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Multistability and stable asynchronous periodic oscillations in a
multiple-delayed neural system

S.A. Campbella,b,∗, I. Ncubea, J. Wuc

a Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
b Centre for Nonlinear Dynamics in Physiology and Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
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Abstract

We consider a network of three identical neurons with multiple discrete signal transmission delays. The model for such a network is a system
of nonlinear delay differential equations. After some consideration of the absolute synchronization of the system and the global attractivity of
the zero solution, we present a detailed discussion about the boundaries of the stability region of the trivial solution. This allows us to determine
the possible codimension one bifurcations which occur in the system. In particular, we show the existence of standard Hopf bifurcations giving
rise to synchronized periodic solutions and of D3 equivariant Hopf bifurcations giving rise to three types of periodic solutions: phase-locked,
mirror-reflecting, and standing waves. Hopf–Hopf and Hopf–steady state bifurcations interactions are shown to exist and give rise to coexistence
of stable synchronized and desynchronized solutions. Perturbation techniques coupled with the Floquet theory are used to determine the stability
of the phase-locked oscillations.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we study a network of three identical neurons
in which there are distinct, discrete time delays in the signal
transmission of self connection and the nearest-neighbour
interaction. This network is shown schematically in Fig. 1.1,
and modelled by the system of nonlinear delay differential
equations

u̇ j (t) = −µu j (t) + AF(u j (t − Ts))

+ B[G(u j−1(t − Tn)) + G(u j+1(t − Tn))], (1.1)

with j mod 3; where Ts and Tn are, respectively, the
signal transmission delays for self- and nearest-neighbour
connections. Throughout this paper, we use activation functions
F, G : R → R satisfying the following assumptions:
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1. F(0) = G(0) = 0, F ′(0) = G ′(0) = γ > 0, F ′(x),

G ′(x) > 0 for all x ∈ R;
2. x F ′′(x), xG ′′(x) < 0 for all x 6= 0;
3. −∞ < limx→±∞ F(x), G(x) < ∞;
4. F, G are C3 smooth and F ′′′(0), G ′′′(0) < 0.

A special case, which will be used in some parts of our work
here, is

F(x) = G(x) = tanh(γ x)

with some γ > 0.
Note that (1.1) has D3 symmetry since the vector field

is invariant under permutation of the coordinates, i.e. the
transformation (u1, u2, u3) → (u2, u3, u1) and under the
reflection (u1, u2, u3) → (u1, u3, u2) and its permutations. The
symmetries of the equation lead to various invariant subspaces
for the semiflow of the delay differential equation (DDE). The
permutation leads to the invariant line u1 = u2 = u3, and the
reflections to the invariant planes u j = u j+1, j mod 3.
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Fig. 1.1. Architecture of a network of three identical neurons with multiple
time delays. The parameters Ts and Tn denote, respectively, the self-connection
and nearest-neighbour connection signal transmission delays, while A and
B are, respectively, the synaptic strengths of self- and nearest-neighbour
connections.

We shall rescale (1.1), using the following change of
variables: ũ j = γ u j , t̃ = µt . Introducing the parameters
α =

γ
µ

A, β =
γ
µ

B, τs = µTs , τ = µTn , Eq. (1.1) then becomes

u̇ j (t) = −u j (t) + α f (u j (t − τs))

+ β[g(u j−1(t − τ)) + g(u j+1(t − τ))], (1.2)

where j mod 3, f (x) = F( x
γ
), g(x) = G( x

γ
) and we have

dropped the tildes on t and u j for notational clarity. Note that
f, g satisfy assumptions 1–4 above, with f ′(0) = g′(0) = 1.

Let h = max{τ, τs} and denote by C the Banach space
of continuous mappings from [−h, 0] to R3 equipped with
the usual super-norm. C is the standard phase space of the
semiflow defined by Eq. (1.2), and our goal is to describe the
global dynamics of the model equation (1.2) that depicts the
computational performance of the network under consideration.

Following the definitions of [53], we say that a solution of
(1.2) is asymptotically synchronous if the ω-limit set of the
solution is contained in the set of synchronous phase points
given by

{φ = (φ1, φ2, φ3)
T

∈ C : φ1 = φ2 = φ3},

and we say that system (1.2) is absolutely synchronous if every
solution of (1.2) is asymptotically synchronous for all fixed
nonnegative values of τs and τ . As will be shown (in Section 2),
if |α| + |β| < 1, then (1.2) is absolutely synchronous. If,
in addition, |α| + 2|β| < 1, then every solution of (1.2) is
convergent to zero as t → ∞ regardless of the size of the delays
τs and τ .

This suggests that symmetric bifurcation theory should
provide a very natural way to investigate the global dynamics of
(1.2). Namely, we start with the case of small |α| and |β|, and
then gradually increase these two synaptic weights and vary the
two time lags, in order to see how the dynamical behaviours
of system (1.2) change through the interchange of stability
and mode interaction of different solutions bifurcated from the
trivial solution. As will be shown, due to the structure of the
characteristic equation of the linearization of system (1.2) at the
trivial solution, single/double root pitchfork/Hopf bifurcations
can occur. Further, various types of Hopf–Hopf, Hopf–steady
state interactions will be shown to occur. Such points can
lead to very interesting dynamics such as multistability and
quasiperiodicity [4,9,10,22,49]. The double root bifurcations
arise due to the symmetry of the system and thus well-known
results from the literature of symmetric bifurcation theory
(see, for example, [19,30,51]), are used to show that the Hopf
bifurcations can give rise to four types of periodic solutions,
namely: synchronized, phase-locked, mirror-reflecting, and
standing waves. The stability of these periodic solutions is
clearly important in applications, but also poses significant
computational challenges. In this and subsequent work, we
hope to show that the single model (1.2) can generate each
of the aforementioned stable oscillation patterns by varying
the four parameters (α, β, τs, τ ). It should be mentioned that
the stable spatial-temporal patterns alluded to above have been
reported through different (usually PDE) models, but to the best
of our knowledge, there is no single model that exhibits all of
these stable patterns through variation of the parameters.

The current paper will establish

1. concrete criteria for the absolute synchronization of model
(1.2) and global attractivity of the trivial solution;

2. a detailed description of the stability boundaries of the trivial
solution;

3. the existence of mode interactions indicated by the
intersection of the aforementioned stability boundaries;

4. the stability of the bifurcated phase-locked oscillations.

The issues of absolute synchronization of model (1.2) and
global attractivity of the trivial solution will be addressed in
Section 2, with the help of a Liapunov functional. We then,
using a method adapted from previous work [4,47,48], present
a detailed analysis of various boundaries of the stability region
for the trivial solution in Section 3. The main focus here
is on the asymptotic analysis of the boundaries as the four
parameters approach certain limits suggested by our criterion
of the global attractivity of the zero solution in Section 2. In
Section 4 we discuss the bifurcations which occur in the system
and how these may be used to determine when the system
will synchronize/desynchronize. We also determine the various
possible interactions of the stability boundaries that lead to
mode interaction, multistability and exchange of the stability
of bifurcated spatio-temporal patterns.

Finally, in Sections 5 and 6, we concentrate on the stability
of the bifurcated phase-locked periodic solutions resulting from
the double root single Hopf bifurcation. To this end, we employ
standard perturbation theory to approximate such oscillations,
followed by an application of Floquet theory to determine the
stability. More precisely, our approach is based on the analytic
construction of an approximation to the bifurcating phase-
locked oscillation using a perturbation procedure together with
an application of the Fredholm alternative theory for functional
differential equations. Once this approximation is constructed,
we then use the Poincaré–Lindstedt series expansion to
compute the Floquet exponents of the bifurcating phase-locked
oscillation, assisted by the symbolic computation language
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MAPLE. This allows us to depict a smooth surface in a certain
parameter space which determines the stability/criticality of
the phase-locked oscillation. In an on-going project, we are
extending our approach to address the stability of standing
waves and mirror-reflecting waves.

One of the seminal articles on the perturbation approach we
propose to employ in the current paper is that of Gopalsamy
and Leung [21], in which a system of two neurons with a
single discrete delay is studied. It was shown that such a system
is capable of generating and sustaining temporal periodic
behaviour. In addition, the stability of an approximation to the
periodic oscillation is determined through a combination of
standard perturbation and Floquet theories, and the perturbation
argument is crucial in constructing an approximation to the
periodic solution.

It has been widely observed and reported (see [2–6,8,38] and
references therein) that a coupled system of multiple-delayed
differential equations exhibits some fascinating bifurcation
phenomena as linear stability is lost. By far the most popular
approach that has been used to perform such studies has
been centre manifold and normal form theory, partly because
of the obvious elegance of the theory. In practice, however,
the computations involved in the determination of the centre
manifold, and hence normal form, may be quite cumbersome,
thereby rendering efforts in that direction an exercise in futility.
This is especially true for coupled systems of three or more
multiple-delayed neurons. To the best of our knowledge,
there is currently no sufficiently robust symbolic computation
language which is capable of handling such calculations.
We are interested in symbolic, as opposed to numerical,
computations primarily because the systems that we study are
characterized by multiple parameters and we would like to
characterize stability in the most general terms possible; not just
for specific parameter values. Such a generality is essential for
our longterm goal to exhibit all possible stable spatio-temporal
patterns through a single delay differential equation system by
varying the parameters.

Despite the symbolic computation difficulties mentioned
above, some interesting and insightful work has been done
over the years. For example, in [4], a scalar multiple-delayed
differential equation of the form

u̇(t) = f1(u(t − T1)) + f2(u(t − T2)),

where f j (x) = −A j tanh(x), j = 1, 2 (A j ∈ R+), is
considered. The bifurcations occurring as linear stability is
lost are studied via the construction of a centre manifold. In
particular, the nature of Hopf and more degenerate, higher
codimension bifurcations are explicitly determined. We note
that the linear stability analysis of this equation was also
studied in [26,31,48]. Attention should also be drawn to the
earlier work of Nussbaum [37] for a scalar delay differential
equation with negative feedback and multiple delays, where
an ejective fixed point theorem is used to obtain the existence
of periodic solutions for a wide range of parameters. Further
interesting studies may also be found in [11,13–17,47,41–45,
50,52] for networks of two and four neurons, and the excellent
monograph [35] for the justification of studying small networks
of neurons with delayed feedback.

We note also the work of Orosz and Stépán [39], who studied
a quite general system with translational symmetry and one
time delay using centre manifold and normal form analysis.
They applied their results to a two dimensional car following
model with periodic boundary conditions, which leads to a
system with a ring structure and uni-directional coupling. Orosz
et al. [40] studied the n dimensional version of this model using
local bifurcation theory and numerical continuation analysis.

In [53], Wu et al. studied the model equation (1.2) when
the two delays τs and τ are identical, and it was shown that,
in a certain region of the space (α, β), each solution of the
network is convergent to the set of synchronous states in the
space. Furthermore, it was shown that this synchronization is
independent of the size of the delay. Also, a bifurcation surface
was obtained, as the graph of a continuous function of τ =

τ(α, β) in some region of (α, β), where Hopf bifurcation of
periodic solutions occurs. This work was based on symmetric
Hopf bifurcation theory in [51] and the normal form theory
for DDEs developed in [18], and it was possible to depict the
bifurcation surface and to describe the stability of phase-locked
periodic solutions since the calculation of the normal form up
to the 5th order was still feasible as only one time delay is
involved. In the case where there are two distinct delays, the
symbolic calculation of the normal form, even up to the third
order in the case of single Hopf bifurcation of (synchronized)
periodic solutions, is a formidable challenge, as shown in [36].
This motivates us to use singular perturbation techniques as an
alternative approach.

2. Synchronization and global stability

Recall that a solution of (1.2) is asymptotically synchronous
if the ω-limit set of the solution is contained in the set of
synchronous phase points given by

{φ = (φ1, φ2, φ3)
T

∈ C : φ1 = φ2 = φ3}.

System (1.2) is absolutely synchronous if every solution of (1.2)
is asymptotically synchronous for all fixed nonnegative values
of τs and τ .

Theorem 1. If |α| + |β| < 1, then (1.2) is absolutely
synchronous.

Proof. Let τs, τ ≥ 0 be fixed and define h = max{τs, τ }.
Consider a given solution u : [−h, ∞) → R3 of (1.2) and
let y(t) = u1(t) − u2(t). Then from (1.2) we find, for all t ≥ 0,

ẏ(t) = −y(t) + α[ f (u1(t − τs)) − f (u2(t − τ))]

− β[g(u1(t − τ)) − g(u2(t − τ))]

= −y(t) + αp(t)y(t − τs) − βq(t)y(t − τ),

where

p(t) =

∫ 1

0
f ′(vu1(t − τs) + (1 − v)u2(t − τs)) dv

q(t) =

∫ 1

0
g′(vu1(t − τ) + (1 − v)u2(t − τ)) dv.
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Due to the C1-smoothness of f, g, the boundedness of u1, u2 :

[−h, ∞) → R, and the normalization and concavity conditions
on f and g, we can find p∗, q∗

∈ (0, 1] such that p(t) ≤ p∗

and q(t) ≤ q∗ for all t ≥ 0.
Let

V (t) = y2(t) + |α|p∗

∫ t

t−τs

y2(θ) dθ

+ |β|q∗

∫ t

t−τ

y2(θ) dθ, t ≥ 0.

Then

d
dt

V (t) = 2y(t)[−y(t) + αp(t)y(t − τs) − βq(t)y(t − τ)]

+ |α|p∗
[y2(t) − y2(t − τs)]

+ |β|p∗
[y2(t) − y2(t − τ)]

≤ −2y2(t) + |α|p∗
[y2(t) + y2(t − τs)]

+ |β|q∗
[y2(t) + y2(t − τ)]

+ |α|p∗
[y2(t) − y2(t − τs)]

+ |β|p∗
[y2(t) − y2(t − τ)]

≤ −2(1 − |α| − |β|)y2(t),

from which it follows that

y2(t) + |α|p∗

∫ t

t−τs

y2(θ) dθ + |β|q∗

∫ t

t−τ

y2(θ) dθ

+ 2(1 − |α| − |β|)

∫ t

0
y2(θ) dθ

≤ y2(0) + |α|p∗

∫ 0

−τs

y2(θ) dθ + |β|q∗

∫ 0

−τ

y2(θ) dθ.

Consequently,
∫

∞

0 y2(θ) dθ < ∞.
Note that y is bounded on [−τ, ∞), and thus ẏ is bounded

on [0, ∞). This, together with y ∈ L2([0, ∞)), implies (by a
theorem of Barbălat [1,20]) that limt→∞ y(t) = 0. Therefore,
limt→∞[u1(t) − u2(t)] = 0. Similarly, we can show that

lim
t→∞

[u2(t) − u3(t)] = lim
t→∞

[u3(t) − u1(t)] = 0. �

We conjecture that all solutions will be asymptotically
synchronous for parameter values such that no asynchronous
periodic solution or steady state bifurcates from the trivial
solution. A more precise statement of the conjecture will be
formulated in Section 3.

In the following, we are going to show that, by imposing
more constraints on α and β, we are able to obtain a global
attractivity result for the trivial solution. To state the result, let
us note that a solution which is asymptotically synchronous will
satisfy

lim
t→∞

|u j (t) − u(t)| = 0, j = 1, 2, 3,

where u(t) is a solution of the scalar DDE

u̇(t) = −u(t) + α f (u(t − τs)) + 2βg(u(t − τ)). (2.1)

Theorem 2. If |α| + 2|β| < 1, then every solution of (1.2)
converges to zero as t → ∞.
Proof. Note that |α| + |β| ≤ |α| + 2|β|, so by Theorem 1
all solutions are asymptotically synchronous. To prove the
theorem, we will only need to show that every given solution
u(t) of (2.1) converges to zero as t → ∞.

Note that we can rewrite (2.1) as

u̇(t) = −u(t) + αp(t)u(t − τs) + 2βq(t)u(t − τ)

with

p(t) =

∫ 1

0
f ′(vu(t − τs)) dv, q(t) =

∫ 1

0
g′(vu(t − τ)) dv.

From the conditions assumed on f and g there exist p∗, q∗
∈

(0, 1] such that p(t) ≤ p∗ and q(t) ≤ q∗.
Let

V (t) = u2(t) + |α|p∗

∫ t

t−τs

u2(s) ds + 2|β|q∗

∫ t

t−τ

u2(s) ds

and use the same technique as that for Theorem 1, we can show
that u(t) → 0 as t → ∞. �

Remark. We note that the above result can also be obtained
by using a Liapunov function coupled with the Razumikhin
technique. Let V (u) = max1≤i≤3 |ui | and note that the upper-
right Dini derivative of V (u(t)) then satisfies D+V (u(t)) ≤

−V (u(t)) + (|α| + 2|β|) maxs∈[−h,0] V (u(t + s)) and hence
D+V (u(t)) ≤ −(1 − |α| − 2|β|)V (u(t)) < 0 if maxs∈[−h,0]

V (u(t + s)) ≤ V (u(t)) 6= 0. This enables us to apply
the Haddock–Terjeki’s LaSalle invariance principle [23] of
Razumikhin type to conclude that every solution of (1.2)
converges to zero as t → ∞. This idea was previously used
by Bélair [3] for a scalar DDE with a single delay.

3. Linear stability analysis

The previous section determined parameter values for which
the solutions of system (1.2) approach any synchronized
solution, and, in particular, the simplest synchronized solution,
the trivial solution, u1 = u2 = u3 = 0. One way
to study the approach of solutions to other synchronized
and nonsynchronized solutions is through the analysis of
bifurcations from the trivial solution. To this end, this section
gives a detailed analysis of the linearized stability of the trivial
solution of (1.2). This is followed, in Section 4, by a discussion
of the bifurcations which occur when stability is lost and how
these indicate when synchronization can and cannot occur.
Much of our work in this section is adapted from that of Shayer
and Campbell [47], who studied a model which was essentially
a nonsymmetric version of (1.2) with two neurons instead of
three, and that of Bélair and Campbell [4] who studied the
corresponding scalar equation. The work of this section will
culminate in a representation of the stability region of the trivial
solution of (1.2) in the parameter space consisting of one of the
delays and one of the gains. This approach has also been used
by Stépán [48] to study DDE’s with multiple delays.

We begin by linearizing (1.2) about the trivial solution u1 =

u2 = u3 = 0, yielding

u̇i (t) = −ui (t) + αui (t − τs) + βui−1(t − τ)

+ βui+1(t − τ). (3.1)
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This leads to the characteristic equation

∆2
1(λ)∆2(λ)

def
= (λ + 1 − αe−λτs + βe−λτ )2

× (λ + 1 − αe−λτs − 2βe−λτ ) = 0. (3.2)

It follows from standard results [25,27,29,48] that the trivial
solution of (1.2) will be locally asymptotically stable if all the
roots of the characteristic equation (3.2) have negative real parts
and unstable if at least one root has positive real part. We will
thus establish results about the local asymptotic stability of the
trivial solution of (1.2) by analyzing the roots of (3.2).

In particular, in the next subsection, we describe some
subsets of the parameter space where we can prove directly that
all roots of (3.2) have negative real parts. In Section 3.2 we
describe the curves in the (β, τ ) plane where stability may be
lost, i.e. the curves where the characteristic equation (3.2) has
roots with zero real parts. This is followed by an examination
of how the geometry of these curves changes as the parameters
α and τs are varied. Finally, in Section 3.3, the results are
put together to give a complete description of the region in
(α, β, τs, τ ) parameter space where the trivial solution is locally
asymptotically stable.

3.1. Subsets of the stability region

To begin, we give two delay-independent results.

Theorem 3. If the parameters satisfy |β| < 1
2 (1 − |α|) the

trivial solution of (1.2) is locally asymptotically stable for all
τs ≥ 0 and τ ≥ 0.

Proof. This result follows from the global stability result of
Theorem 2. It can also be proven by direct analysis of the
characteristic equation in a manner similar to that of [47,
Theorem 1]. �

Remark. It can also be shown in a manner similar to
that of [47, Theorem 1] that the trivial solution is locally
asymptotically stable for β = 0, α = −1, τs ≥ 0 and τ ≥ 0.

Theorem 4. If the parameters satisfy α < −1, |β| < −
α
2 , 0 ≤

τs < −
1

2α
and τ ≥ 0, then all the roots of the characteristic

equation (3.2) have negative real part.

Proof. To begin, let λ = ν + iω in the second factor of (3.2).
Separating into real and imaginary parts, we obtain

ν = −1 + αe−ντs cos(ωτs) + 2βe−ντ cos(ωτ) (3.3)

and

ω = −αe−ντs sin(ωτs) − 2βe−ντ sin(ωτ). (3.4)

We now assume that (3.3) and (3.4) have roots ν and ω, where
ω ≥ 0 (without loss of generality since complex roots of (3.2)
come in complex conjugate pairs). From (3.4), if ν ≥ 0 and
using the conditions imposed on β, we find that ω < −2α. The
condition 0 ≤ τs < −

1
2α

then implies that 0 ≤ ωτs < 1. Hence,
1/2 < cos(1) < cos(ωτs) ≤ 1 and 0 ≤ sin(ωτs) < sin(1) < 1.
Isolating the last term in both (3.3) and (3.4), squaring and
adding, we obtain the necessary condition

(ν + 1)2
+ ω2

− 2αe−ντs {(ν + 1) cos(ωτs) − ω sin(ωτs)}

+ α2e−2ντs − 4β2e−2ντ
= 0, (3.5)

for a solution of (3.3) and (3.4) to exist. For fixed values of ω,
τs , and τ , we call the left-hand side of (3.5) M(ν) and note that

M(0) = 1 − 2α cos(ωτs) + α2
+ ω2

+ 2αω sin(ωτs) − 4β2.

Since sin(ωτs) < ωτs and τs < −
1

2α
, then

ω2
+ 2αω sin(ωτs) ≥ ω2(1 + 2ατs) > 0,

which, recalling that α < 0, cos(ωτs) > 0 and 4β2 < α2,
yields M(0) > 0. Taking the derivative of M(ν) with respect to
ν, we obtain

dM

dν
= 2

{
4τβ2e−2ντ

− αωτse−ντs sin(ωτs)

+ (ν + 1)
[
1 + ατse−ντs cos(ωτs)

]
− αe−ντs

[
cos(ωτs) + ατse−ντs

]}
. (3.6)

Since α < 0, ω ≥ 0, τs ≥ 0, τ ≥ 0, ν ≥ 0 and sin(ωτs) ≥ 0,
the first two terms in the first line of expression (3.6) are
nonnegative. We now consider the other two in turn.

(1) From 0 ≤ τs < −
1

2α
and ν ≥ 0, we have 0 < e−ντs ≤ 1.

Combining this with cos(ωτs) ≤ 1, we obtain

(ν + 1)
[
1 + ατse−ντs cos(ωτs)

]
≥ (ν + 1)

(
1 −

1
2

)
> 0.

(2) From α < 0, 1
2 < cos(1) < cos(ωτs), τs < −

1
2α

, and
0 < e−ντs ≤ 1,

−αe−ντs
[
cos(ωτs) + ατse−ντs

]
> −αe−ντs

(
cos(1) −

1
2

)
> 0.

Thus, dM
dν

> 0 for ν ≥ 0. Since M(0) > 0, we conclude that
M(ν) > 0 if ν ≥ 0. Thus if M(ν) = 0, then ν < 0; i.e., all roots
of ∆2(λ) have negative real part. It may be shown in a similar
manner that all the roots of ∆1(λ) have negative real part. �

The following theorem shows that parameter values
analogous to those of Theorem 4, but with α > 0, do not lie
inside the region of stability, i.e., the trivial solution is unstable
for these parameter values.

Theorem 5. If α > 1, then the trivial solution of (1.2) is
unstable for all values of β, τs ≥ 0 and τ ≥ 0. If α = 1,
then the trivial solution of (1.2) is unstable for all values of
β 6= 0, τs ≥ 0 and τ ≥ 0.

Proof. Recall from the characteristic equation (3.2) that
∆1(λ) = (λ + 1 − αe−λτs + βe−λτ ). Then, with α > 1 and
β ≤ 0,

∆1(0) = (1 − α + β) < 0

and, for λ ∈ R,

lim
λ→+∞

∆1(λ) = lim
λ→+∞

[λ + 1 − αe−λτs + βe−λτ
] = +∞
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for all β ≤ 0, τs ≥ 0 and τ ≥ 0. Hence, as ∆1 : R → R is a
continuous function, there exists a λ∗ > 0 such that ∆1(λ

∗) = 0
for any fixed values of τs ≥ 0, τ ≥ 0, β ≤ 0 and α > 1.

Now consider ∆2(λ) = (λ + 1 − αe−λτs − 2βe−λτ ). For
β ≥ 0, with α > 1

∆2(0) = 1 − α − 2β < 0

and, for λ ∈ R,

lim
λ→+∞

∆2(λ) = lim
λ→+∞

[λ + 1 − αe−λτs − 2βe−λτ
] = +∞.

Hence, as ∆2 : R → R is a continuous function, there exists a
λ∗ > 0 such that ∆2(λ

∗) = 0 for any fixed values of τs ≥ 0,
τ ≥ 0, β ≥ 0 and α > 1.

When α = 1, similar arguments show that ∆1(λ) has a
positive real root for any fixed values of τs ≥ 0, τ ≥ 0 and
β < 0, and that ∆2(λ) has a positive real root for any fixed
values of τs ≥ 0, τ ≥ 0 and β > 0.

Thus, the characteristic equation has a positive real root for
all β and all τs ≥ 0, τ ≥ 0 when α > 1 and for all β 6= 0 and
all τs ≥ 0, τ ≥ 0 when α = 1. Hence the trivial solution is
unstable for these parameter values. �

3.2. Curves of characteristic roots with zero real part

As the parameters are varied, stability may be lost by a
real root of the characteristic equation passing through zero,
or by a pair of complex conjugate roots passing through the
imaginary axis. The former occurs when β =

1
2 (1 − α), where

the characteristic equation has a simple zero root, and when
β = α − 1, where the characteristic equation has a double zero
root. The latter occurs as described below.

The characteristic equation has a simple pair of pure
imaginary roots λ = ±iω for parameter values such that
∆2(±iω) = 0. This occurs when α, β, τs, τ, ω satisfy

1 − α cos ωτs = 2β cos ωτ

ω + α sin ωτs = −2β sin ωτ.
(3.7)

For fixed α and τs this occurs along the curves (β+

H , τ+

Hk) and
(β−

H , τ−

Hk) where

β±

H = ±
1
2

√
1 + α2 + ω2 + 2αω sin ωτs − 2α cos ωτs, (3.8)

τ+

Hk =
1
ω

Arctan
[
−ω − α sin ωτs

1 − α cos(ωτs)

]
+

{
2kπ/ω, 1 − α cos ωτs > 0
(2k + 1)π/ω, 1 − α cos ωτs < 0,

(3.9)

τ−

Hk =
1
ω

Arctan
[
−ω − α sin ωτs

1 − α cos(ωτs)

]
+

{
2kπ/ω, 1 − α cos ωτs < 0
(2k + 1)π/ω, 1 − α cos ωτs > 0.

(3.10)

The characteristic equation has a repeated pair of pure
imaginary roots λ = ±iω for parameter values such that
∆1(±iω) = 0. This occurs when α, β, τs, τ, ω satisfy

1 − α cos ωτs = −β cos ωτ,

ω + α sin ωτs = β sin ωτ.
(3.11)
For fixed α and τs this occurs along the curves (β+

Hd , τ+

Hdk) and
(β−

Hd , τ−

Hdk) where

β±

Hd = ±

√
1 + α2 + ω2 + 2αω sin ωτs − 2α cos ωτs

= 2β±

H , (3.12)

τ+

Hdk =
1
ω

Arctan
[
−ω − α sin ωτs

1 − α cos(ωτs)

]
+

{
2kπ/ω, 1 − α cos ωτs < 0
(2k + 1)π/ω, 1 − α cos ωτs > 0,

(3.13)

τ−

Hdk =
1
ω

Arctan
[
−ω − α sin ωτs

1 − α cos(ωτs)

]
+

{
2kπ/ω, 1 − α cos ωτs > 0
(2k + 1)π/ω, 1 − α cos ωτs < 0.

(3.14)

For fixed α and τs Eqs. (3.8)–(3.10) and (3.12)–(3.14) define
families of curves in the β, τ plane, parametrized by ω. In order
to describe how these curves form the boundary of the stability
region, we first state some limits.

lim
ω→0

β±

H = ±
|1 − α|

2
,

lim
ω→0

τ±

Hk =


1 + ατs

α − 1
, k = 0, ∓(α − 1) > 0

∞, otherwise

(3.15)

lim
ω→0

β±

Hd = ±|1 − α|,

lim
ω→0

τ±

Hdk =


1 + ατs

α − 1
, k = 0, ±(α − 1) > 0

∞, otherwise

(3.16)

lim
ω→∞

β±

H = ±∞, lim
ω→∞

τ±

Hk = 0,

lim
ω→∞

β±

Hd = ±∞, lim
ω→∞

τ±

Hdk = 0.
(3.17)

Consider the case when |α| < 1. Then

lim
ω→∞

Arctan
[
−ω − α sin ωτs

1 − α cos(ωτs)

]
= −

π

2

and the curves have the following asymptotic behaviour as
ω → ∞

β±

H ∼ ±
ω

2
, τ+

Hk ∼

[
−

π

2
+ 2kπ

]/
ω,

τ−

Hk ∼

[
−

π

2
+ (2k + 1)π

]/
ω,

(3.18)

β±

Hd ∼ ±ω, τ+

Hdk ∼

[
−

π

2
+ (2k + 1)π

]/
ω,

τ−

Hdk ∼

[
−

π

2
+ 2kπ

]/
ω.

(3.19)

This implies the following asymptotic behaviour as β → ∞

τ+

Hk ∼
(4k − 1)π

4β
= −

π

4β
,

3π

4β
,

7π

4β
, . . . (3.20)

τ+

Hdk ∼
(4k + 1)π

2β
=

π

2β
,

5π

2β
,

9π

2β
, . . . (3.21)
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and as β → −∞

τ−

Hk ∼ −
(4k + 1)π

4β
= −

π

4β
, −

5π

4β
, −

9π

4β
, . . . (3.22)

τ−

Hdk ∼ −
(4k − 1)π

2β
=

π

2β
, −

3π

2β
, −

7π

2β
, . . . (3.23)

We now give some lemmas about how the geometry of the
curves described above changes as α and τs are varied.

Lemma 1. If |α| ≤ 1, then

1. the curves (β+

H , τ+

Hk) are bounded on the left by the line

β =
1−|α|

2 ;
2. the curves (β−

H , τ−

Hk) are bounded on the right by the line

β =
|α|−1

2 ;
3. the curves (β+

Hd , τ+

Hdk) are bounded on the left by the line
β = 1 − |α|;

4. the curves (β−

Hd , τ−

Hdk) are bounded on the right by the line
β = |α| − 1.

Proof. From Eq. (3.7), which holds along β = β+

H , we have

β+

H ≥ β+

H cos(ωτ+

Hk) =
1 − α cos(ωτs)

2
≥

1 − |α|

2
,

which establishes result 1. Since β−

H = −β+

H , this also
establishes result 2. Results 3 and 4 can be shown in an
analogous manner. �

Lemma 2. The curves of pure imaginary eigenvalues have the
property that β+

H and β+

Hd are monotone increasing functions
of ω, β−

H and β−

Hd are monotone decreasing functions of ω and
satisfy β+

H > 1
2 |1 − α|, β−

H < −
1
2 |1 − α|, β+

Hd > |1 − α|,
β−

Hd < −|1 − α|, for all ω > 0 if τs satisfies

0 ≤ τs ≤ −1 +

√
1 +

1
|α|

.

When α < 0, the converse is also true.

Proof. Consider first β+

H . Differentiating (3.8) with respect to
ω, we obtain

dβ+

H

dω
=

1

4β+

H

[ω + α(1 + τs) sin(ωτs) + αωτs cos(ωτs)].

(3.24)

For τs = 0 and ω > 0,
dβ+

H
dω

=
ω

4β+

H
> 0. For ωτs > 0,

α cos(ωτs) ≥ −|α| and α sin(ωτs) > −|α|ωτs , hence

dβ+

H

dω
>

ω

4β+

H

(1 − 2|α|τs − |α|τ 2
s )

=
ω|α|

4β+

H

[
1

|α|
+ 1 − (τs + 1)2

]
≥ 0

for τs ≤ −1 +
√

1 + |α|. It now follows from the first limit in
(3.15) that β+

H > 1
2 |1 − α| for all ω > 0.
To prove the converse, consider the Taylor expansion of
dβ+

H
dω

about ω = 0:

dβ+

H

dω
= ω

{
1 + 2ατs + ατ 2

s

|1 − α|

}
−

1
2|1 − α|

ω3
{

ατ 3
s

3
(4 + τs) +

(1 + ατs + ατ 2
s )2

(1 − α)2

}
+ O(ω5).

If τs > −1 +

√
1 +

1
|α|

and α < 0, then the first term of this

expression is negative, and hence β+

H (ω) is decreasing for ω

sufficiently close to zero.
The proofs for β−

H and β±

Hd follow in a similar manner. �

Remark. We denote the special value τs = −1 +

√
1 +

1
|α|

by

its equivalent form

τ (1)
s =

1(
1 +

√
1 +

1
|α|

)
|α|

, α ∈ R (3.25)

and refer to it as the first transition point.

From the previous discussion, it is clear that for τs < τ
(1)
s ,

the minimum (maximum) values of β+

H , β+

Hd (β−

H , β−

Hd ) occur

when ω = 0. For τs > τ
(1)
s this is not necessarily the case. Let

ωmin be the smallest positive value of ω such that
dβ+

Hd
dω

= 0,

and define βmin
Hd = β+

Hd(ωmin). Then for τs > τ
(1)
s , βmin

Hd is the
minimum value of β+

Hd and −βmin
Hd is the maximum value of

β−

Hd .
Another important transition will occur when this minimum

value of β+

Hd crosses the line β =
1
2 (1−α). We therefore define

the second transition point to be the value τ
(2)
s such that when

τs = τ
(2)
s , βmin

Hd =
1
2 (1 − α). Note that τ

(2)
s is defined implicitly

by

1 + α2
+ ω2

min + 2αωmin sin(ωminτ
(2)
s ) − 2α cos(ωminτ

(2)
s )

=
1
4
(1 − α)2, (3.26)

where ωmin is the smallest root of

ωmin + α(1 + τ (2)
s ) sin(ωminτ

(2)
s )

+ αωminτ
(2)
s cos(ωminτ

(2)
s ) = 0. (3.27)

Lemma 3. The second transition occurs only if α > 1 or if
α < −

1
3 .

Proof. Recall from Lemma 1 that if |α| ≤ 1 then βmin
Hd >

1 − |α|. Thus this transition will occur for |α| ≤ 1 only if
1 − |α| < 1

2 (1 − α). When 0 ≤ α ≤ 1, 1 − |α| = 1 − α ≥

1
2 (1 − α), so the transition never occurs. When −1 ≤ α < 0,
1 − |α| = 1 + α < 1

2 (1 − α) if α < −
1
3 .

From Lemma 4 below, βmin
Hd ≥ 0 if |α| > 1. We thus

conclude that the second transition always occurs if α > 1 or
α < −1. The result follows. �
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A third transition corresponds to when the curves (β±

H , τ±

Hk)

and (β±

Hd , τ±

Hdk) touch the τ axis. The following lemma
determines when this occurs.

Lemma 4. Let α be fixed. If |α| < 1, then βH (ω), βHd(ω) 6= 0
for any τs ≥ 0 and any ω ∈ (0, ∞). If |α| > 1, then there exist
countably many values of τs for which βH (ω) = βHd(ω) = 0
for some ω ∈ (0, ∞).

Proof. We begin by letting β = 0 in Eqs. (3.7) (or, equivalently,
(3.11)) and assume that ω > 0. This results in

α cos(ωτs) = 1 and α sin(ωτs) = −ω. (3.28)

Clearly, these equations can only be satisfied, for positive ω, if
1 < |α|. In this case, squaring and adding (3.28) produces

ω =

√
α2 − 1. (3.29)

Substituting this expression into the first equation of (3.28) and
solving for τs , we obtain:

τs =


1

√
α2 − 1

[
Arccos

(
1
α

)
+ 2nπ

]
if α < −1

1
√

α2 − 1

[
−Arccos

(
1
α

)
+ (2n + 2)π

]
if α > 1,

(3.30)

where Arccos is the principal branch of the inverse cosine
function which has the range [0, π]. �

Remark. We are particularly interested in the smallest positive
value of τs for which the curves touch the τ axis. Since the
trivial solution is unstable if α > 1 we focus on the case
α < −1, denote the corresponding value of τs by

τ (3)
s =

1
√

α2 − 1

{
Arccos

(
1
α

)}
, α < −1, (3.31)

and refer to it as the third transition point.

One final transition is associated with the finite limit in
(3.15) and (3.16). Define

τ ∗ def
=

1 + ατs

α − 1
, τ ∗

s
def
= −

1
α

, (3.32)

and note that τ ∗ > 0 if α > 1 and τs ≥ 0 and τ ∗
≥ 0 if α < 0

and τs ≥ τ ∗
s . Thus this transition occurs when α passes through

1 or when τs passes through τ ∗
s with α < 0. The transition

corresponds to the appearance of a new member of the family
of curves of pure imaginary eigenvalues, which has a finite limit
as ω → 0.

Lemma 5. For 0 ≤ α < 1 only the first transition occurs. For
α < 0, the transition points, when they exist, are ordered as
follows

τ (1)
s < τ (2)

s < τ
(3)
2

and

τ (1)
s < τ ∗

s < τ
(3)
2 .
Proof. Let α < 0. Since βmin
Hd = βHd(0) = 1 − α > 1

2 (1 − α)

for τs ≤ τ
(1)
s , we must have τ

(1)
s < τ

(2)
s . Since 1

2 (1 − α) > 0

and τ
(3)
s corresponds to the first value of τs for which βmin

Hd = 0,

we must have τ
(2)
s < τ

(3)
s .

The ordering of τ
(1)
s and τ ∗

s is easily seen from Eqs. (3.25)
and (3.32). Now consider, for α < −1,

τ (3)
s − τ ∗

s = −
1
α

 1√
1 −

1
α2

Arccos
(

1
α

)
− 1

 .

Simple analysis shows that the quantity in [ ] is always positive,
hence τ ∗

s < τ
(3)
s . �

Remark. The transition point τ
(2)
s is difficult to study

analytically. However, numerical results indicate that there
exists α∗ < −1 such that τ ∗

s < τ (2) for α∗ < α < −1/3
and τ (2) < τ ∗

s for α < α∗.

3.3. Full stability region

We will now describe the full stability region of the trivial
solution in the β, τ plane, as α and τs are varied. Recall that
Theorem 3 indicates that the trivial solution is stable in the
vertical strip |β| < 1

2 (1 − |α|), τ ≥ 0 for |α| < 1 and all
nonnegative values of τs . Further, Theorem 4 indicates that it is
stable in the vertical strip |β| < −

α
2 , τ ≥ 0 for α < −1 and τs

nonnegative and sufficiently small. The full region of stability
is found from these subsets by increasing/decreasing β until the
first curve where the characteristic equation (3.2) has a root with
zero real part is reached. Using the analysis of the geometry of
these curves given in the previous subsection, we can describe
the full region of local asymptotic stability, as given below.

1. α > 1: There is no stability region, cf. Theorem 5.
2. α = 1: The trivial solution is unstable if β 6= 0. If β = 0 the

stability is not determined by the linearization.
3. 0 ≤ α < 1: (See Fig. 3.1)

(a) 0 ≤ τs < τ
(1)
s . The stability region is bounded on the

right by the line β =
1−α

2 and on the left by the line
β = α −1 and the curve (β−

H , τ−

H0), i.e. it is given by the
union of the following regions

α − 1 < β <
1 − α

2
, 0 ≤ τ ≤ τ int

;

α − 1
2

< β <
1 − α

2
, τ ≥ τ int

;

β−

H < β <
α − 1

2
, τ int

≤ τ < τ−

H0,

where τ int
= τ−

H0(ω
int) and ωint is such that β−

H (ωint) =

α − 1.
(b) τs > τ

(1)
s . Applying Lemma 1 shows that the boundary

on the right is still the line β =
1−α

2 and that the
boundary on the left is now made up of various pieces
of the line β = α − 1 and the curves (β−

H , τ−

Hk), k ≥ 0.

4. −1/3 ≤ α < 0:
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(a) 0 ≤ τs < τ
(1)
s . (b) τ

(1)
s ≤ τs .

Fig. 3.1. Region of stability of the trivial solution for 0 ≤ α < 1. Solid (dashed) curves correspond to parameter values where ∆2(λ) (∆1(λ)) has a pair of pure
imaginary roots. Solid (dashed) vertical lines correspond to parameter values where ∆2(λ) (∆1(λ)) has a zero root. Actual parameter values: α = 0.5, τs = 0.7, 6.0.
(a) 0 ≤ τs < τ
(1)
s . Same as case 3(a). The stability region is

bounded on the right by the line β =
(1−α)

2 and on the
left by the line β = α −1 and the curve (β−

H , τ−

H0), i.e. it
is given by the union of the following regions

α − 1 < β <
(1 − α)

2
, 0 ≤ τ ≤ τ int

;

(α − 1)

2
< β <

(1 − α)

2
, τ ≥ τ int

;

β−

H < β <
(α − 1)

2
, τ int

≤ τ < τ−

H0,

where τ int
= τ−

H0(ω
int) and ωint is such that β−

H (ωint) =

α − 1.
(b) τ

(1)
s < τs < τ ∗

s . The right boundary is made up of
pieces of the line β =

1−α
2 and pieces of the curves

(β+

H , τ+

Hk), k > 0, and the left boundary by pieces of the
line β = α−1 and pieces of the curves (β−

H , τ−

Hk), k ≥ 0.
(c) τs > τ ∗

s . The right boundary is made up of pieces of the
line β =

1−α
2 and pieces of the curves (β+

H , τ+

Hk), k ≥ 0,
and the left boundary by pieces of the line β = α−1 and
pieces of the curves (β−

H , τ−

Hk), k ≥ 0 and of the curve
(β−

Hd , τ−

Hd0).
5. −1 ≤ α < −1/3:

(a) 0 ≤ τs < τ
(1)
s . Same as case 3(a).

(b) τ
(1)
s ≤ τs < τ ∗

s . Same as case 4(b).

(c) τ ∗
s < τs < τ

(2)
s . Same as case 4(c).

(d) τs > τ
(2)
s . Same as case (c), except that the

right boundary may also contain pieces of the curves
(β+

Hd , τ+

Hdk), k ≥ 0 and the left boundary may also
contain pieces of the curves (β−

Hd , τ−

Hdk), k ≥ 0.
6. α < −1: (See Fig. 3.2)

(a) 0 ≤ τs < τ
(1)
s . Same as case 3(a).

(b) τ
(1)
s ≤ τs < τ ∗

s . Same as case 4(b).

(c) τ ∗
s < τs < τ

(2)
s . Same as case 4(c).
(c′) τ
(2)
s < τs < τ ∗

s . The right boundary is made up of
pieces of the line β =

1−α
2 and pieces of the curves

(β+

H , τ+

Hk), k > 0 and (β+

Hd , τ+

Hkd), k ≥ 0, and the left
boundary by pieces of the line β = α − 1 and pieces of
the curves (β−

H , τ−

Hk), k ≥ 0 and (β−

Hd , τ−

Hdk), k > 0.

(d) max(τ
(2)
s , τ ∗

s ) < τs < τ
(3)
s . Same as case 5(d).

(e) τs > τ
(3)
s . There is no longer a stability region.

We close this section by noting that the stability regions
described in this section bear a striking similarity of structure
to those obtained by [4] for a scalar system with two delays and
by [48] for a two dimensional system with two delays.

4. Bifurcation, desynchronization and multistability

In the previous section, we determined all points in
parameter space where the characteristic equation (3.2) has
roots with zero real parts, i.e., where the trivial solution of (1.2)
has eigenvalues with zero real parts. Varying one or more
parameters in the system (1.2) so as to pass through such a point
may cause a bifurcation, i.e., a qualitative change in the type
of solutions admitted by the DDE. Such points are important,
particularly when they lie on the boundary of the stability
region of the trivial solution, as they determine the observable
behaviour of the system.

We begin this section with a study of the bifurcations which
occur in (1.2) when a single parameter is varied. For this
system, there are four such codimension one bifurcations: a
standard steady state bifurcation, which can occur when the
factor ∆2(λ) of the characteristic equation (3.2) has a single
zero root; an equivariant steady state bifurcation, which can
occur when ∆1(λ) has a single zero root; a standard Hopf
bifurcation, which can occur when ∆2(λ) has a pair of pure
imaginary eigenvalues; and an equivariant Hopf bifurcation
which can occur when ∆2(λ) has a pair of pure imaginary
roots. It is straightforward to check that the conditions for the
various bifurcations are satisfied when, say, β is taken to be the
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(a) 0 ≤ τs < τ
(1)
s . (b) τ

(1)
s ≤ τs < τ∗

s .

(c) τ∗
s ≤ τs < τ

(2)
s . (d) τ

(2)
s ≤ τs < τ

(3)
s .

Fig. 3.2. Region of stability of the trivial solution for α < −1. Actual parameter values: α = −1.5, τs = 0.3, 0.6, 0.8, 1.
bifurcation parameter and the other parameters are fixed. See
e.g. [36] where this is done for the standard Hopf bifurcation
and [53] where it is done for the equivariant Hopf.

Consider first the standard bifurcations. Since these
correspond to ∆2(λ) having roots with zero real part, they are
depicted by the solid curves and lines in Figs. 3.1 and 3.2. It
is straightforward to check that these bifurcations give rise to
synchronous solutions, i.e. solutions with u1(t) = u2(t) =

u3(t). The criticality and type of bifurcation is determined by
the nonlinearities f and g in (1.2). In [36], we used a centre
manifold reduction to show that with f = g = tanh the Hopf
bifurcation is supercritical if

α(τs − τ)(ω sin(ωτs) − cos(ωτs)) − τ(1 + ω2) − 1 < 0,

and subcritical if this quantity is positive. Using a similar
technique we can show that the steady state bifurcation is a
supercritical pitchfork bifurcation if

1 + ατs + τ(d − a) > 0,

and a subcritical pitchfork if this quantity is negative.
The equivariant bifurcations correspond to ∆1(λ) having

roots with zero real part, hence they are depicted by the dashed
curves and line in Figs. 3.1 and 3.2. These bifurcations give
rise to asynchronous solutions, i.e. solutions with ui (t) 6= u j (t)
for some i 6= j . More specifically, standard results [19,30,51]
tell us that the equivariant Hopf bifurcations will give rise to
eight branches of periodic orbits with period P: two branches
of phase-locked oscillations, ui (t) = ui−1(t ± P/3); three
branches of mirror-reflecting waves, ui (t) = u j (t) 6= uk(t)
for some i 6= j 6= k; and three branches of standing waves,
ui (t) = u j (t + P/2) for some pair i 6= j . Sections 5 and
6 will use perturbation theory to develop an approximation to
the phase-locked periodic orbits and determine their stability
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(a) Asynchronous equilibria α = 0.5, τs = 0.7, β = −0.6, τ = 1.5.
Parameter values correspond to Fig. 3.1(a).

(b) Asynchronous limit cycle α = −0.5, τs = 3, β = −1.2, τ = 0.1.

Fig. 4.1. Numerical simulations of (1.2) with f = g = tanh showing stable asynchronous solutions.
when f = g = tanh. We leave a discussion of the stability of
the other branches to a future paper. Similarly, the equivariant
steady state bifurcation will give rise to multiple branches of
equilibria. For example, there will be three branches of “mirror
reflecting” equilibria, ui (t) = u j (t) = u∗

6= uk(t) = v∗,
i 6= j 6= k, with

u∗
= α f (u∗) + βg(u∗) + βg(v∗),

v∗
= α f (v∗) + 2βg(u∗).

As mentioned before, we conjecture that all solutions will
be asymptotically synchronous for parameter values such that
no asynchronous pattern bifurcates from the trivial solution.
Therefore, we formulate the following conjecture:

Conjecture 1. If |β| < |1 − α| and τs < τ
(1)
s or if |β| <

1
2 |1 − α| and τs < τ

(2)
s , then for all τ ≥ 0, α, every solution of

(1.2) is asymptotically synchronous.

Desynchronization occurs when (1.2) possesses stable
solutions (u1(t), u2(t), u3(t)) with u j (t) 6= uk(t) for some
j 6= k and some t ≥ 0. The bifurcation analysis above
gives indications of parameter values for which this can occur.
In particular, desynchronization via equilibria can occur when
β < α − 1 and τ is sufficiently small (see Fig. 4.1(a)).
Desynchronization via periodic orbits can occur when α <

0, τs > τ ∗
s , α − 1 < β < 0 and τ is sufficiently small or when

α < −
1
3 , τs > τ

(2)
s and |β| < 1

2 (1 − α) (see Fig. 4.1(b)).
Multistability occurs when system (1.2) possesses multiple

stable solutions. Due to the symmetry of the system, there
will always be multistability when stable nontrivial solutions
of (1.2) exist (the existence of one nontrivial solution implies
the existence of a whole group orbit). We will focus instead on
multistability which is not due to the symmetry of the system.

One way to induce such multistability is through bifurcation
interactions. From the analysis in the previous section, it is
clear that if τs > τ

(1)
s then there can be intersection points

of the curves (β±

H , τ±

Hk), k ≥ 0 with each other or with the
line β =

1
2 (1 − α) which lie on the boundary of the stability

region. The former correspond to Hopf–Hopf interactions and
the latter to Hopf–steady state interactions. If the corresponding
bifurcations are supercritical, near the interaction points we
may find coexistence of multiple stable synchronous solutions.
Similarly, if τs > τ

(2)
s then there can be intersection points

of the curves (β±

Hd , τ±

Hdk), k ≥ 0 with each other or with the
line β = (α − 1) which lie on the boundary of the stability
region. Such points may lead to coexistence of multiple stable
asynchronous solutions.

Most interestingly, if τs > τ
(2)
s , then there can be

intersection points of the curves (β±

H , τ±

Hk), k ≥ 0 with the
curves (β±

Hd , τ±

Hdk), k ≥ 0. These may lead to coexistence
of stable synchronous and asynchronous oscillatory solutions.
Such a situation is shown in Fig. 4.2(a). Near the intersection
points of the curves (β±

Hd , τ±

Hdk), k ≥ 0 and the line β =

1
2 (α − 1), one may find coexistence of stable asynchronous
limit cycles and stable synchronous equilibria. An example is
shown in Fig. 4.2(b). Similarly, near the intersection points of
the curves (β±

H , τ±

Hk), k ≥ 0 and the line β = 1 − α, one may
find coexistence of stable synchronous limit cycles and stable
asynchronous equilibria.

5. Approximation to the phase-locked oscillation

Recall that the linearization of (1.2) about (0, 0, 0) is given
by

u̇ j (t) = −u j (t) + αu j (t − τs)

+ β[u j−1(t − τ) + u j+1(t − τ)], (5.1)

with j mod 3; and the associated characteristic equation is

S(λ)
def
= ∆2

1(λ)∆2(λ) = 0, (5.2)

where

∆1(λ) = λ + 1 − αe−λτs + βe−λτ ,

∆2(λ) = λ + 1 − αe−λτs − 2βe−λτ .

As the parameters are varied, stability may be lost by a real root
of the characteristic equation passing through zero, or by a pair
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(a) Synchronous and asynchronous limit cycles. α = −1.5,
τs = 1.0, β = 1.0, τ = 1.8.

(b) Asynchronous limit cycle and synchronous equilibria.
α = −1.5, τs = 1.0, β = 1.3, τ = 0.9.

Fig. 4.2. Numerical simulations of (1.2) with f = g = tanh showing coexistence of synchronous and asynchronous solutions. Parameter values correspond to
Fig. 3.2(c).
of complex conjugate roots passing through the imaginary axis.
The former occurs when β =

1
2 (1−α), where the characteristic

equation has a simple zero root, and when β = α−1, where the
characteristic equation has a double zero root. The latter occurs
if at least one of the following two situations occurs:

1. The characteristic equation has a simple pair of purely
imaginary roots ±iω for parameter values such that
∆2(±iω) = 0.

2. The characteristic equation has a repeated (double) pair of
purely imaginary roots ±iω for parameter values such that
∆1(±iω) = 0.

In the rest of this paper, we focus on the second case
(see [36] for a discussion of the first case), showing that a Hopf
bifurcation occurs under generic conditions and analyzing the
stability of the resulting phase-locked oscillations.

Consider the factor (of the characteristic equation)

∆1(λ) = λ + 1 − αe−λτs + βe−λτ ,

and let λ = iω. This gives the two relationships between
parameters α, β, τs , and τ

1 − α cos(ωτs) + β cos(ωτ) = 0,

ω + α sin(ωτs) − β sin(ωτ) = 0, (5.3)

which determine parameter values for which (5.2) has a pair of
purely imaginary roots. Without loss of generality, we suppose
that all the parameters are fixed except τ which will be the
bifurcation parameter. Applying Theorem 1.1 on page 332
of [27], we proceed as follows. In (5.1), suppose that λ = λ(τ).
Differentiating with respect to τ and solving for dλ

dτ
gives

dλ

dτ
= −

∂S

∂τ

/
∂S

∂λ
,

= −

(
∆1(λ)

∂∆2
∂τ

+ 2∆2
∂∆1
∂τ

∆1(λ)
∂∆2
∂λ

+ 2∆2
∂∆1
∂λ

)
. (5.4)

Evaluating this at λ = iω where ∆1(iω) = 0 then yields(
dλ

dτ

∣∣∣∣
λ=iω

)
= −

(
∂∆1

∂τ

/
∂∆1

∂λ

)∣∣∣∣
λ=iω
=

(
βλe−λτ

1 + ατse−λτs − βτe−λτ

∣∣∣∣
λ=iω

)
.

From the above, we find that

Re
(

dλ

dτ

∣∣∣∣
λ=iω

)
=

βωK1 sin(ωτ) + βωK2 cos(ωτ)

K 2
1 + K 2

2

,

where K1 = 1 + ατs cos(ωτs) − βτ cos(ωτ) and K2 =

βτ sin(ωτ) − ατs sin(ωτs). Hence, the usual transversality
condition is met if and only if

βω[sin(ωτ) + ατs sin(ω(τ − τs))] 6= 0. (5.5)

Summarizing the above discussions and applying the well-
known (for details, see [51] and pp. 126 of [30]) equivariant
Hopf bifurcation theorem for delay differential equations, we
conclude that system (1.2) undergoes a Hopf bifurcation on
the surfaces defined by (5.3) if condition (5.5) holds. Further,
the particular symmetry of our model implies [51,28,19] that
this Hopf bifurcation gives rise to phase-locked, standing, and
mirror-reflecting waves.

Our ultimate goal is to study the stability of the bifurcating
phase-locked oscillations. To do this, we must first construct
an approximation to the bifurcating phase-locked solution. Our
construction is based on a perturbation procedure together
with an application of Fredholm alternative theory (see
Sattinger [46] for details).

Before starting, we state some notation and assumptions.
For clarity, we will consider a specific point on the bifurcation
surface defined by (5.3), i.e. for a fixed α, β, τs we will assume
there is a root λ = iω0 of (5.2) when τ = τ0, where τ0 is
implicitly defined by (5.3). Further, we must specify specific
nonlinearities in (1.2), we thus take f (x) = g(x) = tanh(x).

Our construction begins by rescaling the variable t in (1.2)
by setting s = ω(ε)t , where ε > 0 is a small number. Then
solutions which are 2π

ω
periodic in t will correspond to solutions

which are 2π periodic in s. Let

x j (s) = u j

( s

ω

)
, j = 1, 2, 3. (5.6)
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System (1.2) then becomes

ωẋ j (s) = −x j (s) + α f (x j (s − ωτs))

+ β[ f (x j−1(s − ωτ)) + f (x j+1(s − ωτ))], (5.7)

where j mod 3. Using the Taylor expansion of f = g = tanh
in (5.7) gives

ωẋ j (s) = −x j (s) + αx j (s − ωτs)

+ β[x j−1(s − ωτ) + x j+1(s − ωτ)]

−
1
3
(αx3

j (s − ωτs) + β[x3
j−1(s − ωτ)

+ x3
j+1(s − ωτ)]) + · · · , (5.8)

where j mod 3. We look for solutions of (5.8) in the form of a
perturbation series:

X(s, ε) = εx0 + ε2x1(s) + ε3x2(s) + · · ·

= ε


x00(s)

x10(s)
x20(s)

+ ε

x01(s)
x11(s)
x21(s)

+ ε2

x02(s)
x12(s)
x22(s)

+ · · ·


def
=

x0(s)
x1(s)
x2(s)

 . (5.9)

The periods of the oscillatory solutions of the nonlinear system
will depend on the parameter τ , thus we perturb both the
frequency and the delay as follows:

ω = ω0 + εω1 + ε2ω2 + · · ·

τ = τ0 + ετ1 + ε2τ2 + · · · , (5.10)

where τ0 and ω0 are as described above. From (5.9) and (5.10),
we obtain

x j (s − ωτ) = εx j0(s − ωτ) + ε2x j1(s − ωτ)

+ ε3x j2(s − ωτ) + · · · , (5.11)

where

x j i (s − ωτ) = x j i (s − ω0τ0)

− ẋ j i (s − ω0τ0)[ε(ω1τ0 + ω0τ1)

+ ε2(ω2τ0 + ω1τ1 + ω0τ2) + · · ·]

+
1
2

ẍ j i (s − ω0τ0)[ε(ω1τ0 + ω0τ1) + · · ·]
2

+ · · · , (5.12)

with j mod 3, and i = 0, 1, 2, . . .. Substituting (5.9), (5.11)
and (5.12) into (5.8) gives

ω[ε ẋ j0(s) + ε2 ẋ j1(s) + ε3 ẋ j2(s) + · · ·]

= −x j0(s) − x j1(s) − x j2(s) + α[εx j0(s − ωτs)

+ ε2x j1(s − ωτs) + ε3x j2(s − ωτs) + · · ·]

+ εβ[x j−1 0(s − ωτ) + x j+1 0(s − ωτ)]

+ ε2β[x j−1 1(s − ωτ) + x j+1 1(s − ωτ)]

+ ε3β[x j−1 2(s − ωτ) + x j+1 2(s − ωτ)] + · · · . (5.13)
It is to be noted that x0, x1, x2 are 2π periodic in the variable s.
Using the expansions in (5.8) and employing (5.9)–(5.14), we
obtain the following equations for the first and second orders of
the perturbation expansion

L j [x0] = 0, (5.14)

L j [x1] = −ω1 ẋ j0(s) − αω1 ẋ j0(s − ω0τs)τs
− β(ω0τ1 + ω1τ0)[ẋ j+1 0(s − ω0τ0)

+ ẋ j−1 0(s − ω0τ0)], (5.15)

where j mod 3 and the operator L j (·) is defined by

L j [xk]
def
= ω0 ẋ jk(s) + x jk(s) − αx jk(s − ω0τs)

− β[x j+1 k(s − ω0τ0) + x j−1 k(s − ω0τ0)].

Note that the system (5.14) is identical to the linear system
(3.1). Since we are interested in phase-locked oscillations, we
choose the solution

x0(s) =

x00(s)
x10(s)
x20(s)

 =


cos(s)

cos
(

s +
2π

3

)
cos

(
s +

4π

3

)
 . (5.16)

The next step is to compute [x01(s), x11(s), x21(s)]T as
a 2π periodic solution of a nonhomogeneous linear system of
ODEs (5.15), for suitable ω1 and τ1. A necessary and sufficient
condition for the existence of such a solution is provided by
the Fredholm alternative theory [24]: that the nonhomogeneous
terms of (5.15) are orthogonal to all phase-locked 2π periodic
solutions of the system adjoint to the homogeneous system
associated with (5.15). This adjoint system is given by [24]

ω0 ẋ j 1(s) − x j 1(s) + αx j 1(s + ω0τs)

+ β[x j+1 1(s + ω0τ0) + x j−1 1(s + ω0τ0)] = 0, (5.17)

where j mod 3. We assume that the solutions of the adjoint
system (5.17) are of the form

F0
F1
F2

 eλs
∈ P(2π), F0, F1, F2 ∈ C, (5.18)

where P(2π) denotes functions which are 2π periodic. Under
conditions (5.3), one pair of eigenvalues of the adjoint system
(5.17) is given by λ = ±i. The corresponding eigenvectors
for the phase-locked solutions are given by V and V, with

V = [1, ei 2π
3 , ei 4π

3 ]
T. Therefore, the space of complex-valued,

phase-locked, 2π -periodic solutions of (5.17) is spanned by
eit V, eit V. and a basis for the real-valued, phase-locked,
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2π -periodic solutions (5.17) is given by:

ξ (1)(s) =


cos(s)

cos
(

s +
2π

3

)
cos

(
s −

2π

3

)
 ,

ξ (2)(s) =


− sin(s)

− sin
(

s +
2π

3

)
− sin

(
s −

2π

3

)
 .

(5.19)

We are thus led to the following

Theorem 6. A necessary and sufficient condition for the
solvability of the nonhomogeneous equation (5.15) is that its
nonhomogeneous terms, F(s), satisfy∫ 2π

0
ξ (1)(s) · F(s) ds = 0 =

∫ 2π

0
ξ (2)(s) · F(s) ds,

where {ξ (1)(s), ξ (2)(s)} is the basis of the solution space of
(5.17).

Applying Theorem 6, we can set up a system of two
equations in τ1 and ω1, viz.∫ 2π

0
ξ (1)(s) · {RHS of (5.15)}(s) ds = 0

=

∫ 2π

0
ξ (2)(s) · {RHS of (5.15)}(s) ds,

giving

β(ω1τs − ω0τ1 − ω1τ0) sin(ω0τ0) − ω0ω1τs = 0,

β(ω1τs − ω0τ1 − ω1τ0) cos(ω0τ0) + ω1(1 + τs) = 0.

These two equations are then solved to obtain ω1 = 0 = τ1,
which are then plugged back into (5.15) to give the system

L j [x1] = 0, j mod 3, (5.20)

which is the linear homogeneous system associated with (5.15),
and is identical to systems (5.14) and (5.1). Thus the only
phase-locked 2π periodic solution is either the trivial solution
or the same as x0(s) up to a phase shift. We choose the
nontrivial solution

x1(s) =

x01(s)
x11(s)
x21(s)

 =


cos(s + δ)

cos
(

s +
2π

3
+ δ

)
cos

(
s +

4π

3
+ δ

)
 , for some δ.

(5.21)

The next set of equations, i.e. governing [x02(s), x12(s),
x22(s)]T, can be obtained by extracting the coefficients of ε3

in (5.8). We obtain the following:
L j [x2] = −ω2 ẋ j0(s) − α ẋ j0(s − ω0τs)ω2τs

− β[ẋ j+1 0(s − ω0τ0) + ẋ j−1 0(s − ω0τ0)]

× (ω0τ2 + ω2τ0) −
1
3
αx3

j0(s − ω0τs)

−
1
3
β[x3

j−1 0(s − ω0τ0) + x3
j+1 0(s − ω0τ0)],

j mod 3. (5.22)

Let us now denote the RHS of (5.22) by F(s). Then, invoking
the Fredholm solvability condition on (5.22) leads to∫ 2π

0
ξ (1)(s) · F(s) ds = 0 =

∫ 2π

0
ξ (2)(s) · F(s) ds,

which gives the system

β(ω2τs − ω2τ0 − ω0τ2) sin(ω0τ0) − ω0ω2τs −
1
4

= 0,

β(ω2τs − ω0τ2 − ω2τ0) cos(ω0τ0) + ω2(1 + τs) +
1
4
ω0 = 0.

This system is solved to obtain non-trivial expressions for ω2 =

ω2(α, β, ω0, τs, τ0) and τ2 = τ2(α, β, ω0, τs, τ0), as shown
below:

ω2 =
1
4

[
ω0 sin(ω0τ0) − cos(ω0τ0)

ω0τs cos(ω0τ0) + (1 + τs) sin(ω0τ0)

]
, (5.23)

and

τ2 =
−Γ (ω0, τ0, τs, β)

4βω0[ω0τs cos(ω0τ0)+sin(ω0τ0)+τs sin(ω0τ0)]
, (5.24)

where

Γ (ω0, τ0, τs, β)
def
= 1 + τs(1 + ω2

0) + β(τs − τ0)

× [cos(ω0τ0) − ω0 sin(ω0τ0)]. (5.25)

Using (5.9) and (5.10) we can now write down the approximate
solution of (5.8):

X(s) =

√(
τ − τ0

τ2

)
x0(s) +

τ − τ0

τ2
x1(s) + · · · , (5.26)

where x0(s) and x1(s) are given in (5.16) and (5.21),
respectively, and τ2 is given in (5.24). Using the values of
ω2 and τ2 obtained above, the approximation x2(s) may
be computed from (5.22) by the method of undetermined
coefficients.

6. Stability of phase-locked oscillations

In the previous section, we constructed an approximation to
the phase-locked oscillatory solution resulting from the double
root single Hopf bifurcation of periodic solutions of (1.2).
We now focus on determining the stability of this solution.
The discussion of stability of periodic solutions involves the
computation of Floquet exponents.
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We rewrite the solution (5.26) of system (5.8) in the form

X(s, ε) = ε{x0(s) + εx1(s) + ε2x2(s) + · · ·}

= ε

T0(s)
T1(s)
T2(s)

 . (6.1)

To study the stability of the periodic solution in (6.1), we
proceed by considering the corresponding Poincaré–Lindstedt
series expansion. Let [x0, x1, x2]

T be a given solution of (5.7).
Define the deviations R0, R1, and R2 by the following:x0

x1
x2

 = ε

T0
T1
T2

+

R0
R1
R2

 . (6.2)

Substituting [x0, x1, x2]
T in (5.7) gives the following system

ω
d
ds

[εT j + R j ] = −εT j − R j

+ α f [εT j (s − ωτs) + R j (s − ωτs)]

+ β{g[εT j−1(s − ωτ) + R j−1(s − ωτ)]

+ g[εT j+1(s − ωτ) + R j+1(s − ωτ)]},

(6.3)

where j mod 3. Since ε[T0(s), T1(s), T2(s)]T is a solution of
(5.7), we have

εω
dT j

ds
+ εT j = α f [εT j (s − ωτs)] + β{g[εT j−1(s − ωτ)]

+ g[εT j+1(s − ωτ)]}, (6.4)

where j mod 3. Then, using f = g = tanh and

tanh(εu + v) = tanh(εu) + sech2(εu)v

= tanh(εu) + (1 − ε2u2
+ O(ε4))v

together with (6.4), we can simplify (6.3) to obtain:

ω
dR j

ds
+ R j = αR j (s − ωτs)

+ β R j−1(s − ωτ) + β R j+1(s − ωτ)

− ε2
{αT 2

j (s − ωτs)R j (s − ωτs)

+ β[T 2
j−1(s − ωτ)R j−1(s − ωτ)

+ T 2
j+1(s − ωτ)R j+1(s − ωτ)]} + · · · , (6.5)

with j mod 3.
Now the stability of ε[T0, T1, T2]

T in (5.7) is equivalent to
that of the trivial solution of (6.5), thus we letR̃0(s)

R̃1(s)
R̃2(s)

 = eηs

r0(s)
r1(s)
r2(s)

 ,

r0(s), r1(s), r2(s) ∈ P(2π) in s. (6.6)

Following the usual convention, we term η the Floquet
exponent and e2ηπ the Floquet multiplier. The stability of the
trivial solution of (6.5) will depend on the sign of the real part
of η. Perturbing η via

η = εη1 + ε2η2 + · · · , (6.7)
our task is to find an approximate value of η by computing η1
and η2.

To do this, we must find an expression for the r j (s) in
(6.6). Returning to (6.4), differentiating with respect to s and
expanding the result in a Taylor series gives:

ω
d
ds

(
dT j

ds

)
+

dT j

ds
= α

dT j

ds
(s − ωτs) + β

[
dT j−1

ds
(s − ωτ)

+
dT j+1

ds
(s − ωτ)

]
− ε2

{
αT 2

j (s − ωτs)
dT j

ds
(s − ωτs)

+ βT 2
j−1(s − ωτ)

dT j−1

ds
(s − ωτ)

+ βT 2
j+1(s − ωτ)

dT j+1

ds
(s − ωτ)

}
+ · · · , (6.8)

where j mod 3. Comparing the system (6.8) with (6.5), we see
that, to O(ε2), [

dT0
ds ,

dT1
ds ,

dT2
ds ]

T is also a solution of (6.5). We
thus look for the r j (s) in the form:

r j (s) = b(ε)
dT j

ds
+ r̃ j (s),

= b(ε)
dT j

ds
+ r j0(s) + εr j1(s) + ε2r j2(s) + · · · , (6.9)

where j mod 3, r j i ∈ P(2π) for all i = 0, 1, 2, . . ., and

b(ε) = b0 + εb1 + ε2b2 + · · · . (6.10)

We supply (6.6) in (6.5) to get a new system of equations in
r0, r1, and r2, namely,

ωηr j (s) + ω
dr j

ds
+ r j (s) = αe−ηωτs r j (s − ωτs)

+ βe−ηωτ r j−1(s − ωτ) + βe−ηωτ r j+1(s − ωτ)

− ε2
[
αT 2

j (s − ωτs)e−ηωτs r j (s − ωτs)

+ βT 2
j−1(s − ωτ)e−ηωτ r j−1(s − ωτ)

+ βT 2
j+1(s − ωτ)e−ηωτ r j+1(s − ωτ)

]
+ · · · , (6.11)

with j mod 3. Incorporating the fact that [
dT0
ds ,

dT1
ds ,

dT2
ds ]

T is a
solution of the system (6.8), we substitute (6.9) in (6.11) to get
the following system in r̃0, r̃1, and r̃2:

ωηb
dT j

ds
+ ωηr̃ j (s) + ω

dr̃ j

ds
+ r̃ j = H j [T j , r̃ j ],

j mod 3, (6.12)

where the operator represented by H j [·, ·] is given in the
Appendix,

r̃ j (s − ωτ) = r j0(s − ωτ) + εr j1(s − ωτ)

+ ε2r j2(s − ωτ) + · · · , (6.13)

with j mod 3; and for each i ,
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r j i (s − ωτ) = r j i (s − ω0τ0)

− ṙ j i (s − ω0τ0)[ε(ω1τ0 + ω0τ1)

+ ε2(ω2τ0 + ω1τ1 + ω0τ2) + · · ·]

+
1
2

r̈ j i (s − ω0τ0)[ε(ω1τ0 + ω0τ1) + · · ·]
2

+ · · · , (6.14)

and

r j i (s − ωτs) = r j i (s − ω0τs) − ṙ j i (s − ω0τs)

× [εω1 + ε2ω2 + · · ·]τs +
1
2

r̈ j i (s − ω0τs)

× [εω1τs + ε2ω2τs + · · ·]
2
+ · · · . (6.15)

Finally, we use the following series, with ω and τ given by
(5.10) where ω1 = 0 = τ1:

e−ηωτ
= 1 − εη1ω0τ0 + ε

[
−η2ω0τ0 +

1
2
η2

1ω
2
0τ

2
0

]
− ε3

[
η1ω0τ2 + η1ω2τ0 + η3ω0τ0 +

1
6
η3

1ω
3
0τ

3
0

]
+ · · · ,

and

e−ηωτs = 1 − ετsη1ω0 + ε2
[

1
2
τ 2

s η2
1ω

2
0 − τsη2ω0

]
+ ε3

[
1
2
τ 2

s η1η2ω
2
0 − τs(η1ω2 + η3ω0)

−
1
6
τ 3

s η3
1ω

3
0

]
+ · · ·

as well as the series in (5.9), (6.5), (6.7), (6.9) and (6.10) in
(6.12); we then extract coefficients of ε0 and ε1 to get the
following two systems of equations, respectively:

L j [r0] = 0, j mod 3, (6.16)

and

L j [r1] = −ω0η1b0 ẋ j0(s) − ω0η1r j0(s)

− ατsη1ω0{b0 ẋ j0(s − ω0τs) + r j0(s − ω0τs)}

− βη1ω0τ0{b0 ẋ j−1 0(s − ω0τ0) + r j−1 0(s − ω0τ0)}

− βη1ω0τ0{b0 ẋ j+1 0(s − ω0τ0) + r j+1 0(s − ω0τ0)},

(6.17)

where L j (·) is given by (5.14), the xi j (s) are given by (5.16)
and (5.21), and j mod 3. The system (6.16) is identical
to (5.20), and hence a phase-locked 2π periodic solution of
(6.16) is given by

r00(s)
r10(s)
r20(s)

 =


cos(s)

cos
(

s +
2π

3

)
cos

(
s +

4π

3

)
 .

As discussed in Section 5, the necessary and sufficient
conditions for the existence of a solution of (6.17) is that the
RHS of (6.17) satisfy the Fredholm solvability conditions:∫ 2π

0
ξ (1)(s) · {RHS of (6.17)}(s) ds = 0

=

∫ 2π

0
ξ (2)(s) · {RHS of (6.17)}(s) ds,

where ξ (1)(s) and ξ (2)(s) are as in Theorem 6. This yields the
two coupled equations in η1 and b0:

ω0η1[V1 sin(ω0τs) + V2 cos(ω0τs) + V3] = 0,

ω0η1[W1 sin(ω0τs) + W2 cos(ω0τs) + W3] = 0,

where

V1 = −τ0αb0 + ατsb0 − ατs
√

3 + ατ0
√

3,

V2 = −τ0α − τ0b0α
√

3 + ατsb0
√

3 + ατs,

V3 = 1 + τ0ω0
√

3 − ω0τ0b0 + b0
√

3 + τ0b0
√

3 + τ0,

W1 = τ0α + τ0αb0
√

3 − ατsb0
√

3 − ατs,

W2 = −τ0b0α + τ0α
√

3 + ατsb0 − ατs
√

3,

W3 = b0 −
√

3 + τ0b0 + ω0τ0 − τ0
√

3 + τ0b0ω0
√

3.

The above equations are solved using the symbolic computation
language MAPLE, to find that η1 = 0 and b0 is arbitrary. For
this η1, we can simplify (6.17) to

L j [r1] = 0, j mod 3. (6.18)

Since η1 = 0, it is found that the equations governing r02, r12
and r22 do not involve r01, r11 and r21. To solve for η2 and b0,
we consider the equations which are obtained by comparing the
coefficients of ε2 in (6.12):

G j [r2, x2] = M j [r0, x0, x1], (6.19)

where j mod 3, the operator G j [·, ·] is defined by

G j [r2, x2] = ω0ṙ j2(s) + r j2(s)

− αb0 ẋ j2(s − ω0τs) − αr j2(s − ω0τs)

− β[b0 ẋ j−1 2(s − ω0τ0) + r j−1 2(s − ω0τ0)]

− β[b0 ẋ j+1 2(s − ω0τ0) + r j+1 2(s − ω0τ0)]

+ b0[α ẋ j2(s − ω0τs) + β ẋ j−1 2(s − ω0τ0)

+ β ẋ j+1 2(s − ω0τ0)],

and the operator M j [·, ·, ·] is given in the Appendix. Applying
the Fredholm solvability condition to the system (6.19), and
substituting for ω2 and τ2 from (5.23) and (5.24), we obtain
complicated expressions for η2 and b0 of the form

η2 = η2(α, β(ω0, α, τs), ω0, τs, τ0(ω0, α, τs)),

b0 = b0(α, β(ω0, α, τs), ω0, τs, τ0(ω0, α, τs)).
(6.20)

Now, ε2η2 is the leading order term of the Floquet exponent.
Recall that, given α, ω0, τs , the parameters β and τ0 are
determined from Eq. (5.3). Thus we need to determine the
sign of this exponent as the parameters (α, τs) are continuously
varied. Due to the complexity of the expressions, we use
symbolic computation to get some insight into the sign of the
exponent η2.
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Fig. 6.1. A contour plot of the Floquet exponent η2[α, β(ω0, α, τs ), ω0, τs ,

τ0(ω0, α, τs )] in the (α, τs ) parameter space for fixed ω0 = 0.6. The parameters
β and τ0 are given by Eq. (5.3).

Fig. 6.1 shows a contour plot of η2 in the (α, τs) parameter
space, for fixed ω0 = 0.6. It is clear from Fig. 6.1 that, for
the given range of parameter values, the stability of the phase-
locked oscillation changes. When η < 0, bifurcating phase-
locked oscillation is unstable, otherwise it is stable.

7. Conclusions and remarks

Gopalsamy and Leung [21] considered a simple system
of two coupled neurons with a single discrete delay, and
established that, for some parameter values, the approximations
to periodic oscillations are stable. Their conclusion could
have been much stronger had they not fixed their parameters
c1 and c2 (pp. 412 of [21]). The local stability of a scalar
version of (1.2) has been studied in [4]. Following this, Shayer
and Campbell in [47] considered a system of two coupled
neurons with multiple time delays and showed that the trivial
equilibrium may lose stability via a pitchfork bifurcation,
a Hopf bifurcation or one of three types of codimension
two bifurcations. Multistability near the latter bifurcations
was predicted and confirmed using centre manifold theory
and numerical simulations. Furthermore Wu et al. [53] have
conducted a rigorous and insightful study of (1.2) with τs = τ .

In this article, we studied the model (1.2) with τs 6= τ .
We have extended many of the synchronization and global
stability results of Wu et al. [53] to this case. Further, we used
techniques similar to those of Shayer and Campbell to analyze
the local stability and bifurcations of the trivial solution.
This enabled us to study synchronization/desynchronization
due to bifurcation and multistability due to bifurcation
interactions. Finally, we extended the perturbation approach
of Gopalsamy and Leung [21] to our model, yielding
some interesting insight into the stability of phase-locked
oscillations resulting from a D3 equivariant Hopf bifurcation
of (1.2). The technique of Gopalsamy and Leung seems
to be less computationally challenging relative to the usual
centre manifold approach. The obvious advantage of the centre
manifold approach, if successfully applied, is that it would
characterize criticality of the Hopf bifurcation in a very general
setting.

One of the key conclusions to be drawn from this study
is that change of the stability of the bifurcating phase-locked
solutions can be easily achieved by varying the parameters α

and τs , for fixed ω0 (see Fig. 6.1). At the points where such a
change takes place, secondary bifurcations may occur or the
stability of mirror-reflecting or standing waves may change.
Future work will focus on extending our techniques to the
stability of the latter waves [12] to determine what change in
pattern occurs in the system when the phase-locked solutions
lose stability and on a more in depth study of the bifurcation
interaction points [7].

To close we note that our theoretical predictions could
be verified experimentally. Marcus and Westervelt [33]
constructed an electric circuit neural network where each
element consists of a resistor and capacitor and the elements are
connected with nonlinear, delayed amplifiers. They show that
this circuit can be quite accurately represented by the model

Cu̇i (t) = −
ui

R
+

n∑
j=1

Ti j tanh(Bui (t − τ)), i = 1, . . . n,

by comparing results from linear stability analysis and
numerical simulations with those from experiments [32–34].
In particular, their experimental circuits had the following
parameter values: C = 10 nF, R = 100 k�, Ti j =

T j i ∈ [−
1
R , 1

R ], Ti i = 0, n = 2, . . . , 8, delays in the
range [0.4, 8] RC [33] and gains on the amplifier in the
range [3, 20] [34, Fig. 3]. Although the nonlinearity is slightly
different, the linear analysis of this model with Ti j = T and
time rescaled via t →

1
RC t will be the same as that for our

model (1.2) with α = 0 and β = RT B. Thus the range of
delay and gain values achievable in the experimental system
does cover a large portion of the range of values included
in Figs. 3.1 and 3.2. Assuming that a self connection with a
nonlinear, delayed amplifier could be added to each “neuron” in
the circuit, then it should be possible to observe the phenomena
we have described above in this experimental system.
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Appendix

The complicated expressions on the right hand sides of Eqs.
(6.12) and (6.19) are given, respectively, by:

H j [T j , r̃ j ]
def
= αe−ηωτs

{
b

dT j

ds
(s − ωτs) + r̃ j (s − ωτs)

}
+ βe−ηωτ

{
b

dT j−1

ds
(s − ωτ) + r̃ j−1(s − ωτ)

}
+ βe−ηωτ

{
b

dT j+1

ds
(s − ωτ) + r̃ j+1(s − ωτ)

}
− ε2

[
αT 2

j (s − ωτs)e−ηωτs

×

{
b

dT j

ds
(s − ωτs) + r̃ j (s − ωτs)

}
+ βT 2

j−1(s − ωτ)e−ηωτ

×

{
b

dT j−1

ds
(s − ωτ) + r̃ j−1(s − ωτ)

}
+ βT 2

j+1(s − ωτ)e−ηωτ

×

{
b

dT j+1

ds
(s − ωτ) + r̃ j+1(s − ωτ)

}]
− b

{
α

dT j

ds
(s − ωτs) + β

dT j−1

ds
(s − ωτ)

+ β
dT j+1

ds
(s − ωτ)

}
+ ε2b

{
αT 2

j (s − ωτs)
dT j

ds
(s − ωτs)

+ βT 2
j−1(s − ωτ)

dT j−1

ds
(s − ωτ)

+ βT 2
j+1(s − ωτ)

dT j+1

ds
(s − ωτ)

}
+ · · · ,

and

M j [r0, x0, x1]
def
= −[b0η2ω0 ẋ j0(s) + ω0η2r j0(s) + ω2ṙ j0(s)]

+ α[−b0 ẍ j0(s − ω0τs)ω2

+ b1 ẋ j1(s − ω0τs) + b2 ẋ j0(s − ω0τs)

− ω2ṙ j0(s − ω0τs) − τsη2ω0{r j0(s − ω0τs)

+ b0 ẋ j0(s − ω0τs)}]

+ β[−b0 ẍ j−1 0(s − ω0τ0)(ω0τ2 + ω2τ0)

+ b1 ẋ j−1 1(s − ω0τ0)

+ b2 ẋ j−1 0(s − ω0τ0) − (ω0τ2 + ω2τ0)

× ṙ j−1 0(s − ω0τ0)

− η2ω0τ0{b0 ẋ j−1 0(s − ω0τ0)

+ r j−1 0(s − ω0τ0)}]

+ β[−b0 ẍ j+1 0(s − ω0τ0)(ω0τ2 + ω2τ0)

+ b1 ẋ j+1 1(s − ω0τ0)

+ b2 ẋ j+1 0(s − ω0τ0) − (ω0τ2 + ω2τ0)

× ṙ j+1 0(s − ω0τ0)

− η2ω0τ0{b0 ẋ j+1 0(s − ω0τ0)
+ r j+1 0(s − ω0τ0)}]

− αx2
j0(s − ω0τs)[b0 ẋ j0(s − ω0τs)

+ r j0(s − ω0τs)]

− β[b0x2
j−1 0(s − ω0τ0)ẋ j−1 0(s − ω0τ0)

+ r j−1 0(s − ω0τ0)]

− β[b0x2
j+1 0(s − ω0τ0)ẋ j+1 0(s − ω0τ0)

+ r j+1 0(s − ω0τ0)]

− b0[−αω2 ẍ j0(s − ω0τs)

− β(ω0τ2 + ω2τ0)ẍ j−1 0(s − ω0τ0)

− β(ω0τ2 + ω2τ0)ẍ j+1 0(s − ω0τ0)]

− b1[α ẋ j1(s − ω0τs) + β ẋ j−1 1(s − ω0τ0)

+ β ẋ j+1 1(s − ω0τ0)]

− b2[α ẋ j0(s − ω0τs) + β ẋ j−1 0(s − ω0τ0)

+ β ẋ j+1 0(s − ω0τ0)]

+ b0[αx2
j0(s − ω0τs)ẋ j0(s − ω0τs)

+ βx2
j−1 0(s − ω0τ0)ẋ j−1 0(s − ω0τ0)

+βx2
j+1 0(s − ω0τ0)ẋ j+1 0(s − ω0τ0)].
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[1] I. Barbălat, Systèmes d’équations differentielles d’oscillations non
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