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Abstract

The Vector Integration to Endpoint (VITE) circuit describes a real-time neural network model simulating behavioral and neurobiological

properties of planned arm and hand movements by the interaction of two populations of neurons. We analyze the speed-accuracy trade-off

generated by this circuit, generalized to include delayed feedback. With delay, two important new properties of the circuit emerge: a

breakdown of Fitts’ law when the movement time is small relative to the delay; and a positive Fitts’ law Y-intercept. This breakdown of Fitts’

law for tasks with small Index of Difficulty has been previously observed experimentally, and we suggest it may be attributed at least in

part to delay effects in the nervous system elaborated by the model. Additionally, this gives a theoretical explanation for why positive Fitts’

law Y-intercept should occur, and that it is related to the delay within the movement circuit.

q 2005 Published by Elsevier Ltd.
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1. Introduction

The Vector Integration To Endpoint (VITE) circuit

(Bullock & Grossberg, 1988) describes a real-time neural

network model simulating behavioral and neurobiological

properties of planned arm movements (Bullock & Gross-

berg, 1992). Unlike other models of motor control, the VITE

model does not rely on explicit trajectories or kinematic

invariants represented within the model. Instead, the

movements generated by the VITE circuit emerge from

the dynamical interaction of network variables. Quantitative

simulations of the model provide results consistent with data

pertaining to numerous kinematic properties, including the

speed-accuracy trade-off of movements (Fitts’ law (Fitts,

1954, 1964) and Woodworth’s law (Woodworth, 1899)),

isotonic arm movement properties, ‘error-correcting’ prop-

erties of isotonic contractions, velocity amplification during

target switching, velocity profile invariance and asymmetry,
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changes of velocity profile at higher speeds, automatic

compensation of staggered onset times for synergetic

muscles, the inverse relationship between movement

duration and peak velocity, and peak acceleration as a

function of movement amplitude and duration (Bullock &

Grossberg, 1988).

There are four variables in the VITE circuit. Two of these

are under active control of the subject: the Target Position

Command (TPC) which represents the final desired position of

the arm upon completion of the movement; the GO signal

(GO) which specifies the overall speed of movement as well as

the will to move at all. The two remaining variables are under

automatic control as part of a feedback loop: the Present

Position Command (PPC) is an internal representation of the

location of the arm, and the Difference Vector (DV) is the

difference between the TPC and PPC at any given time.

The synthesis of a movement trajectory involves the

interaction of the above-defined variables. The actual

outflow commands, which act on the arm muscles to

cause contraction, and consequently arm movement, are

generated by the PPC. Each outflow command moves the

arm toward the position coded for by the PPC. In order to

produce a continuous movement, there must be a succession

of PPCs. Only one constant TPC, which remains active
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Fig. 1. (A) The VITE circuit involving V(t): the activity of the agonist’s DV

population, P(t): the activity of the agonist’s PPC population, G(t): the GO

signal and T(t): the target position. (B) The VITE circuit with delay between

the two populations of neurons: t1 and t2 represent the signal delay from

the PPC population to the DV population, and from the DV population back

to the PPC population, respectively.
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during the entire movement, is required to generate the

appropriate trajectory.

The continuous computation of new PPCs relies on the

continuous computation of DVs. The DV, which encodes

the difference between the fixed TPC and the constantly

changing PPC, indicates the direction and amplitude

required to complete the movement. Difference vectors

are calculated in the motor cortex by a specific population

of vector cells that are sensitive to a broad range of

directions (Leonard, 1998). The DV is actually computed

by subtracting the PPC from the TPC. The PPC will

equal the TPC only when the DV is equal to zero. As a

result, the DV gets smaller and smaller as the arm

approaches the target position. The updating process that

occurs between the PPC and the DV is a negative

feedback loop whereby the DV is constantly reduced by

the movement of the PPC towards the TPC. Thus, the

PPC is a cumulative record of all past DVs which were

responsible for bringing the PPC towards the TPC (i.e.

the PPC integrates all past DVs). It must be noted here

that since we have two separate groups of neurons

interacting, the PPC activity may have reached the target

while the DV has not yet reached a value of zero.

Physically, this situation manifests itself as an overshoot

of the target, or movement error.

The GO signal exists in between the PPC and the DV

and acts as a multiplier for the circuit. It embodies the

concept of volition to planned arm movement velocity

(Bullock & Grossberg, 1989). A larger GO signal will

result in a faster movement and a smaller GO signal will

result in a slower movement. The GO signal is also

responsible for stopping movement before a trajectory is

complete. This is an important property of arm move-

ments that are determined to be dangerous before

completion.

The VITE network proposed in Bullock and Grossberg

(1988) is a system of non-linear differential equations

dV

dt
Za½KVðtÞCTðtÞKPðtÞ�; (1)

dP

dt
ZGðtÞ½VðtÞ�C; (2)

where V(t) is the activity of the agonist’s DV population,

P(t) is the activity of the agonist’s PPC population, G(t) is

the GO signal, T(t) is the target position input and:

½VðtÞ�CZ
VðtÞ; if VðtÞR0;

0; if VðtÞ!0:

(
(3)

While the choice of constant GO function G(t)ZG allows

tractable analysis of the above system, it is more realistic to

consider a GO function of the form G(t)ZG0g(t), where g(t) is

a monotonically increasing function (not necessarily continu-

ous). The function g(t) is called the GO onset function, and

describes the transient buildup of the GO signal after it is
switched on. The constant G0 is called the GO amplitude and

parameterizes how large the GO signal can become.

Bullock and Grossberg (1988) considers GO onset

functions of the form

gðtÞZ
tn

bn Cgtn
; if tR0;

0; if t!0;

8<: (4)

where b, gZ1 or 0 to generate PPC profiles through time

which are in quantitative accord with experimental data.

Specifically, if bZ1 and gZ0, then g(t) is a linear function

of time if nZ1 and faster-than-linear when nO1, and if

bZ1, gZ1, and nZ1 then g(t) is slower-than-linear.

See Fig. 1A, which contains a schematic diagram of the

VITE circuit
2. VITE model with delayed feedback

The VITE model is a negative feedback model whereby

two groups of interacting neurons participate in a continuous

updating process. It is natural to introduce time delay into

this neural network because of the characteristic of neurons

to behave as delay lines (Pauvert, Pierot-Deseilligny, &

Rothwell, 1998; Ugawa, Genba-Shimizu, & Kanazawa,

1995). As well, neurons which interact in a negative

feedback manner can often have longer associated delays

than neurons which do not (Shepherd, 1998). The vector cell

populations discussed in Bullock and Grossberg (1988) are

located in the cerebral cortex which was once thought to

contain cells which had a very fast response time to synaptic

input but has recently been given a moderate value of
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O20 ms (Koch, Rapp, & Segev, 1966). In the VITE model,

we are concerned with the interaction of groups of neurons

instead of single neurons, which may cause a greater delay

because of the greater dendritic interconnectivity, this

provides an additional stimulus for the introduction of

delay. For a further discussion see Beamish, Peskun, and Wu

(2005).

The incorporation of time delay into the VITE model

involves the defining of two distinct delays. The first is the

delay of the signal from the PPC population to the DV

population. The second is the delay from the DV population

back to the PPC population. These two delays will be

denoted by t1 and t2, respectively. The system of

differential Eqs. (1) and (2) that define the VITE model

must therefore be modified in the following way:

dV

dt
Za½KVðtÞCTðtÞKPðtKt1Þ�; (5)

dP

dt
ZGðtÞ½Vðt Kt2Þ�

C: (6)

See Fig. 1B, which contains a schematic diagram of the

delayed circuit.
3. Properties of movement trajectories

The system (5) and (6) is a delay differential system with

continuous but non-smooth right-hand side. Solutions of (5)

and (6) will be uniquely determined by the simple step-by-step

method once the initial values of V and P on [Kmax (t1,t2), 0]

are specified. Following Bullock and Grossberg (1988), we

suppose that the system initially starts out in an equilibrium

state such that the PPC equals the TPC for t!0 so that

V(t)Z0 and P(t) is constant on the aforementioned interval.

At time tZ0, a new TPC having T(t)OP(t) is activated

causing the PPC to increase towards a new equilibrium.

We first observe that the behavior of the system (5) and

(6) depends only on the sum of the delays t1Ct2 since, if

we let P*(t)ZP(tKt1), we obtain the equivalent system

V 0ðtÞZa½KVðtÞCT KP�ðtÞ�; (7)

P0
�ðtÞZG½VðtK ðt1 Ct2ÞÞ�

CZG½VðtKtÞ�C; (8)

where no delay term appears in Eq. (1). Without loss of

generality, we will, therefore, only consider the case of a

single delay t, where t1Z0 and t2Zt.

Initially, since V 0(0)Za[T(0)KP(0)]O0, the DV popu-

lation V(t) will be positive in some neighborhood t2[0,t0]

with t0O0. For as long as V(t) remains positive, we can

replace the cutoff function [V(t)]C in Eq. (6) with V(t). The

solution of the system (5) and (6) will, therefore, be the

same as the solution of the linear system

V 0ðtÞZa½KVðtÞCTðtÞKPðtÞ�; (9)
P0ðtÞZGðtÞVðtKtÞ; (10)

on the closed interval [0,t0].

For the case of zero delay (tZ0, the original VITE model),

if we make the additional simplifying assumptions of a

constant GO function G(t)ZG and target T(t)ZT, the system

(9) and (10) becomes the constant-coefficient linear system:

V 0ðtÞZa½KVðtÞCT KPðtÞ�; (11)

P0ðtÞZGVðtÞ: (12)

This system can be solved exactly, and there are three

possibilities for solution, depending on the discriminant of the

characteristic equation l2CalCaG:

I: Exponential solution. If aO4G, the system (11) and

(12) has an exponential solution where:

P0ðtÞZ
aG½T KPð0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2K4aG
p eKða=2Þt

�
eðt=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2K4aG

p

KeKðt=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2K4aG

p �
:

(13)

This satisfiesðN
0

P0ðtÞdt Z T KPð0Þ; (14)

and so, as t/N, the PPC approaches T with an arbitrarily

small error, or an undershoot occurs if the GO signal is

switched-off prematurely.

II: Critically damped solution. If aZ4G, the system (11)

and (12) has a critically damped solution with:

P0ðtÞZ ½T KPð0Þ�aGt eKða=2Þt: (15)

Again, this equation satisfies (14) and there is an

arbitrarily small error or overshoot.

III: Sinusoidal solution. If a!4G, the system (11) and

(12) has a sinusoidal solution with:

P0ðtÞZ
2aG½T KPð0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4aGKa2
p eKða=2Þt sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aGKa2

p

2
t

 !
: (16)

When tO t0Z ð2p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aGKa2

p
Þ, P 0(t)!0 and so the PPC

stops moving. The final PPC will be

Pðt0ÞZ Tð1CPð0ÞeKðap=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4aGKa2

p
ÞÞ; (17)

and so the completed movement has a movement time of

MTðGÞZ
2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4aGKa2
p ; (18)

and overshoots the target by:

EðGÞZ ½T KPð0Þ�eKðap=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4aGKa2

p
Þ: (19)

The constant GO function G can be eliminated from the

above equation to give an explicit relationship between the

overshoot distance and the movement time by substitution



Fig. 2. Graphs of PPC P(t) (top) and DV V(t) (bottom) with no delay (left) and delay tZ1 (right) for the constant GO functions GZ0.1, 0.2, 0.25, 0.3, 0.5, 1.0,

with aZ1, T(t)Z1, and P(t)Z0 for t!0. Trajectories for the circuit with no delay with a!4G (sinusoidal type) are solid, with aZ4G (critically damped) are

dotted–dashed, and with aO4G (exponential type) are dashed. Trajectories for the delayed circuit which overshoot are solid while those which do not are

dashed.
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of Eq. (18), which yields:

E Z ½T KPð0Þ�eKða=2ÞMT: (20)

See Fig. 2, which contains graphs of (11) and (12) in each

of the above cases.

When tO0 the movement trajectories for constant GO

function G(t) and target T(t)ZT are not qualitatively

different from those above, as the following result from

Beamish et al. (2005) shows.

Theorem 1. For any fixed a, t with a fixed target T(t)ZT

and constant GO function G, there exists a critical value G*

such that:

(i) If GOG*, the movement trajectory P(t) overshoots

the target and comes to rest after a finite time (i.e.

sufficiently fast movements), or,

(ii) If G%G* the movement trajectory P(t) overshoots the

target asymptotically without overshooting (i.e.

sufficiently slow movements).

This was proved in Beamish et al. (2005), where it is also

conjectured that the movement overshoots if and only if
the characteristic equation DðsÞZs2CasCaG eKts has no

real roots.

The existence of a critical GO amplitude G* separating

overshooting trajectories from non-overshooting is not

necessarily true for non-constant functions. For example,

with an exponentially growing GO-onset function g(t)Zeat,

the PPC always overshoots the target after a finite time for

any positive value of the GO amplitude G0 (see Beamish

et al., 2005). However, we still have the same qualitative

behavior even when the GO function is non-constant, as the

following slightly weaker result shows (also proved in

Beamish et al., 2005):

Theorem 2. For any tR0 and fixed target T(t)ZT, the PPC

either increases asymptotically towards the target, or

overshoots the target and comes to rest after a finite time.

See Fig. 2, which contains graphs of (5) and (6) for

various constant GO functions when tZ1, and Fig. 3 which

constants graphs of (5) and (6) for various non-constant GO

functions.

In any case, where the movement trajectory of the VITE

circuit comes to rest after a finite time we can define

the Movement Time (MT) to be the time required for



Fig. 3. Graphs of P(t) and V(t) for different non-constant GO functions with no delay (top), and delays of tZ0.1 (middle) and tZ1 (bottom). (Black) Constant

GO function g(t)Z1. (Red) Faster-than-linear GO function g(t)Zt1.4. (Green) Linear GO function g(t)Zt. (Blue) Slower than linear GO function

gðtÞZ tð1C tÞK1. In all cases, aZ30, G0Z1, T(t)Z1, and P(t)Z0 on the initial interval. (For interpretation of the reference to colour in this legend, the reader is

referred to the web version of this article.)
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the completed movement, i.e. where P 0(t)Z0. We make the

following definition:

Definition 1. For any movement trajectory, the Movement

Time (MT) is defined to be the unique value of t for which

P 0(t)Z0 in the case that there is a target overshoot (i.e. the

time t where the PPC stops moving), or is infinite when the

P(t) approaches the target asymptotically.

For movement trajectories with a fixed target T(t)ZT, the

model Eqs. (5) and (6) depend only on the difference

between the target and the PPC, not the PPC itself. The

distance between the initial position and intended target of a

movement trajectory is usually referred to as the Movement

Amplitude (A), i.e. AZjTKP(0)j. We now show that the

movement time is independent of the movement amplitude.

This is known as duration invariance, and the proof is

exactly analogous to Appendix B from Bullock and

Grossberg (1988) where it is shown to be true for the

VITE circuit without delay.

Theorem 3. (Duration invariance). For any delay tR0 and

GO function G(t) (not necessarily constant) with constant

target T(t)ZT, the movement time is independent of the

target and initial position.
Proof. Since the model equations depend only on the

difference between the TPC and PPC, we can assume

without loss of generality that TZ0 by letting P*(t)Z
P(t)KT so that

dV

dt
Za½KVðtÞK ðPðtÞKTÞ�Za½KVðtÞKP�ðtÞ�;

and

dP�

dt
ZGðtÞ½VðtCtÞ�C;

where P*(0)ZP(0)KT. With TZ0, the model equations are

linear except for the cutoff function. However, since for any

positive constant c, cV(t)O0 if and only if V(t)O0, we have

½cVðtKtÞ�CZc½VðtKtÞ�C. Let:

P��ðtÞZ
P�ðtÞ

Pð0ÞKT
; V��ðtÞZ

VðtÞ

Pð0ÞKT
:

Because (1/P(0)KT) is positive, the model equations

become

dV��

dt
Za½KV��ðtÞKP��ðtÞ�;

dP��

dt
ZGðtÞ½V��ðtCtÞ�C;
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where P**(0)Z1 and V**(0)Z0. Therefore, for any

GO function G(t), P(t)Z(P(0)KT)P**(t)CT and V(t)Z
(P(0)KT)V**(t) where V**(t) and P**(t) are independent of

the target and initial position.

Suppose now that V**(t0)Z0 for some time t0O0. Then

we also have

Vðt0ÞZ ðPð0ÞKTÞV��ðt0ÞZ 0;

and hence the movement time is t0Ct. But since V**(t0),

and there t0, are independent of the target and position, so is

the movement time t0Ct. ,

Because of duration invariance, the movement time for

the circuit with fixed a and delay t is determined by the

choice of GO onset function g(t) and GO amplitude G0. For

a fixed GO onset function g(t), the movement time is a

function of the GO amplitude G0 alone. Figs. 4 and 5

contain graphs of MT(G0) for a variety of different GO-

onset functions. The following properties are true of MT(G)

when the GO function G(t)ZG is constant.

Theorem 4. (Properties of movement time). For any fixed a

and delay tR0:
Fig. 4. Graphs of Movement Time MT(G0) and Overshoot E(G0) for the constant fu

g(t)ZG0t (green), g(t)ZG0t1.4 (red), gðtÞZG0t=ð1C tÞ (blue) for delays tZ1 (b

generated with T(t)Z1, P(0)Z0, with aZ1. (For interpretation of the reference to
(i) MT(G) is continuous for GOG*

(ii) MT(G) is a decreasing function of G,

(iii) limG/NMT(G)Z2t.

(iv) limG/G�CMTðGÞZN:

Proof.

(i) For any constant GO function GOG*, the movement

time is t0Ct, where t0 is the smallest positive number

such that V(t0)Z0. Since at such a t0, we have
V 0ðt0ÞZa½KVðt0ÞCPðt0Þ�ZaPðt0Þ!0:

it follows from the implicit function theorem that t0 varies

continuously with the parameter G.

(ii) Let G1!G2 be two different constant GO functions

and consider DVðtÞZVG1
ðtÞKVG2

ðtÞ. Suppose that

both VG1
ðtÞ and VG2

ðtÞ are non-negative on the

interval [0,t0] so that ½VG1
ðtÞ�CZVG1

ðtÞ and

½VG2
ðtÞ�CZVG2

ðtÞ. The solution of (5) and (6) is

then the same as the solution to the constant-

coefficient linear system (9) and (10) on [0,t0].
nction GO-function g(t)ZG0 (black), and non-constant GO-onset functions

ottom), tZ0.1 (middle), and no delay (top). Movement trajectories were

colour in this legend, the reader is referred to the web version of this article.)



Fig. 5. The graphs from Fig. 4 on a larger scale.
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Taking the Laplace transform of DV(t) (see Section 5),

we have:

cDV ðsÞZdVG1
ðsÞKdVG2

ðsÞ

Z
a

s2 CasCaG1 eKts
K

a

s2 CasCaG2 eKts

Z eKtsðG2 KG1Þ
a

s2 CasCaG2 eKts

!
a

s2 CasCaG1 eKts

Z ðG2 KG1Þe
KtsdVG2

ðsÞdVG1
ðsÞ:

By the Convolution (or Faltung) theorem, we get

DVðtÞZ ðG2 KG1Þ½VG1
ðzKtÞ � VG2

ðzÞ�ðtÞ;

where * denotes the convolution:

½f1 � f2�ðtÞZ

ðt

0
f1ðtKzÞf2ðzÞdz:

Because both VG1
ðtÞ and VG2

ðtÞ are positive for t!t0, it

follows that the convolution is also positive. Therefore,

DV(t)R0. It then follows that VG1
ðtÞ is positive when
VG2
ðtÞZ0, and so PG1

ðtÞ will still be increasing at the tCt

when P0
G2
ðtÞZ0 and so MT(G1)OMT(G2).

(iii) (proved in Section 5).

(iv) Since MT(G) is decreasing, it either approaches

some finite limit as G/G* or becomes infinite.

Suppose by way of contradiction that it approaches

some limit, limG/G�MTðGÞZtC t0. We would then

have limG/G�CVGðt0ÞZ0. However, since the move-

ment trajectory with a constant GO function equal to

the critical value G* approaches the target asympto-

tically (and does not overshoot), VG� ðt0Þ!0. Thus

VG(t0) would be discontinuous for G*, which is

impossible since VG(t0) must depend continuously

on the parameter G. ,

For any movement trajectory, the PPC P(t) is non-

decreasing and, by Theorem 2, bounded. Therefore, the

limit limt/NP(t) which represents the final position of the

PPC exists and is finite. We make the following definition:

Definition 2. For any movement trajectory, the overshoot

(E) of a movement is defined to be:

E Z lim
t/N

jT KPðtÞj: (21)
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For a fixed movement amplitude and a, t, the following

properties of overshoot E(G) are true when the GO function

G(t) is constant, although we do not prove them in this paper.

Theorem 5. (Properties of overshoot). For any fixed a and

delay tR0:

(i) E(G) is continuous for GO0,

(ii) E(G) is an increasing function of G,

(iii) For tO0, limG/NE(G)ZN, and for tZ0, limG/N

E(G)ZjTKP(0)j,

(iv) For G%G*, E(G)Z0.

Remark 1. Theorems 4 and 5 appear to also be true for non-

constant GO functions G(t)ZG0g(t), where E and MT

instead depend on the GO-amplitude G0. However, as noted

above, it is not necessarily true in this case that the critical

value G* exists.

It is worth noting here that property (iii) of Theorem 5

represents a qualitative difference in behavior between the

original and delayed circuit. When the GO function is

constant, the amount by which the original circuit over-

shoots the target is always smaller than the distance between

the initial position and target (i.e. the movement amplitude).

However, when delay is activated the circuit can overshoot

the target by an arbitrarily large amount as the GO function

is increased and the movement becomes faster.

The reason for this difference in behavior is simple: after

the initial activation of the TPC at time tZ0, no movement

will take place during the interval t2[0,t] because of the

delay. However, even though no movement takes place the

activity of the DV population will increase since:

V 0ðtÞZa½KVðtÞCT KPðtÞ�O0:

In fact, V(t) increases logistically towards the equili-

brium value of V(t)ZTKP(0) on [0,t].

When movement towards the target begins at time tZt,

the DV population has already been ‘charged’ to a high-

level of activity. The movement velocity

P0ðtÞZG½VðtKtÞ�C, which depends on the activity of the

DV population during the previous time interval because of

the delay, can therefore be arbitrarily fast if the constant GO

function G is sufficiently large. In fact, the PPC can be made

the overshoot the target by an arbitrarily large amount

during this second time interval [t,2t]. This is proved

generally for non-constant GO functions in Section 6,

although for non-constant GO functions it is not necessarily

true that the overshoot of the original circuit will be less than

jTKP(0)j.

As with the original VITE circuit (without delay), for any

GO function G(t) (not necessarily constant), the overshoot

of a movement is proportional to the movement amplitude

in the delayed circuit. The proof is again analogous to that in

Bullock and Grossberg (1988).

Theorem 6. (Woodworth’s Law). For any GO function G(t)

(not necessarily constant) and fixed target T, overshoot of
the movement is proportional to the difference between the

target and the initial position, i.e.

E Z ðPð0ÞKTÞE1; (22)

where E0 is the overshoot of the circuit for a movement

with a unit difference between target and initial position

(i.e. P(0)Z1, TZ0).

Proof. This follows immediately from the above proof of

duration invariance, since PðtÞZ ðPð0ÞKTÞP��ðtÞCT and

V(t)Z(P(0)KT)V**(t), where V**(t) and P**(t) are indepen-

dent of the target and initial position. ,

See Figs. 4 and 5, which contain graphs of MT(G0) and

E(G0) for various GO-onset functions g(t). A quantitative

comparison of delayed VITE circuit movement trajectories

and velocity profiles with real data will be the subject of a

future work.
4. The Shannon formulation of the Index of Difficulty

In order to discuss the speed-accuracy trade-off in

movement trajectories with delayed feedback, we must

first introduce the Shannon formulation of the Index of

Difficulty (ID). Fitts’ law was developed from an analogy

with the information theory of physical communication

systems. In such systems, the amplitude of signals

transmitted through a communication channel are perturbed

by noise, resulting in amplitude uncertainty. The effect is to

limit the information capacity of a communication channel

to some value less than its theoretical bandwidth. Shannon’s

Theorem 17 (Shannon & Weaver, 1949) expresses the

effective information capacity C (in bits per second) of a

communication channel of band B as

C ZB log2

PCN

N

� �
; (23)

where P is the signal power and N is the noise power.

In Fitts’ Hypothesis, the channel capacity of the motor

system, in a task involving a particular limb, a particular set

of muscles, and a particular type of motor behavior is

independent of the movement amplitude and accuracy

(Fitts, 1954). This channel capacity, which he called the

Index of Performance (IP) or Throughput, is analogous to C

in Shannon’s Theorem 17 and has units of bits per second.

The Index of Performance is calculated by dividing the

Index of Difficulty (ID), which specifies the minimum

information (in bits) required on average for controlling or

organizing each movement, by the movement time (MT)

required to complete it. That is

IP Z
ID

MT
; (24)

which matches Eq. (23) directly, with IP corresponding to C

(in bits per second), ID corresponding to the log term
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(in bits), and MT corresponding to 1/B (in seconds). Eq. (24)

is usually written as

MT Z
1

IP
ID (25)

so that movement time is placed on the left as the predicted

variable.

Fitts claimed that electronic signals are analogous to

movement distances or amplitudes (A) and that noise is

analogous to the tolerance or width (W) of the region within

which a move terminates. Fitts’ defines the Index of

Difficulty of a movement task to be

IDFitts Z log2

2A

W

� �
; (26)

which is based on Goldman’s Eq. (39) (Goldman, 1953):

C ZB log2

P

N

� �
: (27)

This is an ‘approximation’ of Shannon’s Theorem 17

which holds when the signal-to-noise ratio is large. Fitts’

law (as appears in Fitts, 1954) states that the time required to

perform a task with a given index of difficulty is

MT Z bIDFitts Z b log2

2A

W

� �
; (28)

where b is an empirically determined constant equal to the

reciprocal of the throughput. Experimentally, where a

model is built using linear regression, Fitts’ law appears as

MT Z aCbIDFitts Z aCb log2

2A

W

� �
(29)

where a and b are regression coefficients. The intercept

coefficient a is sometimes viewed as an error term. A non-

zero intercept is troublesome since it suggests that a

movement task with ‘zero difficulty’ has a non-zero

predicted completion time.

MacKenzie (1989) gives an alternative formulation of

the Index of Difficulty

IDShannon Z log2

ACW

W

� �
Z log2

A

W
C1

� �
(30)

based directly on Theorem 17. With this definition, the

Shannon form of Fitts’ law is:

MT Z aCbIDShannon Z aCb log2

A

W
C1

� �
: (31)

Although many current studies of motor behavior still

use Fitts’ law in its original form (such as Buck, 1986; Epps,

1986; Georgopoulos & Massey, 1987; Harris & Wolpert,

1998; Kantowitz & Elvers, 1988; Zelaznik, Mone, McCabe,

& Thaman, 1988), it presents the problem that the index of

difficulty is zero when WZ2A and negative when WO2A. It

is recognized that this definition is imperfect, in fact the ‘2’

was added to Eq. (26) above specifically to avoid negative
index of difficulty when AZW. With the Shannon form, the

index of difficulty can never be negative. For large values of

ID (i.e. when the signal-to-noise ratio is large) the two

definitions are equivalent, since the factor of 2 can be

absorbed by the intercept coefficient

aCbIDFitts Z aCb log2

2A

W

� �
Z ðaCbÞCb log2

A

W

� �
;

and

log2

A

W

� �
zlog2

A

W
C1

� �
:

Bullock and Grossberg (1988) interpret the overshoot E

of a VITE circuit movement trajectory as the target width W

in the index of difficulty. From Eq. (20), when the GO

function is constant, the original VITE circuit (no delay)

satisfies

W Z ½T KPð0Þ�eKða=2ÞMT ZA eKða=2ÞMT; (32)

or

MT Z
2 ln 2

a
log2

A

W

� �
: (33)

We note that since

lim
MT/0

WðMTÞZA; (34)

the circuit never generates an overshoot greater than the

movement amplitude A under these conditions, and there-

fore the Fitts’ definition of ID will be non-negative.

However, the logarithm in Eq. (33) does not contain the

‘2’ which would make it equal to IDFitts. If we ignore this,

Eq. (33) would be a straight line through the origin with

slope 2 ln 2/a. But, to be consistent with Fitts’ definition of

ID, Eq. (33) should be expressed as

MT Z
2 ln 2

a
log2

2A

W

� �
K

2 ln 2

a
Z

2 ln 2

a
IDFitts K

2 ln 2

a

which no longer has a zero intercept.

Eq. (33) is also consistent with the Shannon formulation

of Fitts law since

MT Z
2 ln 2

a
log2

A

W

� �
z

2 ln 2

a
log2

A

W
C1

� �

Z
2 ln 2

a
IDShannon

when the signal to noise ratio is large. The intercept

coefficient a is zero in this formulation, and we again have a

straight line through the origin with slope 2 ln 2/a.

However, in the limit as MT/0, we have W/A and so

IDShannon Z log2

A

A
C1

� �
Z log2ð2ÞZ 1; (35)

which implies the movement time for a task with non-zero

difficulty of 1 bit will be zero. Furthermore, the relationship
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between the Shannon index of difficulty and movement time is

not linear when the signal to noise ratio is small (see Fig. 8).

This presents theoretical problems with the model when

there is no delay both for these reasons, and since we would

naturally expect our circuit to be able to generate overshoots

larger than A. If we imagine a motor task where the

movement amplitude is small, such as threading a needle,

the overshoot can easily exceed the amplitude. Experiments

with ID less than 1 bit have been reported by Drury (1975),

or with a negative ID by Crossman and Goodeve (1983) and

Ware and Mikaelian (1987). We, therefore, suggest that this

is a ‘deficiency’ of the VITE model, and not an artifact of

using the Shannon formulation of Fitts law.

As we will see in Section 5, when delayed feedback is

considered, the circuit generates arbitrarily large overshoots

as the movement time becomes small. It is, therefore,

strictly necessary to consider the Shannon form for the

index of difficulty, since the Fitts’ definition would become

negative infinite as the overshoot becomes large. More

importantly though, it gives a natural relationship between

the intercept coefficient a and the delay t.
5. Speed-accuracy trade-off for fast movements

For movements with movement time that occur on the

same time scale as the delay t, we can integrate the model

Eqs. (5) and (6) directly on each interval [nt,(nC1)t] and

find an explicit formula for P(t) and V(t). In fact, when the

GO function and target are both constant, we can do better

than this by exploiting the fact that since V(t) is initially

positive, [V(tKt)]CZV(tKt) and the solution of the

system (5) and (6) is equal to the solution of the constant-

coefficient linear system with discrete delay

V 0ðtÞZa½KVðtÞCT KPðtÞ�; (36)

P0ðtÞZGVðtKtÞ (37)

while V(t) is non-negative. We can use the Laplace

transform to find an explicit formula for this system.

It is convenient to consider the initial conditions P(t)Z1

and V(t)Z0 when t!0 with a target of TZ0. We can do this

without loss of generality because by duration invariance and

Woodworth’s law it is sufficient to consider only movements

with unit amplitude when calculating the movement time and

overshoot. However, for the circuit to generate a movement

trajectory we must have PPC!TCP. We therefore make the

substitution P*(t)ZKP(t). After this substitution and

dropping *, the system (36) and (37) then becomes:

V 0ðtÞZa½KVðtÞCPðtÞ� (38)

P0ðtÞZKGVðtKtÞ: (39)

Taking the Laplace transformations of the model

equations and solving for bVðsÞ and bPðsÞ, we have (from
Beamish et al., 2005):

bVðsÞZ
a

s2CasCaG eKts
; bPðsÞZ sCa

s2CasCaG eKts
:

(40)

We then expand both of these as power series in G to get

bVðsÞZ
a

sðsCaÞ
K

a2 eKts

s2ðsCaÞ2
GC

a3 eK2ts

s3ðsCaÞ3
G2

K
a4 eK3ts

s4ðsCaÞ4
G3 COðG4Þ; (41)

and

bPðsÞZ 1

s
K

a eKts

s2ðsCaÞ
GC

a2 eK2ts

s3ðsCaÞ2
G2

K
a3 eK3ts

s4ðsCaÞ3
G3 COðG4Þ; (42)

or

bVðsÞZ
XN
nZ0

ðK1ÞnanC1 eKnts

snC1ðsCaÞnC1
Gn; (43)

and

bPðsÞZXN
nZ0

ðK1Þnan eKnts

snC1ðsCaÞn
Gn: (44)

Observe that because the Gn term in the series for bPðsÞ
and bVðsÞ each contain eKnts, the inverse transform is

multiplied by the Heavyside step-function H(tKnt), which

is zero for t!nt and 1 for tRnt. Thus for t!nt, all

the terms of order Gn and above occurring in P(t), V(t) are

zero, and so P(t), V(t) are polynomials in G of degree n

with coefficients depending on a, t and t on each interval

[nt,(nC1)t]. Suppose t2[nt,(nC1)t]. Since

LK1 1

sn

� �
Z

tnK1

ðnK1Þ!
;

and

LK1 1

ðsCaÞn

� �
Z

tnK1 eKat

ðnK1Þ!
;

by the convolution (or Faltung) theorem, the inverse

transform of (43) and (44) are

VðtÞZ
Xn

kZ0

ðK1ÞkakC1

k!2
fkðntKktC tÞGk; (45)

where

fkðtÞZ ½sk � sk eKas�ðtÞZ

ðt

0
skðtKsÞk eKas ds;
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and

PðtÞZ 1C
Xn

kZ1

ðK1Þkak

k!ðkK1Þ!
gkðntKktC tÞGk; (46)

where

gkðtÞZ ½skK1 � ðtKsÞk eKas�ðtÞZ

ðt

0
skK1ðt KsÞk eKas ds:

For the first-three intervals [0,t], [t,2t], and [2t,3t],

P(t), and V(t) are

PðtÞZ 1; (47)

VðtÞZ 1KeKat; (48)

PðtC tÞZ 1K
1

a
½atK1CeKat�G; (49)

VðtC1ÞZ ½1KeKaðtCtÞ�K
1

a
½K2Cat CeKatð2CatÞ�G;

(50)

Pð2tC tÞZ 1K
1

a
½aðtC tÞK1CeKaðtCtÞ�G

C
1

a2

a2t2

2
K2taC3CeKatðat C3Þ

� �
G2;

(51)

Vð2tC tÞZ ½1KeKað2tCtÞ�K
1

a
½K2CaðtC tÞ

CeKaðtCtÞð2CaðtC tÞÞ�G

C
1

a2
6K3at C

a2t2

2

�
Ceat K6C3at K

a2t2

2

� ��
G2; ð52Þ

where 0%t%t.

If, in one of the above formulas, V(t)Z0 on some interval

[nt,(nC1)t] for a given movement trajectory then, because

of the delay, P 0(tCt)Z0 on the next interval [(nC1)t,(nC
2)t]. The time for the complete movement (MT) is

then tCt, and the overshoot of the movement (E) will be

jTKP(tCt)j. When this occurs we thus have an explicit

expression for the movement time and overshoot using the

above expressions.

Since, by Eq. (48), it is not possible for V(t) to become

zero for 0!t%t, [t,2t] is the first interval [nt,(nC1)t] for

which V(t) can be zero, and [2t,3t] is the first interval for

which P 0(t) can be zero. Therefore, the minimum time

required for any movement is at least 2t. This makes

intuitive sense since, with the delayed feedback, the circuit

requires a time t to sense the beginning movement and a

time t to sense termination.
Remark 2. The above observation that movement times are

always larger than 2t is significant because it shows, when

delay is considered, that the circuit is not capable of

arbitrarily fast movements.

Because P(t), V(t) are polynomials in G of degree n for

t2[nt,(nC1)t], sufficiently fast movements, where n is not

large have a more simple form. In particular, if the

movement time is 2t!MT!3t, then G only occurs

linearly in V(t) on the interval for which V(t)Z0. We now

give conditions on the parameters G, a, t for which this

occurs:

Theorem 7. A movement trajectory has a movement time

2t!MT!3t if and only if:

1KeK2at

2
a
ðeKat K1ÞCtð1CeKatÞ

%G: (53)

Proof. We show first that a movement trajectory has

movement time MT!3t if and only if:

Vð2tÞZ1C
2G

a
KGtð1CeKatÞKeKat 2G

a
CeKat

� �
%0:

Since V(t)Z1K eKat is positive, if V(2t)%0 then we

must have V(tCt)Z0 for some 0!t%t. Suppose now

V(tCt)Z0 for some 0!t%t. Since V 0(t)Za eKatO0,

and:

V 00ðtC tÞZKa2 eKatðGt CeKatÞ!0;

V(tCt) is first increasing, and then decreasing. Because

V(tCt) is positive for tZ0, if V(tCt)Z0 for some 0!t%t,

then, since V(tCt) must be decreasing, we have V(2t)%0.

If

Vð2tÞZ1C
2G

a
KGtð1CeKatÞKeKat 2G

a
CeKat

� �
%0;

after rearranging terms we have:

1KeK2at%G
2

a
ðeKat K1ÞCtð1CeKatÞ

� �
:

However

f ðaÞZ
2

a
ðeKat K1ÞCtð1CeKatÞ;

is positive, since if we let

gðaÞZaf ðaÞZ 2ðeKat K1ÞCtað1CeKatÞ;

we have g(0)Z0, g 0(0)Z0 and g 00(a)Zt3a eKatO0.

Hence, g(t) is strictly positive, and so f(t) is as well.

Therefore, the above inequality holds if and only if:

1KeK2at

2
a
ðeKat K1ÞCtð1CeKatÞ

%G: ,
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Remark 3. Since

lim
a/N

1KeK2at

2
a
ðeKat K1ÞCatð1CeKatÞ

Z
1

t
; (54)

no movement trajectory with Gt!1 will be have a

movement time smaller than 3t.

Corollary 1. A movement trajectory has a movement time

2t!MT!3t if:

(i) For any fixed a and delay t, the GO function G is

sufficiently large.

(ii) For any fixed a, G, the delay t is sufficiently large.

(iii) For any fixed delay t, and G such that GtO1, the

parameter a is sufficiently large.

See Fig. 6 which shows those values in the parameter

space (a, t, G) for which MT is a multiple of t, and for

which the movement time is infinite.

By Corollary 1, if the (constant) GO function is

sufficiently large then, regardless of what the parameters a

and t are, the movement will happen sufficiently fast so that

the movement time is smaller than 3t. When this is the case,

Eq. (50) can be solved directly to express the movement
Fig. 6. (green surface) Values in the parameter space (a, t, G) for which

MTZ3t. Points lying above the green surface have movement times faster

than 3t. (Blue surfaces) Values in the parameter space (a, t, G) for which

the movement time is 4t, 5t, 6t, and 7t from top to bottom. (red surface)

Critical value G* as a function of a and t. Points on or below the red surface

have infinite movement time. (For interpretation of the reference to colour

in this legend, the reader is referred to the web version of this article.)
time as a function of the GO function G. Suppose that

VðtCtÞZ1C
2G

a
KGtð1CeKatÞKeKat 2G

a
CeKat

� �
Z0;

where 0%t%t. Solving this equation for G gives:

GðtÞZ
1KeKaðtCtÞ

tð1CeKatÞK 2
a
ð1KeKatÞ

: (55)

It then follows that P 0(2tCt)Z0 and so the movement

time will be MTZ2tCt. We then substitute this into the

expression for P(2tCt) (Eq. (51)) to express the final

movement position as a function of the movement time:

Pð2tC tÞZ 1C ½1KaðtCtÞ

KeKaðtCtÞ�
1KeKaðtCtÞ

atð1CeKatÞK2ð1KeKatÞ

� �
C K2taC

a2t2

2
Kat eKat K3 eKat C3

� �
!

1KeKaðtCtÞ

atð1CeKatÞK2ð1KeKatÞ

� �2

:

Thus, for fixed a, t the movement overshoot (E) as a

function of the movement time for any MTZ2tCt%3t is:

Eð2tC tÞZK1C ½aðtCtÞKeKaðtCtÞ K1�

!
1KeKaðtCtÞ

atð1CeKatÞK2ð1KeKatÞ

� �
C 2taK

a2t2

2
Cat eKat C3 eKat K3

� �
!

1KeKaðtCtÞ

atð1CeKatÞK2ð1KeKatÞ

� �2

:

We summarize this as the following theorem, which is

analogous to Eq. (33) for the original circuit but holds only

for movement times smaller than 3t.

Theorem 8. (Speed-accuracy trade-off for fast movements

with constant GO function). For any fixed a, t, the

overshoot (E) of a movement trajectory having a movement

time 2t!2tCt%3t is:

Eð2tC tÞZK1C ½aðtCtÞKeKaðtCtÞ K1�

!
1KeKaðtCtÞ

atð1CeKatÞK2ð1KeKatÞ

� �
C 2taK

a2t2

2
Cat eKat C3 eKat K3

� �
!

1KeKaðtCtÞ

atð1CeKatÞK2ð1KeKatÞ

� �2

:

Corollary 2. When the GO function is constant, the

overshoot E(MT)/N as MT/2t for any non-zero

delay t.
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Corollary 3. The Shannon Index of Difficulty IDShannon/0,

and the Fitts Index of Difficulty IDFitts/KN as MT/2t.

In contrast to the case when tZ0, the delayed feedback

circuit produces arbitrarily large overshoots as the move-

ment time approaches the lower limit of 2t. In Section 6, we

shall show that this is, generally, true even when the GO

function is non-constant. We also have the further corollary

that for any non-zero delay t, the Shannon Index of

Difficulty IDShannon/0 as MT/2t and the Fitts Index of

Difficulty IDFitts/KN as MT/2t. This behavior is

qualitatively different from the original circuit and it is,

therefore, necessary to use the Shannon formulation to

avoid having a negative infinite Index of Difficulty.

However, we note that neither the Shannon or Fitts

definition of ID have a linear relationship with the

movement time generated by the circuit under the above

conditions.
6. Speed-accuracy trade-off for fast movements with

non-constant GO function

In the case where G(t)ZG0g(t) is not a constant, the

Laplace transform is not useful but we can still integrate the

model equations

V 0ðtÞZa½KVðtÞCPðtÞ�; (56)

P0ðtÞZKG0gðtÞVðtKtÞ; (57)

on each interval [nt,(nC1)t]. Since duration invariance and

Woodworth’s law holds even for non-constant GO

functions, we only need to consider (as in Section 5) an

initial condition of P(t)Z1, V(t)Z0 on the initial interval

[Kt, 0]. Integrating (57) on the interval [nt,ntCt] where

0%t%t, we have:

PðntC tÞZPðntÞK

ðntCt

nt
GðsÞVðsKtÞds ZPðntÞ

K

ðt

0
GðntCsÞV½ðnK1ÞtCs�ds: ð58Þ

Because of the delay term, this involves only the value

P(nt) at the endpoint of the interval, and the values of V(t)

on the previous interval [(nK1)t, nt]. Once this is known,

we integrate (38) on the same interval to get:

VðntC tÞZ eKaðntCtÞ VðntÞ

eKant
C

ðntCt

nt
a easPðsÞds

� �

Z eKaðntCtÞ VðntÞ

eKant
C

ðt

0
aeaðntCsÞPðntCsÞds

� �
:

(59)

Using the above equations to get explicit expressions for

P(t) and V(t) quickly becomes unwieldy even for very

simple GO onset functions. However, we can use them to
show that, as in the case of constant GO functions, we also

have MT/2t and E/N as G0/N.

Lemma 1. For any delay t and non-constant GO onset

function g(t), V(t) increases until V(t)ZP(t), and then

decreases until V(t)Z0.

Proof. Initially, P(0)Z1 and V(0)Z0, so V 0ðtÞZa½KVðtÞC
PðtÞ�O0 and V(t) is increasing until V 0ðtÞZ0Za½KVðtÞC
PðtÞ�, or P(t)ZV(t). However, at any point where P(t)!V(t),

and thus V 0ðtÞZa½KVðtÞCPðtÞ�!0. Hence, after P(t)Z
V(t), V(t) is decreasing until V(t)Z0. ,

Theorem 9. For any tO0 and monotonically increasing

GO-onset function g(t), limG0/NEðG0ÞZN.

Proof. Using Eqs. (58) and (59), the solution of the system

(56) and (57) with initial condition P(t)Z1, V(t)Z0 on [K
t, 0] will be P(t)Z1, and V(t)Z1K eKat, on the first

interval [0,t]. This is independent of the choice of GO-onset

function and the GO-amplitude. On the second interval

[t,2t], Eq. (58) becomes:

PðtÞZ 1K

ðt

t

G0gðsÞ½VðsKtÞ�Cds

Z 1KG0

ðt

t

gðsÞ½1KeKaðsKtÞ�ds: (60)

We can assume without loss of generality that g(t) is not

zero at tZt, and therefore positive on [t,2t] because g(t) is

non-decreasing. Since [1KeKa(sKt)] is also positive and

increasing for tO0

FðsÞZ

ðt

t

gðsÞ½1KeKaðsKtÞ�ds; (61)

is positive and increasing for sO0. to show that

limG0/NEðG0ÞZN, we observe that for any fixed

t02[t,2t], F(t0)O0, and so P(t0)Z1KG0F(t0)/KN
as G0/N. Since P(t) is non-increasing, it follows that

limt/NP(t)%P(t0), and therefore

EðG0ÞZ lim
t/N

jT KPðtÞj/N

as G0/N. ,

Theorem 10. For any tO0 and monotonically increasing

GO-onset function g(t), limG0/NMTðG0ÞZ2t.

Proof. We show that for any e2(t,2t), we can choose G0

sufficiently large that V(t0)Z0 for some t02(t,e). It would

then follow that

P0ðt0 CtÞZG0gðt0 CtÞ½Vðt0 CtKtÞ�C

ZG0gðt0 CtÞVðt0ÞZ 0;

and hence 2t!MT(G0)!2tCe. Suppose e2(t,2t). From

the argument give in the proof of Theorem 9, we can always

choose G0 sufficiently large that P(e/2)!KM for any

arbitrarily large M.
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By Lemma 1, V(t) increases until P(t)ZV(t), after it

decreases, and so 0%V(t)%1 for tR0. It then follows that

on [e/2,e],

V 0ðtÞZa½KVðtÞCPðtÞ�%KaM;

and so V(e)!V(t)KaMe. Thus, by making M sufficiently

large, we an always make V(e) negative for any e2(t,2t).

Since V(t) is continuous, it follows that V(t0)Z0 for

some t02(t,e), and thus 2t%MT(G0)%2tCe for any

eO0 by choosing G0 sufficiently large. Therefore,

limG0/NMTðG0ÞZ2t. ,
7. Movement time and overshoot for large

parameter values

By Corollary 1, the movement time is smaller than 3t

when any of the parameters a, G, and t are large. When this

is the case, the explicit formulas (45) and (46) for V(t) and

P(t) can be used to calculate the asymptotic dependence of

the overshoot E and movement time MT on the parameters

a, G and the delay t.

Suppose that the delay t is sufficiently large that V(tC
t)Z0 for some 0!t%t. For large delays t, eKatz0, so

Eq. (50)

VðtCtÞZ1C
2G

a
KGtð1CeKatÞKeKat 2G

a
CeKat

� �
Z0;

(62)

is approximately

VðtC tÞz1C
2G

a
ð1KeKatÞKGtð1CeKatÞZ 0: (63)

This equation is independent of the delay, and has a

solution t0(G,a) dependant on the parameters G and a alone.

Therefore, for fixed G and a, the movement time will

asymptotically be

MTðtÞz2tC t0ðG;aÞ; (64)

for sufficiently large t.

Substituting this into Eq. (51) and noting that eKatz0,

the final position

Pð2tC t0ÞZ 1KGtKGt0 C
G

a
K

2G2t0
a

C
3G2

a2
K

G2t2
0

2

K
G2t0

a
eKat0 K

3G2

a2
eKat0 K

G

a
eKaðtCtÞ;

(65)

is approximately

Pð2tC tÞz1KGtKGt C
G

a
K

2G2t

a
C

3G2

a2
K

G2t2

2

KeKat G2t

a
K

3G2

a2

� �
;

and so the overshoot will asymptotically be:

EðtÞzGtC K1CGt0 K
G

a
C

2G2t0
a

K
3G2

a2
C

G2t2
0

2

�
CeKat0

G2t0
a

K
3G2

a2

� ��
:

This is also independent of the delay except for the term

KGt. We, therefore, have

EðtÞzGtCE0ða;GÞ; (66)

where

E0ða;GÞZK1CGt0 K
G

a
C

2G2t0

a
K

3G2

a2
C

G2t2
0

2

CeKat0
G2t0
a

K
3G2

a2

� �
:

We summarize this in the following theorem:

Theorem 11. For any fixed a, G, the movement time (MT)

and overshoot (E) are asymptotically MT(t)z2tCt0(a,G),

and E(t)zGtCE0(a,G) for large values of the delay t,

where t0(a,G) and E0(a,G) are constants such that

E0ða;GÞZK1CGt0 K
G

a
C

2G2t0

a
K

3G2

a2
C

G2t2
0

2

CeKat0
G2t0
a

K
3G2

a2

� �
;

and t0(a,G) is the unique value 0%t%t which satisfies

1C
2G

a
ð1KeKatÞKGtð1CeKatÞZ 0:

The case when a is large deserves special attention.

When a is large, the feedback response of the circuit is so

fast that V(t)zP(t). The VITE circuit trajectories therefore

approach solutions of the system

P0ðtÞZGðtÞPðt KtÞ; (67)

in the asymptotic limit as a becomes large. Since P(t)Z1 on

the initial interval [Kt,0], and the circuit requires at least

time t to begin movement

P0ðtÞZGðtÞPðt KtÞZGðtÞ

on the interval [t,2t], and the velocity of the movement will

be (almost) equal to the GO function on this time interval.

For a constant GO function where G(t)ZG, the move-

ment trajectory has constant velocity on the time interval

t2[t,2t]. The GO function will be sufficiently large to

bring the PPC past the target during this time if and only if

Pð2tÞZPð0ÞK

ð2t

0
VðtKtÞdtZ1K

ð2t

t

G dtZ1KGt!0;
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or 1!Gt, in which case the movement time will be less

than 3t. Hence the need for the extra condition in Corollary

1 for large values of a.

Assuming that we do have 1!Gt, we then also have

VðtCtÞZ1C
2G

a
KGtð1CeKatÞKeKat 2G

a
CeKat

� �
Z0;

(68)

for some 0!t%t from Eq. (50). When a is large, eKat z0,

and so (50) is asymptotically

1C
2G

a
KGt Z 0;

so that:

tz
1

G
C

2

a
:

Therefore, the movement time is asymptotically

MTðaÞz2tC
1

G
C

2

a
; (69)

when 1!Gt. Substituting this into Eq. (51) for the final

position P(2tCt) we have

Pð2tC tÞz
1

2
KGtK

G

a
C

G2

a2
; (70)

and thus E(a)zGtK(1/2) for large values of a. We

summarize this in the following theorem:

Theorem 12. For any fixed G, t with GtO1, the movement

time (MT) and overshoot (E) are asymptotically MT(a)

z2tC1/G, and E(a)zGtK(1/2) for large values of a.

Remark 4. Observe that both these expressions are

independent of a. We can eliminate G from both of these

equations to get

MT Z 2t 1C
1

2E C1

� �
; (71)

the speed-accuracy trade-off generated by the circuit when a

is large and GtO1.
Fig. 7. Fitts’ law curves: Movement Time vs. Index of Difficulty for

different delay. (solid red/blue) Shannon definition of Index of Difficulty.

The red portion of the curve was computed with the formula for small

movement times, the blue was computed numerically. (broken red/blue)

Fitts’ definition of Index of Difficulty, computed as above. (Black line)

asymptote line for the Fitts’ and Shannon Index of Difficulty (solid green)

Shannon ID with no delay. (Broken green) Fitts’ ID with no delay. (For

interpretation of the reference to colour in this legend, the reader is referred

to the web version of this article.)
8. Speed-accuracy trade-off for slow movements

The explicit formulas for P(t), V(t) quickly becomes

unwieldy after the first few intervals [nt,(nC1)t] even

when we assume that the GO function is constant.

Therefore, to calculate the relationship between the move-

ment time MT and overshoot E generated by the circuit (and

hence the relationship between movement time and Index of

Difficulty), we resort to numerical integration of the model

equations.

Since Woodworth’s law holds for both the original VITE

circuit and the delayed feedback circuit (even when the GO

function is not constant), the overshoot for a movement of
amplitude A will be EZAE1, where E1 is the overshoot for

the movement trajectory of unit amplitude. We thus have

IDShannon Z log2

A

AE1

C1

� �
Z log2

1

E1

C1

� �
; (72)

in the Shannon formulation, and

IDFitts Z log2

2A

AE1

� �
Z log2

2

E1

� �
; (73)

in Fitts’ formulation, both of which are independent of A.

Likewise, since duration invariance also holds, the move-

ment time will likewise be independent of A. The

parameters a, t and the GO function G0g(t) alone, therefore,

determine the characteristic movement time and index of

difficulty for a movement trajectory produced by the circuit.

For any fixed a, t and particular choice of GO-onset

function g(t), the GO amplitude G0 parametrically

determines a relationship between movement time

MT(G0), and index of difficulty ID(G0).

Figs. 7 and 8 contain graphs of the relationship between

MT and ID when aZ1 for different values of the delay

when the GO function is constant. Fig. 9 contains similar

graphs for the non-constant GO-onset functions described

by Eq. (4). In all cases, we observe a linear relationship

between the movement time and the index of difficulty for

large values of ID, and a breakdown of this linear

relationship when the movement time is small relative to

the delay. However, it is for small values of ID (less than

3 bits) that Fitts’ law has been demonstrated to fail

experimentally. A systematic upward curvature of



Fig. 8. A magnification of the above graph showing small movement times

in more detail.
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movement time away from the regression line for IDs of 1

and 2 bits was first observed by Crossman in 1957 (Welford,

1968) and has appeared in many other studies (Buck, 1986;

Crossman & Goodeve, 1983; Drury, 1975; Epps, 1986;
Fig. 9. Fitts’ law curves: Movement Time vs. Index of Difficulty for non-constant

and constant GO function G(t)ZG0 (black) for delays tZ1 (bottom), tZ0.1 (mi

difficulty are solid, while those using the Fitts’ definition are broken. The left and r

the reference to colour in this legend, the reader is referred to the web version of
Klapp, 1975; Langolf, Chaffin, & Foulke, 1976; Meyer,

Abrams, Kornblum, Wright, & Smith, 1988; Wallace,

Newell, & Wade, 1978). We, therefore, suggest that this

breakdown in Fitts’ law is not a defect in the VITE model,

but that the delayed VITE model provides a neuraldynamic

basis for the observed breakdown of Fitts’ law as a delay

effect. Validating this hypothesis will be the subject of

future work. Intuitively, however, we can imagine that for

movements which occur on a sufficiently small time scale,

neural transmission delay and delay in muscle and visual

response will increasingly affect the movement dynamics.

Therefore, if we accept the underlying neural principles

upon which the VITE model is based, this predicted

breakdown should be observable. That Fitts’ law holds at

all is a remarkable and interesting property of the VITE

circuit.

We summarize the above observations as the following

conjecture:

Conjecture 1. (Fitts’ Law for Slow Movements). For any

fixed a and delay tO0, there is a linear relationship between

the movement time and index of difficulty when the movement

time is large relative to the delay, i.e. MTZaCbID where
GO functions G(t)ZG0t (green), G(t)ZG0t1.4 (red), G(t)ZG0t/(1Ct) (blue)

ddle), and no delay (top). Curves using the Shannon definition of index of

ight side graphs are identical, but with different scale. (For interpretation of

this article.)
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a, b are constants which depend on the parameters a and t

and the choice of GO-onset function g(t).

Remark 5. The Shannon and Fitts Index of Difficulty are

equivalent for large values of ID, so the above statement

applies to both. However, the Fitts’ definition requires the

‘2’ occuring in Eq. (26) be factored out of the logarithmic

term which will change the intercept coefficient a from it’s

more natural value. See Section 4.

We also note that it is possible to rescale time so that aZ
1 by letting V*(t)ZV(t/a) and P*(t)ZP(t/a). The model Eqs.

(1) and (2) then becomes

V 0
�ðtÞZ ½KV�ðtÞCT KP�ðtÞ�; (74)

P0
�ðtÞZ

G0

a
gðtÞ½V�ðt KatÞ�C; (75)

which are the same form as the original system but with new

parameters a 0, G0
0ZG0=a and t 0Zat. Since the Index of

Difficulty versus movement time curve is determined

parametrically by the GO-amplitude G0, the shape of the

curve (i.e. the degree of deviation from a straight line) is

unaffected by rescaling time, or by dividing the parameter

G0 by a. Therefore, the shape of the speed-accuracy curve

depends only on the product at.

The constants a and b were calculated numerically for

the graphs in Figs. 7 and 8 by choosing G sufficiently close

to the critical value G* that the movement times (calculated

by integration) were large and then using linear regression.

The resulting line aCbID is indicated in black. As can be

seen from Fig. 8, the line aCbID overestimates the actual

performance of the circuit for both the Fitts and Shannon

Index of Difficulty when the ID is small, although the

Shannon ID produces a slightly closer estimate to the actual

performance of the circuit than the Fitts’ ID for all positive

values of ID.

As discussed in Section 4, the slope bZ1/IP has a natural

interpretation as the reciprocal of the ‘channel capacity’ (in

bits per second) for the motor system involved in the

movement under consideration. By Eq. (33), when the delay

is zero the throughput of the circuit is 1/bZ2 ln 2/a bits per

second. Since delay has a detrimental effect on the

performance of the circuit (Beamish et al., 2005), we

would expect the slope to be an increasing function of

the delay t from the minimum value 1/bZ2 ln 2/a when

tZ0. This can be observed in Figs. 7 and 8.

There is also a natural interpretation of the intercept

coefficient a in the context of the Shannon index of

difficulty. By Eq. (33), when the delay is zero the intercept

coefficient a will be also zero. However, from Fig. 7 the

intercept coefficient is seen to increase with the delay. The

intercept a, therefore, provides a measure of the delay

within the movement circuit. Having a positive Y-intercept

occurring in Fitts’ law has, in the past, presented theoretical

problems since ideally the intercept should have been (0,0)

predicting 0 ms to complete a task of zero difficulty.
Crossman and Goodeve (1983) observes that movement

time appears to approach a constant as ID gets small. In this

context, it makes perfect sense that this should be so

because, with the delay, movements with arbitrarily short

movement times are impossible. Moreover, because the

human body is limited by real delays in the muscles and

nervous system, it is not realistic to expect a zero movement

time for any movements, including tasks of zero difficulty. It

is precisely for tasks with a small index of difficulty that

Fitts’ analogy with information theory is not appropriate.

Based on the above, we make the following observations

about the dependence of the Fitts’ law coefficients on the

delay:

Conjecture 2. The Y-intercept a is positive, increasing

function of delay.

Conjecture 3. The throughput (Index of Performance) 1/b is

a decreasing function of delay. (Alternatively, the slope b is

an increasing function of delay.)

Remark 6. We know that in the limit, for a zero Index of

Difficulty (Shannon form) the VITE circuit has a movement

time of 2t. However, the coefficient a we refer to above is

the Y-intercept of the linear relationship between Shannon

Index of Difficulty and Movement time which holds for

large Index of Difficulty. Although from Fig. 8 it appears the

intercept may also be 2t, it is not at all clear that they should

be the same.

This provides a theoretical relationship between the Fitts’

law coefficients and the physiological properties of the

nervous system elaborated by the VITE model. Namely, that

delay causes a non-zero intercept. It must be noted here that

in the case of certain non-constant GO functions the

intercept a can be negative even when the delay is zero,

as can be seen in Fig. 9. The choice of GO-onset function

affects this relationship. Elaborating the dependence of the

Fitts’ law coefficients on model parameters a, t and on the

GO onset function g(t) will be the subject of a future work.
9. Concluding remarks

The VITE circuit quantitatively explains a wide variety

of behavioral and neural data and is a foundation for

clarifying some of the outstanding classic issues in motor

control. The generalization of this model to include delay is

a natural one. We have shown that with delay, the circuit

retains the properties of Fitts’ law, duration invariance, and

Woodworth’s law. At the same time, our analysis elaborates

delayed feedback as a possible mechanism responsible for

the breakdown of Fitts’ law for small Index of Difficulty,

and why a non-zero Y-intercept in Fitts’ law should occur.

Furthermore, the non-zero Y-intercept in Fitts’ law is a

measure of the delay within the movement circuit. The

Shannon Index of Difficulty is absolutely essential for

analysing the speed-accuracy trade-off in the delayed
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circuit, since the Fitts’ definition becomes negative infinite

as the movement time approaches it is lower limit, 2t, in the

delayed circuit. This is not an issue for the original VITE

circuit where the overshoot never exceeds the movement

amplitude (for constant GO function)—in itself an

unrealistic limitation which disappears with the inclusion

of delay.
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