wavefront has been investigated quite successfully (see [15, 22]), where the minimal
wave speed was calculated from basic epidemiological and ecological parameters, and
compared well with field observation data. It was also noted that juvenile foxes leave
their home territory in the autumn traveling distances that typically may be 10 times
a territory size in search of a new territory. If a fox happened to have contracted
rabies around the time of such long-distance movement, it could certainly increase
the spreading of the disease into uninfected areas. This observation has not been
considered in the existing models. It turns out that incorporating the differential
spatial movement behaviors of adult and juvenile foxes into a deterministic model
yields a much more complicated system of reaction diffusion equations with delayed
nonlinear nonlocal interactions.

More precisely, the celebrated work [15, 22] used a system of a reaction diffusion
equation for the infective, coupled with an ODE for the susceptible foxes—the main
carrier of the disease—under the assumption that the infective compartment consists
of both rabid foxes and those in the incubation stage, and that susceptible foxes are
territorial and thus their spatial movement can be ignored. It was already pointed
out, in both papers mentioned above and their later extensions and further detailed
studies, that the spatial movement behaviors of susceptible juvenile foxes are different
since they prefer to leave their home territories in search of new territories of their
own. How to describe this stage-dependent diffusion pattern of susceptible foxes and
how stage-dependent diffusion affects the spatial spread of rabies are the main focus
of the current paper.

It turns out, as will be shown in section 2, that such a stage-dependent diffusion
of susceptible foxes and the random movement of rabid foxes due to the loss of the
sense of direction and territorial behaviors yield a coupled system of reaction diffusion
equations with nonlocal delayed nonlinearity for the juvenile susceptible foxes M(t, x)
and total rabies foxes J(t, x). Unlike system (1.5) for a single species population
with simple dynamics during the maturation phase, the coupled system for (M,J)
involves the density of the juvenile foxes S(t, a, y) for all y ∈ R and the maturation
rate S(t, τ, x) (again, τ is assumed to be a constant maturation time of the foxes)
and the force of infection that is proportional to the product of J(t, x)

∫ τ

0
S(t, a, x)da.

This density of the juvenile foxes cannot be solved explicitly in terms of M(s, ·) with
s ≤ t although it is given implicitly by solving a hyperbolic-parabolic equation with
a nonlinear term.

Some of the key issues related to the spatial spread can nevertheless be ad-
dressed, despite the aforementioned difficulty in obtaining an explicit analytic formula
of S(t, a, x) in terms of the historical values of M at all spatial locations. As shall
be shown in section 3, the linear stability of two spatially homogeneous equilibria
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MODELS FOR SPATIAL SPREAD OF RABIES 141

can be fully investigated and the minimal wave speed can be calculated. One of the
results we obtain from this calculation is that the minimal wave speed is a function
of the average maturation time. More precisely, knowing the carrying capacities for
the adult and juvenile foxes, the minimal wave speed is a decreasing function of the
maturation period. This results coincide in principle with the speculation in [15, 22],
and give a more precise qualitative description of the influence of maturation time on
the propagation of the disease in space.

Establishing the existence of traveling waves turns out to be a very difficult task
due to the loss of monotonicity of the nonlocal delayed nonlinearity. In section 4, we
utilize a general result of Faria, Huang, and Wu [8] that claims the existence of trav-
eling waves in the neighborhood of a heteroclinic orbit between the two equilibria of
a corresponding ordinary delay differential system obtained from the delayed reaction
diffusion system for (J,M) through a spatial average, and we obtain the existence of
this heteroclinic orbit by an approach based on a combination of perturbation anal-
ysis [23], the Fredholm theory, and some fixed point theorems [5, 13]. This will be
developed in detail in section 4, along with some numerical simulations to show how
the maturation time affects the calculation of the minimal wave speed, and how the
diffusion of the juvenile foxes impacts the amplitudes and frequencies of the oscillatory
long tails of the traveling wavefronts.

2. Derivation of the model. Here we use a deterministic approach to describe
the spatial spread of rabies. Following [15, 22], we divide the fox population into two
groups: the infective and the susceptible. The former consists of both rabid foxes and
those in the incubation stage. The basic facts and assumptions of our model are as
follows:

(H1) The rabies virus is contained in the saliva of the rabid fox and is normally
transmitted by bite. Therefore, contact between a rabid and a susceptible
fox is necessary for the transmission of the disease.

(H2) Rabies is invariably fatal in foxes.
(H3) Adult susceptible foxes are territorial and seem to divide the countryside into

nonoverlapping home ranges which are marked out by scent. They do oc-
casionally travel considerable distances but always return to their home ter-
ritory. However, for young susceptible juvenile foxes, their behaviors are
different, because they prefer to leave their home territories in search of new
territories of their own.

(H4) The rabies virus enters the central nervous system and induces behavioral
changes of foxes. If the spinal cord is involved, it often takes the form of
paralysis. However, if the virus enters the limbic system, the foxes become
aggressive, lose their sense of direction and territorial behavior, and wander
about in a more or less random way.

Modeling the distinction of diffusion patterns of young and adult susceptible foxes,
already observed in [15, 22], is the main focus of this paper. Because of this distinction,
we shall incorporate age structure into our model and consider the fox population with
two age classes: the immature and the mature. Let I(t, a, x) and S(t, a, x) denote the
population density at time t, age a ≥ 0, and spatial location x ∈ R = (−∞,∞) for
the infective and the susceptible foxes, respectively, and let τ be the maturation time
which is assumed to be a constant. Then the integral

J(t, x) =

∫ ∞

0

I(t, a, x)da(2.1)
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142 CHUNHUA OU AND JIANHONG WU

is the total population of the infective foxes and

M(t, x) =

∫ ∞

τ

S(t, a, x)da(2.2)

is the total population of the adult susceptible foxes. Using Fick’s diffusive law and
the mass active incidence, we have(

∂

∂t
+

∂

∂a

)
I(t, a, x) = DI

∂2

∂x2
I(t, a, x) + βS(t, a, x)J(t, x) − dII(t, a, x),(2.3)

where DI is the diffusive coefficient, dI is the death rate for the infective foxes, and β
is the transmission rate. Using I(t,∞, x) = 0 and I(t, 0, x) = 0, we obtain from (2.1)
and (2.3) that

∂J(t, x)

∂t
=

∫ ∞

0

∂I(t, a, x)

∂t
da

= DI
∂2J(t, x)

∂x2
+ βM(t, x)J(t, x) − dIJ(t, x)(2.4)

+ βJ(t, x)

∫ τ

0

S(t, a, x)da.

For S(t, a, x) with a ≥ τ , we have the structured population model (see [20]
or [32]) (

∂

∂t
+

∂

∂a

)
S(t, a, x) = −βS(t, a, x)J − dSS(t, a, x),(2.5)

where the constant dS is the death rate for the susceptible foxes. Using S(t,∞, x) = 0,
we get from (2.2) and (2.5) that

∂M(t, x)

∂t
= −βM(t, x)J(t, x) − dSM(t, x) + S(t, τ, x).(2.6)

To obtain a closed system for (J,M), we need to formulate S(t, a, x) with 0 ≤ a ≤ τ
in terms of (J,M). This is achieved by using the following structured hyperbolic-
parabolic equation with the initial condition given by the birth process:{ (

∂
∂t + ∂

∂a

)
S(t, a, x) = DY

∂2

∂x2S(t, a, x) − βS(t, a, x)J(t, x) − dY S(t, a, x),

S(t, 0, x) = b(M(t, x)),
(2.7)

where DY is the diffusive coefficient for the immature susceptible foxes and b(·) is the
birth function of the susceptible foxes.

Combining (2.4) and (2.6) together gives

⎧⎨
⎩

∂J(t,x)
∂t = DI

∂2J(t,x)
∂x2 + βM(t, x)J(t, x) − dIJ(t, x) + βJ(t, x)

∫ τ

0
S(t, a, x)da,

∂M(t,x)
∂t = −βM(t, x)J(t, x) − dSM(t, x) + S(t, τ, x),

(2.8)

where S(t, a, x), 0 ≤ a ≤ τ , is determined by solving the hyperbolic-parabolic system
(2.7).
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MODELS FOR SPATIAL SPREAD OF RABIES 143

Remark 2.1. S(t, a, x) in (2.7) depends on t, a, M(t, y), and J(s, y) for all
0 ≤ s ≤ t and y ∈ R, but an explicit formula for S(t, a, x) cannot be found. We shall
write F (t, a, x) = F (a,M, J)(t, a, x) to indicate this functional relation. It is easy to
show that

F (a,M, J1)(t, a, x) ≥ F (a,M, J2)(t, a, x) if 0 ≤ J1(s, y) ≤ J2(s, y)(2.9)

for 0 ≤ s ≤ t and y ∈ R, and for t ≥ a,

F (a,M, J1)(t, a, x) = b(M(t− a, x))e−
∫ t
t−a

(dY +βJ(u,x))du when DY = 0.(2.10)

Remark 2.2. When τ = 0, system (2.8) reduces to⎧⎨
⎩

∂J(t,x)
∂t = DI

∂2J(t,x)
∂x2 + βJ(t, x)S(t, x) − dIJ(t, x),

∂M(t,x)
∂t = −βJ(t, x)M(t, x) − dSM(t, x) + b(M(t, x)).

(2.11)

This model was studied in [7] and [15] by assuming that the birth function obeys
the well-known logistic growth, that is, the (gross) birth function b(M) := dSM +
b0M(1 − M/S0), where S0 is the carrying capacity of the susceptible fox population
and b0 is the net birth rate for the susceptible foxes when the population density is
close to zero. After rescaling by

u(t, x) = J(t, x)/S0, v(t, x) = M(t, x)/S0, x
∗ = (βS0/DI)

1/2x, t∗ = βS0t, r =
dI
βS0

and dropping the asterisk, we can transform (2.11) into{
∂u
∂t = ∂2u

∂x2 + u(v − r),

∂v
∂t = −uv + kv(1 − v),

(2.12)

where k = b0/βS0. In [7], it was proved that if r = dI

βS0
< 1, then the infective

and the susceptible foxes coexist, and there exists a family of traveling wavefronts
(J = S0u(x+ct), M = S0v(x+ct)) for (2.11) which connect (0, S0) to (kS0(1−r), S0r)
with the wave speed c satisfying

c ≥ cmin = 2
√
βS0DI

√
1 − dI

βS0
= 2

√
DI(βS0 − dI).

In addition, it was shown that there is a constant k∗ > 0 so that (a) if k = b0/βS0 >
k∗, then the wavefront (u, v) approaches (k(1 − r)S0, rS0) monotonically; (b) if k =
b0/βS0 ≤ k∗, then the wavefront (u, v) approaches (k(1 − r)S0, rS0) with oscillatory
damping.

In [14] and [15], instead of the logistic growth, a static population of the susceptible
is assumed in the sense that deaths are equally balanced by births. This yields the
simple model {

∂J
∂t = DI

∂2J
∂x2 + βJM − dIJ,

∂M
∂t = −βJM,

(2.13)

where M and J are the total numbers of susceptible and infective foxes, respectively.
It was shown that with initial (maximum) susceptible population S0, if r = dI

βS0
> 1
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144 CHUNHUA OU AND JIANHONG WU

(that is, the mortality rate of the infective foxes is greater than the rate of recruitment
of new infective), the infection dies out quickly. If r = dI

βS0
< 1, there is a family of

traveling wavefronts to the system (2.13) with the minimal speed

cmin = 2[DI(βS0 − dI)]
1/2.

See [1, 6] for related work.
Remark 2.3. When DY = 0, system (2.7)–(2.8) reduces to the following model:{

dJ
dt = DI

∂2J
∂x2 + βMJ − dIJ + βJ

∫ τ

0
b(M(t− a))e

∫ a
0

−(dY +βJ(t−s))dsda,
dM
dt = −βMJ − dSM + b(M(t− τ))e

∫ t
t−τ

−(dY +βJ(s))ds.
(2.14)

This is a delayed reaction diffusion system with distributed delay but without spatial
averaging. We will numerically compare the behavior of solutions to (2.14) with that
of (2.7)–(2.8) in section 4.3.

In the remaining part of this paper, we consider the dynamics of (2.7)–(2.8) using
the birth function

b(M) = b0Me−āM ,

where ā > 0 is a positive parameter, and b0 = b′(0) is the birth rate when the
population size is small. This birth function exhibits the logistic growth nature of
the fox population in the absence of the disease. Such a function has been used in
the well-studied Nicholson blowfly model [12] and is common in models of fish. The
specific form of such a function is not so important for the method developed below,
though the specific form facilitates and simplifies our qualitative analysis since, as will
be shown, constant equilibria can be explicitly described.

3. Structure of equilibria. In this section, we describe the structure of equi-
libria of biological interest. At an equilibrium, (J,M) takes on a constant value,
namely,

J ≡ J0, M ≡ M0,

for constants J0 and M0. Then from (2.7) we have

{
( ∂
∂t + ∂

∂a )S = DY
∂2

∂x2S − dY S − βSJ0,

S(t, 0, x) = b(M0).
(3.1)

To solve (3.1), we define V s(t, x) = S(t, t− s, x) and obtain, for t ≥ s, that

∂

∂t
V s(t, x) =

∂S

∂t
(t, a, x)|a=t−s +

∂S(t, a, x)

∂a
|a=t−s

= DY
∂2

∂x2
V s(t, x) − dY V

s(t, x) − βJ0V
s(t, x).(3.2)

Note that (3.2) is a linear reaction diffusion equation with constant coefficients. The
associated initial condition is

V s(s, x) = b(M0), x ∈ R.(3.3)
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MODELS FOR SPATIAL SPREAD OF RABIES 145

To ensure uniqueness of solutions, we also impose biologically realistic boundary con-
ditions as follows:

|V s(t,±∞)| < ∞.(3.4)

The solution of (3.2)–(3.4) is given by

V s(t, x) = b(M0)e
−(dY +βJ0)(t−s).(3.5)

That is,

S(t, t− s, x) = b(M0)e
−(dY +βJ0)(t−s)(3.6)

and

S(t, a, x) =: F (a,M0, J0) =: b(M0)e
−(dY +βJ0)a, 0 ≤ a ≤ τ ,

from which, with (2.8), it follows that equilibrium (M0, J0) is given by the following
algebraic equations:⎧⎨

⎩
βM0J0 − dIJ0 + βJ0

b(M0)
(dY +βJ0)

(1 − e−(dY +βJ0)τ ) = 0,

−βM0J0 − dSM0 + b(M0)e
−(dY +βJ0)τ = 0.

(3.7)

We now solve (3.7) for equilibria.
When J0 = 0, the second equation in (3.7) gives

−dSM0 + b(M0)e
−dY τ = 0.(3.8)

Thus M0 can take on two different values: M0 = 0 or M0 = Mτ
max = 1

ā ln(b0/dSe
dY τ )).

Biological consideration requires that

b0
dSedY τ

> 1

or, equivalently,

τ < τmax =
1

dY
ln

b0
dS

,(3.9)

so that Mτ
max > 0.

When J0 �= 0, obviously from the second equation of (3.7) we can simplify the
relation between J0 and M0 to yield

M0 =
1

ā

(
ln

b0
βJ0 + dS

− (dY + βJ0)τ

)
.

Viewing M0 as a function of J0, that is, M0 = h0(J0) with h0 being given by

h0(J0) =
1

ā

(
ln

b0
βJ0 + dS

− (dY + βJ0)τ

)
,(3.10)

we find that h0(J0) is decreasing for J0 ≥ 0 with

h0(0) = Mτ
max > 0 and h0(+∞) < 0.
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146 CHUNHUA OU AND JIANHONG WU

From the first equation of (3.7) we have

βb(M0)

dI − βM0
=

dY + βJ0

1 − e−(dY +βJ0)τ
.(3.11)

The monotonic increasing property of the function on the right-hand side of (3.11)
is obvious for J0 ∈ [0,∞). We now check the monotonicity of the function on the
left-hand side. Using the definition of b(·) and defining f(x) := βb(x)/(dI − βx), we
have

f ′(x) = β
b′(x)(dI − βx) + βb(x)

(dI − βx)2

= β
b0e

−āx(āβx2 − ādIx + dI)

(dI − βx)2
.

It is easy to know that the function f(x) = βb(x)/(dI −βx) is increasing with respect
to x provided that

ādI < 4β.

Therefore, under the above condition, a careful examination of the left-hand side of
(3.11) shows that (3.11) gives a unique function M0 = h1(J0) (M0 < dI/β, J0 ≥ 0)
which is increasing for J0 ∈ (0,∞) and satisfies

h1(∞) =
dI
β
.

It is easy to see that the intersection point of the two curves M0 = h0(J0) and
M0 = h1(J0) corresponds to the third equilibrium (Jτ

∗ ,M
τ
∗ ) of our system. As to the

existence and positivity of this particular point, we have the following.
Theorem 3.1. Assume τ < τmax and adI < 4β. Then system (2.7)–(2.8) has a

unique positive equilibrium (Jτ
∗ ,M

τ
∗ ) if and only if

C0(τ) :=
dI

βMτ
max

− b(Mτ
max)(1 − e−dY τ )

Mτ
maxdY

< 1,(3.12)

where

Mτ
max =

1

ā
ln

b0
dSedY τ

.

Proof. The condition τ < τmax implies that Mτ
max is positive and the condi-

tion adI < 4β guarantees that h1 is increasing. Note that h0(0) = Mτ
max. By the

monotonicity properties of functions h0 and h1 and the fact that h0(∞) < 0 and
h1(∞) = β

dI
> 0, it follows that the functions h0 and h1 have a positive intersection

point if and only if h1(0) < h0(0) = Mτ
max. Now we show that h1(0) < h0(0) = Mτ

max

if and only if C0(τ) < 1. We consider two cases:
(i) Mτ

max ≥ β/dI ;
(ii) Mτ

max < β/dI .
In the first case, the proof is obvious and will be omitted here. For the second case,
the inequality C0(τ) < 1 is actually equivalent to

dI
βMτ

max

− b(Mτ
max)(1 − e−dY τ )

Mτ
maxdY

< 1,

D
ow

nl
oa

de
d 

11
/1

6/
15

 to
 1

30
.6

3.
17

4.
98

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



MODELS FOR SPATIAL SPREAD OF RABIES 147

or to

dY
(1 − e−dY τ )

<
βb(Mτ

max)

dI − βMτ
max

.(3.13)

From (3.11) we note that h1(0) (< dI

β ) is determined by

βb(h1(0))

dI − βh1(0)
=

dY
1 − e−dY τ

.(3.14)

This means by (3.13) that C0(τ) < 1 is equivalent to

βb(h1(0))

dI − βh1(0)
=

dY
1 − e−dY τ

<
βb(Mτ

max)

dI − βMτ
max

.(3.15)

Since the function f(y) = βb(y)/(dI − βy) is strictly increasing for y ∈ (−∞, dI/β),
from (3.15) we have the desired result that h1(0) < Mτ

max ⇐⇒ C0(τ) < 1, and the
proof is complete.

Remark 3.2. Inequality (3.12) can be rewritten as

dI
β

< Mτ
max + b(Mτ

max)
(1 − e−dY τ )

dY
.(3.16)

The right side of (3.16) is the sum of the population of the mature and the immature
foxes when they reach equilibria in the disease-free case. This sum is the carrying
capacity of the environment. The left-hand side dI/β is the critical minimum threshold
fox density; see [14]. Theorem 3.1 means that when the carrying capacity of the
environment is greater than the critical threshold-value dI/β, the rabid foxes and the
susceptible foxes can coexist and a positive equilibrium exists.

4. Traveling wave solutions. In this section, we consider the behavior of so-
lutions to system (2.7)–(2.8) in unbounded domain (−∞,∞) under the conditions in
Theorems 3.1. In section 4.1, we use the standard stability analysis to investigate
possible patterns of traveling waves. An explicit formula for the minimal wave speed
is given and this wave solution is confirmed by numerical simulations in section 4.3.
In section 4.2, we prove that traveling wavefronts with large wave speeds indeed exist
by using perturbation analysis developed in [8].

4.1. Local analysis of the traveling wavefronts. Standard stability analy-
sis is employed here to discuss the existence of traveling wavefronts. As usual, we
linearize the wave equation of (2.7)–(2.8) near their equilibria and find the associ-
ated eigenvalues and eigenvectors. Sketching this information in the system’s phase
plane yields a useful suggestion about a possible heteroclinic connection between these
equilibria. We show the details as follows.

First of all, we linearize (2.7)–(2.8) around its equilibrium (J0,M0). Recall that
when J ≡ J0, M ≡ M0, we have S(t, t− s, x) = F (t− s,M0, J0). Assume that

J = J0 + ΔJ, M = M0 + ΔM, S(t, t− s, x) = F (t− s,M0, J0) + ΔS.

We first obtain the following linearized system for ΔS:{
∂ΔS
∂t = DY

∂2

∂x2 ΔS − dY ΔS − βJ0ΔS − βF (t− s,M0, J0)ΔJ,

ΔS|t=s = b′(M0)ΔM.
(4.1)
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148 CHUNHUA OU AND JIANHONG WU

We then use Fourier transforms to solve this equation. Let

ΔS̃ =

∫ ∞

−∞
ΔS eiωydy,

and let f be the Fourier transform of the term −βF (t− s,M0, J0)ΔJ , that is,

f = −βF (t− s,M0, J0)

∫ ∞

−∞
ΔJ eiωydy.

Then, after taking Fourier transforms to both sides of (4.1), we arrive at a new linear
equation for ΔS̃ that can be solved easily to yield

ΔS̃ = e−(DY ω2+dY +βJ0)(t−s)

∫ ∞

−∞
b′(M0)ΔM(s, y)eiωydy

+

∫ t

s

f e−
∫ t−s
u−s

(DY ω2+dY +βJ0)dvdu

= e−(DY ω2+dY +βJ0)(t−s)

∫ ∞

−∞
b′(M0)ΔM(s, y)eiωydy

− β

∫ t

s

F (u− s,M0, J0)

∫ ∞

−∞
ΔJ(u, y) eiωydy e−(DY ω2+dY +βJ0)(t−u)du.

We now take inverse Fourier transforms to obtain

ΔS(t, s, x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
b′(M0)ΔM(s, y)eiωydy e−(DY ω2+dY +βJ0)(t−s)e−iωxdω

− β

2π

∫ ∞

−∞

∫ t

s

F (u− s,M0, J0)

×
∫ ∞

−∞
ΔJ(u, y) e−(DY ω2+dY +βJ0)(t−u)+iω(y−x)dy dudω

=
b′(M0)√

4πDY (t− s)
e−(dY +βJ0)(t−s)

∫ ∞

−∞
ΔM(s, y)e−(x−y)2/(4DY (t−s))dy

− β

2π

∫ ∞

−∞
dy

∫ t

s

F (u− s,M0, J0)ΔJ(u, y)e−(dY +βJ0)(t−u)

×
∫ ∞

−∞
e−ω2DY (t−u)+iω(y−x)dudω

=
b′(M0)√

4πDY (t− s)
e−(dY +βJ0)(t−s)

∫ ∞

−∞
ΔM(t− a, y)e−(x−y)2/(4DY (t−s))dy

− β

∫ ∞

−∞
dy

∫ t−s

0

F (t− v − s,M0, J0)ΔJ(t− v, y)

× e−(dY +βJ0)v
e−(x−y)2/(4DY v)

√
4πDY v

dv

and
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MODELS FOR SPATIAL SPREAD OF RABIES 149

ΔS(t, a, x) =
b′(M0)√
4πDY a

e−(dY +βJ0)a

∫ ∞

−∞
ΔM(t− a, y)e−(x−y)2/(4DY a)dy

− β

∫ ∞

−∞
dy

∫ a

0

F (a− v,M0, J0)ΔJ(t− v, y)

× e−(dY +βJ0)v
e−(x−y)2/(4DY v)

√
4πDY v

dv.

Thus we obtain from (2.4) and (2.6) the following linearized system:⎧⎪⎪⎨
⎪⎪⎩

∂ΔJ
∂t = DI

∂2ΔJ
∂x2 + βM0ΔJ + βJ0ΔM − dIΔJ + βΔJ

∫ τ

0
F (a,M0, J0)da

+ βJ0

∫ τ

0
ΔS(t, a, x)da,

∂ΔM
∂t = −βM0ΔJ − βJ0ΔM − dSΔM + ΔS(t, τ, x).

(4.2)

Near the equilibrium (J,M) = (0,Mτ
max), it gives{

∂ΔJ
∂t = DI

∂2ΔJ
∂x2 + βMτ

maxΔJ − dIΔJ + βb(Mτ
max)

1−edY τ

dY
ΔJ,

∂ΔM
∂t = −βMτ

maxΔJ − dSΔM + ΔS(t, τ, x),
(4.3)

where

ΔS(t, τ, x) =
b′(Mτ

max)√
4πDY τ

e−dY τ

∫ ∞

−∞
ΔM(t− τ, y)e−(x−y)2/(4DY τ)dy

− β

∫ ∞

−∞
dy

∫ τ

0

F (τ − v,M0, J0)ΔJ(t− v, y)e−dY v e
−(x−y)2/(4DY v)

√
4πDY v

dv.

Looking for a traveling wavefront ΔJ = f1(x + ct), ΔM = g(x + ct), we have from
(4.3) that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cf ′
1 = DIf

′′
1 + f1(βM

τ
max − dI +

βb(Mτ
max)

dY
(1 − e−dY τ )),

cg′ = −βMτ
maxf1 − dSg +

b′(Mτ
max)√

4πDY τ
e−dY τ

∫∞
−∞ g(y − cτ)e−(ξ−y)2/(4DY τ)dy

− β
∫∞
−∞ dy

∫ τ

0
F (τ − v,M0, J0)f1(y − cv)e−dY v

√
1

4πDY v e
−(ξ−y)2/(4DY v)dv.

(4.4)

This is a linear system of functional differential equations with mixed arguments. The
corresponding eigenvalues are determined by either

λ2 − c

DI
λ +

k1

DI
= 0(4.5)

or

−dS + e−dY τ b′(Mτ
max)e

αλ2−λcτ = c λ,

where

k1 = βMτ
max − dI +

βb(Mτ
max)

dY
(1 − e−τdY ).

Solving (4.5) yields

λ1,2 =
c±

√
c2 − 4k1DI

2DI
.
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150 CHUNHUA OU AND JIANHONG WU

The corresponding eigenvectors to the following system, which is equivalent to (4.4)
by letting f2 = f ′

1,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f ′
1 = f2,

DIf
′
2 = cf2 − f1(βM

τ
max − dI +

βb(Mτ
max)

dy
(1 − e−dyτ )),

cg′ = −βMτ
maxf1 − dSg +

b′(Mτ
max)√

4πDY τ
e−dY τ

∫∞
−∞ g(y − cτ)e−(ξ−y)2/(4DY τ)dy

− β
∫∞
−∞ dy

∫ τ

0
S0(τ − v)f1(y − cv)e−dY v

√
1

4πDY v e
−(ξ−y)2/(4DY v)dv

are

�v1 =

⎛
⎝ 1

λ1

0

⎞
⎠ , �v2 =

⎛
⎝ 1

λ2

0

⎞
⎠ .

When

0 < c < 2
√
k1DI ,

the eigenvalues λ1,2 are complex and the eigensolutions are oscillatory and can be
negative. This is not biologically meaningful. Therefore, a natural condition for the
existence of traveling wavefronts starting from (0,Mτ

max) is

c ≥ cmin(τ) := 2
√
βMτ

maxDI

√
1 − dI

βMτ
max

+
b(Mτ

max)

Mτ
maxdY

(1 − e−dY τ )(4.6)

= 2
√
βMτ

maxDI

√
1 − C0(τ).

We should mention that the minimal speed can also be expressed as

cmin(τ) = 2
√
βDI

√
Mτ

max + b(Mτ
max)

1 − e−dY τ

dY
− dI

β
,

from which we find the speed cmin depends not only on the diffusive coefficient DI

and the transmission rate β, but also on the difference between the carrying capacity

Mτ
max + b(Mτ

max)
1−e−dY τ

dY
and the critical threshold value dI/β.

We now argue that it is impossible for a positive trajectory to go from (0,Mτ
max)

to (0, 0). To see this, linearizing around (0, 0), we obtain⎧⎨
⎩

∂ΔJ
∂t = DI

∂2ΔJ
∂x2 − dIΔJ,

∂ΔM
∂t = −dSΔM + b′(0)√

4πDY τ
e−dY τ

∫∞
−∞ ΔM(t− τ, y)e−(x−y)2/(4DY τ)dy.

This gives, by substituting ΔJ = f1(x + ct), ΔM = g(x + ct), the following:{
cf ′

1 = DIf
′′
1 − dIf1,

cg′ = −dSg + b′(0)√
4πDY τ

e−dY τ
∫∞
−∞ g(y − cτ)e−(ξ−y)2/(4DY τ)dy.

(4.7)

Thus at (0, 0), the eigenvalues satisfy[
λ

(
λ− c

DI

)
− dI

DI

] [
1

c

(
−dS + e−dY τ b′(0)eαλ

2−λcτ
)
− λ

]
= 0.(4.8)
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MODELS FOR SPATIAL SPREAD OF RABIES 151

The second factor corresponds to the second equation of (4.7) that is in fact decoupled
from the first equation of (4.7).

By (3.9) it is easy to see that every eigenvalue to equation

1

c

(
−dS + e−dY τ b′(0)eαλ

2−λcτ
)
− λ = 0

cannot be negative and real, and hence there is no positive solution g such that
limt→∞ g(t) = 0. This means that there’s no positive orbit of (2.7)–(2.8) starting
from (0,Mτ

max) and approaching (0, 0).
So the solution starting from (0,Mτ

max) could arrive at (Jτ
∗ ,M

τ
∗ ) under the con-

dition (4.6). The asymptotic behavior of traveling wavefronts approaching (Jτ
∗ ,M

τ
∗ )

depends on eigenvalues of system (4.2) near the equilibrium (Jτ
∗ ,M

τ
∗ ). If all the

eigenvalues with negative real parts are complex, then the traveling wave will tend to
(Jτ

∗ ,M
τ
∗ ) with oscillatory damping. Otherwise it will approach (Jτ

∗ ,M
τ
∗ ) monotoni-

cally. We will see numerical evidence for oscillatory damping of wave patterns in later
sections.

4.2. A rigorous proof of traveling wavefronts with large wave speeds.
In this section, the existence of traveling wavefronts is rigorously established for sys-
tem (2.7)–(2.8). To present our result, we first show the existence of a heteroclinic
connection for a nondiffusive delayed system and then show that this is perturbed to
a traveling wavefront with large wave speed for (2.7)–(2.8).

4.2.1. Heteroclinic connection for a nondiffusion delay system. We now
study the heteroclinic connection of the delayed system⎧⎨

⎩
dJ
dt = βMJ − dIJ + βJ

∫ τ

0
b(M(t− a))e

∫ a
0

−(dY +βJ(t−s))dsda,

dM
dt = −βMJ − dSM + b(M(t− τ))e

∫ t
t−τ

−(dY +βJ(s))ds,
(4.9)

which is a reduced version of (2.7)–(2.8) when DI = DY = 0. It is easy to see that
(4.9) has three equilibria: E1 := (0, 0), E2 := (0,Mτ

max), and E3 := (Jτ
∗ ,M

τ
∗ ).

For initial continuous data (J,M) = (j0(s),m0(s)) ≥ 0 for s ∈ [−τ, 0] with
(j0(0),m0(0)) > 0, we claim that

(J(t),M(t)) > 0

for all t > 0. Indeed, dividing the first equation in (4.9) by J and integrating it from
0 to t, we have

J(t) = J(0) exp

(
βM − dI + β

∫ τ

0

b(M(t− a)e
∫ a
0

−(dY +βJ(t−s))ds

)
> 0.

We then use the variation-of-constants formula in consecutive interval [0, τ ], [τ, 2τ ], . . .
to obtain

M(t) > 0

for t ≥ 0.
When τ = 0, the above system reduces to the ODE system{

dJ
dt = βMJ − dIJ,

dM
dt = −βMJ − dSM + b(M).

(4.10)
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152 CHUNHUA OU AND JIANHONG WU

Obviously, the three equilibria reduces to E1 = (0, 0), E2 = (0,M0
max), and E3 =

(J0
∗ ,M

0
∗ ) = ( 1

β (−dS + b0e
−ādI/β), dI

β ), and we have J0
∗ > 0 if and only if C0(0) =

dI

βM0
max

< 1.

Theorem 4.1. When τ = 0 and C0(0) = dI

βM0
max

< 1, system (4.9) has a hetero-

clinic orbit (J0(t),M0(t)) connecting E2 and E3.
Proof. First, we prove that the third equilibrium E3 is a global attractor in the

sense that it attracts every positive solution of (4.9) when τ = 0. To see this, define
a Lyapunov function as

V =

[
M −M0

∗ −M0
∗ log

M

M0
∗

]
+

[
J − J0

∗ − J0
∗ log

J

J0
∗

]
.

Differentiating the function V along the solution (4.10) yields

dV

dt
= b0(e

−āM − e−ādI/β)

(
M − dI

β

)
< 0

provided that M �= dI/β. This means that the equilibrium E3 is a global attractor
by LaSalle’s well-known invariance principle. Linearizing (4.10) around E2 gives(

βM0
max(1 − C0(0)) − λ 0

−βM0
max −dS + b′(M0

max) − λ

)

and the following characteristic equation:

(βM0
max − dI − λ)(−dS + b′(M0

max) − λ) = 0.(4.11)

For λ1 = βM0
max(1−C0(0)) > 0, we find an eigenvector �v1 which points into the first

quadrant of the J −M plane. Therefore, the solution starting from the local unstable
manifold of E2 along the �v1 direction will permanently stay in the first quadrant and
tends to (J0

∗ ,M
0
∗ )T as t → ∞ due to the global attractivity of E3. This completes

the proof.
When τ �= 0, deriving the global stability of the equilibrium E3 is nontrivial. Even

for the local stability, providing an explicit criterion is not easy. To demonstrate this,
we linearize (4.9) around E3 to obtain

dJ

dt
=

(
βMτ

∗ − dI + βb(Mτ
∗ )

1 − e−(dY +βJτ
∗ )τ

(dY + βJτ
∗ )

)
J(4.12)

− β2Jτ
∗ b(M

τ
∗ )

∫ τ

0

e−(dY +βJτ
∗ )a

∫ a

0

J(t− s)dsda + βJτ
∗M

+ βJτ
∗ b

′(Mτ
∗ )

∫ τ

0

M(t− a)e−(dY +βJτ
∗ )ada

and

dM

dt
= −βMτ

∗ J − βb(Mτ
∗ )e−(dY +βJτ

∗ )τ

∫ τ

0

J(t− s)ds(4.13)

+ βJτ
∗M − dSM + b′(Mτ

∗ )e−(dY +βJτ
∗ )τM(t− τ).

In order to understand the linear system (4.12) and (4.13), we first consider the special
case when τ = 0. In this case the characteristic equation is given by

λ2 + (βJ0
∗ + dS − b′(M0

∗ ))λ + β2M0
∗J

0
∗ = 0.
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MODELS FOR SPATIAL SPREAD OF RABIES 153

Since (4.10) yields βJ0
∗ + dS = b(M0

∗ )/M0
∗ , the above equation becomes

λ2 + āb0e
−āM0

∗λ + β2M0
∗J

0
∗ = 0.

Hence, the eigenvalues are given by

λ1,2 =
−āb0e

−āM0
∗ ±

√
(āb0)2e−2āM0

∗ − 4β2M0
∗J

0
∗

2
,(4.14)

the real parts of which are negative as long as J0
∗ > 0 (or, equivalently, C0(0) < 1).

Because λ depends continuously on the parameter τ , we conclude that there exists a
number τ1 > 0 so that when τ < τ1, all the eigenvalues of the linearization at E3 have
a negative real part.

At the equilibrium E2 when τ �= 0, we have the following characteristic equation:

(1 − C0(τ) − λ) (−dS + b′(Mτ
max)e

−dY τe−λτ − βMτ
maxλ) = 0.(4.15)

It can be shown easily that there exists a constant τ2 so that equilibrium E2 is
hyperbolic for C(τ) < 1 and τ ∈ [0, τ2), where τ2 is the first positive number satisfying

|b′(Mτ2
max)e

−dyτ2 | > |dS |, and τ2 =
π − arccos ds

|b′(Mτ2
max)e−dyτ2 |√

(b′(Mτ2
max)e−dyτ2)2 − d2

s

.(4.16)

We should mention that formula (4.16) can be obtained by the well-known Hopf
bifurcation theory, and that if there is no τ2 satisfying (4.16), then we assume that
τ2 = ∞.

With the above preparation, we are now ready to prove a theorem concerning the
heteroclinic connection for (4.9) when τ �= 0. To present our result, we first introduce
some notation.

• For a vector x ∈ R2, we denote ||x|| = ||x||R2 .
• Let X(R,R2) be the space of continuous and bounded functions from R to
R2 equipped with the standard norm ||φ|| = sup{||φ(t)||, t ∈ R}.

• Let X1 = X1(R,R2) = {φ ∈ X : φ′ ∈ X}.
• Let X0 = {φ ∈ X : limt→±∞ φ = 0} and X1

0 = {φ ∈ X0 : φ′ ∈ X0}.
Under the conditions in Theorem 3.1, we have the following result.
Theorem 4.2. Assume that C0(τ) < 1. Then there exists a positive constant

δ so that for 0 ≤ τ ≤ δ, equation (4.9) has a heteroclinic orbit (J(t),M(t)) which
connects E2 and E3.

Proof. We first introduce the transformation

U =
J(t)

Jτ
∗

, V =
Mτ

max −M

Mτ
max −Mτ

∗

to get rid of the τ -dependence of E2 and E3. Substituting this into (4.9), we have the
following system for U and V :⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dU
dt = β(Mτ

max − V (Mτ
max −Mτ

∗ ))U − dIU

+ βU
∫ τ

0
b̄(V (t− a)e

∫ a
0

−(dY +βJτ
∗U(t−s))dsda,

dV
dt =

βJτ
∗ (Mτ

max−V (Mτ
max−Mτ

∗ ))U
Mτ

max−Mτ
∗

+
dS(Mτ

max−V (Mτ
max−Mτ

∗ ))
Mτ

max−Mτ
∗

− b̄(V (t−τ)
Mτ

max−Mτ
∗
e
∫ t
t−τ

−(dY +βJτ
∗U(s))ds,

(4.17)
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154 CHUNHUA OU AND JIANHONG WU

where b̄(V (t − τ)) = b(Mτ
max − V (Mτ

max −Mτ
∗ )). Equation (4.17) has two equilibria

E2 := (0, 0) and E3 := (1, 1). In particular when τ = 0, we know from Theorem 4.1
that there exists a heteroclinic solution (U0(t), V0(t)) that connects two points E2 and
E3 and satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dU0

dt = F1(u, v)|u=U0,v=V0
= β(M0

max − V0(M
0
max −M0

∗ ))U0 − dIU0,

dV0

dt = F2(u, v)|u=U0,v=V0
=

βJ0
∗(M0

max−V0(M
0
max−M0

∗ ))V0

M0
max−M0

∗
+

dS(M0
max−V (M0

max−M0
∗ ))

M0
max−M0

∗

− b̄(V0(t))
M0

max−M0
∗
.

(4.18)

Note that the relation between Mτ
max and M0

max, M
τ
∗ and M0

∗ , and Jτ
∗ and J0

∗
can be described as

Mτ
max = M0

max + O(τ), Mτ
∗ = M0

∗ + O(τ), Jτ
∗ = J0

∗ + O(τ).(4.19)

We now show that there exists a constant δ such that (4.17) has a heteroclinic orbit
(U(t), V (t)) connecting two points E2 and E3 provided τ < δ.

First of all, we let W1 = U − U0 and W2 = V − V0 and obtain the following
equation for the remainder (W1,W2):⎧⎨

⎩
dW1

dt = ∂F1(U0,V0)
∂u W1 + ∂F1(U0,V0)

∂v W2 + Γ1(t, τ,W1,W2),

dW2

dt = ∂F2(U0,V0)
∂u W1 + ∂F2(U0,V0)

∂v W2 + Γ2(t, τ,W1,W2),
(4.20)

where

Γ1(t, τ,W1,W2)

= β(Mmax − (V0 + W2)(M
τ
max −Mτ

∗ ))(U0 + W1) − dI(U0 + W1)

+ β(U0 + W1)

∫ τ

0

b̄(V0(t− a) + W1(t− a))e
∫ a
0

−(dY +βJτ
∗ (U0(t−s)+W (t−s)))dsda

− F1(U0, V0) −
(
∂F1(U0, V0)

∂u
W1 +

∂F1(U0, V0)

∂v
W2

)
(4.21)

and

Γ2(t, τ,W1,W2) =
βJτ

∗ (Mτ
max − (V0 + W2)(M

τ
max −Mτ

∗ ))(U0 + W1)

Mτ
max −Mτ

∗

+
dS(Mτ

max − (V0 + W2)(M
τ
max −Mτ

∗ ))

Mτ
max −Mτ

∗
(4.22)

− b̄(V0(t− τ) + W2(t− τ))

Mτ
max −Mτ

∗
e
∫ t
t−τ

−(dY +βJτ
∗ (U0(s)+W1(s)))ds

− F2(U0, V0) −
(
∂F2(U0, V0)

∂u
W1 +

∂F2(U0, V0)

∂v
W2

)
.

Define an operator T : Ψ ∈ X1 → X from the homogeneous part of (4.20) as
follows:

TΨ = Ψ′ −A(t)Ψ, t ∈ R,(4.23)
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MODELS FOR SPATIAL SPREAD OF RABIES 155

where

A(t) =

⎛
⎝ ∂F1(U0(t),V0(t))

∂u
∂F1(U0(t),V0(t))

∂v

∂F2(U0(t),V0(t))
∂u

∂F2(U0(t),V0(t))
∂v

⎞
⎠ .

We remark that (U0(t), V0(t)) tends, respectively, to E2 and E3 when t → −∞ and
t → ∞. This means that the linear operator T is asymptotically hyperbolic as t → ±∞
in the sense that

Ψ′ −A(−∞)Ψ = 0 and Ψ′ −A(∞)Ψ = 0

are hyperbolic due to (4.11) and (4.14). Furthermore, we know that every eigenvalue
for the linear equation Ψ′ − A(∞)Ψ = 0 has a negative real part. Define the formal
adjoint equation of TΨ = Ψ′ −A(t)Ψ = 0 as

Φ′ + AT (t)Φ = 0, t ∈ R.(4.24)

We now divide our proof into five steps.
Step 1. We claim that if Φ ∈ X is a solution of (4.24) and Φ is C1-smooth, then

Φ = 0. Moreover, we have R(T ) = X, where R(T ) is the range of T .
Indeed, assuming to the contrary that Φ is not zero at some point t0, then we can

solve (4.24) to obtain

Φ(t) = Φ(t0)e
−

∫ t
t0

AT (t)dt
.

Since when t → ∞, AT (t) tends to AT (∞) whose eigenvalues are negative, we deduce
that

lim
t→∞

Φ(t) = ∞,

which contradicts the fact that Φ is bounded.
By the classical Fredholm theory, this claim means further that R(T ) = X in the

sense that for any Θ ∈ X, there exists Ψ ∈ X1 so that

TΨ = Θ.

Step 2. Let Θ ∈ X0 be given. If Ψ is a bounded solution of TΨ = Θ, then
Ψ ∈ X1

0 . In fact, we need to show only that

lim
t→±∞

Ψ(t) = 0.

Actually when t → ∞, equation

Ψ′ −A(t)Ψ = Θ(4.25)

asymptotically tends to

Ψ′ −A(∞)Ψ = 0.(4.26)

Note that for (4.26), the ω-limit set of every bounded solution is just the critical
point Ψ = 0. Using the result from [21] or [18], every bounded solution of (4.25) also
satisfies

lim
t→∞

Ψ(t) = 0.
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156 CHUNHUA OU AND JIANHONG WU

When inverting the time from −t to t, we can similarly prove that

lim
t→−∞

Ψ(t) = 0.

Step 3. We rewrite (4.20) as

W ′(t) + W = W + A(t)W + Γ(t),(4.27)

where

W = (W1,W2)
T , Γ(t) = (Γ1(s, τ,W1,W2),Γ2(s, τ,W1,W2))

T .

Changing (4.27) into an integral equation gives

W (t) =

∫ t

−∞
e−(t−s)I(W (s) + A(s)W (s) + Γ(s))ds,(4.28)

where I is the 2 × 2 identity matrix and W (t) = (W1(t),W2(t))
T .

Define a linear operator L : X0 → X0 as follows:

L(W )(t) = W (t) −
∫ t

−∞
e−(t−s)I(W (s) + A(s)W (s))ds, W ∈ X0.

Obviously L(W ) ∈ X0 if W ∈ X0. Now we prove that R(L) = X0, that is, for each
Z ∈ X0, we can have a W ∈ X0 so that

W (t) −
∫ t

−∞
e−(t−s)I(W (s) + A(s)W (s))ds = Z(t).

To see this, assuming that ξ = W − Z, we obtain an equation for ξ as follows:

ξ(t) =

∫ t

−∞
e−(t−s)I(ξ(s) + A(s)ξ(s))ds +

∫ t

−∞
e−(t−s)I(Z(s) + A(s)Z(s))ds.

Differentiating both sides yields

T (ξ)(t) = ξ′(t) −A(t)ξ(t) = Z(t) + A(t)Z(t).(4.29)

Using the results that R(T ) = X in Step 2, one can obtain that there exists a solution
ξ for (4.29) and ξ ∈ X1

0 . Returning to the variable W , we have W = ξ + Z ∈ X0.
Step 4. Let N(L) be the null space of the operator L. Define N⊥(L) = X0/N(L).

It is clear that N⊥(L) is a Banach space. If we let S = L|N⊥(L) be the restriction

of L on N⊥(L), then S : N⊥(L) → X0 is one-to-one and onto. By the well-known
Banach inverse operator theorem, we have that S−1 : X0 → X0/N(L) is a linear
bound operator.

Step 5. When L is restricted on N⊥(L), equation (4.28) can be written as

S(W )(t) =

∫ t

−∞
e−(t−s)IΓ(s,W, τ)ds

or

W (t) = S−1

(∫ t

−∞
e−(t−s)IΓ(s,W, τ)ds

)
.(4.30)
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MODELS FOR SPATIAL SPREAD OF RABIES 157

The term
∫ t

−∞ e−(t−s)IΓ(s)ds on the right-hand side can be estimated. Actually

when τ is small and W ∈ X1
0 , from (4.19), (4.21), and (4.22), we have the following

estimations: ∣∣∣∣
∫ t

−∞
e−(t−s)Γ1(s)ds

∣∣∣∣ = O(τ) + O(τ ||W ||X0
) + O(||W ||2X0

)(4.31)

and ∣∣∣∣
∫ t

−∞
e−(t−s)Γ2(s)ds

∣∣∣∣ = O(τ) + O(τ ||W ||X0) + O(||W ||2X0
)(4.32)

as τ → 0 and ||W || → 0. To derive (4.31) and (4.32), we have made use of the
following result:∫ t

−∞
e−(t−s) (Wi(s− τ)) −Wi(s)) ds = O(τ ||W ||), i = 1, 2.(4.33)

Actually, if W ∈ X1
0 , by exchanging the order integration and by integration by parts,

we have ∣∣∣∣
∫ t

−∞
e−(t−s)

(
Wi(s− τ) −Wi(s)

)
ds

∣∣∣∣
=

∣∣∣∣τ
∫ t

−∞
e−(t−s)

∫ 1

0

W ′
i (s− τu)duds

∣∣∣∣
=

∣∣∣∣τ
∫ 1

0

∫ t

−∞
e−(t−s)W ′

i (s− τu)dsdu

∣∣∣∣
=

∣∣∣∣τ
∫ 1

0

(
Wi(t− τu) −

∫ t

−∞
e−(t−s)Wi(s− τu)ds

)
du

∣∣∣∣
= O(τ ||W ||), i = 1, 2,

leading to (4.33). Using the fact that X1
0 is dense in X0, we conclude that (4.31) and

(4.32) hold for any W ∈ X0.
Let B(σ) denote the closed ball in X0 with radius σ and center at the origin. Since

the norm ||S−1|| is independent of τ , it follows from (4.31) and (4.32) that there exist
σ > 0, δ > 0, and 0 < ρ < 1 such that for all τ ∈ (0, δ] and ϕ,ψ,W ∈ B(σ) ⊂ X0,∣∣∣∣

∣∣∣∣S−1

(∫ t

−∞
e−(t−s)IΓ(s,W, τ)ds

)∣∣∣∣
∣∣∣∣ ≤ 1

3
(||W || + σ)

and∣∣∣∣
∣∣∣∣S−1

(∫ t

−∞
e−(t−s)IΓ(s, ϕ, τ)ds

)
− S−1

(∫ t

−∞
e−(t−s)IΓ(s, ψ, τ)ds

)∣∣∣∣
∣∣∣∣ ≤ ρ||ϕ− ψ||.

Hence, S−1
(∫ t

−∞ e−(t−s)IΓ(s,W, τ)ds
)

is a uniform contractive mapping of W ∈ X0∩
B(σ). By using the classical fixed point theorem, it follows that for τ ∈ [0, δ], (4.30)
has a unique solution W ∈ X0/N(L). Returning to the original variable, we get that
(W1 + U0, W2 + V0) is a heteroclinic connection between E2 and E3. This completes
our proof.
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158 CHUNHUA OU AND JIANHONG WU

Remark 4.3. When τ ≥ δ, we can rescale the time variable t → tτ to obtain{
dJ
dt = τβMJ − τdIJ + τβJ

∫ 1

0
b(M(t− a)e

∫ a
0

−(dY +βJ(t−s))dsda,
dM
dt = −τβMJ − τdsM + τb(M(t− 1))e

∫ t
t−1

−(dY +βJ(s))ds.
(4.34)

At τ = δ, by Theorem 4.2, equation (4.34) has a heteroclinic connection. We can as
well show that if C0(τ) < 1, there exists a constant δ1, δ < δ1 < min{τ1, τ2}, such that
if δ ≤ τ ≤ δ1, equation (4.9) has a heteroclinic orbit (J(t),M(t)) which connects E2

and E3. The proof is the same as that of Theorem 4.2. The method is referred as to a
homotopy approach (see [5]); namely, we view τ as a varying parameter and start with
(4.34), and extend the result from δ to δ1 ∈ (δ,min{τ1, τ2}) by replacing the arguments
in Step 1 to Step 5 by those of the parallel theory in linear delay differential equations.
It would be interesting to see how far this homotopy argument can be applied to push
the upper bound τ .

4.2.2. Traveling wavefronts with large wave speeds. We now consider the
reaction diffusion system (2.7)–(2.8) for which we will use Theorem 1.1 in [8] to give
traveling wavefronts in the case when the wave speed c is large. The main idea of this
result is simple: if the nondiffusive equation has a heteroclinic connection between E2

and E3, then the diffusive system has a family of traveling wavefronts from E2 to E3

with large wave speeds.
Theorem 4.4. Assume that τ ≤ δ. Then there exists a c∗ > 0 such that for any

c ≥ c∗, system (2.7)–(2.8) has a traveling wavefront (J(t, x),W (t, x)) = (u(ct + x),
v(ct + x)) which connects E2 and E3.

Proof. First we observe that if there is no diffusion, that is, if DI = 0 and DY = 0,
our equations (2.7)–(2.8) reduce to (4.9). When τ ≤ δ, the equilibria E2 and E3 are
hyperbolic, and, in particular, all the eigenvalues to E3 have negative real parts. From
Theorem 4.2, we know that when τ ≤ δ, equation (4.9) has a heteroclinic connection.
So conditions (H1), (H2), and (H3) in [8, Theorem 1.1] are satisfied. Last, for our

kernel function f(x) = 1√
4π

exp(−y2

4 ), it is easy to see that

1√
4π

∫ ∞

−∞
exp

(
−y2

4

)
|y|dy < ∞.

So all conditions in [8, Theorem 1.1] are satisfied. Hence by [8, Theorem 1.1], we
conclude that there exists a c∗ > 0 so that for any c > c∗, system (2.7)–(2.8) has
a traveling wavefront (J(t, x),W (t, x)) = (u(ct + x), v(ct + x)) which connects E2

and E3.

4.3. Numerical simulations. In this subsection, we will numerically study the
traveling wavefronts of our model (2.7)–(2.8).

We first describe our numerical methods. We give initial data

J(s, x) = j0(s, x), M(s, x) = m0(s, x), −τ ≤ s ≤ 0, x ∈ [−L,L],

and solve (2.7) and (2.8) to obtain (J(t, x),M(t, x)) in a sufficiently large interval
[−L,L] for t ≥ 0 and some L > 0. As usual, in the process of finding numerical
solutions, we take the homogeneous Neumann boundary conditions at the end points
x = ±L. Depending on other parameters in our model and the solution patterns, we
may adjust the parameter L from 100 to 1000 so as to present a clear view of our
graphs. We take a constant h satisfying

Mτ
∗ < h < Mτ

max.
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MODELS FOR SPATIAL SPREAD OF RABIES 159

For any fixed t, we find the first position x = z(t, h) > −L so that

M(t, z(t, h)) = h.

Choose a sequence {tj}∞j=1, and consider

(J(tj , x + z(tj,h)),M(tj , x + z(tj,h))).(4.35)

If the numerical solutions (J(tj , x + z(tj,h)), M(tj , x + z(tj,h))), j = 1, 2, 3, . . . , con-
verge uniformly to a nonconstant function (J(·),M(·)) which satisfies the boundary
conditions

lim
ξ→−∞

(J(ξ),M(ξ)) = E2 and lim
ξ→+∞

(J(ξ),M(ξ)) = E3,

then the limit (J(·),M(·)) is viewed as a traveling wavefront. Theoretically, this
process has also been used to prove the existence of traveling wavefronts for certain
monotone dynamics; see [4]. The limit

lim
j→∞

z(tj+1,h) − z(tj,h)

tj+1 − tj
(4.36)

is correspondingly thought of as the asymptotic wave speed of the traveling wavefront.
We now discuss the parameter values from relevant references [2, 15, 16]. First of

all, we note that [16, p. 126] suggests 9 to 12 months for the maturation time, and we
will therefore restrict our attention to the range of τ to [0.5, 0.8] (year). The diffusion
coefficient DI = 60 km2/year will be used, based on the value in [15].

For red foxes, the average per capita intrinsic death rate is 0.5 year−1 [2], so we
take dS = 0.5 year−1. Since it is known that the death rate of juvenile foxes is greater
than that of adult foxes, we take dY = 0.8 year−1 [16, p. 127].

An infective fox first goes through an incubation period that can vary from 12
to 110 days. A life expectancy of about 35 days gives dI as approximately 10 year−1.
For the transmission coefficient, we derive β = 10 km2/year by using formula (5)
in [15]. The number of cubs in a litter ranges from 1 to 10, with a mean of 4.7 in
Europe [2, 17, 16, 30, 31]. Sex ratios are in general close to unity at birth, and the
pregnancy rate is in the region of 90% [17, 16], with a further 10% of vixens failing to
produce offspring [2]. In view of this information, the average per capita birth rate
b0 is taken to be 1.9 year−1.

We now calculate the minimal wave speed cmin. The carrying capacity S0 is
assumed to be 2 foxes per km2, as in Figure 4 of [2], and it is the sum of the population
of the immature and the adult foxes when they reach the stable equilibria in the
disease-free case, that is,

S0 = Mτ
max + b(Mτ

max)
1 − e−dY τ

dY
.

We need further information in order to estimate the maturation time, which is
related to the parameter ā in the birth function. By Table 26 in [16], the number of
adult foxes per km2 varies from 0.5 to 1.8, and the number of litters found per km2

varies from 0.16 to 0.6. Thus we take the mean value of the ratio of the adult foxes
to the litter foxes as 1.15 : 0.38. Using the facts S0 = Mτ

max + b(Mτ
max)

1−e−dY τ

dY
= 2

and

Mτ
max : b(Mτ

max)
1 − e−dY τ

dY
= 1.15 : 0.38,
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Fig. 1. Graph of cmin(τ) as a decreasing function of τ .

we calculate that the carrying capacity is 2 when the parameters τ = 0.5305 and

ā =
1

S0

(
1 +

dS
dY

(edY τ − 1)

)
ln

b0
dSedY τ

= 0.6057.

The result calculated in [15] gives the minimal speed cold = 48.9898 km/year.
In our calculation, cmin is a decreasing function of τ , with cmin = 53.757 km/year if
τ = 0; and

cmin = 2
√
βMτ

maxDI

√
1 − dI

βMτ
max

+
b(Mτ

max)

Mτ
maxdY

(1 − e−dY τ )

= 2
√
βDI

√
Mτ

max + b(Mτ
max)

(1 − e−dY τ )

dY
− dI

β

= 43.549 km/year

if τ = 0.8. The graph of cmin as a function of τ is given in Figure 1.
To describe numerically the solution patterns, we first scale the variable x by√

DIx so that the diffusion rate for rabid foxes in our simulations becomes constant 1.
The length L of the half interval is taken to be 300. We use the the Neumann boundary
condition and the initial values

M(t, x) =

{
Mτ

max, −300 ≤ x ≤ 150, τ ≤ t ≤ 0,
0.6, 150 < x ≤ 300, τ ≤ t ≤ 0,

and

J(t, x) =

{
0, −300 ≤ x ≤ 150, τ ≤ t ≤ 0,

0.05, 150 < x ≤ 300, τ ≤ t ≤ 0.

A finite difference method coupled with iterative techniques is used in our numerical
approximation via the software MATLAB, and the numerical result when DY = 0
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Fig. 2. Graph of solutions M (upper) and J (lower) at t = 40 years, here τ = 0.8, dI = 10,
dS = 0.5, dY = 0.8, S0 = 2, b0 = 2, and β = 10. There exist long wave tails for both J and M .

and τ = 0.8 shows that the solution stabilizes to a traveling wavefront with minimal
speed 43.549 km/year. The numerical result when t = 40 years is shown in Figure 2.

Fixing other parameters, we carry out simulations in the cases when DY = 0.25DI

and DY = DI . It is found that in both cases, the spreading speeds stabilize to the
same minimal wave speed 43.549 km/year and the change of the diffusion rate DY

has impact only on the amplitudes and frequencies of oscillation for the long tail
in the traveling wave, and its impact on the shape of the solution is less apparent
if we confine the value DY /DI to the interval [0, 1]. This result is what we should
expect because the maturation time τ is relatively small that the contribution of DY

to the pattern of solutions is limited. See Figure 3 for the comparison of M up to
t = 40 years between the case DY /DI = 0 and the case DY /DI = 1.

Our simulations agree with the theoretical analysis in the above sections that the
minimal wave speed of rabies depends on the maturation time τ , while the amplitude
and frequencies of oscillations of the long tail are influenced also by the diffusion rate
of juvenile foxes.

We conclude with a remark about the limitation of this work. We assumed two
age classes and homogeneity within each age class. Namely, many parameters in the
model such as death and diffusion rates and force of infection are all assumed to be
constants that depend on the age class but are independent of the precise age. This is
certainly only an approximation to the biological reality, and parameter values should
be thought of as some sort of averages during the whole juvenile or adult period. For
example, newborn susceptible juveniles would not be moving at all and the search for
new territories by juveniles must happen only during a particular phase of childhood.
In [16], it was noted that breeding season varies from region to region but usually
begins early in the year, then in the autumn following birth the pups of the litter will
disperse to their own territories. Ideally, we should use age-dependent coefficients and
parameters, and hence the model would become an age-structured reaction diffusion
equation that cannot be reduced to a system of reaction diffusion equations with
delayed nonlocal nonlinearities.
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Fig. 3. Graph of solutions M for DY /DI = 0 (solid line) and DY /DI = 1 (dashed line) where
t = 40 years.
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