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We develop a new approach to obtain the existence of travelling wave solutions for
reaction—diffusion equations with delayed non-local response. The approach is based on an
abstract formulation of the wave profile as a solution of an operational equation in a certain
Banach space, coupled with an index formula of the associated Fredholm operator and some
careful estimation of the nonlinear perturbation. The general result relates the existence of
travelling wave solutions to the existence of heteroclinic connecting orbits of a
corresponding functional differential equation, and this result is illustrated by an
application to a model describing the population growth when the species has two age
classes and the diffusion of the individual during the maturation process leads to an
interesting non-local and delayed response for the matured population.
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1. Introduction

The purpose of this paper is to study the existence of travelling wave solutions
for the following delayed reaction—diffusion equation with non-local interaction

du(z, t) 0

0~ Daua, 1)+ F(u(w, t),J

—r

[ anOautatuts + e+ o).

where z €R™ is the spatial variable, t>0 is the time, u(z,t) €R", D=diag
(dy, ..., d,) with positive constants d;, i=1,...,n, 4= ">, 3*>/dx7 is the Laplacian
operator, r is a positive constant, 7 : [-r,0] = R™" is of bounded variation, u is
a bounded measure on Q CR™ with values in R F:R"XR"— R" and
g : R"— R" are given mappings with additional conditions to be specified later.

Equation (1.1) serves as a model for many physical, chemical, ecological and
biological problems. In particular, as will be shown in §6, equation (1.1) includes
a model for the population growth where the species has an age-structure and
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a non-monotone birth function, and the spatial diffusion of the individuals during
the maturation period leads to an interesting non-local delayed response. See
Britton (1990) and Gourley & Britton (1993) for some earlier work on non-local
delayed reaction—diffusion equations.

Because of their significant role in governing the long time behaviour of
dynamical systems with a diffusion process, travelling wave solutions have
been one of lasting interests, and a variety of methods for studying the
existence of travelling wave solutions have been developed. In this paper, we
develop a new approach to study the existence of travelling wave solutions for
equation (1.1). This approach reflects a natural connection between the
existence of a travelling wave solution for equation (1.1) and the existence of
a heteroclinic solution for the corresponding ordinary delay differential
equation on R"

0
(1) =F(u<t>,j dn(amgg(u(tw»), (1.2)

-

where ug = [odu.

Before giving a precise statement of our main result, we first formulate some
assumptions about the nonlinearities F' and g. Throughout the remaining part
of this paper, we suppose that F and ¢ are C*-smooth functions, k> 2, and we let
F.(u,v), F,(u, v) denote the partial derivatives of F with respect to the variables
u € R" and v € R", respectively, and let g,(u) be the derivative of g with respect
to the variable v €R". In addition, we suppose that equation (1.2) has two
equilibria E;, i=1, 2, and we define

4= 1 (B n@non()). .= £ (B[ anOuas(z)).

For a complex number A we let

0

An(O)on(B)e")
We assume that the following hypotheses hold.

(H1) All eigenvalues corresponding to the equilibrium E, have negative real
parts, that is, sup{RA: 4,(1) =0} <0.

(H2) E; is hyperbolic and the unstable manifold at the equilibrium E; is M
(M>1) dimensional. In other words, 4;(iv)#0 for all v €R and 4,(4)=0
has exactly M roots with positive real parts, where the multiplicities are
taken into account.

(H3) Equation (1.2) has a heteroclinic solution u*:R— R" from E; to Fs.
Namely, equation (1.2) has a solution u*(¢) defined for all ¢ €R such that

u(—):= lim u'(t) = B}, u'():=limu (t) = E,.

t——o0 t—o

(H4) ngd|u|(y)HyHRm] poe <0, where |u|=p"—pu~ with u© and u~ the
positive and negative parts of u, respectively.
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Our main result is as follows.

Theorem 1.1. Under assumptions (H1)— (H4), there is a ¢*>0 such that

(i) for each fized unit vector v €R™ and ¢> ¢*, equation (1.1) has a travelling
wave solution u(z, t)= U(v-z+ ct) connecting Ey to Ey (that is, U(—o )=
Ey and U(—w)=Ey);

(ii) of restricted to a small neighbourhood of the heteroclinic solution u* :
R— R" in the space C(R,R") of bounded continuous functions equipped
with the sup-norm, then for each fired c¢>c* and v €R™, the set of all
travelling wave solutions connecting E; to Es in this neighbourhood forms a
M-dimensional manifold M, (c);

(iii) M,(c) is a C*~*-smooth manifold which is also C*~'-smooth with respect
to c. More precisely, there is a C* ™ '-function h: U X (¢*, %) — C(R,R"),
where U is an open set in RM, such that M, (c) has the form

M, (¢c) ={y:¢ =h(z0¢), 2z€ U}.
Let v-x + ¢t =s€R and u(z,t) =U(v-z +ct). Then, upon a straightforward
substitution, a travelling wave U(s) satisfies the second order equation

0
cU(s)=DU (s) + F<U(s),J J dn(0)du(y)g(U(s+v-y+ cH))),sE R. (1.3)
Writing V(s)= U(cs) and e=1/¢?, then equation (1.3) leads to

V(s)=eDV (s) + F<V(s),JO Jgdn(ﬁ)d,u(y)g(V(s +ev-y+ 0))>,sE[RZ. (1.4)

In the case where c is sufficiently large, ¢ is small and hence equation (1.4) is a
singularly perturbed equation. Such an equation has been extensively investigated
via both geometric and analytic methods where the main idea is to study the
corresponding slow motion and fast motion. See, for example, Carpenter (1977),
Fenichel (1971, 1979), Fife (1976), Hoppensteadt (1966), Jones (1995), Lin (1989)
and Szmolyan (1991). The geometrical approach makes the connection of slow and
fast motions by studying the intersection of the relevant invariant manifolds, while
the analytic approach matches the slow and fast motion by using the asymptotic
expansion of inner and outer layers. For both methods, to make a connection
between slow and fast motions is far from being trivial. In addition, both methods
work only on dynamical systems where the stable, unstable, and invariant
manifolds play an essential role. It is very important to point out that the
differential equation (1.4) does not generate a dynamical system, for there is no
way an initial value problem can be formulated. In this paper, we take a different
approach to avoid this difficulty. The central idea of our approach is to use a
certain type of transformation to convert the singularly perturbed differential
equation (1.4) into a regularly perturbed operational equation in a Banach space,
that enables us to directly apply the Banach fixed point theorem and some existing
results regarding the index of an associated Fredholm operator to prove the
existence of travelling wave solutions. This approach also allows us to determine
the number of travelling wave solutions as well as smooth dependence of travelling
wave solutions on the wave speed c.

-r

—r

Theorem 1.1, relating the existence of travelling wave fronts for the reaction—
diffusion equation (1.1) with delay and non-local interaction to the existence of a
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connecting orbit between two hyperbolic equilibria of the associated ordinary
delay differential equation (1.2), enables us to apply some existing results for
invariant curves of semiflows generated by ordinary delay differential equations
to derive systematically sharp sufficient conditions for the existence of travelling
wave fronts of delayed reaction—diffusion equations that, in turn, includes most of
the existing results in the literature as special cases. In particular, as will be
illustrated in §6 where a recently derived non-local delayed reaction—diffusion
equation for the population growth of a single species when the delayed birth
function is not monotone in the considered range is considered, theorem 1.1
allows us to apply the powerful monotone dynamical systems theory to obtain
the existence of travelling waves.

This paper is organized as follows. In §2 we transform equation (1.4) into an
operational integral equation involving a linear operator and a nonlinear
perturbation. Section 3 is devoted to the study of the null space and range of the
linear operator introduced in §2. The properties of the nonlinear function in the
operational equation are studied in §4. The proof of our main theorem is given in
§5. In the last section, we present applications of our main result to some
population models, including a non-local delayed RD-system with non-monotone
birth functions.

2. Operational equations for travelling wave solutions

In the sequel, we use more compact notations:

£0,y) = n(0)u(y), JQ‘dC(ﬂa Y) =J

-

0

J dn(0)du(y),
Q

with Q,=[—7,0]XQ. We will also let C'= C(R,R") be the space of continuous
and bounded functions from R to R" equipped with the standard norm
1o =sup{lW()l| : tERY}.

Our main approach to study the existence of travelling wave solutions is to
convert the differential equation for a travelling wave into an equivalent
operational equation in a suitable Banach space. For this purpose, we further
transform equation (1.4) by introducing the variable w(s)= V(s)—u'(s) for s €R.
Then we obtain the equation for w as

w(s) = eDw (s) + eDii *(s)

i F<’w(3) + u*(s)’J e, ) g([w+u’](s + Vev-y + 0»)

Q
(2.1)

= (o). [ st s+ 0)

= eDii (s) + P'w(s) + G(e, s, w), sER,

where [w+ u](t)=w(t)+u*(t) for tER, and the linear operator P: C— C is
defined by

Plu(s) = A(s)w(s) + B(S)JQ dZ(6, y)g,(u" (s +0)w(s +60), sER, (2.2)
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with
A(s) = < J dz (0 (s + a))) SER, (2.3)
Qv
B(s) = ( [ dg(e (s+ 0))) sER, (2.4)
QT
and

Q(S,S,w)=F< JQ w+u](s+\/§1/-y+0))>
—ﬁ(ungéqaaymuf@+ﬂ»)—Jﬁw@>+eﬂa%@. (25)

Next we transform equation (2.1) into an integral equation as follows. We first
write equation (2.1) as

ed;i i(s) —w;(s) —wi(s) = —w;(s) — P?w(s) —Gi(e,5,w), sER, (2.6)
for i=1, ..., n, where ¢ denotes the ith component for the corresponding functions
or operators. We observe that the equation

ed?—2—1=0
has two real zeros & and (5, with

1_\/1+4€di 1+\/1+4€di

—1<a <0, 6;= > 0.
2€d2‘ ’ 62 2€di
Moreover, it is easy to verify that
lim of = —1, lim 8 = +oo. (2.7)
e—0" e—0"

It is well known that w: R— R" is a bounded solution of equation (2.6) if and
only if w(s) is a bounded solution of the integral equation

—; ’ e a;(s—t) 0
wi(s) = ed; (85— o) J_w [w;(t) + Pjw(t)]dt
; 6€(9 1) 0
=) J [wi(t) + Py w(t)]dt
1

) (Lo e NG, (e, t, w)dt + J FNG (e, 1, w)d t)

Dy (1) + Pu(B)ds 28

1
=ﬂ¢EiJ67
! jﬁ*%<>+W<na

_|_ -
1 + 4€d2'
<J e"‘i(“’_’f)gi(e, t, w)dt + J eﬁg(s_t)gi(e, i w)dt),

1
1=1,....,n.

+ —
vV 1+ 48d7

Therefore, w is a bounded solution of equation (2.6) if and only if it solves

w(s) —r e w(t) + Plw(t)]dt = H(s, w, €), (2.9)
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where H(s, w, ¢) = (Hi(s, w,¢),..., H,(s, w,¢)) is defined as

s eaf(#t)

\/1 +4€di

1 *® €
| I uy(t) + Plw(t)dt
1+4€dl‘ Js ¢ [,w?() Zw() ]

1 s .
" VI F4ed, <J G, (e, t, w)dt + J

(s, 0.0) = |

— 0

—e‘<H)] [w;(t) + Plw(t)]dt

FiDG (e, t, w)dt> ,
fori=1,...,n. (2.10)

In summary, we show that equation (1.3) has a solution U:R—R"
connecting E; to Es if and only if equation (2.9) has a solution w such that
lim|s|_mw(s) = 0. Finally, we let L be the linear operator defined on the left hand
side of equation (2.9), namely

S
[Luw](s) = w(s) —J ¢ Iw(t) + Plw(t)]dt, sER. (2.11)
Then we can write equation (2.9) as the operational equation
[Lw|(s) = H(s,w,e), sER. (2.12)
So our goal is to show the existence of solutions of equation (2.12). We shall
achieve this by using the Banach fixed point theorem. For this purpose, we need
further detailed properties of the nonlinear function H and the linear operator L.
In the next section, we shall show that, with an appropriate choice of the Banach
space, the operator L is surjective, an essential property required in the proof of
our main theorem.

3. The kernel and range of the operator L

Let us first introduce some additional notations.

(i) For a vector z €R", ||z| = ||z||gs, and for an nXn matrix A, [|A]=
|| Al|gmx denotes the norm of A as a linear operator from R" to R".

(ii) For a continuous function w:[a—r,b]— R", as usual we let
w; € C([=r,0],R"), t€[a,b], be defined by w,(0)=w(t+8) for §&[—r 0].
Moreover, for fe& C([-r,0],R") we denote the norm of f by [f|=
supscr o).

(iii) In a similar fashion, for a function h:[a,b+ 7] — R" we define the
function h':[0,r] > R" by h(8)=h(t+0) for 6€0,r] and tE]a,b].

(iv) Let C'=C'R,R")={y€C:y<C} be the Banach space equipped
with the standard norm ||y||o = ||¥|lc + ||¥] ¢

(v) Let Cy={y € C :lim_ 1, ¥(t)=0} and Ci ={y € C : ¥ € C,} equipped
with the same norms as C'and C", respectively.

Let T: C'— C be the linear operator obtained from the linearization of
equation (1.2) around the heteroclinic solution u*. That is,

(TY)(t) = ¥(t) = P(t)yy, tER, (3.1)
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where for ¢ €R the linear operator P(t) : C([-r,0],R") — R" is defined by

PE = AMEO) + B | dn(@uos (v (t-+ 0)E0), (3.2)

-

with A(t) and B(#) defined in (2.3) and (2.4). We remark that P°y(t)= P(t)y, for
y& C and t €R. Since u*(t)— E; and F, as t— —o and +, respectively, we
have

t—

fli{n A(t) = Ay, 7‘lirin B(t) = By.

e } (3.3)

Hypotheses (H1) and (H2) and (3.3) imply that the linear operator T is
asymptotically hyperbolic as ¢— 4 o in the sense of Mallet-Paret (1999), p. 12.
That is, the linear delay differential equations

Y(t) = P(+o)y, =0 and Y(t) — P(—o)y, =0,

where P(+), P(—) are the limiting operators defined in the obvious way, are
hyperbolic. We define the formal adjoint equation of Ty =0 as

$(1) =—P*(1)¢', tER, (3.4)

where for £ € C([0,r],R")
0

P(0 = A"(0600) + | ol (w'(0)dn” ()" (t-0)2(-0),

and for a matrix H, H" denotes the transpose of H.

Lemma 3.1. If < C is a solution of equation (3.4) and ¢ is C'-smooth, then
$=0.

Proof. Let ¢ be a bounded solution of equation (3.4) and h(t)=¢(—t) for t ER.
Then

0

h(t) = AT (=t)h(1) + J rgf(u*(—t))ﬂgdnT(ﬂ)BT(—t—0)h(t +0):=Q(t)h. (3.5)

The limiting equation of equation (3.5) as t— —o is

0 = ATE0) + [ ol Budan™ 0BTE(+0) = Q- (36)

Since the linear delay differential equation (3.6) and the linear delay differential
equation

0

£(t) = 480 + By | dn(Omog(E)K(E+0),
-

share the same eigenvalues, we conclude that all eigenvalues of equation (3.6)

have negative real parts by assumption (H1). Let {J(¢)} be the semigroup

generated by the solutions of equation (3.6), that is, J(¢): C([-r,0],R")—

C([-r,0],R") and J(t)§, is the solution of equation (3.6) with initial condition
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£(0)=¢&y(0) for €[—r0]. Moreover, let Z(t):[0,0) > R™™ be the matrix
solution of equation (3.6) with initial condition

1, for § =0,
Z(0) =
0, for 6 € [—r,0),
where [ is the nXn identity matrix. Then there are positive constants v>0 and
a>0 such that
178l < ve ™ lEoll, 12D < ve ™, £20,& € C([—r0],R"). (3.7)

Let 6>0 be such that éye” < a. Since Q(t)— Q(—®) as t— —oo, there is a '
such that

1Q(1) = Q=) <6, t<t". (3.8)
Now we write equation (3.5) as
h(t) = Q(=)h; + [Q(t) — Q(—)]hy. (3.9)

By the variation of constants formula (see eqn (2.2) in Hale & Verduyn Lunel
(1993)), solutions of equation (3.9) can be expressed as

t+6
hy(0) = [J(t—s)h](0) —i—J Z(t+0—7)[Q(1)— Q(—)]hdr, s<t, (3.10)

S

for §€[—1,0]. Note that #<0 and Z(7)=0 for 7 <0. From (3.7), (3.8) and (3.10)

we obtain
t

el < ve ]| + 576“’“} oy |dr, (3.11)

S
for s<t<t*. Or equivalently,

t

||y ||dr- (3.12)

o < e ] + v |
The Gronwall inequality applied to (3.12) yields that
Al < v o),

From the last inequality we have

17| < e Ty, s<E< it (3.13)
Note that h, is bounded. By letting s— —o in (3.13), we immediately have

I =0, t<t.

Then the uniqueness of the solution of equation (3.9) implies that h,=0 for all

t €R and hence ¢=0. u

Lemma 3.2. R(T)= C and dim N'(T)= M, where R(T) and N (T) denote the
range and null space of T, respectively.
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Proof. Tt follows from assumptions (H1)—(H2) that the operator T is Fredholm
(see Chow et al. 1989, p. 7). Furthermore,

ind T = dim N (T) —codim R(T)
= dimension of unstable manifold of E;
—dimension of unstable manifold of FE,

=M—0=M. (3.14)

Moreover, we have R(T)={y & C: [Z, h(t)¥(t)dt=0 for every bounded

solution A(-) of equation (3.4)}. With the use of lemma 3.1, one concludes
that R(T)= C and hence codim R(T)=0. Therefore (3.14) implies that
dim N (T)= M. [ |

Lemma 3.3. Let y< Cy be given. If¢ is a bounded solution of the equation Tp=1y,
then ¢ € C}. In particular, Tp=0 implies that ¢ € Cj and hence, N(T) C Cj.

Proof. We shall only prove lim, o ¢(t) =0. The convergence of ¢(¢) to 0 as
t— o can be proved analogously. By the definition of the operator T, T¢p=1y
implies that

¢(t) = P()¢, +y(1), tER,

or
¢(t) = P(—=0)p, + 2(1), tER, (3.15)

with z(t)=[P(t)— P(— %)]¢;+ y(t). Consider the homogeneous equation
(1) = P(=)p,. (3.16)

Recall that for £ € C([—r,0], R"),

P(—) = 4,£(0) + B, JU

_dn(0):(6),

where 7(0)=n(0)uog,(E), 6€[—r0]. By assumption (H2), the generalized
eigenfunction space U of equation (3.16) corresponding to eigenvalues with
positive real part is M-dimensional. Let &= (&', ..., ®") be a basis of U and ¥ =

(', ..., ™T be a basis of the generalized eigenfunction space of the formal
adjoint equation of equation (3.16) associated with U, satisfying

(ly’ @) = [(lpiv @j)]MXM =1,

where for £ € C([—r,0],R") and y € C([0,r], R"), (£, ¥) is defined by
0

(¥.5) = T (0)(0) —J V7 (7 — 0) Bydi (0)2 ().

Let K(t): C([~r,0],R")— C([-r,0],R"), t>0, be the semigroup generated by
solutions of equation (3.16). Define projections KU, K¥=(I—KY): C([-r)0),
R") — C([-r,0],R") with

KV = oW £), ¢eC(-r0],R").
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Then there are positive constants «>0 and §>0 such that for £ € C([-r,0], R")
K (6 KE|| < Be™'|[E]|, =0, (3.17)
K () K Vel < Be|lg]l, t<0, (3.18)

where for t<0, K(t): R(KY)—> R(KV) is the inverse of K(—t)|r(xv)- Now let
¢(t) be a bounded solution of equation (3.15). Then ¢,= KY¢p,+ K°¢,. By the
variation-of-constants formula (see pp. 226-228 of Hale & Verduyn Lunel
(1993)), we have
t
KU, = K(t—s)K' o, +J K(t—r) W (0)«(r)dr, t>s, (3.19)

s
t

K%, = K(t—s)K%¢, + J)dT[Y(t, a(r), t>s, (3.20)

where Y(t, 7)% is defined as follows (see eqn (9.10) in Hale & Verduyn Lunel
(1993))
t—r
Y(t,7)° =J KO)[X, —o(W,X,)]d8, ifr<t—r,
t—r—r
t—r
Y(t,7)° =J K(0)[X, — oW, X,)]do (3.21)
0
0 0
+J X1y d6—¢><llf,J X, 1p d0>, if 7> t—r.
t—r—r t—r—r
Here we suppose t—r>s, and X(t), t>—r, is the matrix solution of the
homogeneous equation (3.16) with initial condition X(0)=1 and X(6)=0 for
0 [—r,0). Applying K(s—t), the inverse of K(t—s) on R(K "), to equation (3.19)
we obtain
¢
K(s—1)K"¢, = KUg, +J K(s— 1)K (t—7)0[(0)2(r)]dr
t
= K¢, +j K(s—7)®[W(0)2(r)]dr, t>s,
or
¢
Ko, = K(s—t)KV¢p,— | K(s—7)®W(0)z(7)]dr, t>s. (3.22)

Therefore, (3.18) and (3.22) imply that

t
Il < Bl + B | | @[ (0)2(n))ldr

ot
< Be gyl + 8 | ) dr sup {|| @[ (0)2(7)]|}dr (3.23)

s s<T<t
als— 6 o S
= B gy|| + = (1 =) sup {|| @[ (0)=(7)]|I}.
o s<r<t
Since ||¢4|| is bounded for t € R, by letting s— —o in (3.23), we obtain
: g
Jm 1K <E s (low©:)I). (324

— o<
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Notice that, by the definition of (%), we have lim, 4 2(#)=0. Thus by letting
t— — o in (3.24) we obtain

lim ||KY¢,| = 0. (3.25)
§—>— 00

Next, we remark that for fixed t €R, Y(¢ 7) is continuous with respect to the
variable 7 (see eqn (9.4) on p. 226 of Hale & Lunel (1993)). From expression

(3.21), one sees that Y(t, 7)° is continuously differentiable with respect to 7
except for a finite jump at 7=t¢t—r, and

Y (t,7)°
or

Y (t,7)°
or

Therefore, (3.17), (3.20) and (3.26) yield that

jt &Y (t,7)%)2(7)

t—r

=K(t—r—7)(X,—0W,X,)), 7<t-—r,
(3.26)
= Xt_,r_@(g’,Xt_T)7 t—r<r<t.

1Kl < 1K (t—s) K | +

4 ‘ JH 4.1V (1, 7)%]2(7)

s

< B¢ + sup X =2, Xl (7)1}
s (3.27)
e T dr sup {|X, oW, X, 107}

s<T<t—r

< gl H¢6H+ sup_{[|Xir = @(W, X )| 1271}

t—r<r<

+5 s (% — e, X)) (), s<t.

O s<r<t—r
By letting s— —o0 in (3.27), we conclude that
1K)l < sup A X =@, X ()1}

t—r<t<

; (3.28)
+— sup {|X, =@, X,)| ||l2(7)]|}.

O —w<r<t—r
Since ||2(7)||—0 as 7— —o, it immediately follows from (3.28) that
Jim [[K7¢q| = 0. (3.29)

Combining (3.25) and (3.29), we have
tliljl ¢y = fli{n (KU¢t + KS¢t) =0

From (3.15), we also have that lim, ., ¢(t)= 0. |

Let us return to the linear operator L defined in (2.11). It is obvious that if
w& Cy, then Lwe Cy. Hence, we can consider L to be a linear operator from Cj to
Cy. For this operator, we have the following.
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Theorem 3.4. dim N'(L)= M and R(L)= C,.
Proof. By definition, w& Cy and Lw=0 if and only if

w(s) = J D w(t) + Plw(t))dt, seR.
Hence, w is continuously differentiable. By differentiating the last equation one
sees that Lw=0 if and only if

w(s) = P'u(s), sER.

Recall that for z€ C and s €R

. _ 0
POx(s) = A(s)2(s) + B(S)J

An(Oog(u' (s + 0))2(s +0) = P(9)z.  (3:30)

Thus, the above equation and lemma 3.3 imply that w € C} and Tw=0. That is,
weN(L) if and only if we N (T). Therefore, lemmas 3.2 and 3.3 imply that
dim N (L)=dim N(T)= M, with N(L)C Cj. Next, we shall prove that
R(L)= Cy. That is, for each z&€ Cj, we need to show that equation Lw=z or
equivalently,

w(s) —J N u(t) + Pow(t)]dt = 2(s), sER, (3.31)
has a solution in Cj. To this end, we let &(s)= w(s)—2(s), s€R. Upon a
substitution, we obtain the equation for £ as

S

E(s) = J e CE(E) 4+ PUE(1)]dt + J ¢ 2(t) + PP2(t)]de.

oo

— 0

Differentiating the above equation yields that

E(s) = PY%(s) + 2(s) + P'2(s), sER. (3.32)
Thus, (3.30) implies that (3.32) is equivalent to the equation
(TE)(s) = z(s) + P’z(s). (3.33)

From the expression of P%(s) it follows that z& C, implies that P%z(-)€ C,
and hence z+ P"z€ C,. Thus lemmas 3.2 and 3.3 guarantee that equation
(3.33) has a solution £€ Ci. Consequently, w=E+2€ C, is a solution of
equation (3.31). |

4. Properties of the nonlinearity H
In order to complete the proof of theorem 1.1, we need further information
about the behaviour of the nonlinearity H(-,y, ¢) when ¢>0 is small and ¥ is near

the origin. To simplify the presentation, we let R*: C'— C for small e>0 be
defined by

Ry(s) =L‘dc<ﬂ, DoW(s + ey +0), seR (4.1)
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With the above notation, we can rewrite the nonlinear function G defined in
(2.5) as

G(e, s, w) = F(w(s) + u”(s), L) dZ(0, v)g([w + w*](s + Vev-y + 0)))

—F<u*(s), L Az(6, y) g’ (s + 0))) — Pu(s) + eDii* (s)
= F(w(s) +u"(s), R [w + u"](s)) — F(u"(s), R°u"(s))
+ F(u’(s), Ru"(s)) = F(u"(s), R'u"(s))
— PYw(s) —eDii* (s)
= Pgw(s) PPw(s) + eDii* (s)
F(w(s) + " (s), R [w + u’|(s)) = F(u"(s), Ru" (s))
—P‘w(s) + F(u'(s), Ru" (s)) — F(u*(s), R'u" (s))

= P'w(s) — PPw(s) + G(e, s, w) + O(e, 5),
where for e>0 the linear operator P®: Cj— C'is defined by

PY(s) = A () + B'(5)] | dC0.0)0u(0" (5 + Ver-y + O)p(s+ Ver-y +0),

(4.2)

(4.3)
for s€ R, with
Af(s) = F,(u*(s), R°u*(s)), SER,} (4.4)
| Bi(s) = F,(u*(s), R°u*(s)), s€ER,
Gle5.9) = F((s) 0 (5), B +)(5) s
—F(u*(s), R°u*(s)) — P'y(s), sER, '

O(e,s) = eDii*(s) + F(u*(s), Ru*(s)) — F(u*(s), R°u*(s)), s€ER. (4.6)

);
From the above notations and (2.10), we can express H;(s, w,¢) as
af(s—t)

8 i
HZ‘(S, w, 8) = J_Oo ﬁ—e_(s_ﬂ] ['LUZ(IJ}) + P?W(t)]dt

1 .
e | P wy(t) + Plw(t)]dt
VItaed, ), © [t u(t)]
1 S
S L G PLw(t) — Plw(t)]dt
T 0d ) © [Piw(t) = Puw(t)]
1 o) fe
S —— AR [Piw(t)—
G

\/1 -|-48dZ s

(1) (1)]dt
1 . -
4+ - eaz(s—t) -(8 ¢ w)dt J eﬁi(s—t)G-(é‘ t w)dt
ﬁ—i—%dl (Jm i\Cy by i i\€y Uy

_|_
+ % (r U0, (e, t)dt + r P, (e t)dt>
T 4ed, i . e '
(4.7)

Proc. R. Soc. A (2006)


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on November 16, 2015

242 T. Faria and others
Thus, we can rewrite H(s,w,e) as

H(s, w,e) = W(s,e) + iHj(s, w, €),
where for i=1,2,...,n, w€ (y, and s ER,

H} (s, w,e) = J; m—e_(rﬂ] [w;(t) + P} w(t)]dt

S

&
o% (s—t)

H? G [Pra(t) — Plw(t)]dt

) = | () — Plu(t)]dt, -

H?(S7w’8):\/mj )6691‘ ) PO ()]dt7

H(s,w,¢) = - +4ed [ e G(e, w)dt-i—J D G (e, t, w)dt],
Wi(s, €) =W U_we GO, (e, t)dt +L @, (e, t)dt].

In what follows, we shall give a detailed analysis of the behaviour of functions
H' (-, w,e),..., H (-, w, &) and W(-,¢) for small wE Cy and ¢>0.

Lemma 4.1. Let a€ C be given so that lim, i a(s) = a(£®) exist. Then for
each e>0

s—to0 Q

lim [ d¢(0, y)a(s +ev-y +0) = JQ dZ(0, y)a(fe).

Proof. We shall prove lemma 4.1 only for the case when s— . The proof for
the case where s— — o« is analogous. For a positive integer j, let B; be the open
ball in R"™ with radius j and centre at the origin. Then

i | dlul = | .
7~ JBne Q
and hence the boundedness of [,d|u| implies that

lim

in | dju| = 0.
e J®m\B)ne

Therefore, for any o> 0, there is a sufficiently large J such that

U djul H <. (4.9)
(R™\ B;)NQ

| = 0 implies that there is a t*>0 such that
la(t) —a(o)|| <o, t=>t". (4.10)
Note that if s> t* + /eJ + r, then for all y€ B;NQ and & [—r,0],
s+Vevy+ 0>t + e +r—elly|—|0]=t".

Now lim, . [|a(s) — (%)
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Hence, for s> t*+ \/eJ + r, we have

a(s—l—\/gv-y—l-ﬁ)—a(oo)H<a, yEB;, 00l (4.11)
It follows from (4.9)—(4.11) that for all s> ¢*+ \/eJ + r and 8 € [—r,0],

| dutlats + ver-u + ) —ate] |

= ‘ .[B EE) (s + Ver-y + 0) —a()] H
/ (4.12)
] o s+ Vo5 6) =]
(R™\B;)NQ
<ol [, [+ 2ot o] [ aul] +20alc)
BNQ Q
Since ¢>0 is arbitrary, (4.12) implies that
lim U du(y) [a(s + Ver-y + 0) —a()] H =0, (4.13)
§—00 Q
uniformly for &€ [—r,0]. Consequently, we have |
lim dg(0, y) [a(s + Vev-y + 0) — ()] H =0.
s || Jo,

Corollary 4.2. For each ¢e>0 and each we Cy, H(-, w, &) € Cy. In other words,
H(-, Cy,e) S Cy for each e=0.

Proof. For we Cy and ¢>0, if we let a(t) = g,(u"(¢))w(t), t €ER, then a € C' and
a(s)—0 as |s|— . It follows from the definition of P° and lemma 4.1 that
Pfw(s)— 0 as |s| — o. Therefore, H'(s,w,e) — 0 as |s]— o for i=1, 2, 3. Next,
by the definition of R® given in (4.1) and lemma 4.1 we have

lim Rf[w 4+ u"](s) = lim R'u*(s).

|s]—0 Is]

The above equality yields that G(e,s,w)— 0 as |s|— %, and so does for the
function H*(s,w,e). Similarly, we obtain that W(s,e) — 0 as |s|] > «. u

Proposition 4.3. For we C, and small e>0, H' (-, w,e) = O(e)[|w|| ¢, -

Proof. For s€R and ¢>0 we have

Jn |eai(s—t) —/J1+ 45die_(s_t)|dt
= J ‘eaﬁ(s—t)(l —/1+4ed;) + /1 + 4ed; (eaf(s—t) _e_(s_t)> dt

— o

<1 —+/1+ 4ed; [ et 4+ /1 + 4ed,-J et (570 — (57| q¢,

(4.14)
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Since of > —1, for t<s we have

() _ o) = gilot) _ gt

, (4.15)

e

and (4.14) and (4.15) yield that

S .
J %) — /1 + dede™ 7 |dt
e 1 1

(3

Noticing that af — —1 as e > 0%, we obtain from the above inequality that

lim J %070 — /1T + dede™ 7 |dt = 0. (4.16)
=0T J—

Next let K =1+ [P°|z(c,.c,)- Then

s ol (s—t)
e e
H m—e( t)] [wi(?) +P,?w(t)]dt‘
e i
s ea,f(s—t) i
SKLo Vitded © atfwlg (417
K s .
- - |em($—t) 1+ 48dze_(s_t>|dt||w||c
1+ 4ed; J_w .
= O(e)[|wl ¢,
Next, since §; — « as e—0, 1/6;= O(¢) as ¢—0. This yields that
1 * “(s—t
‘m J 00 [ (1) + P?w(t)]dt‘
K w
SV R e 4.18
= VI ded, J e dtulle, (4.18)
K
ZmeHCO - 0(€)||w||co, as ¢—0.
The proposition therefore follows from estimates (4.17) and (4.18). [ |

Lemma 4.4. Fore>0 and (s,y,0) ERXR™ X [-r,0],

I 42000 [ot0 s+ vy +0) =t s+ 0)] |

< vl [ aw ol sl e

where ||| = Vi om and
gl = sup{llgu(hu* () + (L= ()] : (4, 1,7) €[0,1] XR X R}.
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Proof. Since g is differentiable, for (s, y,8) € R X R™ X [-r,0], we have
g(u* (s + Ver-y +0)) —g(u'(s + 6))
= Ll (A" (s +0) + (1 =) u"(s + Vev-y + 6))dA
X [u' (s + Vev-y +0)—u'(s + 0)],
The above equality yields that for (s,y,0) € R XR™ X [-r,0],

lg(u’ (s + Vev-y +0)) = g(u"(s + )| < Vellyll lgull @ c- (4.19)
Recalling that [, d{(6,y) = J?, Jodn(#) du(y), as an immediate consequence of

(4.19) we have, for s€R and ¢>0,

U@_dc(e, y) [9(u" (s + Vev-y + 0)) — g, (u (s + 0))] H
< vl [ aw ol 13l

Proposition 4.5. There exist eg>0 and My>0 such that for all e €[0,], and
¢E G);

IH* (- ¥, 8)ll ¢, < VeMl|¥| ¢,

Proof. Let h(s,y,0)= g,(u*(s+ \/ev-y+ 0)). From the definitions of Py and
P, we have

[P*— PPy(s) = [A%(s) — A(]¥(3)
+ (B (5) —B(s)]j AL(0, y)h(s. v, 60 (s + vVevy + 6)

T

+ B<s>j aL(0, 4)[s, 4, 6) — h(s,0, O (s + VVer-y + )

r

+ B(S)J A28, y)h(s,0,0)[W(s + vev-y + 8) — (s + 6)].

Q,
(4.20)
For ¢>0, let
eais eags eafLs
ES = d. ) 7...7 b E [R'
(5) lag<\/1 Fded, VI+ded, VIF 4edn> ’
Then
e &l £ a5 £ 08
B (s) = diag [ 22— ¢ ... dC . sER.
V1 +ded, /1 + 4ded, V1 +4ed,
Since of ——1 as ¢—0 for 1=1,...,n, there are >0 and Ky>0 such that for
€€ [0780]7
S S
IE*(0)] < Ko, J 1E°(s—1)[|dt < Ky, J IE (s—olldt< Ky (4.21)
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By the definition of H? and (4.20), we have
H? (5,9, ¢)
_ J B (s—1)[P* — Ply(1) dt

—00

_ Lo B (s— )[A°(£) — A(D]y(t) dt

S

| EGs—nB@)

% T

J
+ [ Ef(s—t)B(t)J

—©

QT

Let
0

i (t) = Ru'(2) =J

-

[ 410) dutngtu ¢+ Very+0), eer

Then, from the definitions of A*(¢), A(t) and (), it follows that
AT(t) —A(Y) = Flu(u*(t), @ (1) = F,(u"(t), 1o(2))

= L Fo(u(t), do(t) + 7@ (1) — o ()])dr[a (t) — g (2)).

Since Fis C'*-smooth, there is a constant K; >0 such that

1

J, Pt 0, 366) + el i e)har

Lemma 4.4 and (4.25) therefore yield that
14°(0) = A0 < VEE |

For all s€ER and ¢ €[0,¢], (4.21) and (4.26) imply that

SKl? tER, 86[0,80].

— o0

S

< Vet ol | ol s,

B =)l atlivle,

<veM|l¥llc,

where

= Kol | [ aul ol o 151,
and K is defined in (4.21).
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Arguing in the same way as above, we obtain that there is a constant K,>0
such that

1570 = B0l < VER | | et 11, 5=
Thus, for all sE€R,
[ =0t =800 ace.mite. 09+ Vory+0) i

<Vels|lYll,, (4.28)

with My = Ko Ko ||l Jod el () 1yl 19117 c, -
It is also clear that for s €R,

< VeMs||y| Gy, (4.29)

with

r Ef(s— t)B(t)JQ_dc(o, y)[h(t, y, 0) — (L, 0,0)]y(t + Vev-y + 6) dtH

— 0

My = 2K, sup {180 il [ alud)

Next, if ¢ € Cj, by exchanging the order of integration and integration by parts
we have

JS E*(s—t)B(t) UQ‘dC(ﬁ, Y)h(t,0,0)[(t + vev-y + 8) —y(t + 9)}} dt

— o0
1

— r Ef(s—1t)B(t) Ugrdé(ﬁ, y)h(t,0, G)J

— % 0

Yt +7Vev -y + 0)Ve(v-y) dT:| dt
_ \/gjl U B (s— t)B(t)JQTdC(H, ) y)h(1,0,0)(t + 7/evy + H)dt] dr

= \fJ ([Ee(s—t)B(t)JgrdC(ﬁ, u) (v y)h(£,0,0)9(t + 7/evy + ”)} >d

4 \/EJ: {J [ (s— ) B(t) — E*(s— 1) B(1)]

— 0

x JQ (6, 5) (5 (1, 0,00t + /ey + 0) dt}dr

~vi [, [ ze—os0

9h(t,0,0)

x [, aze.nen H;

Y(t+7ev-y + 0)] dt dr.
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Therefore,

—o0

r B (s— 1) B(t) Ugrdc(ﬂ, Y)(8,0,0)[W(t + VVevy + 8) —y(t + a)]} dt
=B OB [ [], 420,006 105,000 + vy + )] ar
+ ﬁJ: {J [E(s—1t)B(t) — E*(s—t) B(#)]

—o0

(4.30)
XJ dg(0, y)(v-y)h(t,0,0)y(t + Tv/ev-y + 0)dt}d7
o,
1 s
~ve | U B (s—1) B(1)
0 —o0
XJ dg(e, y)(v-y)ww(t + 7\ev-y + ) dt] dr, seR.
o,
Recalling that h(t, 0, 8)=g,(u"(t+6)), we have
dh(t,0,0 g, (u*(t+46 y ok
<(9t ) _ % (“;t D g (44 0))i (£ + 0).
Therefore, (4.30) implies that for all s €R,
[ =m0 |, acomnceonmi+ e+ o —ue+o]af
—c Q,
<VeMy|¥llc, (4.31)
where
My = 2 sup (B0 + 1Bl + 1l 1| [ awlsl*|

and ||Gu.ll = supser || guu(u*(¢))]|}. It, therefore, follows from (4.27)—(4.29) and
(4.31) that for e€[0,¢e] and ¢ € C

4
IH?(, . €) e, S VMWl g, with M, = ZMy (4.32)
=

Since H(-,-,¢) : Cy— C is a bounded linear operator and C{ is dense in Cj, the
inequality equation (4.32) holds for all y € C. [ |

Proposition 4.6. For ¢>0 and y € Cy, H*(-,¥, &)= O(¢)||[¥| ¢, as e—0.

Proof. Since 35— o as ¢e—0 for =1, ..., n, one obtains that for all s€R
*® & 1
J i) dt=E—>0 as e—0, i=1,....,n. (4.33)
s i
Thus proposition 4.6 follows from (4.33) and the definition of H?. [ |
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Proposition 4.7. H*(-,0,¢)=0 and for each 6>0, there is a 0>0 such that

||H4(.7¢78) _H4('7¢7€)HC}) < 6”(1)_‘»0“6'“)

for all e €[0,1] and all ¢, y € B(a), where B(a) is the ball in Cy with radius o and
centre at the origin.

Proof. Tt is apparent that, from the definition of G(e, -,¥) (see equation (4.5)),
Gy (e, -, ¥) and Gyy(e, -, ¥) are continuous for e €[0,1] and for ¥ in a neighbourhood
ofthe originin Cy. Moreover, we have Gy (e, -,0) = 0for e € [0,1]. It therefore follows
that

1G(e, - ¥)lle, = OUIVIIG,) as [¥lla,— 0, (4.34)
uniformly for ¢ € [0,1], and the proposition follows from the definition of H* and
(4.34). ]

Proposition 4.8. || W(-,¢)||¢, = O(e) as e—0.
Proof. We note that i *(-) is bounded in C, and
F(u' (1), R (1)) = F(u'(+), R™' (7)) = O(e)[| @[l g, as e—0,

by lemma 4.4. Therefore, we obtain proposition 4.8 from the expression of W (-, ¢)
given in (4.8).

5. Proof of the main theorem

We shall complete the proof of our main theorem 1.1 in this section. To do so we
need a final auxiliary result. By theorem 3.4 we have dimN (L)= M. Therefore,
there are functions wy, ..., wy€ Cy which give a basis of N'(L). Hence there exist
linear functionals hy, ..., hy; : Cy — R, such that

hi(w;) =1, hi(w;)) =0, i#j5, 4,5=1,..,M.
Lemma 5.1. Let X={¢ € Cy:hi(¢)=0, i=1,..., M}. Then
Co = XON(L).
Proof. We note first that this result is not new. Nevertheless, we give a short

proof here for the sake of completion. For each y € Cp, let ¢ =y —Zle hi(y) w;.

Then we have hi¢)=0, i=1,..., M, and ¢=¢+E£\;j1 hi(¢)w;. That is, each
Y€ Cy can be expressed as the sum of an element of X and an element of NV(L).
Moreover, let y € X NN (L). Thus there are constants ¢;, i=1, ..., M, such that

M
Y= Z C;W.
i=1
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The definition of X and h; imply that
0=hz(¢) =C7;h7;(’w7;) = C;, Z=1,,M
Hence =0 and thus X NN (L)= 0. This proves the lemma. ]

It is clear that XC (j is a Banach space. If we let S= L| x be the restriction of L
on X, then S: X— ( is one-to-one and onto, since R(L)= C, by theorem 3.4.
Therefore, S has an inverse S~ ': Cy— X which is a bounded linear operator.

Proof of theorem 1.1. For each y & (), there are unique § EN(L) and g€ X
such that y=¢+£. Hence y is a solution of equation (2.12) if and only if

L =H(-,E+¢,¢) (5.1)
or, equivalently, if and only if ¢ is a solution of the equation
¢=ST"H(-,p+Ee). (5.2)

Let [|S7H = IS [l z(c,.x)- It follows from propositions 4.3 and 4.5-4.8 that there
are >0, ¢>0, and 0<p<1 such that for all e € (0,e*] and ¥, ¢ € B(a) C Cy,

1
37

IH( ¥, 8)ll g, < (¥le, +a), (5-3)

IH( b e) =H(, 0, 8)ll 6, < o ||S S v —ollc, (5.4)
For each fixed ¢ € N(L) N B(o), (5.3) implies that

ISTH(- ¢ +E, )l < (||¢+5”CO+0)<<7 for e€ (0,7, ¢<€XNB(o).

(5.5)
Hence, together with (5.4

we see that the mapping

F: (XN B(0)) X (N(L)N B(o)) X (0,¢") > XN Ba),

given by
F(h,Ee) = STH(-, ¢ +E,e),

is a uniform contraction mapping of ¢ € XN B(s). Hence, for each (§,¢) €
(M(L)N B(a)) X (0,€") there is a unique fixed point ¢, € XN B(o)_of the
mapping F(-,£,¢). In other words, } (¢ 1s the unique solution in X N B(a) of
equation (5.2). Thus, for e€(0,") fixed, Y, =¢e,) +& is a solution of
equation (2.12). Notice that N(L) N B(o) is M-dimensional. It follows that for
each ¢ € (0,6") and for each unit vector » € R™, the set

I,(e) = {¥pq: EEN(L)N B(o)}

is an M-dimensional manifold. This proves claims (i) and (ii) in the statement of
the theorem.
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To prove claim (iii), we first note that if F, g are C*(k>2), then H(-, ¥, ¢) is
continuous on (¥, &) and C* '-smooth with respect to . Hence F(¢,£,¢) is
continuous on (¢, £, ¢) and C*Lsmooth with respect to ¢ and . The uniform
contraction mapping principle (see pp. 25-26 of Chow & Hale (1982)) implies
that the fixed point ¢, is a continuous mapping on (§,¢) and Cc* 1 on E.
Therefore, in addition we conclude that for each ¢ € (0,¢") and for each unit
vector v ER™, I',(¢) is a C*~! manifold. It is locally given as the graph of a C*~*

mapping that is also continuous with respect to c.
Let ¢=1/\/¢e with e €(0,¢*) and

M, (c) ={U:U(s) = ye(s/c) +u'(s/c), s ER, Y eT,(s/c)}.

Then M, (c¢) is an M-dimensional manifold in a neighbourhood of 4" consisting of
travelling wave solutions of equation (1.1) with wave speed ¢ and direction v.
Moreover, for each ¢> c¢* and each umt vector » ER™, M, (¢) is a C*~! manifold
that is given by the graph of a C*~-mapping that is Contlnuous on c.

It remains to prove that the above fixed point ¢ ) is also C*~Lsmooth on e.
We will achieve this in several steps.

Assume the functions F, gin equation (1.1) are C*(k>2). For p €N, define X%
as the space of the functions ¢ : R — R" such that ¢ € Cy and ¢ is CP-smooth.

Claim 1 From the definition of P° in (2.2), it is clear that P": Cy— C, is linear
bounded and that Py(Xf) C A}, for 1<p<k—1.
Claim 2 From the definition of L in (2.11), L: Cy— Cj is linear bounded and
L(XD) C X for 1<p<k—1.
Claim 3 From the definition of H in (2.10) and (2.5), we have H(-, X% ¢)
C X% for >0, p=1,...,k—1, where X = C,.
Claim 4 N (L ) XL '
In fact, from theorem 3.4 we have N(L)=N(T)={p € C' : (t) = P'¢(1),
t € R}. From claim 1, by induction we conclude that N'(T) € X5,
Claim 5 For each (£,¢) € (N (L) N B(a)) X (0, "), the fixed point ¢* := ¢z ,) € X;.
To prove this claim, we fix (§,¢) € (N(L)N B(o)) X (0,&*), and define
V' =¢"+&. From ¢" = F(¢*, &, ¢), we obtain

L‘P* = H(‘,l//*,é'),

or equivalently,

s

V() =Ry 0+ | T + P ) seR
Hence y* € X}. From claim 4, we conclude that ¢* € X},
Claim 6 The fixed point ¢* = ¢z ) is C'-smooth with respect to > e.

Consider F restricted to ¢ E XNB (a)N X’}; more precisely, using claims 2 and
3 we consider

FL (XN Ble)N X)X (N(L)N B(a)) X (0,)— XN Blo) N XY,
FU$.E,6) = F(,£,e).
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Notice that 7" is a uniform contraction of ¢ € X N B(a) N X, for the norm ||| ¢, and
that F'isa C'-mappingon (¢,£,¢). In fact, for y/(s) = ¢(s) +£(s) C'-smooth on s, from
the definition of H and G in equations (2.10) and (2.5), we conclude that 9% (3 v, €)
exists and is continuous. In claim 5, we have proven that there exists a fixed point
"= of F ! By repeating the arguments used to prove the differentiability of the
fixed point in the uniform contractlon principle (see e.g. pp. 25-26 of Chow & Hale
(1982)), we conclude that ¢z isa C' smooth mapping on (&, €).
Claim 7 The fixed point ¢* = @z ) is C*1_smooth with respect to e.

As in claim 5, by 1nduct10n we prove that @ () eX),p=2,....,k—1. By

using claims 2 and 3, we consider now

FP (XN B(o)N XY X (N(L)N B(a)) X (0,¢")— XN B(a) N XY,
FP(p,6,6) = F(p,6,¢),p=2,....k—1.
As in the proof of the umform contractmn principle, by an inductive argument we

conclude that ¢* = @z ) is C*smooth with respect to . [ |

Remark 5.2. In some applications, the diffusion process does not apply to all
state variables and thus the model is of a mixed type such as

?% = DAu + F<W, JQ de(0, y)f(W(z +y, t + 0))>7
N r (5.6)
= o(w. ], 0. pawe e 0)),

with w €R™, v €R™, and W= (u, ’U)T. This system can be regarded as a special
case of equation (1.1) if we allow some of the diffusion coefficients d; to be zero.
We remark that under the same assumptions (H1)-(H4) on the nonlinearities F,
f, G and g, theorem 1.1 remains true for system (5.6). In fact, if for some index 4,
the diffusion coefficient d; is zero in equation (1.1), then we have «f =—1 and
B; = 0. Consequently, the nonlinear function H; (see equation (2.10)) in the
equation for the variable w; will be reduced to

S

Ho(s, w,e)(s) = j G e, w) d.

— o0

It is apparent that all results presented so far remain valid without any change.

6. Applications to a non-local delayed RD-system with non-monotone
birth functions

Our main result, theorem 1.1, relates the existence of travelling wave fronts for
the reaction—diffusion equation (1.1) with delay and non-local interaction to the
existence of a connecting orbit between two hyperbolic equilibria of the
associated ordinary delay differential equation (1.2). This enables us to apply
some existing results for invariant curves of order-preserving semiflows generated
by ordinary delay differential equations to derive systematically sharp sufficient
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conditions for the existence of travelling wave fronts of delayed reaction—diffusion
equations that, in turn, include most of the existing results in the literature as
special cases. In this section, we illustrate this by a recently derived non-local
delayed reaction—diffusion equation for the population growth of a single species
when the delayed birth function is not monotone in the considered range.

We start with a short review of relevant results for the existence of heteroclinic
orbits in monotone dynamical systems. Let X be an ordered Banach space with a
closed cone K. For u, v€ X we write u> v if u—v€ K, and u> v if u>v but u#v.

Lemma 6.1. Let U be a subset of X and ®:[0,%) X U— U be a semiflow such that

(i) @ is strictly order-preserving, i.e. ®(t,u)>®(t,v) for t=0 and for all u,
vE€ U with u>v;

(ii) for some to>0, ®(tg, -): U— U is set-condensing with respect to a measure
of non-compactness.

Suppose uy>wuy are two equilibria of @ and assume [uy, up] ={wup>u>uy}
contains no other equilibria. Then there exists a full orbit connecting u, and us.
Namely, there is a continuous function ¢ : R— U such that ®(t,¢(s))=¢(t+s)
for all t>0 and all s€ER, and either (a) ¢(t)—>u; as t— o and ¢(t)— uy as
t— —o0 or (b) ¢(t)—uy as t— — o and ¢(t)— uy as t— .

In applications, one can easily distinguish the above cases (a) and (b) by
looking at the stability of the equilibria. For detailed discussions and related
references, see Wu et al. (1995), Matano (1984), Polacik (1990), Dance & Hess
(1991) and Smith (1986, 1995).

Returning to equations (1.1) and (1.2), we use the standard phase space for
equation (1.2). In this section, C' will denote the Banach space C'= C([—r,0]; R")
of continuous R"-valued functions on [—7,0] with the usual supremum norm.
Under the smoothness condition on F, system (1.2) generates a (local) semiflow
on (' given by

O(t, ) = u(¢)(t+-), t=0,¢€C,

for all those ¢ for which a unique solution u(¢) of equation (1.2) with u(¢)(8) =¢(8)
for 6 € [—r,0] is defined. Let B be an nXn quasipositive matrix, that is, B+AI>0
for all sufficiently large A. Here and in what follows, we write A> B for mXn
matrices A= (a;) and B=(b;) if and only if a;>b;; for 1 <i<m, 1<j<n. Define
Kp={pe€C:¢>0,¢(t)>ePp(s),~r<s<t<0}.
Then Kpis a closed cone in C and this induces a partial order on C, denoted by
> . Namely, ¢ > gy if and only if p—y € Kp.
We will need the following conditions.

(Op) Ey> pEy, here E; is the constant mapping on [—r,0] with the value E,,
i=1,2.
(Mp) Whenever ¢, y € C with ¢> gy, then

0 0
F9(0).|_ an(0)uog(@(0) = PO, dn(0heog(v(0)) = Blg(0)~v(0)
Under the above assumptions, Smith & Thieme (1991) proved the following.
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Lemma 6.2. Assume that there exists an nXn quasipositive matrix B such that
(Op) and (Mp) are satisfied. Then

(i) [Ey, Bolp:={¢ € C: Ey> Bp> pE,} is positively invariant for the semiflow
b,

(i) the semiflow @: [0,0) X [Ey, Es| p— [Ey, Es] g is strictly monotone with respect
to > pin the sense that if ¢, Y € [Ey, Es] g with > gy, then ® (t, ¢ )> p ®(t, )
for all t=0.

In Smith & Thieme (1991), it was also shown that (Mp) holds if for all u,
vER" with 4, 0 € [E}, Ey]p the following is satisfied:

F, (. % dn(®)nog(v)) = B,

[Fu(u [ dn(ﬁ)ugg(v)) —B} P + F(u [ dn(ﬂ)ugg(v))g’(v) > 0.

In the case where n=1, it was shown in Smith & Thieme (1990) that (Mp) holds
for some B<O0 if

(SB) L2<O, L1 +L2<0, 7”|L2|<1, rLl—ln(r|L2])>1,

where
0
Ll = Elﬁl’ilUfSEQ Fu <U7 J_,,- dn(ﬁ),ugg(fv)>

and

L= inf _Fv<u,Ji.dn(ﬁ)ugg(vog’(v)‘

Note also that [E}, Es] g is a bounded set in C' and that @(t, -): C— C'is compact
for t>r. Therefore, for #>r, the mapping ®(t, -): [Ey, Es]p—[FEy, Es)p is
compact, and hence is set-condensing. This observation allows us to derive from
lemmas 6.1 and 6.2 and theorem 1.1 the following general result.

Theorem 6.3. Assume that

(i) (H1), (H2) and (H4) are satisfied;
(ii) there erxists an nXn quasipositive matriz B such that (Opg) and (Mp) are
satisfied;
(iii) there exist no other equilibria in [Ey, Es]p.

Then the conclusions of theorem 1.1 hold.

We now apply theorem 6.3 to a reaction—diffusion equation with time delay
and non-local effect, recently derived by So et al. (2001), for the total mature
population of a single species population with two age classes and a fixed
maturation period living in a spatially unbounded environment. In So et al.
(2001), the existence of a travelling wave front was established for the special
case when the birth function is the one which appears in the well-known
Nicholson’s blowflies equation and when the birth function remains mono-
tonically increasing in the interval between the trivial equilibrium and the
positive equilibrium representing the maximal capacity of the environment.
However, as will be shown below, in a wide range of parameter values, this
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monotonicity condition is not satisfied and the method developed there cannot be
applied. Theorem 6.3 enables us to address the existence of travelling waves
when this monotonicity is not satisfied.
Let w(t, a,z) denote the density of the population of the species under
consideration at time t>0, age a>0 and location z&€ R. It is natural to assume
|u(t, a,fo)| <o, for t>0, a>0. (6.1)
A standard argument on population dynamics with age structure and diffusion
(cf. Metz & Diekmann 1986) gives

du Jdu 62u_

ot 3, = D@ gz —dau, (6.2)

where D(a) and d(a) are the diffusion rate and death rate respectively, at age a.
Let r>0 be the maturation time for the species. Then the total matured
population at time ¢ and location z is given by

w(t,x) = J u(t, a,z)da,
and using equation (6.2) and the biologically realistic assumption
u(t, %, z) =0, (6.3)

we can get

[ee]

dw 0*u
5 u(t, r, x) +J [D(a)w—d(a)u da.

We assume that the diffusion and death rates for the mature population are age
independent, that is, D(a)=D,, and d(a)=d,, for a€[r,®), where D,, and d,, are
constants. Furthermore, since only the mature can reproduce, we have

r

u(t,0,z) = b(w(t, x)), (6.4)
where b(-) is the birth function. Then
dw 0*w
i u(t,r, ) + DmW_ dpw. (6.5)

Denote by Dy and d; the diffusion and death rates of the immature, respectively
i.e. D(a)=D;(a) and d(a)=d;(a) for a€[0,r]. In So et al. (2001), it was shown
that, provided

o= J{: D;(a) da> 0, (6.6)

the term wu(t,r, ) can be explicitly written, using a combination of integration
along characteristics, method of separation of variables and Fourier transfor-
mation, as

b(w(t—r,y))e =

— o0

(6.7)

u(t,r,z) =

e_L’ di(a)da J“’ (o2 .
- y.
Ao

Hence w(t, x) satisfies

Jw 9w e_J;;’ di(0) 40 peo =)
5= mW—dmw +W Jw b(w(t—r,y))e = dy, fort>r. (6.8)
Let
1
e=a b U@l 4ng fulz) = eda
4T
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Then, 0<e<1 and equation (6.8) becomes

0 92 b
0w p, 0w+ j b(aw(t—r, )fu(z—y)dy. (6.9)
at ax —

Equation (6.9) is a reaction—diffusion equation with time delays and non-local
effects, with ¢ reflecting the impact of the death rate for immature and «
representing the effect of the dispersal rate of the immature on the matured
population.
When a— 0, that is, as the immature become immobile, equation (6.9) reduces to
2

a_w = 'D'"La—w

at 9>
and the non-local effect disappears. If we further let e— 1, that is, all immatures
live to maturity, then equation (6.10) becomes

ow 0*w

e DmW_dmw—'_ b(w(t—r,x)), (6.11)
which has been widely studied for different choices of the birth function b(-). In
particular, So et al. (2001) considered a particular birth function for equation
(6.9) given by b(w)=pwe™ ““. This function has been used in the well-studied
Nicholson’s blowflies equation (see Gurney et al. 1980). In the discrete case, it is
commonly known as the Ricker’s model (cf. Ricker 1954). With this birth
function, equation (6.9) becomes

—d,w+ eb(w(t—r, 1)), (6.10)

0 92 * ol
v _ Dm—gu— d,w+ epJ w(t—r, y)e_aw(t r’y)fa(x—y) dy. (6.12)
at ax —
For the case when D;(6)=0and d;(6)=0,i.e.a=0, =1, equation (6.12) reduces to
aU} (:)Zw —aw(t—r,T
i mW—dmw—l-pw(t—r, y)e (t=r2) (6.13)

which was studied in So & Zou (2001), where the monotone iteration scheme
and the method of upper—lower solutions in Wu & Zou (1997, 2001) were used
to show that a travelling wave front exists when 1<ep/d, <e. This result
was extended to equation (6.12). More precisely, So et al. (2001) proved the
following.

Theorem 6.4. If1<ep/d,, < e, then there exists a ¢ >0 such that for every ¢> c*,
equation (6.12) has a travelling wave front solution, which connects the trivial
equilibrium w, =0 to the positive equilibrium wy, = %ln -

Unfortunately, in the case when ep/d,, > e, the method developed in So et al.
(2001) cannot be used as the involved iteration scheme is no longer monotone. It
is suspected that the method developed in Wu & Zou (2001) for travelling waves
of reaction—diffusion equations without local effects and based on a non-standard
exponential ordering could be utilized to this case but the construction of a pair
of upper-lower solutions seems to be a highly nontrivial task. We are now in the
position to confirm this existence by using theorem 6.3.

We first notice that the associated ordinary differential equation of (6.12) is

dw
i —d,, w(t) + eb(w(t—r)), (6.14)
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with b(w)=pwe™ . If ep/d, > 1, then equation (6.14) has exactly two
nonnegative equilibria:

The corresponding characteristic equations are
A (A)=A+d,—epe ™ =0
and
Ay(A) = A+ d,, —eb (By)e™ =0,

where

d ep
"(Ey) =—"2(1—In—).
b( 2) 8< ndm>

As ep> d,,, we can easily show that the unstable manifold for F; is at least one-
dimensional. Furthermore, F; is hyperbolic for r#r,, n €N, where

o — < dm)
s arccos| —
P/ 4 ong.

V €2p2 - dIZVL

We now claim that if e < ep/bd,, < €®, then E, is asymptotically stable. In fact, in
this case,

r, =

¥ (B = ldy (1= ) <

m

and hence all zeros of /45(4) have negative real parts.
In the case where ep/d,, > ¢, the asymptotical stability of E, holds only when
the delay r is sufficiently small. Namely, in /A5(4)=0, we let A=iw to get

ivw =—d, +4d, <1 —lng—p> [cos(wr) —isin(wr)], (6.15)

m

from which we can find the minimal 7> 0 so that (6.15) has a solution w>0. This
is given by

T —arccos ———
In—1
d7ﬂ

P= . (6.16)
dm\/(lng—i—1>2—1

It then follows that if ep/d,, > €* and 0 < r < 7 then E, is asymptotically stable.
We now choose B<0 so that (Sp) holds. Recall that

V(w) =pe ™(1—aw) and b"(w) = pae ™ (aw—2).
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2

a

2

PR

Therefore, b'(w) is decreasing on [0,

o A ) and increasing on [
1,L2|, W€ Nnave

00) . Consequently, on

d ep 2
V(E,) =—"(1—-In— ], B, <~

€ m

b'(w) 2 b i = (6.17)

For equation (1.2), we have

F(u,v) = —dyyu + ev, g(w) = b(w) = pwe ™™, j dn(0) =1, po=1.

Therefore, for Ly, Ly as in (Sp)
L= inf F,(u,bv))=—d,<0

0<u,v<E,
and
= 1 / = / .
L2 _0£111{11£E2 Fv(u7 b(v))b(v) eb m1n<0-
Therefore, (Sp) (and hence (Mp)) holds if
re | in| <1 (6.18)
and
—rd,
e m
—>ec 6.19
e b inl ¢ (6.19)
The latter is equivalent to
e’ ee|b min| < 1. (6.20)

Clearly, if equation (6.20) holds so does equation (6.18). Therefore, we conclude
that (Mp) holds if 0 <r<# where 7 is the unique solution of

rerdm eelb/min’ =1 (621)
As B<0, we also have that (Op) holds. Therefore, from theorem 6.3, we have

Theorem 6.5. Ifep/d,, > e, then there exist >0 and ¢* >0 such that if r€ [0,77)
then for every c¢>c*, equation (6.12) has a travelling wave, which connects the
trivial equilibrium wy =0 to the positive equilibrium wy = %ln(ep/ d,,), where

&
_p > 62 ,
d’”L

min{7, 7, 1y},

min{7, ro},fi—pﬁ e
m

As a final remark, we note that in order to apply theorem 6.3 for specific
systems (1.1), all we need to do is to choose the quasipositive matrix B and to
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verify the hyperbolicity of the two equilibria. It turns out that much of the
known results can be obtained as a special case of theorem 6.3. For example,
consider the following Fisher-KPP equation with delay
du(z,t) _ 0%u(z,t)
dt dz?

Using theorem 6.3, we can get

Corollary 6.6. There exists ¢>0 such that if 0<r<e” ' then for any c¢> ¢,
equation (6.22) has a travelling wave front with wave speed c.

+ u(z, t)[1 —u(z, t—1)]. (6.22)

To prove the corollary, we note that the corresponding ordinary delay
differential equation is

4

dt
for which E;=0 and E,=1. When u, v€][0,1] we have F,(u,v)=1—v>0 and
F.(u, v)= —u. Therefore,

[F,(u,v) — Ble” + F,(u,v) = [1—v—Ble’ —u

(t) = w(t)[l —u(t—r)] == F(u,u(t—r)], (6.23)

= (1—v)e” —Be” —u>—Be" —1>0.

as long as f(B):=—Be” >1. This is possible if r<e~'. In this case, we can
choose B=—r""' so that f(B)=r""'e~'=1. This verifies (Mp). (Op) follows from
1— P90 if— r<s<t<0. Note that A;(1)=21—1 and Ay(1)=2A+e . Thus,
Ej is hyperbolic and its unstable manifold is one-dimensional, and all eigenvalues
corresponding to FE, have negative real parts if r< e <m/2. This proves
corollary 6.6.

In Wu & Zou (2001), it was shown that for any ¢> 2, there exists 7*(¢) >0 such
that if 0<r<7"(c), then equation (6.22) has a travelling wave front with wave
speed c. Their argument was based on an iterative scheme, coupled with the
construction of a pair of upper and lower solutions. Note that our claim above
gives an explicit form for r*.

There is another way to incorporate the time delay to a logistic equation, such as

du(z,t) 0% u(z,t)
ot 09a?

which was also derived by Kobayshi (1977) from a branching process. The
existence of travelling wave of equation (6.24) can be obtained by using the
general theory of Schaaf (1987) or the general monotone iteration technique
developed in Wu & Zou (1997, 2001). It is interesting to note that this existence
result becomes a trivial application of our Theorem 6.3 by choosing B= —1, since
the corresponding F(u,v)=v(1—u) satisfies F,(u, v)=—v>—1 and F,(u,v)=
1—=wu>0 for all u, v€]0,1]. It is also clear that Ey=1 is asymptotically stable, and
that F;=0 is hyperbolic for r# r,, where r,=(2n—1/2)m, n €N, and its unstable
manifold is at least one-dimensional.

+ u(z, t—r)[1 —u(z, t)], (6.24)

Remark 6.7. We consider the nonlinear reaction term F to be of the form
given in equation (1.1) in order to cover sufficiently large classes of equations
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and, at the same time, to keep the notations relatively in a minimum of
complexity. A straightforward extension of the reaction term that has its
application can be of the form

0

Flu(x, t),J

-

Jgdn(ﬂ)du(y)K(ﬂ, Wg(u(z +y,t +0))),

where K is a continuous and bounded function from [—7,0] X Q to R™". In this
case, the corresponding reaction equation (1.2) becomes

-

i(t) = F<u<t>,j dn(0)ua(6)g(u(t + 6))),

with ug(f) = [odu(y)K(6,y). One can see that all arguments developed in the
paper are still valid and theorem 1.1 remains true for this more general form.

Remark 6.8. Our focus in this paper is on the existence of travelling waves for
the delayed reaction—diffusion equation (1.1) in the neighbourhood of a
heteroclinic orbit of the corresponding ordinary delay differential equation
(1.2). Whether some qualitative properties of the heteroclinic orbits such as
monotonicity can be inherited by the travelling waves remains to be an
interesting problem. We note, however, that if equation (1.2) is a monotone
system that has a monotone heteroclinic solution u* connecting F; and FE,, then
we are able to use a travelling wave solution V(#) of equation (1.4) near u* to
construct a monotone increasing lower and a monotone increasing upper solution
for an integral equation equivalent to equation (1.4). Thus a further monotone
iteration argument (see Wu & Zou 2001, 1997) can be applied to obtain a
monotone travelling wave.

This work was partially supported by FCT (Portugal) under CMAF and project POCTI/32931/
MAT/2000. Research was supported in part by NSF grant DMS-0204676. Work partially
supported by Natural Sciences and Engineering Research Council of Canada and by Canada
Research Chairs Program.

References

Britton, N. F. 1990 Spatial structures and periodic travelling waves in an integro-differential
reaction—diffusion population model. SIAM J. Appl. Math. 50, 1663-1688.

Carpenter, G. 1977 A geometric approach to singular perturbation problems with applications to
nerve impulsive equations. J. Differ. Equations 23, 335-367. (doi:10.1016,/0022-0396(77)90116-4)

Chow, S. N. & Hale, J. K. 1982 Methods of bifurcation theory. New York: Springer.

Chow, S. N., Lin, X. B. & Mallet-Paret, J. 1989 Transition layers for singularly perturbed delay
differential equations with monotone nonlinearities. J. Dyn. Differ. Equations 1, 3-43. (doi:10.
1007/BF01048789)

Dance, N. & Hess, P. 1991 Stability of fixed points for order-preserving discrete-time dynamical
systems. J. Reine Angew. Math. 419, 125-139.

Fenichel, N. 1971 Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math.
J. 21, 193-226. (doi:10.1512/ium;j.1971.21.21017)

Fenichel, N. 1979 Geometric singular perturbation theory for ordinary differential equations.
J. Differ. Equations 31, 53-98.

Fife, P. C. 1976 Boundary and interior transition layer phenomena for pairs of second order
differential equations. J. Math. Anal. Appl. 54, 497-521. (doi:10.1016/0022-247X(76)90218-3)

Proc. R. Soc. A (2006)


http://dx.doi.org/doi:10.1016/0022-0396(77)90116-4
http://dx.doi.org/doi:10.1007/BF01048789
http://dx.doi.org/doi:10.1007/BF01048789
http://dx.doi.org/doi:10.1512/iumj.1971.21.21017
http://dx.doi.org/doi:10.1016/0022-247X(76)90218-3
http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on November 16, 2015

Travelling waves for delayed reaction—diffusion equations 261

Gourley, S. A. & Britton, N. F. 1993 Instability of travelling wave solutions of a population model
with nonlocal effects, IMA. J. Appl. Math. 51, 299-310.

Gurney, W. S. C., Blythe, S. P. & Nisbet, R. M. 1980 Nicholson’s blowflies revisited. Nature 287,
17-21. (doi:10.1038/287017a0)

Hale, J. K. & Verduyn Lunel, S. M. 1993 Introduction to functional differential equations. New
York: Springer.

Hoppensteadt, F. C. 1966 Singular perturbations on the infinite intervals. Trans. Am. Math. Soc.
123, 521-535.

Jones, C. 1995 Geometric singular perturbation theory. Lectures Notes in Mathematics, vol. 1069,
pp. 44-118. Berlin: Springer.

Kobayshi, K. 1977 On the semilinear heat equation with time-lag. Hiroshima Math. J. 7, 459-472.

Lin, X. B. 1989 Shadowing lemma and singularly perturbed boundary value problems. SIAM
J. Appl. Math. 49, 26-54.

Mallet-Paret, J. 1999 The Fredholm alternative for functional differential equations of mixed type.
J. Dyn. Differ. Equations 11, 1-47. (doi:10.1023/A:1021889401235)

Matano, H. 1984 Existence of nontrivial unstable sets for equilibriums of strongly order preserving
systems. J. Fac. Sci. Univ. Tokyo 30, 645—673.

Metz, J. A. J. & Dieckmann, O. (eds) 1986 The dynamics of physiologically structured populations.
New York: Springer.

Polacik, P. 1990 Existence of unstable sets for invariant sets in compact semiflows. Applications in
order-preserving semiflows. Comm. Math. Univ. Carolinae 31, 263-276.

Ricker, W. 1954 Stock and recruitment. J. Fish. Res. Board Canada 211, 559-663.

Schaaf, K. 1987 Asymptotic behavior and traveling wave solutions for parabolic functional
differential equations. Trans. Am. Math. Soc. 302, 587-615.

Smith, H. 1986 Invariant curves for mappings. SIAM J. Math. Anal. 17, 1053-1067. (doi:10.1137/
0517075)

Smith, H. 1995 Monotone dynamical systems, an introduction to the theory of competitive and
cooperative system. Mathematical Surveys and Monographs, vol. 11. Providence, RI: American
Mathematical Society.

Smith, H. & Thieme, H. 1990 Monotone semiflows in scalar non-quasi-monotone functional
differential equations. J. Math. Anal. Appl. 21, 673-692.

Smith, H. & Thieme, H. 1991 Strongly order preserving semiflows generated by functional
differential equations. J. Differ. Equations 93, 332-363. (doi:10.1016/0022-0396(91)90016-3)
Szmolyan, P. 1991 Transversal heteroclinic and homoclinic orbits in singular perturbation

problems. J. Differ. Equations 92, 252—-281. (doi:10.1016/0022-0396(91)90049-F)

So, J., Wu, J. & Zou, X. 2001 A reaction—diffusion model for a single species with age structure. I.
Travelling wavefronts on unbounded domains. Proc. R. Soc. A 457, 1841-1853. (do0i:10.1098/
rspa.2001.0789)

So, J. & Zou, X. 2001 Traveling waves for the diffusive Nicholson’s blowflies equation. Appl. Math.
Comput. 122, 385-392. (doi:10.1016,/S0096-3003(00)00055-2)

Wu, J., Freedman, H. & Miller, R. 1995 Heteroclinic orbits and convergence of order-preserving
set-condensing semiflows with applications to integrodifferential equations. J. Integral
Equations Appl. 7, 115-133.

Wu, J. & Zou, X. 2001 Traveling wave fronts of reaction—diffusion systems with delay. J. Dyn.
Differ. Equations 13, 651-687. (doi:10.1023/A:1016690424892)

Zou, X. & Wu, J. 1997 Existence of traveling wave fronts in delay reaction—diffusion system via
monotone iteration method. Proc. Am. Math. Soc. 125, 2589-2598. (doi:10.1090/50002-9939-97-
04080-X)

As this paper exceeds the maximum length normally permitted,
the authors have agreed to contribute to production costs.

Proc. R. Soc. A (2006)


http://dx.doi.org/doi:10.1038/287017a0
http://dx.doi.org/doi:10.1023/A:1021889401235
http://dx.doi.org/doi:10.1137/0517075
http://dx.doi.org/doi:10.1137/0517075
http://dx.doi.org/doi:10.1016/0022-0396(91)90016-3
http://dx.doi.org/doi:10.1016/0022-0396(91)90049-F
http://dx.doi.org/doi:10.1098/rspa.2001.0789
http://dx.doi.org/doi:10.1098/rspa.2001.0789
http://dx.doi.org/doi:10.1016/S0096-3003(00)00055-2
http://dx.doi.org/doi:10.1023/A:1016690424892
http://dx.doi.org/doi:10.1090/S0002-9939-97-04080-X
http://dx.doi.org/doi:10.1090/S0002-9939-97-04080-X
http://rspa.royalsocietypublishing.org/

	Travelling waves for delayed reaction-diffusion equations with global response
	Introduction
	Operational equations for travelling wave solutions
	The kernel and range of the operator L
	Properties of the nonlinearity H
	Proof of the main theorem
	Applications to a non-local delayed RD-system with non-monotone birth functions
	This work was partially supported by FCT (Portugal) under CMAF and project POCTI/32931/MAT/2000. Research was supported in part by NSF grant DMS-0204676. Work partially supported by Natural Sciences and Engineering Research Council of Canada and by Can...
	References


