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Travelling waves for delayed reaction–
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We develop a new approach to obtain the existence of travelling wave solutions for
reaction–diffusion equations with delayed non-local response. The approach is based on an
abstract formulation of the wave profile as a solution of an operational equation in a certain
Banach space, coupledwith an index formula of the associatedFredholmoperator and some
careful estimation of the nonlinear perturbation. The general result relates the existence of
travelling wave solutions to the existence of heteroclinic connecting orbits of a
corresponding functional differential equation, and this result is illustrated by an
application to a model describing the population growth when the species has two age
classes and the diffusion of the individual during the maturation process leads to an
interesting non-local and delayed response for the matured population.
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1. Introduction

The purpose of this paper is to study the existence of travelling wave solutions
for the following delayed reaction–diffusion equation with non-local interaction

vuðx; tÞ
vt

ZDDuðx; tÞCF uðx; tÞ;
ð0
Kr

ð
U

dhðqÞdmðyÞgðuðxCy; tCqÞÞ
� �

; ð1:1Þ

where x2R
m is the spatial variable, tR0 is the time, uðx; tÞ2R

n, DZdiag
(d1,., dn) with positive constants di, iZ1,., n, DZ

Pm
iZ1 v

2=vx2i is the Laplacian
operator, r is a positive constant, h : ½Kr ;0�/R

n!n is of bounded variation, m is
a bounded measure on U3R

m with values in R
n!n, F : Rn!R

n/R
n and

g : Rn/R
n are given mappings with additional conditions to be specified later.

Equation (1.1) serves as a model for many physical, chemical, ecological and
biological problems. In particular, as will be shown in §6, equation (1.1) includes
a model for the population growth where the species has an age-structure and
Proc. R. Soc. A (2006) 462, 229–261

doi:10.1098/rspa.2005.1554
Published online 11 November 2005
uthor for correspondence (wujh@mathstat.yorku.ca).

eived 21 September 2004
epted 1 August 2005 229 q 2005 The Royal Society

http://rspa.royalsocietypublishing.org/


T. Faria and others230

 on November 16, 2015http://rspa.royalsocietypublishing.org/Downloaded from 
a non-monotone birth function, and the spatial diffusion of the individuals during
the maturation period leads to an interesting non-local delayed response. See
Britton (1990) and Gourley & Britton (1993) for some earlier work on non-local
delayed reaction–diffusion equations.

Because of their significant role in governing the long time behaviour of
dynamical systems with a diffusion process, travelling wave solutions have
been one of lasting interests, and a variety of methods for studying the
existence of travelling wave solutions have been developed. In this paper, we
develop a new approach to study the existence of travelling wave solutions for
equation (1.1). This approach reflects a natural connection between the
existence of a travelling wave solution for equation (1.1) and the existence of
a heteroclinic solution for the corresponding ordinary delay differential
equation on R

n

_uðtÞZF uðtÞ;
ð0
Kr

dhðqÞmUgðuðtCqÞÞ
� �

; ð1:2Þ

where mUZ
Ð
Udm.

Before giving a precise statement of our main result, we first formulate some
assumptions about the nonlinearities F and g. Throughout the remaining part
of this paper, we suppose that F and g are Ck-smooth functions, kR2, and we let
Fu(u, v), Fv(u, v) denote the partial derivatives of F with respect to the variables
u2R

n and v2R
n, respectively, and let gu(u) be the derivative of g with respect

to the variable u2R
n. In addition, we suppose that equation (1.2) has two

equilibria Ei, iZ1, 2, and we define

Ai ZFu Ei;

ð0
Kr

dhðqÞmUgðEiÞ
�
; Bi ZFv

�
Ei;

ð0
Kr

dhðqÞmUgðEiÞ
� �

:

For a complex number l we let

LiðlÞZ det lIKAiKBi

ð0
Kr

dhðqÞmUguðEiÞelq
� �

:

We assume that the following hypotheses hold.

(H1) All eigenvalues corresponding to the equilibrium E2 have negative real
parts, that is, supfRl : L2ðlÞZ0g!0.

(H2) E1 is hyperbolic and the unstable manifold at the equilibrium E1 is M
(MR1) dimensional. In other words, L1(iv)s0 for all v2R and L1(l)Z0
has exactly M roots with positive real parts, where the multiplicities are
taken into account.

(H3) Equation (1.2) has a heteroclinic solution u� : R/R
n from E1 to E2.

Namely, equation (1.2) has a solution u�(t) defined for all t2R such that

u�ðKNÞd lim
t/KN

u�ðtÞZE1; u�ðNÞdlim
t/N

u�ðtÞZE2:

(H4)
��Ð

UdjmjðyÞ
��ykRmkRn!n!N, where jmjZmCKmK with mC and mK the

positive and negative parts of m, respectively.
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Our main result is as follows.

Theorem 1.1. Under assumptions (H1)K(H4), there is a c�O0 such that

(i) for each fixed unit vector n2R
m and cOc�, equation (1.1) has a travelling

wave solution u(x, t)ZU(n$xCct) connecting E1 to E2 (that is, U(KN)Z
E1 and U(KN)ZE2);

(ii) if restricted to a small neighbourhood of the heteroclinic solution u� :
R/R

n in the space CðR;RnÞ of bounded continuous functions equipped
with the sup-norm, then for each fixed cOc� and n2R

m, the set of all
travelling wave solutions connecting E1 to E2 in this neighbourhood forms a
M-dimensional manifold MnðcÞ;

(iii) MnðcÞ is a C kK1-smooth manifold which is also C kK1-smooth with respect
to c. More precisely, there is a C kK1-function h : U!ðc�;NÞ/CðR;RnÞ,
where U is an open set in R

M, such that MnðcÞ has the form
MnðcÞZ fj : jZ hðz; cÞ; z2Ug:

Let n$x Cct Zs2R and u(x, t)ZU(n$xCct). Then, upon a straightforward
substitution, a travelling wave U(s) satisfies the second order equation

c _UðsÞZD €U ðsÞCF UðsÞ;
ð0
Kr

ð
U

dhðqÞdmðyÞgðUðsCn$yCcqÞÞ
� �

;s2R: ð1:3Þ

Writing V(s)ZU(cs) and 3Z1=c2, then equation (1.3) leads to

_V ðsÞZ3D €V ðsÞCF V ðsÞ;
ð0
Kr

ð
U
dhðqÞdmðyÞg V sC

ffiffi
3

p
n$yCq

� �� �� �
;s2R: ð1:4Þ

In the case where c is sufficiently large, 3 is small and hence equation (1.4) is a
singularly perturbed equation. Such an equation has been extensively investigated
via both geometric and analytic methods where the main idea is to study the
corresponding slow motion and fast motion. See, for example, Carpenter (1977),
Fenichel (1971, 1979), Fife (1976), Hoppensteadt (1966), Jones (1995), Lin (1989)
and Szmolyan (1991). The geometrical approach makes the connection of slow and
fast motions by studying the intersection of the relevant invariant manifolds, while
the analytic approach matches the slow and fast motion by using the asymptotic
expansion of inner and outer layers. For both methods, to make a connection
between slow and fast motions is far from being trivial. In addition, both methods
work only on dynamical systems where the stable, unstable, and invariant
manifolds play an essential role. It is very important to point out that the
differential equation (1.4) does not generate a dynamical system, for there is no
way an initial value problem can be formulated. In this paper, we take a different
approach to avoid this difficulty. The central idea of our approach is to use a
certain type of transformation to convert the singularly perturbed differential
equation (1.4) into a regularly perturbed operational equation in a Banach space,
that enables us to directly apply the Banach fixed point theorem and some existing
results regarding the index of an associated Fredholm operator to prove the
existence of travelling wave solutions. This approach also allows us to determine
the number of travelling wave solutions as well as smooth dependence of travelling
wave solutions on the wave speed c.

Theorem 1.1, relating the existence of travelling wave fronts for the reaction–
diffusion equation (1.1) with delay and non-local interaction to the existence of a
Proc. R. Soc. A (2006)

http://rspa.royalsocietypublishing.org/


T. Faria and others232

 on November 16, 2015http://rspa.royalsocietypublishing.org/Downloaded from 
connecting orbit between two hyperbolic equilibria of the associated ordinary
delay differential equation (1.2), enables us to apply some existing results for
invariant curves of semiflows generated by ordinary delay differential equations
to derive systematically sharp sufficient conditions for the existence of travelling
wave fronts of delayed reaction–diffusion equations that, in turn, includes most of
the existing results in the literature as special cases. In particular, as will be
illustrated in §6 where a recently derived non-local delayed reaction–diffusion
equation for the population growth of a single species when the delayed birth
function is not monotone in the considered range is considered, theorem 1.1
allows us to apply the powerful monotone dynamical systems theory to obtain
the existence of travelling waves.

This paper is organized as follows. In §2 we transform equation (1.4) into an
operational integral equation involving a linear operator and a nonlinear
perturbation. Section 3 is devoted to the study of the null space and range of the
linear operator introduced in §2. The properties of the nonlinear function in the
operational equation are studied in §4. The proof of our main theorem is given in
§5. In the last section, we present applications of our main result to some
population models, including a non-local delayed RD-system with non-monotone
birth functions.
2. Operational equations for travelling wave solutions

In the sequel, we use more compact notations:

zðq; yÞZhðqÞmðyÞ;
ð
Ur

dzðq; yÞZ
ð0
Kr

ð
U
dhðqÞdmðyÞ;

with UrZ[Kr,0]!U. We will also let C ZCðR;RnÞ be the space of continuous
and bounded functions from R to R

n equipped with the standard norm
kjkCZsupfkjðtÞk : t2Rg.

Our main approach to study the existence of travelling wave solutions is to
convert the differential equation for a travelling wave into an equivalent
operational equation in a suitable Banach space. For this purpose, we further
transform equation (1.4) by introducing the variable w(s)ZV(s)Ku�(s) for s2R.
Then we obtain the equation for w as

_wðsÞZ 3D €w ðsÞC3D €u �ðsÞ

CF wðsÞCu�ðsÞ;
ð
Ur

dzðq; yÞg ½wCu��ðsC
ffiffiffiffiffi
3n

p
$yCqÞ

� �� �

KF u�ðsÞ;
ð
Ur

dzðq; yÞgðu�ðsCqÞÞ
� �

Z 3D €w ðsÞCP0wðsÞCGð3; s;wÞ; s2R;

ð2:1Þ

where [wCu�](t)Zw(t)Cu�(t) for t2R, and the linear operator P 0: C/C is
defined by

P0wðsÞZAðsÞwðsÞCBðsÞ
ð
Ur

dzðq; yÞguðu�ðsCqÞÞwðsCqÞ; s2R; ð2:2Þ
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with

AðsÞZFu u�ðsÞ;
ð
Ur

dzðq; yÞgðu�ðsCqÞÞ
� �

; s2R; ð2:3Þ

BðsÞZFv u�ðsÞ;
ð
Ur

dzðq; yÞgðu�ðsCqÞÞ
� �

; s2R; ð2:4Þ

and

Gð3; s;wÞZF wðsÞCu�ðsÞ;
ð
Ur

dzðq; yÞgð½wCu��ðsC
ffiffi
3

p
n$yCqÞÞ

� �

KF

�
u�ðsÞ;

ð
Ur

dzðq; yÞgðu�ðsCqÞÞ
�
KP0wðsÞC3D €u �ðsÞ: ð2:5Þ

Next we transform equation (2.1) into an integral equation as follows. We first
write equation (2.1) as

3di €w iðsÞK _wiðsÞKwiðsÞZKwiðsÞKP0
i wðsÞKGið3; s;wÞ; s2R; ð2:6Þ

for iZ1,., n, where i denotes the i th component for the corresponding functions
or operators. We observe that the equation

3diz
2KzK1Z 0

has two real zeros a3
i and b3i , with

K1!a3
i Z

1K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p

23di
!0; b3i Z

1C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p

23di
O0:

Moreover, it is easy to verify that

lim
3/0C

a3
i ZK1; lim

3/0C
b3i ZCN: ð2:7Þ

It is well known that w : R/R
n is a bounded solution of equation (2.6) if and

only if w(s) is a bounded solution of the integral equation

wiðsÞZ
1

3di b
3
iKa3

ið Þ

ðs
KN

ea
3
i ðsKtÞ½wiðtÞCP0

i wðtÞ�dt

C
1

3di b
3
iKa3

ið Þ

ðN
s
eb

3
i ðsKtÞ½wiðtÞCP0

i wðtÞ�dt

C
1

3di b
3
iKa3

ið Þ

ðs
KN

ea
3
i ðsKtÞGið3; t;wÞdtC

ðN
s
eb

3
i ðsKtÞGið3; t;wÞdt

� �

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p

ðs
KN

ea
3
i ðsKtÞ½wiðtÞCP0

i wðtÞ�dt

C
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p

ðN
s
eb

3
i ðsKtÞ½wiðtÞCP0

i wðtÞ�dt

C
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p

ðs
KN

ea
3
i ðsKtÞGið3; t;wÞdtC

ðN
s
eb

3
i ðsKtÞGið3; t;wÞdt

� �
;

i Z 1;.; n:

ð2:8Þ

Therefore, w is a bounded solution of equation (2.6) if and only if it solves

wðsÞK
ðs
KN

eKðsKtÞ½wðtÞCP0wðtÞ�dt ZHðs;w; 3Þ; ð2:9Þ
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where Hðs;w; 3ÞZðH1ðs;w; 3Þ;.;Hnðs;w; 3ÞÞ is defined as

Hiðs;w; 3ÞZ
ðs
KN

ea
3
i ðsKtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p KeKðsKtÞ

" #
wiðtÞCP0

i wðtÞ
	 


dt

C
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p

ðN
s
eb

3
i ðsKtÞ wiðtÞCP0

i wðtÞdt
	 


C
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p

ðs
KN

ea
3
i ðsKtÞGið3; t;wÞdtC

ðN
s
eb

3
i ðsKtÞGið3; t;wÞdt

� �
;

for i Z 1;.; n: ð2:10Þ

In summary, we show that equation (1.3) has a solution U : R/R
n

connecting E1 to E2 if and only if equation (2.9) has a solution w such that
limjsj/NwðsÞZ0. Finally, we let L be the linear operator defined on the left hand
side of equation (2.9), namely

½Lw�ðsÞZwðsÞK
ðs
KN

eKðsKtÞ½wðtÞCP0wðtÞ�dt; s2R: ð2:11Þ

Then we can write equation (2.9) as the operational equation

½Lw�ðsÞZHðs;w; 3Þ; s2R: ð2:12Þ
So our goal is to show the existence of solutions of equation (2.12). We shall
achieve this by using the Banach fixed point theorem. For this purpose, we need
further detailed properties of the nonlinear function H and the linear operator L.
In the next section, we shall show that, with an appropriate choice of the Banach
space, the operator L is surjective, an essential property required in the proof of
our main theorem.

3. The kernel and range of the operator L

Let us first introduce some additional notations.

(i) For a vector x2R
n, kxkZkxkRn , and for an n!n matrix A, kAkZ

kAkRn!n denotes the norm of A as a linear operator from R
n to R

n.
(ii) For a continuous function w : ½aKr ;b�/R

n, as usual we let
wt2Cð½Kr;0�;RnÞ, t2[a,b], be defined by wt(q)Zw(tCq) for q2[Kr, 0].
Moreover, for f 2Cð½Kr ;0�;RnÞ we denote the norm of f by kf kZ
supq2[Kr,0]kf (q)k.

(iii) In a similar fashion, for a function h : ½a;bCr�/R
n we define the

function ht : ½0;r �/R
n by ht(q)Zh(tCq) for q2[0,r] and t2[a,b].

(iv) Let C1ZC1ðR;RnÞZfj2C : _j2Cg be the Banach space equipped
with the standard norm kjkC1ZkjkCCk _jkC .

(v) Let C0Zfj2C : limt/GNjðtÞZ0g and C1
0Zfj2C0 : _j2C0g equipped

with the same norms as C and C 1, respectively.

Let T: C 1/C be the linear operator obtained from the linearization of
equation (1.2) around the heteroclinic solution u�. That is,

ðTjÞðtÞZ _jðtÞKPðtÞjt; t2R; ð3:1Þ
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where for t2R the linear operator PðtÞ : Cð½Kr;0�;RnÞ/R
n is defined by

PðtÞxZAðtÞxð0ÞCBðtÞ
ð0
Kr

dhðqÞmUguðu�ðtCqÞÞxðqÞ; ð3:2Þ

with A(t) and B(t) defined in (2.3) and (2.4). We remark that P 0j(t)ZP(t)jt for
j2C and t2R. Since u�(t)/E1 and E2 as t/KN and CN, respectively, we
have

lim
t/N

AðtÞZA2; lim
t/N

BðtÞZB2;

lim
t/KN

AðtÞZA1; lim
t/KN

BðtÞZB1:

)
ð3:3Þ

Hypotheses (H1) and (H2) and (3.3) imply that the linear operator T is
asymptotically hyperbolic as t/GN in the sense of Mallet-Paret (1999), p. 12.
That is, the linear delay differential equations

_jðtÞKPðCNÞjt Z 0 and _jðtÞKPðKNÞjt Z 0;

where P(CN), P(KN) are the limiting operators defined in the obvious way, are
hyperbolic. We define the formal adjoint equation of TjZ0 as

_fðtÞZKP�ðtÞft; t2R; ð3:4Þ
where for x2Cð½0;r �;RnÞ

P�ðtÞxZATðtÞxð0ÞC
ð0
Kr

gTu ðu�ðtÞÞmT
Udh

TðqÞBTðtKqÞxðKqÞ;

and for a matrix H, H T denotes the transpose of H.

Lemma 3.1. If f2C is a solution of equation (3.4) and f is C 1-smooth, then
fZ0.

Proof. Let f be a bounded solution of equation (3.4) and h(t)Zf(Kt) for t2R.
Then

_hðtÞZATðKtÞhðtÞC
ð0
Kr

gTu ðu�ðKtÞÞmT
Udh

TðqÞBTðKtKqÞhðtCqÞdQðtÞht: ð3:5Þ

The limiting equation of equation (3.5) as t/KN is

_xðtÞZAT
2 xðtÞC

ð0
Kr

gTu ðE2ÞmT
Udh

TðqÞBT
2 xðtCqÞdQðKNÞxt: ð3:6Þ

Since the linear delay differential equation (3.6) and the linear delay differential
equation

_zðtÞZA2zðtÞCB2

ð0
Kr

dhðqÞmUguðE2ÞzðtCqÞ;

share the same eigenvalues, we conclude that all eigenvalues of equation (3.6)
have negative real parts by assumption (H1). Let fJðtÞgtR0 be the semigroup
generated by the solutions of equation (3.6), that is, JðtÞ : Cð½Kr ;0�;RnÞ/
Cð½Kr;0�;RnÞ and J(t)x0 is the solution of equation (3.6) with initial condition
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x(q)Zx0(q) for q2[Kr,0]. Moreover, let ZðtÞ : ½0;NÞ/R
n!n be the matrix

solution of equation (3.6) with initial condition

ZðqÞZ
I ; for qZ 0;

0; for q2½Kr;0Þ;

(

where I is the n!n identity matrix. Then there are positive constants gO0 and
aO0 such that

kJðtÞx0k%geKatkx0k; kZðtÞk%geKat; tR0; x02Cð½Kr;0�;RnÞ: ð3:7Þ

Let dO0 be such that dgear!a. Since Q(t)/Q(KN) as t/KN, there is a t�

such that

kQðtÞKQðKNÞk%d; t% t�: ð3:8Þ

Now we write equation (3.5) as

_hðtÞZQðKNÞht C ½QðtÞKQðKNÞ�ht: ð3:9Þ

By the variation of constants formula (see eqn (2.2) in Hale & Verduyn Lunel
(1993)), solutions of equation (3.9) can be expressed as

htðqÞZ ½JðtKsÞhs�ðqÞC
ðtCq

s
ZðtCqKtÞ½QðtÞKQðKNÞ�htdt; s% t; ð3:10Þ

for q2[Kr,0]. Note that q%0 and Z(t)Z0 for t!0. From (3.7), (3.8) and (3.10)
we obtain

khtk%geKaðtKsÞkhskCdgear
ðt
s
eKaðtKtÞjhtjdt; ð3:11Þ

for s%t%t�. Or equivalently,

eatkhtk%geaskhskCdgear
ðt
s
eatkhtkdt: ð3:12Þ

The Gronwall inequality applied to (3.12) yields that

eatkhtk%geaskhskedge
ar ðtKsÞ:

From the last inequality we have

khtk%geKðaKdgear ÞðtKsÞkhsk; s% t% t�: ð3:13Þ

Note that hs is bounded. By letting s/KN in (3.13), we immediately have

khtkZ 0; t% t�:

Then the uniqueness of the solution of equation (3.9) implies that htZ0 for all
t2R and hence fZ0. &

Lemma 3.2. RðTÞZC and dim NðTÞZM, where RðTÞ and NðTÞ denote the
range and null space of T, respectively.
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Proof. It follows from assumptions (H1)–(H2) that the operator T is Fredholm
(see Chow et al. 1989, p. 7). Furthermore,

ind T Zdim NðTÞKcodimRðTÞ

Zdimension of unstable manifold of E1

Kdimension of unstable manifold of E2

ZMK0ZM : ð3:14Þ
Moreover, we have RðTÞZ j2C :

ÐN
KNhðtÞjðtÞdtZ0

�
for every bounded

solution h($) of equation (3.4)}. With the use of lemma 3.1, one concludes
that RðTÞZC and hence codimRðTÞZ0. Therefore (3.14) implies that
dim NðTÞZM : &

Lemma 3.3. Let y2C0 be given. Iff is a bounded solution of the equation TfZy,
then f2C1

0 . In particular, TfZ0 implies that f2C1
0 and hence, NðTÞ3C1

0 .

Proof. We shall only prove limt/NfðtÞZ0: The convergence of f(t) to 0 as
t/N can be proved analogously. By the definition of the operator T, TfZy
implies that

_fðtÞZPðtÞft CyðtÞ; t2R;

or

_fðtÞZPðKNÞft CzðtÞ; t2R; ð3:15Þ
with z(t)Z[P(t)KP(KN)]ftCy(t). Consider the homogeneous equation

_fðtÞZPðKNÞft: ð3:16Þ
Recall that for x2Cð½Kr;0�;RnÞ,

PðKNÞxZA1xð0ÞCB1

ð0
Kr

d~hðqÞxðqÞ;

where ~hðqÞZhðqÞmUguðE1Þ, q2[Kr,0]. By assumption (H2), the generalized
eigenfunction space U of equation (3.16) corresponding to eigenvalues with
positive real part is M-dimensional. Let FZ(F1,.,FM) be a basis of U and JZ
(J1,.,JM)T be a basis of the generalized eigenfunction space of the formal
adjoint equation of equation (3.16) associated with U, satisfying

ðJ;FÞZ ½ðJi;FjÞ�M!M Z I ;

where for x2Cð½Kr;0�;RnÞ and j2Cð½0;r �;RnÞ, (x, j) is defined by

ðj; xÞZjTð0Þxð0ÞK
ð0
Kr

jTðtKqÞB1d~hðqÞxðtÞdt:

Let KðtÞ : Cð½Kr ;0�;RnÞ/Cð½Kr;0�;RnÞ; tR0, be the semigroup generated by
solutions of equation (3.16). Define projections KU ;KSZðIKKU Þ : Cð½Kr ;0�;
R
nÞ/Cð½Kr ;0�;RnÞ with

KUxZFðJ; xÞ; x2Cð½Kr ;0�;RnÞ:
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Then there are positive constants aO0 and bO0 such that for x2Cð½Kr;0�;RnÞ
kKðtÞKSxk%beKatkxk; tR0; ð3:17Þ
kKðtÞKUxk%beatkxk; t%0; ð3:18Þ

where for t%0, KðtÞ : RðKU Þ/RðKU Þ is the inverse of KðKtÞjRðKU Þ. Now let

f(t) be a bounded solution of equation (3.15). Then ftZKUftCKSft. By the
variation-of-constants formula (see pp. 226–228 of Hale & Verduyn Lunel
(1993)), we have

KUft ZKðtKsÞKUfs C

ðt
s
KðtKtÞF½Jð0ÞzðtÞ�dt; tRs; ð3:19Þ

KSft ZKðtKsÞKSfs C

ðt
s
dt½Y ðt; tÞS �zðtÞ; tRs; ð3:20Þ

where Y(t, t)S is defined as follows (see eqn (9.10) in Hale & Verduyn Lunel
(1993))

Y ðt; tÞS Z
ðtKr

tKrKt

KðqÞ½XrKFðJ;XrÞ�dq; if t% tKr;

Y ðt; tÞS Z
ðtKr

0
KðqÞ½XrKFðJ;XrÞ�dq

C

ð0
tKrKt

XrCq dqKF J;

ð0
tKrKt

XrCq dq

� �
; if tO tKr :

ð3:21Þ

Here we suppose tKrRs, and X(t), tRKr, is the matrix solution of the
homogeneous equation (3.16) with initial condition X(0)ZI and X(q)Z0 for
q2[Kr,0). Applying K(sKt), the inverse of K(tKs) on RðKU Þ, to equation (3.19)
we obtain

KðsKtÞKUft ZKUfs C

ðt
s
KðsKtÞKðtKtÞF½jð0ÞzðtÞ�dt

ZKUfs C

ðt
s
KðsKtÞF½Jð0ÞzðtÞ�dt; tRs;

or

KUFs ZKðsKtÞKUftK

ðt
s
KðsKtÞF½Jð0ÞzðtÞ�dt; tRs: ð3:22Þ

Therefore, (3.18) and (3.22) imply that

kKUfsk%beaðsKtÞkftkCb

ðt
s
eaðsKtÞkF½Jð0ÞzðtÞ�kdt

%beaðsKtÞkftkCb

ðt
s
eaðsKtÞ dt sup

s%t%t
fkF½Jð0ÞzðtÞ�kgdt

ZbeaðsKtÞkftkC
b

a
ð1KeaðsKtÞÞ sup

s%t%t
fkF½Jð0ÞzðtÞ�kg:

ð3:23Þ

Since kftk is bounded for t2R, by letting s/KN in (3.23), we obtain

lim
s/KN

kKUfsk%
b

a
sup

KN%t%t
fkF½Jð0ÞzðtÞ�kg: ð3:24Þ
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Notice that, by the definition of z(t), we have limt/N zðtÞZ0. Thus by letting
t/KN in (3.24) we obtain

lim
s/KN

kKUfskZ 0: ð3:25Þ

Next, we remark that for fixed t2R, Y(t, t) is continuous with respect to the
variable t (see eqn (9.4) on p. 226 of Hale & Lunel (1993)). From expression

(3.21), one sees that Y(t, t)S is continuously differentiable with respect to t
except for a finite jump at tZtKr, and

vY ðt; tÞS

vt
ZKðtKrKtÞðXrKFðJ;XrÞÞ; t! tKr ;

vY ðt; tÞS

vt
ZXtKtKFðJ;XtKtÞ; tKr!t! t:

9>>>>=
>>>>;

ð3:26Þ

Therefore, (3.17), (3.20) and (3.26) yield that

kKSftk%kKðtKsÞKSfskC
����
ðt
tKr

dt½Y ðt; tÞS �zðtÞ
����

C

����
ðtKr

s
dt½Y ðt; tÞS �zðtÞ

����
%beKaðtKsÞkfskC sup

tKr%t%t
fkXtKtKFðJ;XtKtÞk kzðtÞkg

Cb

����
ðtKr

s
eKaðtKrKtÞ dt sup

s%t%tKr
fkXrKFðJ;XrÞk kzðtÞkg

%beKaðtKsÞkfskC sup
tKr%t%t

fkXtKtKFðJ;XtKtÞk kzðtÞkg

C
b

a
sup

s%t%tKr
fkXrKFðJ;XrÞk kzðtÞkg; s% t:

ð3:27Þ

By letting s/KN in (3.27), we conclude that

kKSftk% sup
tKr%t%t

fkXtKtKFðJ;XtKtÞk kzðtÞkg

C
b

a
sup

KN%t%tKr
fkXrKFðJ;XrÞk kzðtÞkg:

ð3:28Þ

Since kz(t)k/0 as t/KN, it immediately follows from (3.28) that

lim
t/KN

kKsftkZ 0: ð3:29Þ

Combining (3.25) and (3.29), we have

lim
t/KN

ft Z lim
t/KN

ðKUft CKSftÞZ 0:

From (3.15), we also have that limt/N
_fðtÞZ0: &

Let us return to the linear operator L defined in (2.11). It is obvious that if
w2C0, then Lw2C0. Hence, we can consider L to be a linear operator from C0 to
C0. For this operator, we have the following.
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Theorem 3.4. dim NðLÞZM and RðLÞZC0.

Proof. By definition, w2C0 and LwZ0 if and only if

wðsÞZ
ðs
KN

eKðsKtÞ½wðtÞCP0wðtÞ�dt; s2R:

Hence, w is continuously differentiable. By differentiating the last equation one
sees that LwZ0 if and only if

_wðsÞZP0wðsÞ; s2R:

Recall that for z2C0 and s2R

P0zðsÞZAðsÞzðsÞCBðsÞ
ð0
Kr

dhðqÞmUguðu�ðsCqÞÞzðsCqÞZPðsÞzs: ð3:30Þ

Thus, the above equation and lemma 3.3 imply that w2C1
0 and TwZ0. That is,

w2NðLÞ if and only if w2NðTÞ. Therefore, lemmas 3.2 and 3.3 imply that
dim NðLÞZdim NðTÞZM , with NðLÞ3C1

0 . Next, we shall prove that
RðLÞZC0. That is, for each z2C0, we need to show that equation LwZz, or
equivalently,

wðsÞK
ðs
KN

eKðsKtÞ½wðtÞCP0wðtÞ�dt Z zðsÞ; s2R; ð3:31Þ

has a solution in C0. To this end, we let xðsÞZwðsÞKzðsÞ; s2R. Upon a
substitution, we obtain the equation for x as

xðsÞZ
ðs
KN

eKðsKtÞ½xðtÞCP0xðtÞ�dtC
ðs
KN

eKðsKtÞ½zðtÞCP0zðtÞ�dt:

Differentiating the above equation yields that

_xðsÞZP0xðsÞCzðsÞCP0zðsÞ; s2R: ð3:32Þ
Thus, (3.30) implies that (3.32) is equivalent to the equation

ðTxÞðsÞZ zðsÞCP0zðsÞ: ð3:33Þ
From the expression of P 0z(s) it follows that z2C0 implies that P 0z($)2C0,
and hence zCP 0z2C0. Thus lemmas 3.2 and 3.3 guarantee that equation
(3.33) has a solution x2C1

0 . Consequently, wZxCz2C0 is a solution of
equation (3.31). &
4. Properties of the nonlinearity H

In order to complete the proof of theorem 1.1, we need further information
about the behaviour of the nonlinearityHð$;j; 3Þ when 3O0 is small and j is near
the origin. To simplify the presentation, we let R3 : C/C for small 3R0 be
defined by

R3jðsÞZ
ð
Ur

dzðq; yÞgðjðsC
ffiffi
3

p
n$yCqÞÞ; s2R: ð4:1Þ
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With the above notation, we can rewrite the nonlinear function G defined in
(2.5) as

Gð3; s;wÞZF wðsÞCu*ðsÞ;
ð
Ur

dzðq; yÞgð½wCu* �ðsC
ffiffi
3

p
n$yCqÞÞ

� �

KF u*ðsÞ;
ð
Ur

dzðq; yÞgðu*ðsCqÞÞ
� �

KP0wðsÞC3D€u *ðsÞ

ZFðwðsÞCu*ðsÞ;R3½wCu*�ðsÞÞKFðu*ðsÞ;R3u*ðsÞÞ
CFðu*ðsÞ;R3u*ðsÞÞKFðu*ðsÞ;R0u*ðsÞÞ
KP0wðsÞK3D€u *ðsÞ

ZP3wðsÞKP0wðsÞC3D€u *ðsÞ
CFðwðsÞCu*ðsÞ;R3½wCu* �ðsÞÞKFðu*ðsÞ;R3u*ðsÞÞ
KP3wðsÞCFðu*ðsÞ;R3u*ðsÞÞKFðu*ðsÞ;R0u*ðsÞÞ

ZP3wðsÞKP0wðsÞCGð3; s;wÞCQð3; sÞ;

ð4:2Þ

where for 3O0 the linear operator P3 : C0/C is defined by

P3jðsÞZA3ðsÞjðsÞCB3ðsÞ
ð
Ur

dzðq; yÞguðu�ðsC
ffiffi
3

p
n$yCqÞÞjðsC

ffiffi
3

p
n$yCqÞ;

ð4:3Þ
for s2R, with

A3ðsÞZFuðu�ðsÞ;R3u�ðsÞÞ; s2R;

B3ðsÞZFvðu�ðsÞ;R3u�ðsÞÞ; s2R;

)
ð4:4Þ

and
Gð3; s;jÞZFðjðsÞCu�ðsÞ;R3½jCu��ðsÞÞ

KFðu�ðsÞ;R3u�ðsÞÞKP3jðsÞ; s2R;
ð4:5Þ

Qð3; sÞZ 3D €u �ðsÞCFðu�ðsÞ;R3u�ðsÞÞKFðu�ðsÞ;R0u�ðsÞÞ; s2R: ð4:6Þ
From the above notations and (2.10), we can express Hiðs;w; 3Þ as

Hiðs;w; 3ÞZ
ðs
KN

ea
3
i ðsKtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p KeKðsKtÞ

" #
wiðtÞCP0

i wðtÞ
	 


dt

C
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p

ðN
s
eb

3
i ðsKtÞ wiðtÞCP0

i wðtÞ
	 


dt

C
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p

ðs
KN

ea
3
i ðsKtÞ P3

i wðtÞKP0
i wðtÞ

	 

dt

C
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p

ðN
s
eb

3
i ðsKtÞ P3

i wðtÞKP0
i wðtÞ

	 

dt

C
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p

ðs
KN

ea
3
i ðsKtÞGið3; t;wÞdtC

ðN
s
eb

3
i ðsKtÞGið3; t;wÞdt

� �

C
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p

ðs
KN

ea
3
i ðsKtÞQið3; tÞdtC

ðN
s
eb

3
i ðsKtÞQið3; tÞdt

� �
:

ð4:7Þ
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Thus, we can rewrite H(s,w,3) as

Hðs;w; 3ÞZW ðs; 3ÞC
X4
jZ1

Hjðs;w; 3Þ;

where for iZ1, 2,.,n, w2C0, and s2R,

H 1
i ðs;w; 3ÞZ

ðs
KN

ea
3
i ðsKtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p KeKðsKtÞ

" #
wiðtÞCP0

i wðtÞ
	 


dt

C
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p

ðN
s
eb

3
i ðsKtÞ wiðtÞCP0

i wðtÞ
	 


dt;

H 2
i ðs;w; 3ÞZ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p
ðs
KN

ea
3
i ðsKtÞ P3

i wðtÞKP0
i wðtÞ

	 

dt;

H 3
i ðs;w; 3ÞZ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p
ðN
s
eb

3
i ðsKtÞ P3

i wðtÞKP0
i wðtÞ

	 

dt;

H 4
i ðs;w; 3ÞZ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p
ðs
KN

ea
3
i ðsKtÞGið3; t;wÞdtC

ðN
s
eb

3
i ðsKtÞGið3; t;wÞdt

� �
;

Wiðs; 3ÞZ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p

ðs
KN

ea
3
i ðsKtÞQið3; tÞdtC

ðN
s
eb

3
i ðsKtÞQið3; tÞdt

� �
:

ð4:8Þ

In what follows, we shall give a detailed analysis of the behaviour of functions
H 1ð$;w; 3Þ;.;H 4ð$;w; 3Þ and W ð$; 3Þ for small w2C0 and 3R0.

Lemma 4.1. Let a2C be given so that lims/GNaðsÞZaðGNÞ exist. Then for
each 3R0

lim
s/GN

ð
Ur

dzðq; yÞaðsC
ffiffi
3

p
n$yCqÞZ

ð
Ur

dzðq; yÞaðGNÞ:

Proof. We shall prove lemma 4.1 only for the case when s/N. The proof for
the case where s/KN is analogous. For a positive integer j, let Bj be the open
ball in Rm with radius j and centre at the origin. Then

lim
j/N

ð
BjhU

djmjZ
ð
U

djmj;

and hence the boundedness of
Ð
Udjmj implies that

lim
j/N

ð
ðRmnBjÞhU

djmjZ 0:

Therefore, for any sO0, there is a sufficiently large J such that����
ð
ðRmnBJ ÞhU

djmj
����!s: ð4:9Þ

Now lims/NkaðsÞKaðNÞkZ0 implies that there is a t�O0 such that

kaðtÞKaðNÞk!s; tR t�: ð4:10Þ
Note that if sO t�C

ffiffi
3

p
JCr, then for all y2BJhU and q2[Kr,0],

sC
ffiffi
3

p
n$yCqO t�C

ffiffi
3

p
J CrK

ffiffi
3

p
kykKjqjR t�:
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Hence, for sO t�C
ffiffi
3

p
JCr , we have����a sC
ffiffi
3

p
n$yCq

� �
KaðNÞ

����!s; y2BJ ; q2½Kr ;0�: ð4:11Þ

It follows from (4.9)–(4.11) that for all sO t�C
ffiffi
3

p
JCr and q2[Kr,0],����

ð
U

dmðyÞ aðsC
ffiffi
3

p
n$yCqÞKaðNÞ

	 
����
%

����
ð
BJhU

dmðyÞ aðsC
ffiffi
3

p
n$yCqÞKaðNÞ

	 
����
C

����
ð
ðRmnBJ ÞhU

dmðyÞ aðsC
ffiffi
3

p
n$yCqÞKaðNÞ

	 
����
%s

����
ð
BJhU

djmj
����C2skakC%s

����
ð
U
djmj

����C2kakC
� �

:

ð4:12Þ

Since sO0 is arbitrary, (4.12) implies that

lim
s/N

����
ð
U
dmðyÞ aðsC

ffiffi
3

p
n$yCqÞKaðNÞ

	 
����Z 0; ð4:13Þ

uniformly for q2[Kr,0]. Consequently, we have

lim
s/N

����
ð
Ur

dzðq; yÞ aðsC
ffiffi
3

p
n$yCqÞKaðNÞ

	 
����Z 0:

&

Corollary 4.2. For each 3R0 and each w2C0, Hð$;w; 3Þ2C0. In other words,
Hð$;C0; 3Þ4C0 for each 3R0.

Proof. For w2C0 and 3R0, if we let a(t)Zgu(u
�(t))w(t), t2R, then a2C and

a(s)/0 as jsj/N. It follows from the definition of P 3 and lemma 4.1 that
P3wðsÞ/0 as jsj/N. Therefore, Hiðs;w; 3Þ/0 as jsj/N for iZ1, 2, 3. Next,
by the definition of R3 given in (4.1) and lemma 4.1 we have

lim
jsj/N

R3½wCu��ðsÞZ lim
jsj/N

R3u�ðsÞ:

The above equality yields that Gð3; s;wÞ/0 as jsj/N, and so does for the
function H 4ðs;w; 3Þ. Similarly, we obtain that W ðs; 3Þ/0 as jsj/N. &

Proposition 4.3. For w2C0 and small 3R0, H 1ð$;w; 3ÞZOð3ÞkwkC0
.

Proof. For s2R and 3R0 we haveðs
KN

jea
3
i ðsKtÞK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p
eKðsKtÞjdt

Z

ðs
KN

jea
3
i ðsKtÞð1K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p
ÞC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p
ea

3
i ðsKtÞKeKðsKtÞ

� 

jdt

% j1K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p
j
ðs
KN

ea
3
i ðsKtÞ dtC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p ðs
KN

jea
3
i ðsKtÞKeKðsKtÞjdt:

ð4:14Þ
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Since a3
iOK1, for t%s we have

jea
3
i ðsKtÞKeKðsKtÞjZ ea

3
i ðsKtÞKeKðsKtÞ; ð4:15Þ

and (4.14) and (4.15) yield thatðs
KN

jea
3
i ðsKtÞK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p
eKðsKtÞjdt

% j1K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p
j K

1

a3
i

� �
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p
K

1

a3
i

K1

� �
:

Noticing that a3
i/K1 as 3/0C, we obtain from the above inequality that

lim
3/0C

ðs
KN

jea
3
i ðsKtÞK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p
eKðsKtÞjdt Z 0: ð4:16Þ

Next let KZ1CkP0kLðC0;C0Þ. Then����
ðs
KN

ea
3
i ðsKtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p KeKðsKtÞ

" #
wiðtÞCP0

i wðtÞ
	 


dt

����
%K

ðs
KN

���� ea
3
i ðsKtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p KeKðsKtÞ

����dtkwkC0

Z
Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43di
p

ðs
KN

jea
3
i ðsKtÞK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p
eKðsKtÞjdtkwkC0

ZOð3ÞkwkC0
:

ð4:17Þ

Next, since b3i/N as 3/0, 1=b3iZOð3Þ as 3/0. This yields that���� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p
ðN
s
eb

3
i ðsKtÞ wiðtÞCP0

i wðtÞ
	 


dt

����
%

Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p
ðN
s
eb

3
i ðsKtÞdtkwkC0

Z
K

b3i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C43di

p kwkC0
ZOð3ÞkwkC0

; as 3/0:

ð4:18Þ

The proposition therefore follows from estimates (4.17) and (4.18). &

Lemma 4.4. For 3O0 and ðs; y; qÞ2R!R
m!½Kr ;0�,����

ð
Ur

dzðq; yÞ gðu�ðsC
ffiffi
3

p
n$yCqÞÞKgðu�ðsCqÞÞ

	 
����
%

ffiffi
3

p
khk
����
ð
U

djmjðyÞkyk
����kguk k _u�kC ;

where khkZV[Kr,0]h and

kgukZ supfkguðlu�ðtÞCð1KlÞu�ðtÞÞk : ðl; t; tÞ2½0;1�!R!Rg:
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Proof. Since g is differentiable, for ðs; y; qÞ2R!R
m!½Kr ;0�, we have

gðu�ðsC
ffiffi
3

p
n$yCqÞÞKgðu�ðsCqÞÞ

Z

ð1
0
guðlu�ðsCqÞCð1KlÞu�ðsC

ffiffi
3

p
n$yCqÞÞdl

! u�ðsC
ffiffi
3

p
n$yCqÞKu�ðsCqÞ

	 

;

The above equality yields that for ðs; y; qÞ2R!R
m!½Kr;0�,

kgðu�ðsC
ffiffi
3

p
n$yCqÞÞKgðu�ðsCqÞÞk%

ffiffi
3

p
kyk kguk _u�kC : ð4:19Þ

Recalling that
Ð
Ur
dzðq; yÞZ

Ð 0
Kr

Ð
UdhðqÞ dmðyÞ, as an immediate consequence of

(4.19) we have, for s2R and 3O0,����
ð
Ur

dzðq; yÞ gðu�ðsC
ffiffi
3

p
n$yCqÞÞKguðu�ðsCqÞÞ

	 
����
%

ffiffi
3

p
khk
����
ð
U

djmjðyÞkyk
����kguk k _u�kC :

&

Proposition 4.5. There exist 30O0 and M0O0 such that for all 32½0;30�, and
j2C0,

kH 2ð$;j; 3ÞkC0
%

ffiffi
3

p
M0kjkC0

:

Proof. Let hðs; y; qÞZguðu�ðsC
ffiffi
3

p
n$yCqÞÞ. From the definitions of P3j and

P 0j, we have

½P3KP0�jðsÞZ ½A3ðsÞKAðsÞ�jðsÞ

C ½B3ðsÞKBðsÞ�
ð
Ur

dzðq; yÞhðs; y; qÞjðsC
ffiffi
3

p
n$yCqÞ

CBðsÞ
ð
Ur

dzðq; yÞ½hðs; y; qÞKhðs; 0; qÞ�jðsC
ffiffi
3

p
n$yCqÞ

CBðsÞ
ð
Ur

dzðq; yÞhðs; 0; qÞ jðsC
ffiffi
3

p
n$yCqÞKjðsCqÞ

	 

:

ð4:20Þ
For 3O0, let

E3ðsÞZdiag
ea

3
1sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43d1
p ;

ea
3
2sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43d2
p ;/;

ea
3
nsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43dn
p

� �
; s2R:

Then

_E
3ðsÞZdiag

a3
1e

a3
1sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43d1
p ;

a3
2e

a3
2sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43d2
p ;/;

a3
ne

a3
nsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C43dn
p

� �
; s2R:

Since a3
i/K1 as 3/0 for iZ1,.,n, there are 30O0 and K0O0 such that for

32½0;30�,

kE3ð0Þk%K0;

ðs
KN

kE3ðsKtÞkdt%K0;

ðs
KN

k _E
3ðsKtÞkdt%K0: ð4:21Þ
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By the definition of H 2 and (4.20), we have

H 2ðs;j; 3Þ

Z

ðs
KN

E3ðsKtÞ½P3KP0�jðtÞ dt

Z

ðs
KN

E3ðsKtÞ½A3ðtÞKAðtÞ�jðtÞ dt

C

ðs
KN

E3ðsKtÞ½B3ðtÞKBðtÞ�
ð
Ur

dzðq; yÞhðt; y; qÞjðtC
ffiffi
3

p
n$yCqÞ dt

C

ðs
KN

E3ðsKtÞBðtÞ
ð
Ur

dzðq; yÞ½hðt; y; qÞKhðt; 0; qÞ�jðtC
ffiffi
3

p
n$yCqÞ dt

C

ðs
KN

E3ðsKtÞBðtÞ
ð
Ur

dzðq; yÞhðt; 0; qÞ jðtC
ffiffi
3

p
n$yCqÞKjðtCqÞ

	 

dt:

ð4:22Þ
Let

û�3ðtÞZR3u�ðtÞZ
ð0
Kr

ð
W
dhðqÞ dmðyÞgðu�ðtC

ffiffi
3

p
n$yCqÞÞ; t2R: ð4:23Þ

Then, from the definitions of A3(t), A(t) and û�3ðtÞ, it follows that
A3ðtÞKAðtÞZFuðu�ðtÞ; û�3ðtÞÞKFuðu�ðtÞ; û�

0ðtÞÞ

Z

ð1
0
Fuv u�ðtÞ; û�

0ðtÞCt û�3ðtÞKû�0ðtÞ½ �ð Þdt û�3ðtÞKû�0ðtÞ½ �: ð4:24Þ

Since F is C 2-smooth, there is a constant K1O0 such that����
ð1
0
Fuv u�ðtÞ; û �

0ðtÞCt û�3ðtÞKû�0ðtÞ½ �ð Þdt
����%K1; t2R; 32½0;30�: ð4:25Þ

Lemma 4.4 and (4.25) therefore yield that

kA3ðtÞKAðtÞk%
ffiffi
3

p
K1khk

����
ð
U

djmjðyÞkyk
����kguk _u�kC0

; t2R; 32½0;30�: ð4:26Þ

For all s2R and 32½0;30�, (4.21) and (4.26) imply that����
ðs
KN

E3ðsKtÞ½A3ðtÞKAðtÞ�jðtÞ dt
����

%
ffiffi
3

p
K1khk

����
ð
U
djmjðyÞkyk

����kguk _u�kC0

ðs
KN

kE3ðsKtÞk dtkjkC0

%
ffiffi
3

p
M1kjkC0

; ð4:27Þ
where

M1 ZK0K1khk
����
ð
U
djmjðyÞkyk

����kguk k _u�kC0
;

and K0 is defined in (4.21).
Proc. R. Soc. A (2006)

http://rspa.royalsocietypublishing.org/


247Travelling waves for delayed reaction–diffusion equations

 on November 16, 2015http://rspa.royalsocietypublishing.org/Downloaded from 
Arguing in the same way as above, we obtain that there is a constant K2O0
such that

kB3ðtÞKBðtÞk%
ffiffi
3

p
K2khk

����
ð
U
djmjðyÞkyk

����kguk k _u�kC0
; s2R:

Thus, for all s2R,����
ðs
KN

E3ðsKtÞ½B3ðtÞKBðtÞ�
ð
Ur

dzðq; yÞhðt; y; qÞjðtC
ffiffi
3

p
n$yCqÞ dt

����
%

ffiffi
3

p
M2kjkC0

; ð4:28Þ

with M2ZK0K2khk
Ð
UdjmjðyÞkyk kkguk _u�jC0

:
It is also clear that for s2R,����
ðs
KN

E3ðsKtÞBðtÞ
ð
Ur

dzðq; yÞ½hðt; y; qÞKhðt; 0; qÞ�jðtC
ffiffi
3

p
n$yCqÞ dt

����
%

ffiffi
3

p
M3kjkC0; ð4:29Þ

with

M3 Z 2K0 sup
t2R

fkBðtÞkgkhk
����
ð
U

djmjðyÞ
����kguk:

Next, if j2C1
0 , by exchanging the order of integration and integration by parts

we haveðs
KN

E3ðsKtÞBðtÞ
ð
Ur

dzðq; yÞhðt; 0; qÞ jðtC
ffiffi
3

p
n$yCqÞKjðtCqÞ

	 
� �
dt

Z

ðs
KN

E3ðsKtÞBðtÞ
ð
Ur

dzðq; yÞhðt; 0; qÞ
ð1
0

_jðtCt
ffiffi
3

p
n$yCqÞ

ffiffi
3

p
ðn$yÞ dt

� �
dt

Z
ffiffi
3

p ð1
0

ðs
KN

E3ðsKtÞBðtÞ
ð
Ur

dzðq; yÞðn$yÞhðt; 0; qÞ _jðtCt
ffiffi
3

p
n$yCqÞdt

� �
dt

Z
ffiffi
3

p ð1
0

E3ðsKtÞBðtÞ
ð
Ur

dzðq; yÞðn$yÞhðt; 0; qÞjðtCt
ffiffi
3

p
n$yCqÞ

� �����tZs

tZKN

� �
dt

C
ffiffi
3

p ð1
0

ðs
KN

_E
3ðsKtÞBðtÞKE3ðsKtÞ _BðtÞ

	 
�

!

ð
Ur

dzðq; yÞðn$yÞhðt; 0; qÞjðtCt
ffiffi
3

p
n$yCqÞ dt

�
dt

K
ffiffi
3

p ð1
0

ðs
KN

E3ðsKtÞBðtÞ
�

!

ð
Ur

dzðq; yÞðn$yÞ vhðt; 0; qÞ
vt

jðtCt
ffiffi
3

p
n$yCqÞ

�
dt dt:
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Therefore,ðs
KN

E3ðsKtÞBðtÞ
ð
Ur

dzðq; yÞhðt; 0; qÞ jðtC
ffiffi
3

p
n$yCqÞKjðtCqÞ

	 
� �
dt

Z
ffiffi
3

p
E3ð0ÞBðsÞ

ð1
0

ð
Ur

dzðq; yÞðn$yÞhðs; 0; qÞjðsCt
ffiffi
3

p
n$yCqÞ

� �
dt

C
ffiffi
3

p ð1
0

ðs
KN

_E
3ðsKtÞBðtÞKE3ðsKtÞ _BðtÞ

	 
�

!

ð
Ur

dzðq; yÞðn$yÞhðt; 0; qÞjðtCt
ffiffi
3

p
n$yCqÞdt

�
dt

K
ffiffi
3

p ð1
0

ðs
KN

E3ðsKtÞBðtÞ
�

!

ð
Ur

dzðq; yÞðn$yÞ vhðt; 0; qÞ
vt

jðtCt
ffiffi
3

p
n$yCqÞ dt

�
dt; s2R:

ð4:30Þ

Recalling that h(t, 0, q)Zgu(u
�(tCq)), we have

vhðt; 0; qÞ
vt

Z
vguðu�ðtCqÞÞ

vt
Z guuðu�ðtCqÞÞ _u�ðtCqÞ:

Therefore, (4.30) implies that for all s2R,����
ðs
KN

E3ðsKtÞBðtÞ
ð
Ur

dzðq; yÞhðt; 0; qÞ½jðtC
ffiffi
3

p
n$yCqÞKjðtCqÞ�

� �
dt

����
%

ffiffi
3

p
M4kjkC0

; ð4:31Þ

where

M4 Z 2K0 sup
t2R

fkBðtÞkCk _BðtÞkgkðkgukCk~guuk k _u�kC Þhk
����
ð
U
dmðyÞjyjC

����
Rm

and k~guukZsupt2R kguuðu�ðtÞÞkg: It, therefore, follows from (4.27)–(4.29) and
(4.31) that for 32[0,30] and j2C0

kH 2ð$;j; 3ÞkC0
%

ffiffi
3

p
M0kjkC0

; with M0 Z
X4
jZ1

Mj : ð4:32Þ

Since H 2ð$; $; 3Þ : C0/C0 is a bounded linear operator and C1
0 is dense in C0, the

inequality equation (4.32) holds for all j2C0. &

Proposition 4.6. For 3O0 and j2C0, H
3ð$;j; 3ÞZOð3ÞkjkC0

as 3/0.

Proof. Since b3i/N as 3/0 for iZ1,., n, one obtains that for all s2RðN
s
eb

3
i ðsKtÞ dt Z

1

b3i
/0 as 3/0; i Z 1;.;n: ð4:33Þ

Thus proposition 4.6 follows from (4.33) and the definition of H 3. &
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Proposition 4.7. H 4ð$; 0; 3ÞZ0 and for each dO0, there is a sO0 such that

kH 4ð$;f; 3ÞKH 4ð$;j; 3ÞkC0
%dkfKjkC0

;

for all 32½0;1� and all f, j2B(s), where B(s) is the ball in C0 with radius s and
centre at the origin.

Proof. It is apparent that, from the definition of Gð3; $;jÞ (see equation (4.5)),
Gjð3; $;jÞ andGjjð3; $;jÞ are continuous for 32½0;1� and for j in a neighbourhood
of the origin inC0.Moreover,wehaveGjð3; $; 0Þh0 for 32½0;1�. It therefore follows
that

kGð3; $;jÞkC0
ZOðkjjj2C0

Þ as kjkC0
/0; ð4:34Þ

uniformly for 32½0;1�, and the proposition follows from the definition of H 4 and
(4.34). &

Proposition 4.8. kW ð$; 3ÞkC0
ZOð3Þ as 3/0.

Proof. We note that €u �ð$Þ is bounded in C0 and

Fðu�ð$Þ;R3u�ð$ÞÞKFðu�ð$Þ;R0u�ð$ÞÞZOð3Þk _u�kC0
as 3/0;

by lemma 4.4. Therefore, we obtain proposition 4.8 from the expression ofW ð$; 3Þ
given in (4.8).
5. Proof of the main theorem

We shall complete the proof of our main theorem 1.1 in this section. To do so we
need a final auxiliary result. By theorem 3.4 we have dimN (L)ZM. Therefore,
there are functions w1,.,wM2C0 which give a basis of N (L). Hence there exist
linear functionals h1;.; hM : C0/R, such that

hiðwiÞZ 1; hiðwjÞZ 0; isj; i; j Z 1;.;M :

Lemma 5.1. Let XZ{f2C0:hi(f)Z0, iZ1,.,M}. Then

C0 ZX4NðLÞ:

Proof. We note first that this result is not new. Nevertheless, we give a short

proof here for the sake of completion. For each j2C0, let fZjK
PM

iZ1 hiðjÞwi.

Then we have hi(f)Z0, iZ1,.,M, and jZfC
PM

iZ1 hiðjÞwi. That is, each
j2C0 can be expressed as the sum of an element of X and an element of N (L).
Moreover, let j2XhNðLÞ. Thus there are constants ci , iZ1,.,M, such that

jZ
XM
iZ1

ciwi:
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The definition of X and hi imply that

0Z hiðjÞZ cihiðwiÞZ ci; i Z 1;.;M :

Hence jZ0 and thus XhNðLÞZ0. This proves the lemma. &

It is clear that X3C0 is a Banach space. If we let SZLjX be the restriction of L
on X, then S: X/C0 is one-to-one and onto, since R(L)ZC0 by theorem 3.4.
Therefore, S has an inverse SK1: C0/X which is a bounded linear operator.

Proof of theorem 1.1. For each j2C0, there are unique x2NðLÞ and f2X
such that jZfCx. Hence j is a solution of equation (2.12) if and only if

LfZHð$; xCf; 3Þ ð5:1Þ

or, equivalently, if and only if f is a solution of the equation

fZ SK1Hð$;fCx; 3Þ: ð5:2Þ
Let kSK1kZkSK1kLðC0;XÞ. It follows from propositions 4.3 and 4.5–4.8 that there
are sO0, 3�O0, and 0!r!1 such that for all 32ð0;3�� and j;42BðsÞ3C0,

kHð$;j; 3ÞkC0
%

1

3kSK1k ðkjkC0
CsÞ; ð5:3Þ

kHð$;j; 3ÞKHð$;4; 3ÞkC0
%

r

kSK1k kjK4kC0
: ð5:4Þ

For each fixed x2NðLÞhBðsÞ, (5.3) implies that

kSK1Hð$;fCx; 3ÞkC0
%

1

3
ðkfCxkC0

CsÞ%s for 32ð0;3��; f2XhBðsÞ:

ð5:5Þ
Hence, together with (5.4) we see that the mapping

F : ðXhBðsÞÞ!ðN ðLÞhBðsÞÞ!ð0; 3�Þ/XhBðsÞ;
given by

Fðf; x; 3ÞZSK1Hð$;fCx; 3Þ;
is a uniform contraction mapping of f2XhBðsÞ. Hence, for each ðx; 3Þ2
ðN ðLÞhBðsÞÞ!ð0; 3�Þ there is a unique fixed point fðx;3Þ2XhBðsÞ of the
mapping Fð$; x; 3Þ. In other words, fðx;3Þ is the unique solution in XhBðsÞ of
equation (5.2). Thus, for 32ð0;3�Þ fixed, jðx;3ÞZfðx;3ÞCx is a solution of

equation (2.12). Notice that NðLÞhBðsÞ is M-dimensional. It follows that for
each 32ð0;3�Þ and for each unit vector n2R

m, the set

Gnð3ÞZ fjðx;3Þ : x2NðLÞhBðsÞg

is an M-dimensional manifold. This proves claims (i) and (ii) in the statement of
the theorem.
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To prove claim (iii), we first note that if F, g are Ck(kR2), then Hð$;j; 3Þ is
continuous on ðj; 3Þ and CkK1-smooth with respect to j. Hence Fðf; x; 3Þ is
continuous on ðf; x; 3Þ and CkK1-smooth with respect to f and x. The uniform
contraction mapping principle (see pp. 25–26 of Chow & Hale (1982)) implies

that the fixed point fðx;3Þ is a continuous mapping on (x, 3) and CkK1 on x.
Therefore, in addition we conclude that for each 32ð0; 3�Þ and for each unit
vector n2R

m, Gnð3Þ is a CkK1 manifold. It is locally given as the graph of a CkK1

mapping that is also continuous with respect to c.
Let cZ1=

ffiffi
3

p
with 32ð0; 3�Þ and

MnðcÞZ fU : UðsÞZjxðs=cÞCu�ðs=cÞ; s2R;jx2Gnðs=c2Þg:

Then MnðcÞ is an M-dimensional manifold in a neighbourhood of u� consisting of
travelling wave solutions of equation (1.1) with wave speed c and direction n.
Moreover, for each cOc� and each unit vector n2R

m, MnðcÞ is a CkK1 manifold
that is given by the graph of a CkK1-mapping that is continuous on c.

It remains to prove that the above fixed point fðx;3Þ is also CkK1-smooth on 3.
We will achieve this in several steps.

Assume the functions F, g in equation (1.1) are Ck(kR2). For p2N, define Xp
0

as the space of the functions f : R/R
n such that f2C0 and f is Cp-smooth.

Claim 1 From the definition of P 0 in (2.2), it is clear that P 0: C0/C0 is linear
bounded and that P0ðX p

0Þ3Xp
0, for 1%p%kK1.

Claim 2 From the definition of L in (2.11), L: C0/C0 is linear bounded and
LðXp

0Þ3Xp
0, for 1%p%kK1.

Claim 3 From the definition of H in (2.10) and (2.5), we have Hð$;XpK1
0 ; 3Þ

3Xp
0 for 3O0, pZ1,., kK1, where X 0

0ZC0.
Claim 4 NðLÞ3X kK1

0 .
In fact, from theorem 3.4 we have NðLÞZNðTÞZff2C1 : _fðtÞ ZP0fðtÞ;

t2Rg. From claim 1, by induction we conclude thatNðTÞ3X kK1
0 .

Claim 5 For each ðx; 3Þ2ðN ðLÞhBðsÞÞ!ð0; 3�Þ, the fixed point f�dfðx;3Þ2X1
0.

To prove this claim, we fix ðx; 3Þ2ðN ðLÞhBðsÞÞ!ð0; 3�Þ, and define
j�Zf�Cx. From f�ZFðf�; x; 3Þ; we obtain

Lj� ZHð$;j�; 3Þ;

or equivalently,

j�ðsÞZHðs;j�; 3ÞC
ðs
KN

eKðsKtÞ½j�ðtÞCP0j�ðtÞ�dt; s2R:

Hence j�2X1
0. From claim 4, we conclude that f�2X1

0.
Claim 6 The fixed point f�Zfðx;3Þ is C

1-smooth with respect toO3.
ConsiderF restricted tof2XhBðsÞhX1

0;more precisely, using claims 2 and
3 we consider

F 1 : ðXhBðsÞhX1
0Þ!ðN ðLÞhBðsÞÞ!ð0; 3�Þ/XhBðsÞhX1

0;

F 1ðf; x; 3ÞZFðf; x; 3Þ:
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Notice thatF 1 is auniformcontractionoff2XhBðsÞhX0 for thenormk$kC0
;and

thatF 1 is aC 1-mappingon (f,x,3). In fact, forj(s)Zf(s)Cx(s)C 1-smoothon s, from
the definition ofH and G in equations (2.10) and (2.5), we conclude that vH

v3
ðs;j; 3Þ

exists and is continuous. In claim 5, we have proven that there exists a fixed point
f�Zfðx;3Þ ofF 1. By repeating the arguments used to prove the differentiability of the
fixed point in the uniform contraction principle (see e.g. pp. 25–26 of Chow & Hale
(1982)), we conclude that fðx;3Þ is a C

1-smooth mapping on (x, 3).
Claim 7 The fixed point f�Zfðx;3Þ is C

kK1-smooth with respect to 3.
As in claim 5, by induction we prove that fðx;3Þð$Þ2Xp

0; pZ2;.; kK1. By
using claims 2 and 3, we consider now

F p : ðXhBðsÞhXp
0Þ!ðN ðLÞhBðsÞÞ!ð0; 3�Þ/XhBðsÞhXp

0;

F pðf; x; 3ÞZFðf; x; 3Þ; pZ 2;.; kK1:

As in the proof of the uniform contraction principle, by an inductive argument we
conclude that f�Zfðx;3Þ is C

kK1-smooth with respect to 3. &

Remark 5.2. In some applications, the diffusion process does not apply to all
state variables and thus the model is of a mixed type such as

vu

vt
ZDDuCF W ;

ð
Ur

daðq; yÞf ðW ðxCy; tCqÞÞ
� �

;

vv

vt
ZG W ;

ð
Ur

dbðq; yÞgðW ðxCy; tCqÞÞ
� �

;

8>>>><
>>>>:

ð5:6Þ

with u2R
m, v2R

m, and WZ(u, v)T. This system can be regarded as a special
case of equation (1.1) if we allow some of the diffusion coefficients di to be zero.
We remark that under the same assumptions (H1)–(H4) on the nonlinearities F,
f, G and g, theorem 1.1 remains true for system (5.6). In fact, if for some index i,
the diffusion coefficient di is zero in equation (1.1), then we have a3

iZK1 and
b3iZN. Consequently, the nonlinear function Hi (see equation (2.10)) in the
equation for the variable wi will be reduced to

Hiðs;w; 3ÞðsÞZ
ðs
KN

eKðsKtÞGið3; t;wÞ dt:

It is apparent that all results presented so far remain valid without any change.

6. Applications to a non-local delayed RD-system with non-monotone
birth functions

Our main result, theorem 1.1, relates the existence of travelling wave fronts for
the reaction–diffusion equation (1.1) with delay and non-local interaction to the
existence of a connecting orbit between two hyperbolic equilibria of the
associated ordinary delay differential equation (1.2). This enables us to apply
some existing results for invariant curves of order-preserving semiflows generated
by ordinary delay differential equations to derive systematically sharp sufficient
Proc. R. Soc. A (2006)

http://rspa.royalsocietypublishing.org/


253Travelling waves for delayed reaction–diffusion equations

 on November 16, 2015http://rspa.royalsocietypublishing.org/Downloaded from 
conditions for the existence of travelling wave fronts of delayed reaction–diffusion
equations that, in turn, include most of the existing results in the literature as
special cases. In this section, we illustrate this by a recently derived non-local
delayed reaction–diffusion equation for the population growth of a single species
when the delayed birth function is not monotone in the considered range.

We start with a short review of relevant results for the existence of heteroclinic
orbits in monotone dynamical systems. Let X be an ordered Banach space with a
closed cone K. For u, v2X we write uRv if uKv2K, and uOv if uRv but usv.

Lemma 6.1. Let U be a subset of X and F:[0,N)!U/U be a semiflow such that

(i) F is strictly order-preserving, i.e. F(t, u)OF(t, v) for tR0 and for all u,
v2U with uOv;

(ii) for some t 0O0, F(t 0, $): U/U is set-condensing with respect to a measure
of non-compactness.

Suppose u2Ou1 are two equilibria of F and assume [u1, u2]d{u:u2RuRu1}
contains no other equilibria. Then there exists a full orbit connecting u1 and u2.
Namely, there is a continuous function f : R/U such that F(t,f(s))Zf(tCs)
for all tR0 and all s2R, and either (a) f(t)/u1 as t/N and f(t)/u2 as
t/KN or (b) f(t)/u1 as t/KN and f(t)/u2 as t/N.

In applications, one can easily distinguish the above cases (a) and (b) by
looking at the stability of the equilibria. For detailed discussions and related
references, see Wu et al. (1995), Matano (1984), Polacik (1990), Dance & Hess
(1991) and Smith (1986, 1995).

Returning to equations (1.1) and (1.2), we use the standard phase space for
equation (1.2). In this section, C will denote the Banach space CZCð½Kr;0�;RnÞ
of continuous R

n-valued functions on [Kr,0] with the usual supremum norm.
Under the smoothness condition on F, system (1.2) generates a (local) semiflow
on C given by

Fðt;fÞZ uðfÞðtC$Þ; tR0;f2C ;

for all those t for which a unique solution u(f) of equation (1.2) with u(f)(q)Zf(q)
for q2[Kr,0] is defined. Let B be an n!n quasipositive matrix, that is, BClIR0
for all sufficiently large l. Here and in what follows, we write ARB for m!n
matrices AZ(aij) and BZ(bij) if and only if aijRbij for 1%i%m, 1%j%n. Define

KB Z ff2C : fR0;fðtÞReBðtKsÞfðsÞ;Kr%s% t%0g:
Then KB is a closed cone in C and this induces a partial order on C, denoted by
RB. Namely, fRBj if and only if fKj2KB.

We will need the following conditions.

(OB) Ê2RBÊ1, here Êi is the constant mapping on [Kr,0] with the value E i ,
iZ1, 2.

(MB) Whenever f, j2C with fRBj, then

Fðfð0Þ;
ð0
Kr

dhðqÞmUgðfðqÞÞÞKFðjð0Þ;
ð0
Kr

dhðqÞmUgðjðqÞÞÞRB½fð0ÞKjð0Þ�;

Under the above assumptions, Smith&Thieme (1991) proved the following.
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Lemma 6.2. Assume that there exists an n!n quasipositive matrix B such that
(OB) and (MB) are satisfied. Then

(i) ½E1;E2�Bdff2C : Ê2RBfRBÊ1g is positively invariant for the semiflow
F;

(ii) the semiflowF: [0,N)![E1,E2]B/[E1,E2]B is strictly monotone with respect
toRB in the sense that if f, j2[E1,E2]B with fOBj, then F(t,j)OB F(t,j)
for all tR0.

In Smith & Thieme (1991), it was also shown that (MB) holds if for all u,
v2R

n with û, v̂2½E1;E2�B the following is satisfied:

Fu u;
Ð 0
Kr dhðqÞmUgðvÞÞRB;

�
Fu u;

Ð 0
Kr dhðqÞmUgðvÞ

� 

KB

h i
eBr CFv u;

Ð 0
Kr dhðqÞmUgðvÞ

� 

g 0ðvÞR0:

8<
:

In the case where nZ1, it was shown in Smith & Thieme (1990) that (MB) holds
for some B!0 if

ðSBÞ L2!0; L1CL2!0; rjL2j!1; rL1Klnðr jL2jÞO1;

where

L1 Z inf
E1%u;v%E2

Fu u;

ð0
Kr

dhðqÞmUgðvÞ
� �

and

L2 Z inf
E1%u;v%E2

Fv u;

ð0
Kr

dhðqÞmUgðvÞ
� �

g 0ðvÞ:

Note also that [E1,E2]B is a bounded set in C and that F(t, $): C/C is compact
for tOr. Therefore, for t0Or, the mapping F(t0, $): [E1,E2]B/[E1,E2]B is
compact, and hence is set-condensing. This observation allows us to derive from
lemmas 6.1 and 6.2 and theorem 1.1 the following general result.

Theorem 6.3. Assume that

(i) (H1), (H2) and (H4) are satisfied;
(ii) there exists an n!n quasipositive matrix B such that (OB) and (MB) are

satisfied;
(iii) there exist no other equilibria in [E1,E2]B.

Then the conclusions of theorem 1.1 hold.

We now apply theorem 6.3 to a reaction–diffusion equation with time delay
and non-local effect, recently derived by So et al. (2001), for the total mature
population of a single species population with two age classes and a fixed
maturation period living in a spatially unbounded environment. In So et al.
(2001), the existence of a travelling wave front was established for the special
case when the birth function is the one which appears in the well-known
Nicholson’s blowflies equation and when the birth function remains mono-
tonically increasing in the interval between the trivial equilibrium and the
positive equilibrium representing the maximal capacity of the environment.
However, as will be shown below, in a wide range of parameter values, this
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monotonicity condition is not satisfied and the method developed there cannot be
applied. Theorem 6.3 enables us to address the existence of travelling waves
when this monotonicity is not satisfied.

Let u(t, a, x) denote the density of the population of the species under
consideration at time tR0, age aR0 and location x2R. It is natural to assume

juðt; a;GNÞj!N; for tR0; aR0: ð6:1Þ
A standard argument on population dynamics with age structure and diffusion
(cf. Metz & Diekmann 1986) gives

vu

vt
C

vu

va
ZDðaÞ v

2u

vx2
KdðaÞu; ð6:2Þ

where D(a) and d(a) are the diffusion rate and death rate respectively, at age a.
Let rR0 be the maturation time for the species. Then the total matured
population at time t and location x is given by

wðt; xÞZ
ðN
r
uðt; a; xÞda;

and using equation (6.2) and the biologically realistic assumption
uðt;N; xÞZ 0; ð6:3Þ

we can get

vw

vt
Z uðt; r ; xÞC

ðN
r

DðaÞ v
2u

vx2
KdðaÞu

� �
da:

We assume that the diffusion and death rates for the mature population are age
independent, that is, D(a)ZDm and d(a)Zdm for a2[r,N), where Dm and dm are
constants. Furthermore, since only the mature can reproduce, we have

uðt; 0; xÞZ bðwðt; xÞÞ; ð6:4Þ
where b($) is the birth function. Then

vw

vt
Z uðt; r ; xÞCDm

v2w

vx2
Kdmw: ð6:5Þ

Denote by DI and dI the diffusion and death rates of the immature, respectively
i.e. D(a)ZDI (a) and d(a)ZdI (a) for a2[0,r ]. In So et al. (2001), it was shown
that, provided

ad

ðr
0
DI ðaÞ daO0; ð6:6Þ

the term u(t, r, x) can be explicitly written, using a combination of integration
along characteristics, method of separation of variables and Fourier transfor-
mation, as

uðt; r; xÞZ eK
Ð r

0
dI ðaÞdaffiffiffiffiffiffiffiffiffi
4pa

p
ðN
KN

bðwðtKr ; yÞÞe
KðxKyÞ2

4a dy: ð6:7Þ

Hence w(t, x) satisfies

vw

vt
ZDm

v2w

vx2
KdmwC

eK
Ð r

0
dI ðqÞ dqffiffiffiffiffiffiffiffiffi
4pa

p
ðN
KN

bðwðtKr; yÞÞe
KðxKyÞ2

4a dy; for tOr : ð6:8Þ

Let

3Z eK
Ð r

0
dI ðaÞda and faðxÞZ

1ffiffiffiffiffiffiffiffiffi
4pa

p e
Kx2

4a :
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Then, 0!3%1 and equation (6.8) becomes

vw

vt
ZDm

v2w

vx2
KdmwC3

ðN
KN

bðwðtKr ; yÞÞfaðxKyÞdy: ð6:9Þ

Equation (6.9) is a reaction–diffusion equation with time delays and non-local
effects, with 3 reflecting the impact of the death rate for immature and a
representing the effect of the dispersal rate of the immature on the matured
population.

Whena/0, that is, as the immature become immobile, equation (6.9) reduces to

vw

vt
ZDm

v2w

vx2
KdmwC3bðwðtKr ; xÞÞ; ð6:10Þ

and the non-local effect disappears. If we further let 3/1, that is, all immatures
live to maturity, then equation (6.10) becomes

vw

vt
ZDm

v2w

vx2
KdmwCbðwðtKr; xÞÞ; ð6:11Þ

which has been widely studied for different choices of the birth function b($). In
particular, So et al. (2001) considered a particular birth function for equation
(6.9) given by b(w)Zpw eKaw. This function has been used in the well-studied
Nicholson’s blowflies equation (see Gurney et al. 1980). In the discrete case, it is
commonly known as the Ricker’s model (cf. Ricker 1954). With this birth
function, equation (6.9) becomes

vw

vt
ZDm

v2w

vx2
KdmwC3p

ðN
KN

wðtKr ; yÞeKawðtKr ;yÞfaðxKyÞ dy: ð6:12Þ

For the casewhenDI (q)h0 and dI (q)h0, i.e.aZ0, 3Z1, equation (6.12) reduces to

vw

vt
ZDm

v2w

vx2
KdmwCpwðtKr; yÞeKawðtKr;xÞ; ð6:13Þ

which was studied in So & Zou (2001), where the monotone iteration scheme
and the method of upper–lower solutions in Wu & Zou (1997, 2001) were used
to show that a travelling wave front exists when 1!3p=dm%e. This result
was extended to equation (6.12). More precisely, So et al. (2001) proved the
following.

Theorem 6.4. If 1!3p=dm%e, then there exists a c�O0 such that for every cOc�,
equation (6.12) has a travelling wave front solution, which connects the trivial
equilibrium w1Z0 to the positive equilibrium w2Z

1
a ln

3p
dm
.

Unfortunately, in the case when 3p=dmOe, the method developed in So et al.
(2001) cannot be used as the involved iteration scheme is no longer monotone. It
is suspected that the method developed in Wu & Zou (2001) for travelling waves
of reaction–diffusion equations without local effects and based on a non-standard
exponential ordering could be utilized to this case but the construction of a pair
of upper-lower solutions seems to be a highly nontrivial task. We are now in the
position to confirm this existence by using theorem 6.3.

We first notice that the associated ordinary differential equation of (6.12) is

dw

dt
ZKdmwðtÞC3bðwðtKrÞÞ; ð6:14Þ
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with b(w)Zpw eKaw. If 3p=dmO1, then equation (6.14) has exactly two
nonnegative equilibria:

E1 Z 0; E2 Z
1

a
ln

3p

dm
:

The corresponding characteristic equations are

L1ðlÞdlCdmK3p eKlr Z 0

and

L2ðlÞdlCdmK3b0ðE2ÞeKlr Z 0;

where

b0ðE2ÞZ
dm
3

1Kln
3p

dm

� �
:

As 3pOdm, we can easily show that the unstable manifold for E1 is at least one-
dimensional. Furthermore, E1 is hyperbolic for rsrn, n2N0, where

rn Z
2pKarccos

dm
3p

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32p2Kd2m

p C2np:

We now claim that if e!3p=bdm%e2, then E2 is asymptotically stable. In fact, in
this case,

j3b0ðE2ÞjZ jdm 1Kln
3p

dm

� �
j%dm;

and hence all zeros of L2(l) have negative real parts.
In the case where 3p=dmOe2, the asymptotical stability of E2 holds only when

the delay r is sufficiently small. Namely, in L2(l)Z0, we let lZiu to get

iuZKdm Cdm 1Kln
3p

dm

� �
½cosðurÞKisinðurÞ�; ð6:15Þ

from which we can find the minimal r̂O0 so that (6.15) has a solution uO0. This
is given by

r̂ Z

pKarccos
1

ln 3p
dm
K1

dm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 3p

dm
K1

� 
2
K1

r : ð6:16Þ

It then follows that if 3p=dmOe2 and 0%r! r̂ then E2 is asymptotically stable.
We now choose B!0 so that (SB) holds. Recall that

b0ðwÞZ p eKawð1KawÞ and b00ðwÞZ pa eKawðawK2Þ:
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Therefore, b0(w) is decreasing on 0;2a
	 �

and increasing on 2
a ;N
	 �

. Consequently, on
[E1,E2], we have

b0ðwÞRb0min Z

b0ðE2ÞZ
dm
3

1Kln
3p

dm

 !
; E2!

2

a
;

b0
2

a

 !
ZK

p

e2
; E2R

2

a
:

8>>>>><
>>>>>:

ð6:17Þ

For equation (1.2), we have

Fðu; vÞZKdmuC3v; gðwÞZ bðwÞZ pweKaw;

ð0
Kr

dhðqÞZ 1; mU Z 1:

Therefore, for L1, L2 as in (SB)

L1 Z inf
0%u;v%E2

Fuðu; bðvÞÞZKdm!0

and

L2 Z inf
0%u;v%E2

Fvðu; bðvÞÞb0ðvÞZ 3b0min!0:

Therefore, (SB) (and hence (MB)) holds if

r3jb0minj!1 ð6:18Þ
and

eKrdm

r3jb0minj
Oe: ð6:19Þ

The latter is equivalent to

rerdme3jb0minj!1: ð6:20Þ
Clearly, if equation (6.20) holds so does equation (6.18). Therefore, we conclude
that (MB) holds if 0!r!r̂, where r̂ is the unique solution of

rerdme3jb0minjZ 1 ð6:21Þ
As B!0, we also have that (OB) holds. Therefore, from theorem 6.3, we have

Theorem 6.5. If 3p=dmOe, then there exist r�O0 and c�O0 such that if r2[0,r�)
then for every cOc�, equation (6.12) has a travelling wave, which connects the
trivial equilibrium w1Z0 to the positive equilibrium w2Z

1
a ln 3p=dmð Þ, where

r� Z

minfr̂; ~r; r0g;
3p

dm
Oe2;

minf~r ; r0g;
3p

dm
%e2:

8>>><
>>>:

As a final remark, we note that in order to apply theorem 6.3 for specific
systems (1.1), all we need to do is to choose the quasipositive matrix B and to
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verify the hyperbolicity of the two equilibria. It turns out that much of the
known results can be obtained as a special case of theorem 6.3. For example,
consider the following Fisher–KPP equation with delay

vuðx; tÞ
vt

Z
v2uðx; tÞ

vx2
Cuðx; tÞ½1Kuðx; tKrÞ�: ð6:22Þ

Using theorem 6.3, we can get

Corollary 6.6. There exists c�O0 such that if 0%r%eK1 then for any cOc�,
equation (6.22) has a travelling wave front with wave speed c.

To prove the corollary, we note that the corresponding ordinary delay
differential equation is

d

dt
uðtÞZ uðtÞ½1KuðtKrÞ�dFðu; uðtKrÞ�; ð6:23Þ

for which E1Z0 and E2Z1. When u, v2[0,1] we have Fu(u, v)Z1KvR0 and
Fv(u, v)ZKu. Therefore,

½Fuðu; vÞKB�eBr CFvðu; vÞZ ½1KvKB�eBKu

Z ð1KvÞeBrKBeBrKuRKBerK1R0:

as long as f (B)dKBeBrR1. This is possible if r%eK1. In this case, we can
choose BZKrK1 so that f (B)ZrK1eK1Z1. This verifies (MB). (OB) follows from
1KeB(tKs)R0 ifKr%s%t%0. Note that L1(l)ZlK1 and L2(l)ZlCeKlr. Thus,
E1 is hyperbolic and its unstable manifold is one-dimensional, and all eigenvalues
corresponding to E2 have negative real parts if r%eK1!p=2: This proves
corollary 6.6.

In Wu & Zou (2001), it was shown that for any cO2, there exists r�(c)O0 such
that if 0%r%r�(c), then equation (6.22) has a travelling wave front with wave
speed c. Their argument was based on an iterative scheme, coupled with the
construction of a pair of upper and lower solutions. Note that our claim above
gives an explicit form for r�.

There is another way to incorporate the time delay to a logistic equation, such as

vuðx; tÞ
vt

Z
v2uðx; tÞ

vx2
Cuðx; tKrÞ½1Kuðx; tÞ�; ð6:24Þ

which was also derived by Kobayshi (1977) from a branching process. The
existence of travelling wave of equation (6.24) can be obtained by using the
general theory of Schaaf (1987) or the general monotone iteration technique
developed in Wu & Zou (1997, 2001). It is interesting to note that this existence
result becomes a trivial application of our Theorem 6.3 by choosing BZK1, since
the corresponding F(u, v)Zv(1Ku) satisfies Fu(u, v)ZKvRK1 and Fv(u, v)Z
1KuR0 for all u, v2[0,1]. It is also clear that E2Z1 is asymptotically stable, and
that E1Z0 is hyperbolic for rsrn, where rnZ(2nK1/2)p, n2N, and its unstable
manifold is at least one-dimensional.

Remark 6.7. We consider the nonlinear reaction term F to be of the form
given in equation (1.1) in order to cover sufficiently large classes of equations
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and, at the same time, to keep the notations relatively in a minimum of
complexity. A straightforward extension of the reaction term that has its
application can be of the form

Fðuðx; tÞ;
ð0
Kr

ð
U
dhðqÞdmðyÞKðq; yÞgðuðxCy; tCqÞÞÞ;

where K is a continuous and bounded function from [Kr,0]!U to R
n!n. In this

case, the corresponding reaction equation (1.2) becomes

_uðtÞZFðuðtÞ;
ð0
Kr

dhðqÞmUðqÞgðuðtCqÞÞÞ;

with mUðqÞZ
Ð
UdmðyÞKðq; yÞ. One can see that all arguments developed in the

paper are still valid and theorem 1.1 remains true for this more general form.

Remark 6.8. Our focus in this paper is on the existence of travelling waves for
the delayed reaction–diffusion equation (1.1) in the neighbourhood of a
heteroclinic orbit of the corresponding ordinary delay differential equation
(1.2). Whether some qualitative properties of the heteroclinic orbits such as
monotonicity can be inherited by the travelling waves remains to be an
interesting problem. We note, however, that if equation (1.2) is a monotone
system that has a monotone heteroclinic solution u� connecting E1 and E2, then
we are able to use a travelling wave solution V(t) of equation (1.4) near u� to
construct a monotone increasing lower and a monotone increasing upper solution
for an integral equation equivalent to equation (1.4). Thus a further monotone
iteration argument (see Wu & Zou 2001, 1997) can be applied to obtain a
monotone travelling wave.
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MAT/2000. Research was supported in part by NSF grant DMS-0204676. Work partially
supported by Natural Sciences and Engineering Research Council of Canada and by Canada
Research Chairs Program.
References

Britton, N. F. 1990 Spatial structures and periodic travelling waves in an integro-differential
reaction–diffusion population model. SIAM J. Appl. Math. 50, 1663–1688.

Carpenter, G. 1977 A geometric approach to singular perturbation problems with applications to
nerve impulsive equations. J. Differ. Equations 23, 335–367. (doi:10.1016/0022-0396(77)90116-4)

Chow, S. N. & Hale, J. K. 1982 Methods of bifurcation theory. New York: Springer.
Chow, S. N., Lin, X. B. & Mallet-Paret, J. 1989 Transition layers for singularly perturbed delay

differential equations with monotone nonlinearities. J. Dyn. Differ. Equations 1, 3–43. (doi:10.
1007/BF01048789)

Dance, N. & Hess, P. 1991 Stability of fixed points for order-preserving discrete-time dynamical
systems. J. Reine Angew. Math. 419, 125–139.

Fenichel, N. 1971 Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math.
J. 21, 193–226. (doi:10.1512/iumj.1971.21.21017)

Fenichel, N. 1979 Geometric singular perturbation theory for ordinary differential equations.
J. Differ. Equations 31, 53–98.

Fife, P. C. 1976 Boundary and interior transition layer phenomena for pairs of second order
differential equations. J. Math. Anal. Appl. 54, 497–521. (doi:10.1016/0022-247X(76)90218-3)
Proc. R. Soc. A (2006)

http://dx.doi.org/doi:10.1016/0022-0396(77)90116-4
http://dx.doi.org/doi:10.1007/BF01048789
http://dx.doi.org/doi:10.1007/BF01048789
http://dx.doi.org/doi:10.1512/iumj.1971.21.21017
http://dx.doi.org/doi:10.1016/0022-247X(76)90218-3
http://rspa.royalsocietypublishing.org/


261Travelling waves for delayed reaction–diffusion equations

 on November 16, 2015http://rspa.royalsocietypublishing.org/Downloaded from 
Gourley, S. A. & Britton, N. F. 1993 Instability of travelling wave solutions of a population model
with nonlocal effects, IMA. J. Appl. Math. 51, 299–310.

Gurney, W. S. C., Blythe, S. P. & Nisbet, R. M. 1980 Nicholson’s blowflies revisited. Nature 287,
17–21. (doi:10.1038/287017a0)

Hale, J. K. & Verduyn Lunel, S. M. 1993 Introduction to functional differential equations. New
York: Springer.

Hoppensteadt, F. C. 1966 Singular perturbations on the infinite intervals. Trans. Am. Math. Soc.
123, 521–535.

Jones, C. 1995 Geometric singular perturbation theory. Lectures Notes in Mathematics, vol. 1069,
pp. 44–118. Berlin: Springer.

Kobayshi, K. 1977 On the semilinear heat equation with time-lag. Hiroshima Math. J. 7, 459–472.
Lin, X. B. 1989 Shadowing lemma and singularly perturbed boundary value problems. SIAM

J. Appl. Math. 49, 26–54.
Mallet-Paret, J. 1999 The Fredholm alternative for functional differential equations of mixed type.

J. Dyn. Differ. Equations 11, 1–47. (doi:10.1023/A:1021889401235)
Matano, H. 1984 Existence of nontrivial unstable sets for equilibriums of strongly order preserving

systems. J. Fac. Sci. Univ. Tokyo 30, 645–673.
Metz, J. A. J. & Diekmann, O. (eds) 1986 The dynamics of physiologically structured populations.

New York: Springer.
Polacik, P. 1990 Existence of unstable sets for invariant sets in compact semiflows. Applications in

order-preserving semiflows. Comm. Math. Univ. Carolinae 31, 263–276.
Ricker, W. 1954 Stock and recruitment. J. Fish. Res. Board Canada 211, 559–663.
Schaaf, K. 1987 Asymptotic behavior and traveling wave solutions for parabolic functional

differential equations. Trans. Am. Math. Soc. 302, 587–615.
Smith, H. 1986 Invariant curves for mappings. SIAM J. Math. Anal. 17, 1053–1067. (doi:10.1137/

0517075)
Smith, H. 1995 Monotone dynamical systems, an introduction to the theory of competitive and

cooperative system. Mathematical Surveys and Monographs, vol. 11. Providence, RI: American
Mathematical Society.

Smith, H. & Thieme, H. 1990 Monotone semiflows in scalar non-quasi-monotone functional
differential equations. J. Math. Anal. Appl. 21, 673–692.

Smith, H. & Thieme, H. 1991 Strongly order preserving semiflows generated by functional
differential equations. J. Differ. Equations 93, 332–363. (doi:10.1016/0022-0396(91)90016-3)

Szmolyan, P. 1991 Transversal heteroclinic and homoclinic orbits in singular perturbation
problems. J. Differ. Equations 92, 252–281. (doi:10.1016/0022-0396(91)90049-F)

So, J., Wu, J. & Zou, X. 2001 A reaction–diffusion model for a single species with age structure. I.
Travelling wavefronts on unbounded domains. Proc. R. Soc. A 457, 1841–1853. (doi:10.1098/
rspa.2001.0789)

So, J. & Zou, X. 2001 Traveling waves for the diffusive Nicholson’s blowflies equation. Appl. Math.
Comput. 122, 385–392. (doi:10.1016/S0096-3003(00)00055-2)

Wu, J., Freedman, H. & Miller, R. 1995 Heteroclinic orbits and convergence of order-preserving
set-condensing semiflows with applications to integrodifferential equations. J. Integral
Equations Appl. 7, 115–133.

Wu, J. & Zou, X. 2001 Traveling wave fronts of reaction–diffusion systems with delay. J. Dyn.
Differ. Equations 13, 651–687. (doi:10.1023/A:1016690424892)

Zou, X. & Wu, J. 1997 Existence of traveling wave fronts in delay reaction–diffusion system via
monotone iteration method. Proc. Am. Math. Soc. 125, 2589–2598. (doi:10.1090/S0002-9939-97-
04080-X)

As this paper exceeds the maximum length normally permitted,
the authors have agreed to contribute to production costs.
Proc. R. Soc. A (2006)

http://dx.doi.org/doi:10.1038/287017a0
http://dx.doi.org/doi:10.1023/A:1021889401235
http://dx.doi.org/doi:10.1137/0517075
http://dx.doi.org/doi:10.1137/0517075
http://dx.doi.org/doi:10.1016/0022-0396(91)90016-3
http://dx.doi.org/doi:10.1016/0022-0396(91)90049-F
http://dx.doi.org/doi:10.1098/rspa.2001.0789
http://dx.doi.org/doi:10.1098/rspa.2001.0789
http://dx.doi.org/doi:10.1016/S0096-3003(00)00055-2
http://dx.doi.org/doi:10.1023/A:1016690424892
http://dx.doi.org/doi:10.1090/S0002-9939-97-04080-X
http://dx.doi.org/doi:10.1090/S0002-9939-97-04080-X
http://rspa.royalsocietypublishing.org/

	Travelling waves for delayed reaction-diffusion equations with global response
	Introduction
	Operational equations for travelling wave solutions
	The kernel and range of the operator L
	Properties of the nonlinearity H
	Proof of the main theorem
	Applications to a non-local delayed RD-system with non-monotone birth functions
	This work was partially supported by FCT (Portugal) under CMAF and project POCTI/32931/MAT/2000. Research was supported in part by NSF grant DMS-0204676. Work partially supported by Natural Sciences and Engineering Research Council of Canada and by Can...
	References


