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A CONTINUOUS-TIME GARCH MODEL FOR

STOCHASTIC VOLATILITY WITH DELAY

YURIY KAZMERCHUK, ANATOLIY SWISHCHUK
AND JIANHONG WU

ABSTRACT. We consider a (B, S)-security market with
standard riskless asset B(t) = B0ert and risky asset S(t) with
stochastic volatility depending on time t and the history of
stock price over the interval [t − τ, t]. The stock price process
S(t) satisfies a stochastic delay differential equation (SDDE)
with past-dependent diffusion coefficient. We state some re-
sults on option pricing in such a market and its completeness.
We derive a continuous-time analogue of GARCH(1,1) model
for our past-dependent volatility. We then show that the equa-
tion for the expected squared volatility under the risk-neutral
measure is a deterministic delay differential equation, and we
construct the solutions for such an equation. We also construct
numerical solutions and develop estimation procedures to the
option pricing problem, and show the comparison of numerical
results.

1 Introduction An assumption made implicitly by Black and Sc-
holes in [6] is that the historical performance of the (B, S)-security
markets can be ignored. In particular, the so-called Efficient Market
Hypothesis implies that all information available is already reflected in
the present price of the stock and the past stock performance gives no
information that can aid in predicting future perfromance. However,
some statistical studies of stock prices (see [3] and [32]) indicate the
dependence on past returns.

The issue of market’s delayed response was raised by Bernard and
Thomas in [5]. They analyzed the drift of estimated cumulative ab-
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normal returns after earnings are announced. They observed that the
returns continue to drift up for good news firms and down for bad news
firms. They provided two possible explanations for this. The first ex-
planation suggests that at least a portion of the price response to new
information is delayed. They explain that the delay might occur ei-
ther because traders fail to assimilate available information, or because
certain costs (such as transaction costs) exceed gains from immediate
exploitation of information for a sufficiently large number of traders.
The second explanation suggests that, because the capital-asset-pricing
model used to calculate the abnormal returns is either incomplete or
misestimated, researchers fail to adjust raw returns fully for risk. They
came to a conclusion that their results are consistent with a delayed
response to information. This is summarized in [4]: “The results of
this paper cast serious doubt on any belief that asset pricing model
misspecifications might explain post-earnings-announcement drift. An
understanding of this anomaly appears to require either some model
of inefficient markets, or identification of some cost (other than transac-
tions costs) that impede the impounding of public information in prices.”
See [8], [13] and [20] for more evidence and analysis of past-dependence
of stock returns.

There were some attempts to model the past-dependence. For ex-
ample, in [23] a diffusion approximation result was obtained for pro-
cesses satisfying some equations with past-dependent coefficients, and
this result was applied to a model of option pricing, in which the un-
derlying asset price volatility depends on the past evolution to obtain a
generalized (asymptotic) Black-Scholes formula. It was shown that the
volatility is a deterministic function of time, which is determined by the
initial stock price path. This implies that the option price is given by the
Black-Sholes formula with some parameter of volatility. Therefore, the
implied volatility plot for their model is flat with respect to the strike
price.

A new class of nonconstant volatility models was suggested in [16],
which can be extended to include the aforementioned level-dependent
model and share many characteristics with the stochastic volatility model.
In the model suggested in [16], the past-dependence of the stock price
process was introduced through volatility given as a function of expo-
nentially weighted moments of historic log-price. This was done in such
a way that the price and volatility form a multi-dimensional Markov
process. The model produced implied volatility skews of convex and
concave shapes. The direction of the skew was determined by whether
the asset price was below or above its recent average value.
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In [18], the model of [16] was extended by analysing the discrete-
time model that is convergent to the continuous-time model in [16].
The author showed that his model shares many common features with
GARCH(1,1) model and that the pseudo maximum likelihood method
can be applied to estimate the parameters involved.

Chang and Yoree [9] studied the pricing of a European contingent
claim for the (B, S)-securities markets with a hereditary price struc-
ture. The price dynamics for the bank account and the evolution of
the stock account are described by a linear functional differential equa-
tion and a linear stochastic functional differential equation, respectively.
They showed that the rational price for a European contingent claim
is given by an expectation of the discounted final payoff, and that it is
independent of the mean growth rate of the stock. Later in [10], they
showed that Black-Scholes formula can be generalized to include the
(B, S)-securities market with affine hereditary price structure.

Mohammed et al. [29] derived a delayed option price formula by
solving a PDE similar to that of Black and Scholes. In their work, the
volatility has the form σ(S(t−b)) for some delay parameter b > 0. When
deriving the PDE, they assumed that the option price is a function of
the time and the current value of the stock only.

The purpose of this paper is to introduce a general framework for
modeling the past-dependence of a stock price process and to develop
the necessary numerical scheme for solving the model equation and es-
timation procedures for indentifying parameters involved.

A general theory of stochastic delay differential equations (SDDE)
can be found in [28]. The problem of delay estimation for SDDE was
considered in [24]. Discrete-time approximation schemes of SDDE were
studied in [17] and [25]. The GARCH option pricing models were con-
sidered in [11] and [19]. A delayed Black and Scholes formula was
derived in [29].

2 The model In our model, the bond (riskless asset) is represented
by the price function B(t) given by

(2.1) B(t) = B0e
rt, t ∈ [0, T ],

where r > 0 is the risk-free rate of return, and the stock (risky asset) is
the stochastic process (S(t))t∈[−τ,T ] which satisfies the following SDDE

(2.2) dS(t) = µS(t)dt + σ(t, St)S(t)dW (t),
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where St(θ) := S(t + θ), θ ∈ [−τ, 0], µ ∈ R, σ : [0, T ] × C → R is a
continuous mapping, C is the Banach space of continuous functions from
[−τ, 0] into R, equipped with the supremum norm, and W (t) is a stan-
dard Wiener process on a filtered probability space (Ω,F , (Ft)t≥0,P) for
which the filtration (Ft)t≥0 is right-continuous and each Ft with t ≥ 0
contains all P-null sets in F . To specify a solution, we need to give the
initial data of S on [−τ, 0]. In this paper, we assume this initial data is
deterministic, that is, the initial data for (2.2) is given by S(θ) = ϕ(θ)
with θ ∈ [−τ, 0] for some ϕ ∈ C.

The existence and uniqueness of a solution of (2.2) are guaranteed
if the volatility coefficient in (2.2) satisfies the following local Lipschitz
and growth conditions (see [28]):

(2.3)

∀n ≥ 1, ∃Ln > 0, ∀ t ∈ [0, T ], ∀ η1, η2 ∈ C,

‖η1‖ ≤ n, ‖η2‖ ≤ n :

|σ(t, η1) η1(0) − σ(t, η2) η2(0)| ≤ Ln‖η1 − η2‖

and

(2.4) ∃K > 0, ∀ t ∈ [0, T ], η ∈ C : |σ(t, η) η(0)| ≤ K(1 + ‖η‖),

where the norm is ‖η‖ := maxθ∈[−τ,0] |η(θ)|.
The discounted stock price is defined by

(2.5) Z(t) :=
S(t)

B(t)
.

Using Girsanov’s theorem (see [26]), we obtain the following result con-
cerning the change of probability measure in the above market.

Lemma 2.1. For a given process (S(t))[−τ,T ], under the assumption

(2.6)

∫ T

0

(
r − µ

σ(t, St)

)2

dt < ∞, a.s.

the following holds:

1) There is a probability measure P∗ equivalent to P such that

(2.7)
dP∗

dP := exp

{∫ T

0

r − µ

σ(s, Ss)
dW (s) − 1

2

∫ T

0

(
r − µ

σ(s, Ss)

)2

ds

}

is its Radon-Nikodym density;
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2) The discounted stock price Z(t) is a positive local martingale with

respect to P∗, and is given by

(2.8) Z(t) = Z0 exp

{
−1

2

∫ t

0

σ2(s, Ss) ds +

∫ t

0

σ(s, Ss) dW ∗(s)

}
,

where

W ∗(t) :=

∫ t

0

µ − r

σ(s, Ss)
ds + W (t)

is a standard Wiener process with respect to P∗.

Remarks.
1. The process Z(t) can also be written as

dZ(t) = Z(t)σ(t, St) dW ∗(t),

and, in particular, we have

d ln Z(t) = −1

2
σ2(t, St)dt + σ(t, St) dW ∗(t).

2. A sufficient condition for the right-hand side of (2.7) to be mar-
tingale with t in place of T is

E exp

{
1

2

∫ T

0

(
r − µ

σ(t, St)

)2

dt

}
< ∞.

3. The condition (2.6) in the lemma is satisfied if there exists δ > 0
such that σ(t, φ) ≥ δ for all t ∈ [0, T ] and φ ∈ C.

Accordingly, the only source of randomness in our model for the mar-
ket consisting of the stock S(t) and the bond B(t) is a standard Wiener
process W (t), t ∈ [0, T ], with T denoting the terminal time. This Wiener
process generates the filtration Ft := σ{W (s) : 0 ≤ s ≤ t}. It can be
shown that the P∗-completed filtrations generated by either W , W ∗, S
or Z all coincide. This is useful since S is the observed process. See [15]
and [19] for details.

Recall that a process π = (αt, βt)t∈[0,T ] is called a trading strategy

if π is predictable and
(∫ t

0 β2
sd[Z, Z]s

) 1

2

, t ∈ [0, T ], is locally integrable

under P∗, where [Z, Z]t is the quadratic variation. Recall also that
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π is admissible if it is self-financing, i.e., the discounted value process

Xt(π) := αt + βtZ(t) solves

Xt(π) = X0(π) +

∫ t

0

β dZ,

and if, in addition, Xt(π) is a nonnegative martingale under P∗. A
contingent claim C is a positive FT measurable random variable. We
call a contingent claim attainable if there exists an admissible strategy
π that generates C, i.e., XT (π) = e−rTC. For such a claim C, φ0 :=
X0(π) = EP∗(e−rTC) is called a price associated with C and this is the
only reasonable price for C at time 0 if we assume the absence of arbitrage
opportunities. For times t between 0 and T , the fair price of the claim
is given by φt = ertXt(π) = ertEP∗(e−rTC|Ft). A market is said to be
complete if every P∗-integrable claim is attainable.

Theorem 2.1. (Completeness)

(i) If the discounted stock price process Z(t) is a martingale under P∗,

the model (2.2) is complete;

(ii) Under condition (2.6) for every given S(t), the model (2.2) is com-

plete and the initial price of any integrable claim C is given by

(2.9) φ0 = EP∗(e−rTC),

and the price of the claim at any time 0 ≤ t ≤ T is given by

φt = ertEP∗(e−rTC|Ft).

The proof of this theorem is standard and is similar, for example, to
the proof of corresponding theorems in [15] and [19].

Let the so-called market price of risk process be given by λ(t) :=
(µ− r)/σ(t, St) for t ≥ 0. Changing the probability measure in equation
(2.2) for stock price and using Ito’s lemma lead to

ln S(t) = ln S(0) +

∫ t

0

(r − 1

2
σ2(u, Su)) du +

∫ t

0

σ(u, Su) dW ∗(u),

or, equivalently,

(2.10) ln
S(t)

S(t − τ)
= rτ − 1

2

∫ t

t−τ

σ2(u, Su) du +

∫ t

t−τ

σ(u, Su) dW ∗(u),
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where W ∗(t) =
∫ t

0 λ(s)ds + W (t). The expression (2.10), as well as the
following expressions in terms of the physical measure P , will be needed
later for deriving a continuous-time analogue of GARCH(1,1)-model for
stochastic volatility:

(2.11) ln
S(t)

S(t − τ)
= rτ +

∫ t

t−τ

[
λ(u)σ(u, Su) − 1

2
σ2(u, Su)

]
du

+

∫ t

t−τ

σ(u, Su) dW (u).

We conclude this section by showing that S(t) > 0 a.s. for all t ∈
[0, T ], when ϕ(0) > 0. Define the following process:

N(t) := µt +

∫ t

0

σ(s, Ss) dW (s), t ∈ [0, T ].

This is a semimartingale with the quadratic variation

[N, N ]t =

∫ t

0

σ2(s, Ss) ds.

Then, from equation (2.2) we get

dS(t) = S(t)dN(t), S(0) = ϕ(0).

This equation has a solution:

S(t) = ϕ(0) exp

{
N(t) − 1

2
[N, N ]t

}

= ϕ(0) exp

{
µt +

∫ t

0

σ(u, Su) dW (u) − 1

2

∫ t

0

σ2(u, Su) du

}
.

From this we see that if ϕ(0) > 0, then S(t) > 0 a.s. for all t ∈ [0, T ].

3 A continuous-time GARCH In this section, we show that
a model of (B, S)-security market with delayed response arises as a
continuous-time equivalent of the GARCH(1,1)-model. The GARCH
models are proved consistent with stock market data and are widely
used in equity modeling (see [7]).
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We continue to consider the risk-neutral world where the stock price
S(t) has the dynamics given by

dS(t) = rS(t) dt + σ(t, St)S(t) dW ∗(t),

where W ∗(t) is defined in Lemma 2.1 and St(θ) = S(t + θ), θ ≤ 0. We
consider the following equation for the variance σ2(t, St):

(3.1)
dσ2(t, St)

dt
= γV +

α

τ

[∫ t

t−τ

σ(s, Ss) dW (s)

]2

− (α + γ)σ2(t, St).

Here, all the parameters α, γ, τ and V are positive constants. The
Wiener process W (t) is the same as in (2.2).

Note that our model is different from the continuous-time analogue
of GARCH model given in [30]. The latter one is sometimes called
GARCH diffusion, mainly because of another Wiener process appearing
in the equation for volatility. However, ours is more in line with the
original spirit of GARCH, since it has a longer “memory” in the volatility
term. And most importantly, our model contains only one source of
randomness, i.e., the Wiener process in the equation for stock price (for
derivation see Appendix A).

Taking into account (2.11), we note that equation (3.1) is equivalent
to

dσ2(t, St)

dt
= γV +

α

τ

[
ln

S(t)

S(t − τ)
− rτ

−
∫ t

t−τ

(λ(u)σ(u, Su) − 1

2
σ2(u, Su))du

]2

− (α + γ)σ2(t, St).

(3.2)

Using the definition of risk-neutral measure, we obtain from (3.1) that

dσ2(t, St)

dt
= γV +

α

τ

[ ∫ t

t−τ

σ(s, Ss) dW ∗(s)

−
∫ t

t−τ

λ(u)σ(u, Su) du

]2
− (α + γ)σ2(t, St)

= γV +
α

τ

[ ∫ t

t−τ

σ(s, Ss) dW ∗(s) − (µ − r)τ

]2

− (α + γ)σ2(t, St).
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Taking the expectations under the risk-neutral measure P∗ on both sides
of the equation above, and denoting v(t) := EP∗ [σ2(t, St)], we obtain
the following deterministic delay differential equation

(3.3)
dv(t)

dt
= γV + ατ(µ − r)2 +

α

τ

∫ t

t−τ

v(s)ds − (α + γ)v(t).

Both the stochastic process σ2(t, St) and the deterministic process v(t)
have the same initial data σ2

0(t) on the interval [−τ, 0]:

σ2(t) = v(t) = σ2
0(t), t ∈ [−τ, 0].

Note that (3.3) has a stationary solution v(t) ≡ X = V + ατ(µ− r)2/γ.
An unusual result is that equation (3.3) for the expectation of the

squared volatility under the risk-neutral measure P∗ contains the drift
parameter µ. In standard equity option pricing problems the drift pa-
rameter plays no role, having disappeared through the Girsanov trans-
formation (see Lemma 2.1). However, our model inherited this property
from the discrete-time GARCH(1,1) model where the drift parameter
enters the equation for volatility:

ln(Sn/Sn−1) = m + σnξn, {ξn} ∼ i.i.d. N(0, 1),

σ2
n = γV + α (σn−1ξn−1)

2
+ (1 − α − γ)σ2

n−1

= γV + α (ln(Sn−1/Sn−2) − m)
2

+ (1 − α − γ)σ2
n−1.

It seems nontrivial to have an explicit formula for a solution of (3.3)
with arbitrarily given initial data. However we can describe asymptotic
behaviors of solutions of (3.3) by substituting v(t) = X +Ceρt into (3.3)
to obtain the so-called characteristic equation for ρ (see [14])

ρ2 =
α

τ
− α

τ
e−ρτ − (α + γ)ρ.

The only non-zero solution to this equation is ρ ≈ −γ. Then, we have
v(t) ≈ X + Ce−γt for large values of t, and X is asymptotically stable.

These observations can be directly checked using numerical simula-
tions for equation (3.3). The numerical scheme is defined as follows:

vi = γX∆t +

(
1 +

α(∆t)2

τ
− (α + γ)∆t

)
vi−1

+
α(∆t)2

τ
(vi−2 + ... + vi−l),
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where vi = v(ti) and {ti} is a time grid with a mesh of constant size ∆t.
A typical solution is shown in Figure 1. Figure 2 shows the dependence
of the terminal expected variance v(T ) on delay τ for a typical constant
initial value.

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

FIGURE 1: Solution of fde (3.3) with V = 0.01406, α = 0.0575,
γ = 0.0539 and delay τ = 0.028.

4 Parameter estimation We now develop an estimation tech-
nique for some parameters involved in the analogue of GARCH(1,1)
model introduced in Section 3. These are the drift coefficient µ, time
delay τ , and weights α, β and γ. The technique involves Maximum
Likelihood (ML) method in combination with the unbiased Akaike in-
formation criterion (AICC).

4.1 Drift estimation The parameter µ is unobservable, but it can be
easily estimated from observations of S(u), u ∈ [0, t]. The maximum
likelihood estimator of µ is given by (see [1], [2])

µ̃(t) =
1

t

∫ t

0

S−1(u) dS(u).
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0.0102

0.0102

0.0102

0.0102

0.0102

FIGURE 2: Dependence of variance v(T ) on delay τ .

Or, in terms of discrete-time observations over an increasing time-grid:

1

t

∫ t

0

S−1(u) dS(u) = lim
n→+∞

2n∑

j=1

S−1((j − 1)t2−n)

×
[
S(jt2−n) − S((j − 1)t2−n)

]
.

The statistical properties of µ̃(t) can be easily derived. Namely, since

dS(t)

S(t)
= µ dt + σ(t, St) dW (t),

we have

µ̃(t) = µ +
1

t

∫ t

0

σ(s, Ss) dW (s),

and hence µ̃(t) is normal N
(
µ, 1

t2

∫ t

0 EPσ2(u, Su)du
)
, where the expec-

tation EPσ2(u, Su) can be found explicitly using (3.1). This means that
µ̃(t) is unbiased and mean-square consistent at the sampling interval
[0, t] as t → +∞.

We note that t plays the role of the “sample size” in its numerical
meaning, while 2n is the numerical “computational size.”
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4.2 Time delay and other parameters estimation In this subsec-
tion, we show that the maximum likelihood (ML) method can be used
to estimate parameters α, β, γ and V . Parameter l takes discrete values
and has to be treated differently. We show that the unbiased Akaike
information criterion (AICC) can be used to select l.

4.2.1 Consistency and asymptotic normality of the ML estimators For
simplicity of presentation, in this section we will use notation xt meaning
x(t). Suppose that we observe the sequence {yt} with

(4.1)
yt = µ0 + ε0t, ε0t = ξth

1/2
0t ,

h0t = ω0 +
α0

l
E2
0t−1 + β0h0t−1,

where E0t−1 =
∑l

k=1 ε0t−k, l ≥ 1 is a fixed integer, {ξt}t∈Z is i.i.d.
N(0,1). Let Ft be the σ-algebra generated by {yt, yt−1, . . . }. We define
the compact parameter space

Θ ≡
{
θ = (µ, ω, α, β) ∈ [−m, m]× [w−1, w]

× [a, 1− a] × [b, 1− b] : α + β ≤ 1
}

for some positive constants m, w, a and b. We assume that the true
parameter θ0 = (µ0, ω0, α0, β0) is in the interior of Θ. For any parameter
θ ∈ Θ, we define

(4.2)

yt = µ + εt,

ĥt = ω +
α

l
E2

t−1 + βĥt−1, Et−1 =
l∑

k=1

εt−k,

with the initial data given by ĥ0 = ω/(1−β) and {ĥt}−l+1≤t≤−1, chosen
arbitrarily. This gives the convenient expression for the variance process

ĥt =
ω

1 − β
+

α

l

t−1∑

i=0

βiE2
t−i−1.

Since the conditional distribution of {ξt} is the standard normal, the
log-likelihood function takes the form (ignoring constants)

L̂T (θ) =
1

2T

T∑

t=1

l̂t(θ), where l̂t(θ) ≡ −
(

ln ĥt(θ) +
ε2

t

ĥt(θ)

)
.
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It will be convenient to work with the unobserved variance process

ht =
ω

1 − β
+

α

l

∞∑

i=0

βiE2
t−i−1

and the unobserved log-likelihood function

LT (θ) =
1

2T

T∑

t=1

lt(θ), where lt(θ) ≡ −
(

ln ht(θ) +
ε2

t

ht(θ)

)
.

The process ht(θ) is the model of the conditional variance when the
infinite past history of the data is observed.

Lemma 4.1. For all θ ∈ Θ, the expectation

E

[
∂ht

∂θ

∂ht

∂θ′
h−2

t

]

exists and is a positive definite matrix.

We refer to [27] for the proof.

Theorem 4.1. E[LT (θ)] is uniquely maximized at θ0.

Proof. Consider

E[lt(θ)] − E[lt(θ0)] = E

[
ln

h0t

ht
− ε2

t

ht
+

ε2
0t

h0t

]
.

Since ε2
t = ε2

0t + 2(µ0 − µ)ε0t + (µ0 − µ)2, using the law of iterated
expectations we obtain

E[lt(θ)] − E[lt(θ0)] = E

[
ln

h0t

ht
− h0t

ht
+ 1 − (µ0 − µ)2

ht

]
≤ 0,

where the equality takes place when ln(h0t/ht) = 0 a.s. and µ = µ0.
The former expression is equivalent to

(θ − θ0)
′

(
∂ht

∂θ
h−1

t

)

θ=θ∗

= 0 a.s.

for some θ∗ ∈ Θ, which occurs if and only if θ = θ0 by Lemma 4.1.
Therefore, E[LT (θ)] is uniquely maximized at θ0.
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We can then state two theorems, and we again refer to [27] for details.

Theorem 4.2. Let θT be the solution to maxθ∈Θ LT (θ) and θ̂T the

corresponding solution to maxθ∈Θ L̂T (θ). Then θT → θ0 and θ̂T → θ0

in probability as T → ∞.

We define the following matrices:

A0 = −E

[
∂2lt(θ0)

∂θ∂θ′

]
,

ÂT =
1

2T

T∑

t=1

ĥ−2
t

∂ĥt

∂θ

∂ĥt

∂θ′
+

1

T

T∑

t=1

ĥ−1
t

∂εt

∂θ

∂εt

∂θ′
,

AT =
1

2T

T∑

t=1

h−2
t

∂ht

∂θ

∂ht

∂θ′
+

1

T

T∑

t=1

h−1
t

∂εt

∂θ

∂εt

∂θ′
,

A =
1

2
E

[
h−2

t

∂ht

∂θ

∂ht

∂θ′

]
+ E

[
h−1

t

∂εt

∂θ

∂εt

∂θ′

]
.

Theorem 4.3. The following statements hold:

(a)
√

T (θ̂T − θ0) ∼ N(0, A−1
0 ) asymptotically as T → ∞;

(b) Consistent estimator of A0 is given by ÂT evaluated at θ̂T .

4.2.2 Numerical results We now show how to use the maximum likeli-
hood method to estimate the time delay. In particular, we choose values
for the parameters that maximize the chance (or likelihood) of the data
occurring, and then use chosen values of parameters to test how our
model (of market with delayed response) works.

Recall that the discrete-time model for volatility in the market with
delayed response is

(4.3)

εn = yn − µ ≡ ln
Sn

Sn−1
− µ,

σ2
n = ω +

α

l

( l∑

i=1

εn−i

)2

+ βσ2
n−1,

where α + β + γ = 1 and ω = γV . The parameter µ can be eliminated
by assigning µ = (

∑N
k=1 yk)/N . The parameter l ≥ 1 represents the
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delay. For l = 1, we obtain the GARCH(1,1) model. The correspon-
dence between continuous-time parameter of delay τ and its discrete-
time analogue l is given by τ = l∆, where ∆ is the size of a mesh of
the discrete-time grid. The probability distribution of εn conditional on
information up to time n − 1 is assumed to be normal.

The likelihood function is given by

L(α, β, ω, l) =

N∏

n=1

[
1√

2πσn

exp

(−ε2
n

2σ2
n

)]
,

where σn is the function of α, β, ω and l (parameter γ can be eliminated
due to equality above). Our task is to maximize the product subject to
constraints:

α ≥ 0, β ≥ 0, l ≥ 1,

α + β < 1.

Taking logarithms, we see that this is equivalent to maximizing (l is
fixed for now)

f(α, β, ω, l) =

N∑

n=1

[
− ln(σ2

n) − ε2
n

σ2
n

]

with σ2
n, n ≥ l + 1, explicitly given by

σ2
n = ωAn(β) + αBn(β) + Rn(β),

where

An(β) = 1 + β + β2 + ... + βn−l−1,

Bn(β) = vn−1 + vn−2β + ... + vlβ
n−l−1,

Rn(β) = vlβ
n−l,

vn =
1

l

( l−1∑

i=0

εn−i

)2

,

and σ2
n = ε2

n for n = 1, . . . , l.
For each fixed l, we maximize the likelihood function with respect to

the other parameters. Thus, we obtain α̂(l), β̂(l) and ω̂(l) for
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l = 1, . . . , lmax. Then, we minimize AICC function to choose order
l ∈ [1, lmax]:

AICC(α̂(l), β̂(l), ω̂(l), l) = −2 lnL(α̂(l), β̂(l), ω̂(l), l) +
2(l + 3)N

(N − l − 4)
.

This function is an AICC function for ARMA(l+1,1) model. Note that
the discrete-time model (4.3) is very similar to GARCH(l,1) model, the
only difference is the presence of the cross-product terms in the equation
for volatility. And as it was mentioned in [7], any GARCH(p,q) model
can be considered as an ARMA(p+q,q) model. Therefore, it is reason-
able to assume that AICC function for our model is similar to the one
for ARMA(l+1,1) model.

We search iteratively to find parameters that maximize the likelihood
using a combination of direct search method and variable metric method,
known as the Broyden-Fletcher-Goldfarb-Shanno variant of Davidon-
Fletcher-Powell maximization algorithm (see [31]). Table 1 shows the
results and performance of the algorithm applied to collections of daily
observations of S&P500 index price during 1990–1993.

Year l
√

V α β γ

1990 1 0.1873 0.0620 0.8443 0.0937

1991 15 0.1603 0.5663 0.1131 0.3206

1992 – – – – –

1993 1 0.0714 0.0403 0.8073 0.1524

1992–93 4 0.0857 0.0446 0.8505 0.1049

1990–93 7 0.1186 0.0575 0.8886 0.0539

TABLE 1: Results of ML-AICC method of parameters estimation ap-
plied to S&P500 data.

The algorithm seems to be stable in almost all cases, except for the
year 1992 where the maximum of likelihood function was achieved on the
boundary of the feasible region, defined by the constraints and, therefore,
cannot be accepted as a local extremum.

It is interesting to compare estimated parameters for different years.
The annual pools of data showed little similarity, on the contrary to the
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results for 1992–93 and 1990–93, where the estimated parameter values
were very close. This is a strong argument in favor of the results for
larger datasets.

These results can be checked by looking at the autocorrelation struc-
ture of {εn}, i.e., correlation of series {εn} and {εn+k} for each lag k ≥ 1
(see Table 2). Really, as the table shows, the highest by absolute value
autocorrelation for {εn} is at the lag 7, which indicates the consistency
with ML-AICC method results.

ηk, εk, θk,
Lag k

autocorr. {un} autocorr. {u2
n} autocorr. {u2

n/σ2
n}

1 0.0310 0.0429 −0.0346

2 −0.0454 0.1325 0.0188

3 0.0084 0.0762 0.0553

4 −0.0053 0.1225 0.0045

5 0.0188 0.0779 0.0231

6 −0.0305 0.0971 −0.0001

7 −0.0957 0.0604 −0.0279

8 −0.0021 0.0369 0.0038

9 0.0494 0.0961 0.0148

10 −0.0242 0.1009 0.0301

11 0.0280 0.0566 −0.0254

12 0.0439 0.0074 −0.0336

13 0.0360 0.2219 0.0708

14 0.0204 0.0746 −0.0054

15 −0.0087 0.1402 0.0071

TABLE 2: Autocorrelation structure in the dataset for 1990–1993.

Another test of consistency of our results is to look at how our model
for σ2

n removes autocorrelations in {ε2
n}. For that purpose, we consider

autocorrelations for {ε2
n} and {ε2

n/σ2
n}. There is an efficient way to check
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it by using Ljung-Box statistic for both series. Its value is defined by

N

15∑

k=1

N + 2

N − k
φ2

k = 160.64,

N

15∑

k=1

N + 2

N − k
θ2

k = 14.18,

where N = 1006 is the total number of observations, k is the index for
lag and φk, θk are the autocorrelations of {ε2

n} and {ε2
n/σ2

n} resp. For
15 lags in total, the zero autocorrelation hypothesis can be rejected with
95% confidence when the Ljung-Box statistic is greater than 25.

From these values, we see that there is a strong evidence for auto-
correlation in {ε2

n}, since its Ljung-Box statistic is over 160. And for
the {ε2

n/σ2
n} series the Ljung-Box statistic is about 14, suggesting that

the autocorrelation has been largely removed by our model (4.3) with
parameters obtained by ML-AICC method.

5 Numerical approximation for the option pricing problem
Here we are going to introduce a numerical approximation method for
the general equation for the evaluation function, which will allow us to
find European call option price. In the first subsection, we give a sum-
mary of the results from [21], where the general equation was derived.

5.1 Summary of the previous results In our previous work [21] we
derived a general integro-differential equation for evaluation function H
given by

F (t, St) =

∫ 0

−τ

e−rθH(S(t + θ), S(t), t) dθ,

where F (t, St) is the option price. The general equation, that was ob-
tained using an analogue of Ito’s lemma and argument based on a con-
struction of a certain risk-free portfolio, has the following form

(5.1) 0 = H |θ=0 − e−rθH |θ=−τ

+

∫ 0

−τ

e−rθ

(
H ′

3 + rS(t)H ′
2 +

1

2
σ2(t, St)S

2(t)H ′′
22

)
dθ,

where H ′
i , i = 1, 2, 3, represents the derivative of H(S(t+θ), S(t), t) with

respect to the i-th argument.
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Also, in the previous work [21], we derived an explicit pricing formula
for call option price with some simplifying assumptions. The stock price
model is

(5.2)





dS(t) = rS(t) dt + σ(t, St)S(t) dW (t),

σ2(t, St) = σ2(0)e−(α+γ)t

+

[
γV +

α

τ
ln2

(
S(t)

S(t − τ)

)]
1 − e−(α+γ)t

α + γ
,

where S(t) = ϕ(t), t ∈ [−τ, 0], is given. The expression for volatility
came from the continuous-time analogue of GARCH-model. Under some
minor assumptions, a formula for European call option price written on
the stock (5.2) has the following form

F (S0) = h1(S(0), 0) + (σ2(0) − Σ(S0))

[I(r + α + γ, 0, S(0)) − I(r, 0, S(0))] ,

(5.3)

where h1(S, t) is the Black-Scholes call option price with the variance
σ2(0) and

Σ(S0) =
α

τ(α + γ)
ln2

(
S(0)

S(−τ)

)
+

γV

α + γ
,

I(p, t, S) =
1

2
S2

∫ T

t

ep(t−ξ) ∂
2h1

∂S2
(S, ξ) dξ for p ≥ 0.

Several assumptions were needed for us to derive the closed-form pricing
formula (5.3) from the general equation (5.1). Therefore, it is useful to
justify the above formula through different numerical schemes. For this
purpose, we use the well-known Monte Carlo simulation of solutions of
stock price equation (5.2), and also solve the general equation (5.1) by
the finite-difference approximation method (see next subsection).

Table 3 shows the simulation results compared to values obtained
by the formula (5.3), finite-difference method and Black-Scholes pricing
formula.

5.2 Finite-difference method for general equation In this section
we will show how to solve the general equation (5.1) for evaluation func-
tion H , which will allow us to find the value of European call option
price in any (B, S)-market with delayed response (2.1)–(2.2).
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Strike price Simulation Formula FDM

375 0.1040 0.1031 0.1021

415 0.1036 0.1031 0.1044

435 0.1035 0.1026 0.1041

450 0.1035 0.1031 0.1040

475 0.1036 0.1034 0.1032

TABLE 3: Implied volatility for stochastic volatility model (5.2) for
α = 0.0575 and γ = 0.0539: a comparison of simulation results with
the formula (5.3) and the finite difference method (FDM) for general
equation.

Let us consider a continuous function ϕ ∈ C[−τ, 0] with ϕ(0) = x,
ϕ(−τ) = y, x, y ∈ R. Then, the system (5.1) in terms of continuous
function St = ϕ will have the following form

0 = H(x, x, t) − erτH(y, x, t)

+

∫ 0

−τ

e−rθ

(
H ′

3 + rxH ′
2 +

1

2
σ2(t, ϕ)x2H ′′

22

)
dθ,

∫ 0

−τ

e−rθH(ϕ(θ), x, T ) dθ = max(x − K, 0).

(5.4)

Our main objective now is to solve system (5.4) for the function H(y, x, t).
Let us consider the function ϕxy(θ) = x + (y − x)(e−rθ − 1)/(erτ − 1),
θ ∈ [−τ, 0], which connects y and x. After substituting ϕxy into (5.4) and
changing the integration over the variable θ to the variable s = ϕxy(θ),
we obtain the following:

0 =
x − y

τ̂
(H(x, x, t) − erτH(y, x, t))

+

∫ x

y

(
H ′

3 + rxH ′
2 +

1

2
σ2(t, ϕxy)x2H ′′

22

)
(s, x, t) ds,

∫ x

y

H(s, x, T ) ds =
1

τ̂
(x − y) max(x − K, 0),

(5.5)

where τ̂ = (erτ − 1)/r. This is an integro-differential equation and it
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can be reduced to a PDE using the following substitution:

f(x, y, t) =

∫ x

y

H(s, x, t) ds,

and the PDE has the following form:

(5.6) 0 =
x − y

τ̂

(
− ∂f

∂y

∣∣∣∣
y=x

+ erτ ∂f

∂y

)
+

∂f

∂t
+ rx

(
∂f

∂x
+

∂f

∂y

∣∣∣∣
y=x

)

+
1

2
σ2(x, y, t)x2

(
∂2f

∂x2
+ 2

∂2f

∂x∂y

∣∣∣∣
y=x

+
∂2f

∂y2

∣∣∣∣
y=x

)

subject to boundary conditions

f
∣∣
t=T

=
1

τ̂
(x − y) max(x − K, 0),

f
∣∣
y=x

= 0.

An analytic solution to equation (5.6) seems hard to find. One way
to solve it is to consider the finite-difference numerical approximation
scheme for derivatives in (5.6). We obtain the following iterative updat-
ing scheme as we move back in time from T :

fnew
i,j = (1 − 2ai,j)fi,j + ci,j [fi,j+1 − fi,j−1] + (bi + ai,j)fi+1,j

+ (−bi + ai,j)fi−1,j + (−di,j + bi + ai,j)fi,i+1

+ (di,j − bi + ai,j)fi,i−1 + (−ai,j/2)[fi+1,i−1 + fi−1,i+1],

(5.7)

where the coefficients are defined by

ai,j = σ2
i,jx

2
i

∆t

2(∆x)2
, bi = rxi

∆t

2∆x
,

ci,j = erτ xi − xj

τ̂

∆t

2∆x
, di,j =

xi − xj

τ̂

∆t

2∆x
,

fi,j = f(xi, xj , t) and fnew
i,j = f(xi, xj , t − ∆t). Based on our numer-

ical simulations, the scheme (5.7) seems stable as (∆t, ∆x) → 0 if the
following condition holds:

σ2
i,j x2

i

∆t

(∆x)2
< 1.

See Tables 3 and 4 for numerical results on the finite-difference method
(5.7) applied to continuous-time GARCH model (5.2).
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Strike price Simulation Formula FDM

375 0.1277 0.1270 0.1207

415 0.1122 0.1089 0.1068

435 0.1104 0.0922 0.1090

450 0.1113 0.1088 0.1039

475 0.1163 0.1217 0.0839

TABLE 4: Implied volatility for stochastic volatility model (5.2) for
α = 14.375 and γ = 13.475: a comparison of simulation results with
the formula (5.3) and the finite difference method (FDM) for general
equation.

Strike price 375 415 435 450 450

Implied volat. 0.1238 0.1124 0.1106 0.1110 0.1142

TABLE 5: Simulation results for continuous-time analogue (3.1) of
GARCH(1,1) for α = 14.375 and γ = 13.475.

Conclusion In this paper we considered completeness of (B, S)-security
market where stock price volatility depends on the history of stock price
over a finite interval of time. An option pricing approach in such a
market was introduced. We assumed that option price depends on the
history of stock price and the time. We showed that the option price
satisfies an integro-differential equation with boundary conditions spec-
ified according to the option payoff function. A numerical scheme was
provided to construct the solution of this equation.

Also we considered a continuous-time limit of GARCH(1,1) model for
stochastic volatility. The resulting volatility perfectly fit into our model
for the market with delayed response. This introduced a new unobserv-
able parameter of time delay. A procedure of estimating the delay and
other parameters involved in the model for volatility was provided.
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continuous-time GARCH model. And we would like to thank S.-E. Mo-
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for SDDE.
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Appendix: derivation of continuous-time analogue of GARCH
The discrete-time model has the following form

(5.8)

Yn = Yn−1 +

(
µ − 1

2
σ2

n

)
+ σnεn,

σ2
n = γV +

α

l

( l∑

k=1

σn−k εn−k

)2

+ (1 − α − γ)σ2
n−1,

{εn}n≥1 ∼ i.i.d. N(0, 1),

where an initial data is given by (Yi, σ
2
i ) = (yi, vi) with i = −l, . . . , 0.

For any fixed l ≥ 1 define a partition π = {nh | n ≥ −l, h = τ/l}. Then
discrete-time model (5.8) defined over π takes a form

Y π
nh = Y π

(n−1)h +

(
µ − 1

2
(σπ

nh)2
)

h + σπ
nh επ

nh,

(σπ
nh)2 = γπV +

απ

l

( l∑

k=1

σπ
(n−k)h h− 1

2 επ
(n−k)h

)2

+ (1 − απ − γπ) (σπ
(n−1)h)2,

{επ
nh}n≥1 ∼ i.i.d. N(0, h),

which is equivalent to

Y π
nh = Y π

(n−1)h +

(
µ − 1

2
(σπ

nh)2
)

h + σπ
nh επ

nh,

(σπ
nh)2 = (σπ

(n−1)h)2 + γπV

+
απ

τ

(
Y π

(n−1)h − Y π
(n−l−1)h −

l∑

k=1

(
µ − 1

2
(σπ

(n−k)h)2
)

h

)2

− (απ + γπ) (σπ
(n−1)h)2.
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Let us take γπ = γh, απ = αh and define (Y π(t), σπ(t)) by

Y π(t) = Y π
(n−1)h +

(
µ − 1

2
(σπ

nh)2
)

(t − (n − 1)h)

+ σπ
nh (W (t) − W ((n − 1)h)) ,

(σπ(t))2 = (σπ
(n−1)h)2 +

[
γV +

α

τ

(
Y π

(n−1)h − Y π
(n−l−1)h

−
l∑

k=1

(
µ − 1

2
(σπ

(n−k)h)2
)

h

)2

− (α + γ) (σπ
(n−1)h)2

]
(t − (n − 1)h)

for (n−1)h ≤ t < nh with n ≥ 1, where W (t) is a Wiener process defined
on our probability space (Ω,F , (Ft)t≥0,P). Notice that (Y π(t), σπ(t))
is a continuous mapping from [−τ,∞)×Ω to R2 and its values coincide
with (Y π

nh, σπ
nh) for t = nh with n ≥ 0. We define vπ(t) = vi + (vi+1 −

vi)(t−ih)h−1 and yπ(t) = yi+(yi+1−yi)(t−ih)h−1 for ih ≤ t < (i+1)h
with i = −l, · · · − l + 1.

Let us consider a SDDE

dY (t) =

(
µ − 1

2
σ2(t)

)
dt + σ(t) dW (t),

dσ2(t)

dt
= γV +

α

τ

(
Y (t) − Y (t − τ) −

∫ t

t−τ

(µ − 1

2
σ2(u))du

)2

− (α + γ)σ2(t),

(5.9)

with the initial data given by (Y (t), σ2(t)) = (y(t), v(t)) for t ∈ [−τ, 0].
By defining S(t) = exp(Y (t)) with ϕ(t) = exp(y(t)) and applying the
Ito’s lemma, we conclude that S(t) coincides with the process introduced
in Section 3.

Now if the initial data of (5.8) and (5.9) are close in the sense that

(5.10) ‖yπ − y‖2 + ‖vπ − v‖2 ≤ Ch

for some constant C > 0 then (Y π(t), (σπ(t))2) and (Y (t), σ2(t)) are
close in the following sense (see [17])

E

∫ T

0

|Y π(t) − Y (t)|2 dt + E

∫ T

0

|(σπ(t))2 − σ2(t)|2 dt < C ′h
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for some constant C ′ > 0, under the regularity conditions for coefficients
of (5.9). Namely,

(5.11)
|G(0)| + |H(0)| < ∞,

|G(η) − G(ξ)| + |H(η) − H(ξ)| ≤ L‖η − ξ‖,

for some L > 0 and for all η, ξ ∈ C([−τ, 0], R2), where

H(η)

=

[
µ − η2(0)/2

γV + α
τ

(
η1(0) − η1(−τ) −

∫ 0

−τ
(µ − η2(θ)

2 ) dθ
)2

− (α + γ)η2(0)

]
,

G(η) =

[√
η2(0) 0
0 0

]
,

and | · |, ‖·‖ are Euclidean norm and supremum norm, respectively. Note
that the convergence result still holds when condition (5.11) is satisfied
locally in C([−τ, 0], R2).

In other words, by choosing continuous functions y(t) and v(t) such
that (5.10) is satisfied for the partition π defined by every small h > 0
we ensure the convergence of the solution of discrete-time model (5.8) to
the solution of continuous-time model (5.9) in the L2-norm as h tends
to zero.
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