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Abstract

We consider a class of hyperbolic—parabolic equation with time delay and a non-local feedback
due to the maturation for the adult population density of a single species population, and we show
that the wave profile is described by a hybrid system that consists of an integral transformation and
an ordinary differential equation. We show the existence and uniqueness of a travelling wavefront of
the hyperbolic—parabolic system in the so-called bistable case, by considering the same problem for
a properly parametrized parabolic system, and then by considering the continuous dependence of the
wave speed on the parameter involved.
© 2005 Published by Elsevier Ltd.
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1. Introduction and the model

We consider the following second-order hyperbolic—parabolic equation:

0 62 2
Em(t, x)+r 32 m(t,x) =D 2 m(t, x) — dlma(t, x)a
+u(t,t,x)—r (26_t+$) u(t, T, x) (1.2)
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for the density of adult population(z, x) at timet and spatial location € R of a given
single species population with two age classes (the immature and mature with maturation
time 7 > 0 being a constant) that moves randomly in space with a time a8, whereD
andd; > 0 are constant diffusion and death rates of the adult atttiamel locationt. This
equation can be obtained from the usual structured population model, see Raugel and Wu
[8]. See alsd1,2,4,5,9,12,13For discussions of the interaction of diffusion and delay in
ecological systems.

The maturation rate(z, 7, x) is determined by the biological process during the matu-
ration process. In So et dlL1], it was shown that if the immature moves instantaneously
and if the birth rate is given by a functidrim (¢, x)), then

u(t,‘c,x):s/ bm(t —7,y) f(x — y)dy, (1.2)

—00

where
e=g(1) =€ Jod@da ¢ g 1

is the survival rate during the maturation period and

@)=

1 2 t
g /M Whereoc=/ Dj(a)da
v 4mo 0
is the probability that a new born at time- T and location 0 moves to the locatiamfter

maturation timer.
We can show that

, 0,0 4 b0, y))d
< a+&>ug,f,x>_@/w Falx = »bm (0. ) dylo;—c.

Therefore, we obtain a closed system for the matured population

2

0
Em(t, x)+r 2 m(t, x)

2

=D%m(t,x)—d1m(t,x)+8/ fx —y)b(m@ —1,y))dy

a o0
+r 3 [8/ fx —y)b(m@ —1,y)) dy:| . (1.3)

This is a second-order hyperbolic equation. WhenO0, Eq. (1.3) reduces to

2 00
g m(t,x)=D 2 m(t, x) —dym(t, x) + 8/ fx —y)bm@t —1,y))dy.

ot
1.4)

The existence of travelling wave front of Eq. (1.4) in the so-called monostable case (where
there is no other zero @fu =¢b(u) in (0, K) ) was established ifi1] by using the standard
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techniques involving super- and subsolutions. When the funstiorexhibits the so-called
bistable nonlinearity that the equation

diu =¢eb(u), u=0

has three zeros,; = 0, u» = i1, anduz = K such that

(H1) O<u <K,

(H2) b'(n) >0, forn € [0, K],
(H3) d1 > max(eh'(0), eb'(K)),
(H4) dy < &b/ ().

The existence, unigueness and asymptotic stability of a travelling wavefront to Eq. (1.4)
were recently studied if6] by using the comparison and squeezing techniques.

The purpose of this paper is to study the existence of travelling wavefront for the more
complicated equation (1.3) in the case when the birth fundiian possesses the property
of bistable nonlinearity. Difficulty arises here since for Eq. (1.3) the standard comparison
principle does not hold. We overcome this difficulty by introducing an associated parame-
terized system that has a unique wavefront with a wave Sp#ieat depends on the involved
speed as the parameter. Our key point is to show that the wavefront of such an associated
system gives a wavefront of model (1.3)dfc) = ¢ has a solution and a major technique
step is to investigate the continuity 6f(c) and the possibility tha€ (c¢) = ¢ does have a
solution.

2. Patterns of travelling wavefronts and an associated parabolic system

A travelling wave front for Eq. (1.3) is of the form
m(t,x)=u(s) =u(x +ct), s=x-+ct.

Substituting this into (1.3), we get
o0
cu(s) + rczii(s) = Dii(s) — dqu(s) + 8/ f@bu(s —ct—2z))dz
d [ -
+r8—/ f@b(s —ct —z))dy
ds J_o
or equivalently

d o0
ca |:u(s) — rs/; f@bu(s —ct — 2)) dzj|

2 00
—(D-— rcz)dd”;(;) — duu(s) + z;/ F@bu(s — ct — 2)) dz. 2.1)

It is natural to introduce the following transformation:

v(s) =u(s) — rs/ f(s —ct—x)b(u(x)) dx. (2.2)
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Note that

F) = o ),

VAo

d X 1
af(x) =2 fx) =: _Z_ag(x)’

d B d[ 1= x2
ag(x)—a xf(x) —f(x)—z—af(x)-

Therefore, we obtain from (2.1)

2 o0
c iv(s) = (D —rc?) d—zv(s) —dyv(s) + 8/ G(s —ct—x)b(u(x)dx, (2.3)
s

ds d —o0
where
G(x)= [1+r <D_—’Zczx2 - (d1+ D _”2))} £ (2.4)
(2a) 20
and
/OO Gx)dx =1-rd;. (2.5)

In other words, the wave profile Eq. (2.1) with delay is now equivalent to a hybrid system
(2.2)—(2.3), where (2.2) is an integral transformation and (2.3) is a differential equation.

In what follows, we shall look for a wavefront for systems (2.2) and (2.3) with wave
speedt such that

0<D —rc. (2.6)

We also assume thais sufficiently small so that

D —rc? D
rfd+ 2= <r (d+ =) <1 (2.7)
20 20

Under these conditions, we have
G(x)>0 forallx € R,

and
o0
/ G(x)dx=1-rd1>0.
—0oQ

Our approach towards the proof of the existence of wavefront for systems (2.2) and (2.3) is
to consider the followingssociated parabolic system

2 00
0 .0 =@ 2D o+ s/ G(x — ¢t — y)b(o(t, y) dx
ot Ox?

- (2.8)
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and
o, x)=w(t, x)+ ra‘/ f(x —ct—y)b(e(t,y))dx, (2.9)

wherecis a real parameter satisfying (2.6) and (2.7) &) = D — rc2. The central idea
is to establish the existence of travelling wavefrart, r) = V(x + C(c)t), ¢(t,x) =
U(x + C(c)t) to (2.8) and (2.9) such that

V(—00) =0, V(00)=vmax=(1—rd1)K, U(—o0)=0, U(co)=K, (2.10)

whereK > 0 is the maximal positive solution of equatidiu = eb(u). Here and in what
follows we assume that the above equation has only three solutiprs0, u» = u and
uz=K.Asshallbe shownforany r, diandD satisfying (2.6), (2.7) and another technical
condition (3.5) to be given in the next section, there exists a wave Ip&edso that the
functionsU (s) andV (s) satisfy
d d2 00
C(c) o V(s)=D(c) -5 V(s) — di1V(s) + 8/ G(s —ct — x)b(U(x)) dx,

ds oo
(2.11)
oo
U@G)=V(s)+ rs/ f(s —ct—y)b(U(y))dy, (2.12)
—0o0
as well as the boundary condition (2.10). If we can find a poistich thatc = C(c),

then for such a solution > 0 we obtain a travelling wavefront for the original Egs. (2.2)
and (2.3).

3. Uniqueness of wavefronts for associated system

Forx € R, we start with the following more general system:

0 Q%w(t, x)
5 w(t, X) = D(C) T - dlw(t, X)
+£ %%, Gx — era — Yb(g(t — ri. y)) dy, (31)
@, x) =w(t,x) +re [Zo) f(x —cra— y)b(e(t, y)) dy,
with the following initial data:
w(s, x) =¢(s,x), s€[—r,0], 3.2)
@(s,x) =w(s,x) +re ffooo f(x —cra—y)b(p(s, y)dy, se[-r,0l '

wherer; andr; are nonnegative numbers. In this section, we shall prove that Eq. (3.1) has at
most one travelling wavefront (up to translatianl, x) =V (x + C(c)t), p=U (x + C(c)t)
with the wave speed'(c) dependent oa. Note that whem; = 0 andr, = 7, system (3.1)
reduces to (2.8) and (2.9).

Let X =BUC(R, R) be the Banach space of bounded and uniformly continuous functions
from Rto Rwith the usual supremum norm|x, andletX ™ ={¢ € X : ¢(x) >0, x € R}.
It is easy to see thaX T is a closed cone ok andX is a Banach Lattice under the partial
ordering induced by .



C. Ou, J. Wu / Nonlinear Analysis 63 (2005) 364—387 369

The heat equation

=D , t>0,x €R,
ot Ox?

w(0,x) =¢(x), xeR
has the solution

{ ow(t, x) B o2w(t, x)

1 00 N2
T(1)p(x) = W/ exp(— (x4Df) >¢(y) dy, 1>0,x€eR,¢eX,

(3.3)

and7T(¢) : X — X is an analytic semigroup oxwith 7(t)X+ c X* forall > 0.

LetC=C([—r1, 0], X) be the Banach space of continuous functions ffein, 0] into X
with the supremum norp- || and letCT={¢ € C : ¢(s) € XT,Vs € [-r1,0]. ThenC T is
a closed cone of . As usual, we identify an elemeuite C as a function fronj—rg, 0] x R
into Rdefined byp (s, x) = ¢(s) (x). For any continuous function: [—r1, b) — X, where
b >0, we definey, € C, t € [0,b), by y;(s) = y(t +s5),s € [-r1,0]. Thent — y,isa
continuous function fronf0, ») to C.

We also assume that

b'u)>0 foru e [—250, K + 250], (3.4)

wheredg is a small positive constant. In addition, sirzes the birth function, it is natural
to assume that' (1) is a bounded function, i.e., the bound

blax = SURIL' ()], —00 <u < 00}

exists.

To show the existence and positiveness of solutions to (3.1) and (3.2)dvhef™, we
need some order preserving property for the second equation in (3.1). ForaXy, we
consider an operatdk : X — X defined by

(Ru)(x) =v(x) + r'o‘/ fx —cra—y)b(u(y))dy.

Let
Xs,={p € X : —60<p(x)<K + do, x € R}.

We have the following:

Lemma 3.1. Suppose that r is sufficiently small so that
00
" K 1 200)ebm
Then

(3.5)

(i) foreveryv € X, equation

u(x) =v(x) + rS/ f(x —cra—y)b(u(y))dy (3.6)
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has one and only one solutian= F (v) in X. In particular,if v € X*,thenu=F(v) €
xt;

(i) foranyv e X5, F(v) € X5,

(i) Fo)—F@) e XT,ifv—ve Xt andv, v € Xg;

(iv) if v € X5, is non-decreasing on R then sofigv);

(v) foranyv, v € X5,, we have

IF(v) = FOI<2v -l (3.7)
(vi) if v is a constant function of valug then Eq.(3.6) reduces to thalgebraic equation
i=10+reb(), (3.8)

which has a unique solutiai such that: = F(v). Moreover

di 1
—=FQ)=——. 3.9
AR e (3.9)
Proof. (i) Note that by (3.5) we havecby,,, < 1 and
o0
|Ru — Ru| <r£b§nax/ FO+cro—x)|u—u|dy<rebpallu — il
—0o0

We then conclude thaR is a contraction on Banach spa¢end thusRk has a unique fixed
pointu = F(v). Whenu € X, itis obvious thatiu € XT. SoR is also a contraction on
the closed con&* of Banach spack and has a unique fixed point= F(v) € X ™.

(ii) Since we know that for givem € X5, the contractive operatdk has a unique fixed
point that is the limit of the sequen¢e, } given byug =0, u1 = Rug = v(x), and

i =9ty =000 46 [ 70— erz = bl () 0.
Since the fixed point has the convergent series expansions
F)=u1+ w2 —u1) + -+ Uny1 —up) + -+,
by (3.5) we obtain

F)<vx) + rgb;nax”"tl —uo| +--- rgb;nax”un gl 4 -
<o) + rebjpalvll + - - [0l (rebjpg)™  + -
K + do

< <K + 25 (3.10)
1= rebjg,

Similarly, we haveF (v) > — 20¢.
(iii) Suppose that — v € X ™. Note

Hm=mw+m/ Fx —cra — YB(F@) () dy
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and
F(v) = v(x) + re f Fx — era — )b(F@)() dy.

A subtraction of the above two equations gives

w(x):f)(x)—v(x)+r£/ f(y+4cra—x)
X Ab(F (v)(y) +w(y)) — b(F(v)(y))}dy, (3.11)

wherew(x) = F(v) — F(v). We can use the same argument as above for (i) to conclude
that (3.11) has a unique fixed pointXi". Thus (iii) holds.
(iv) In a similar manner, we can deduce th&w) (x + y) — F(v)(x) >0 with y >0 if v
is non-decreasing.
(v) By (3.5) and (3.11) we have that
[F(v)— F(v )||<u 2|lv — .

/
bmax

(vi) The proof of this part is trivial, and is thus omitted]

Remark 3.1. From this lemma we know that ifQu < K, then 0K v <vmax=K —reb(K).
Note thatd1 K = ¢b(K). We find thatvmax = K (1 — d1r).

Remark 3.2. For any fixed in system (3.1), we can solve the second equation by Lemma
3.1 to obtain

o, x) = Fw)(, x).

Thus systems (3.1) and (3.2) can be transformed into

0 02 w(l x)
—wt,x)=D(c) ——— —diw(t, x)
ot

(3.12)
+e f_oo G(X —crz = y)b(F(w)(t —r1,y)) dx

w(s, x) = P(s, x).

There are three constant solutians= 0, wy = F (i) andwsz = vmax= F ~1(K) satisfying
the first equation in (3.12). In other words, the equation

diw — eb(F(w)) /OO Gx)dx=0

has three real constant solutions = 0, ws = F(i1) andws = vmax= F ~1(K).
In what follows, we assume further the following conditions hold:

(H3) d1> =2 maxisb (0), &b’ (K)} [, G (x) dx,

©
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/ e 00
(H4) d1<eb' () [°. G(x)dx.

Under assumption (HB we can choose a positive constagtufficiently small so that
o
d1> &b’ (u) / G(x)dx foru e [—dp, 0) (3.13)
—00
and

o
d1>sb/(u)/ G(x)dx foru e (K, K + dgl.
—00

Indeed, by (H3), this can be achieved by modifying (if necessary) the definitidnmftside
the closed intervdl0, K.
From Lemma 3.1, we also know that wheis sufficiently small and (s) € X,

F(v)(s) =v(s) + O(r) (3.14)
and

FHu(s)) = v(s) + 0(r)
uniformly for anyv € X5,. Therefore, we shall assume throughout this paperrtligit

sufficiently small so that for any < min{w2/2, (vmax — w2)/2, d0/2}, we have

10r,0) = min fbF @) [~ G0)dy — (o5 € i) =0 (3.15)
and

M>(r, 0) := min {dlv(s) — b(F(v)(s)) /Oo G(y)dy;s € Qz} >0, (3.16)

where2; and(2;, are defined by
Q1= {s; Ymax— 30 < v(s) <vmax— 3}, Q2={s; 5 <v(s) < 33}.

These two assumptions (3.15) and (3.16) are reasonable because whenwe have
M1(0, 6) > 0 andM>(0, o) > 0 provided that (H1)—(H4) hold.

Now we return to system (3.1). For aqy € [—do, K + dolc={¢p € C: (s, x) €
[—00, K + d0l, s € [-r, 0], x € R}, define

o]

Fi1(¢)(x) = —d1¢(0, x) + é/ G(y+cr2—x)b(F(9)(—r1,y)dy, x€R.

—00
ThenFi1(¢) € X andF1 : [—do, K + dglc — X is globally Lipschitz continuous.

Definition 3.1. A pair (w, ¢) = (w, F(w)) in C[(—r1, b), X] x C[(—r1, b), X]is called a
supersolution (subsolution) of (3.1) if

{w(r>>(<)m — 1)w(to) + fy T(r — 5) Fa(w;) ds, (3.17)
(1) =Fw)@®), t1=10—r1 '
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forallb >t > 1 >0.If (w, F(w)) is both a supersolution and a subsolutio{@rb), then
it is said to be a mild solution of (3.1).

Remark 3.3. Assume that there is a bounded and continuous functior(paip) of func-
tions defined orR x [—r1, b) that areC? with respect toxr € R, andC?! with respect to
t € (0,b), and

(,x)

0 0w
—w(t,x)2(L)D() ——— —diw(t, x)
ot Ox

2
+e [70, Gx —era = yb(p(t —r1, y)dy, 120,
@, x) =w(t, x) +re [5o) f(x —cra—yb(pt,y)dy, 1> —r1

for x € R. Then by the fact thal' (/)X c X™, it follows that (3.17) holds, and hence
(w, @) is a supersolution (subsolution) of (3.1) M b).

Define

(J +1)2
4Dt

OW,t) =

exp(—dlt— ) J=>0, t>0.

1
anDt

We first establish the following existence of solution and comparison result for later use.

Lemma 3.2. For any initial value¢ € [—do, K + dolc, systemg3.1) and (3.2) have a
mild solution for allz € [0, co) with (—dg, F(—d0)) < (w(t, x, ¢), F(w)(t, x, $)) < (K +
00, F(K + dp)) in the sense

—do<w(t,x)<K + 09, F(—d0)<Fw)(t, x, )< F(K + do),

and (w(z, x, ¢), F(w)(t, x, ¢)) is a classical solution tq3.1) and (3.2) for (¢, x) €
(—r1, 00) x R. Moreover, for any pair of supersolutiqw™, F(w™)) and subsolutioriw ™,
F(w™)) of (3.1)and(3.2)with —dg <w™ (¢, x), w™ (¢, x) <K + g fort € [—r1, +00) and
x € R,andw™(s,x)>w (s, x) fors € [-r1,0] andx € R, there holdsw™ (¢, x) >w~
(t,x)forall r >0andx € R, and

z+1
wh(t, x) —w (t,x)>0(x —z|,1 — to)/ [w* (10, y) — w™ (0. y)]dy (3.18)
V4
for everyz € R andt > >0.

Proof. Note thato(s, x) = F(w)(z, x). From the abstract setting [i@], it follows that a
mild solution(w, F(w)) of (3.1) and(3.2) is a solution to the associated integral equation

{wa) =T(t — to)w(to) + [;, T(t — 5) F1(wy) ds,
wo = ¢ € [0, K + dolc-

Clearly,vt = (K 4 g, F(K + dg)) andv™ = (—dg, F(—d0)) are supersolution and subso-
lution of (3.1) and (3.2), respectively. As aforementiongd; [—do, K + dolc is globally
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Lipschitz continuous. It also satisfies the quasi-monotone condition in the sense that
1
lim = dist(y(0) — @(0) + h[F1(¥,) — Fi(¢y)]; XT) =0 (3.19)
h—0t h
forall y, ¢ € [—d0, K + dolc With y > @. To see this, we have by (3.3) that

Fl(l//_y) - Fl((ps) = - dl[l//(oa x) - (/)(07 x)]
+ / G(y +cr2—x)b((FY)(—r1, y))

—00

—G(y+cr2—x)b((Fo)(—r1, y))dy
> — daly(0,x) — (0, x)],

and hence, for ang > 0 withdih < 1
W(0) — @(0) + h[F1(Y;) — Fi(@,)]1 = (1 — d1h)(Y(0) — ¢(0)) >0

from which (3.19) holds. Therefore, the existence, uniquenesdafows from[7, Corol-
lary 5]. Moreover, by a semigroup theory argument as in the pro§f,ofheorem 1] we
conclude thatw, F(w)) is a classical solution far>r;.

Since(w™(t, x), F(w) (¢, x)) = (w™ (¢, x), F(w™)(t, x)), it follows from Corollary 5
in [7] that

—do<w ™ (t, x)<w(t, x,w ) <w(t, x,wH)<w(t, x) <K + o, t>0,x €R,

thusw=(t, x) <w™(z, x) for all >0 andx € R.
We next prove the last inequality of the lemma. bét, x) = w*(r, x) — w™ (¢, x). For
any givenrg >0, using again the abstract settind 7, we have

t

v() 2T (t — 10)v(10) +/ T(t —s)[F1(wy) — Fi(wy)]ds

10

t
>T(t — to)v(fg) — d1/ T(t —s)v(s)ds. (3.20)

fo

Note thatz(t) = exp(—d1(t — to)) T (t — to)v (o) satisfies the following equation:

‘
v(t) =T(t — to)v(tg) — d1/ T(t — s)v(s)ds.

0]

Then we can directly solve (3.20) to obtain
wr @) —w () >eMTOT (1 — o) (wT (10) — w™ (f0)), 1 =1o. (3.21)

Combining (3.3), (3.21) and the definition 6X(J, t), we have for alk >7 >0 andx € R
that

z+1
Wt x) — w6 x) > O(x — 2,1 — to)/ [w (0, y) — w™ (10, v) dy.

This completes the proof.[]
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Remark 3.4. From this lemma we know that it ™ (0, x) = w™ (0, x), then for anyr > 0,

z+1
whE, x) —w (t,x)=>0(x —z|,t — to)/ [w™ (t0, y) — w™ (t0, y) dy > 0.
V4

In particular, if (w(z, x, ¢), F(w)(t, x, ¢)) is a solution of (3.1) with the initial daté <
[—d0, K + dolc and¢(# constant is a non-decreasing function dty then for any fixed
t >0, w(t, x) is strictly increasing inc € R.

Using this property, we can now establish the estimate of the derivative for the travelling
wavefront.

Lemma 3.3. Let(V(x + C(c)t), F(V)(x + C(c)t)) be a non-decreasing travelling wave-
front of (3.1). Then

b(K)

and
Jim v =o. (3.23)

Proof. Using Lemma 3.2, we have that féi= x + C(c¢)t and every: > 0,

z+1
VE+h) —V()= max O(x —zl, t)f [V(y +h) — V(y)ldy >0,

which implies that

V(&> max O(x —z[,H[V(z+1 - V()] >0.

Next let
C(c) —/C?%(c) + 4D(c)dr C(c) + v/ C?(c) + 4D(c)dr
= <0, /o= > 0.
2D(c) 2D(c)

We then have

1

V) == ———
© D(c)(A2 — 21)

& ©
U e‘l(’;_s)H(V)(s)ds—l—/ eﬂz(’;‘”H(V)(s)ds}
—0 4

and
o
D(c)(42 — 21)

& oo
x [/11/ e1E=9) H(V)(s) ds +/12/ eﬂz@—s)H(V)(s)ds]
00 &

1 © . .
<—F |1 2D (V) (s)d } 3.24
DU — 7D [ 2/5 (V)(s)ds (3.24)

V(& =
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where

oo

HV)(s) = / B(F(VY@)G(s — cra — C(e)ry — ) dz. (3.25)

—00

Sincely — A1 >24/d1/D(c), it follows from (3.24), (3.25) and (2.5) that

/ A2b(K) % ey /‘” __bE) 4
V(g)g—zm : % ds _OOG(x)dx_zm(l rdy).

Finally, by (2.10), (3.24), (3.25) and the dominant convergence theorem, we have
(3.23). O

Lemma 3.4. Let(V(x + C(c)r), F(V)(x + C(c)t)) be a non-decreasing travelling wave-
front of (3.1). Then there exist three positive numbggs(which is independent of)Yoq
and J such that for anyd € (0, 4] and everyéy € R, the functions(w™, F(w™)) and
(w™, F(w™)) defined by

wEE, x) 1= V(x + C(o)t + &g + apd(ePorr — e Foyy £ e ot

are a supersolution and a subsolution(8fl)and(3.2)ont € [0, +00), respectively.

Proof. By (H'3), we can choose f&, > 0 and are* > 0 such that

dy > o + cel0 (max{b’(m, b'(K)} / G(y)dy + 8*) :

By (3.4), there exists & > 0 such that
0<H (i) <b'(0) +&* forall g e [-5*, 0],
0<h (i) <P (K) +&* forally e [K — 6, K + 5%]. (3.26)

Letco(c, r1, r2) =|C(c)|r1 + |clra + (P01 — 1), Since lim_, o, V (&) = vmaxand lim:_, _,
V(&) =0, we have lim_, , F(V)({) = K and lim:_, _ F(V)(¢) = 0. Therefore, there
exists a sufficiently large constamby = Mo(V, fy, ¢*, 6*) > 0 such that

F(V)(&)<6" forall < — Mg/2+ colc, r1, r2), (3.27)
F(VY(&>K — 6" forall £>Mp/2 — colc, r1,12), (3.28)

and

d1>[30+3eﬁ0’1(max{b’(0),b’(K)}+s*)/ G(y)dy

9] —Mop/2
+ aeﬁoflb;nax[ + / G(y) dy] . (3.29)
Mp/2 —00

In view of Lemma 3.3, we haveg := min{V’(&); |¢| < Mp} > 0. Define

g0 =

Bomo [8eﬁ°’1b’max/ G(y)dy —di+ ﬁo] >0 (3.30)
0] —00
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and
5 =min {0_—10 e o (FY(K + 6% — vmax)e/forl} . (3.31)
We now prove thatw™, F(w™)) is a supersolution. The proof ¢fv~, F(w™)) being a

subsolutiorcan be dealt with similarly. By translation, we can also assumeighat0. For
any givend € (0, 6], let &(r) = x + C(c)t + ood(ePorr — e~For). Then we have

Sw™)(, x)
A Owt(t, x) Q2w
v D(c) 0z + diw™(t, x)
- Sf b(F(wt(t —r1,x — y))G(y — crp)dy

= V/(E(D))(C(c)+apodePoy—pode P —D(c) V" (&) +drV (&) +dr0ePo!
- 8/00 bF(V[E(t) — C(c)r1 — y + aod(L — eforryefor]
+ 5e‘_’?§“"1>)}6<y — cro)dy

= g0BodV'(E(t))ePo — pose ol + dysefo!
—e / Y BF(VIE®) = C(er1 — y — cra+ 00(1 — ehornyefor)

—00

+ o0& PTG (y) dy

"y / BIE(VIE®) — Cr1— y — craD)}G(y) dy

> (00BodV/(E(1)) — Bod + d1d)e o — ¢ / h b (n {0 Pot=r)yG (y) dy

_ {o—oﬁoév’@a» _ Bod + d1d — adedo / )G O) dy} et

—0o0
where

N =01F(VIE(W) — C(o)r1 — y — cra + 60d(1 — forryeFor] 4 ge=Polt=—r)y
+ (L= 0D F(VIER) — C(e)rr — y — cral). (3.32)

By (3.31) and (3.32), we obtain that
0< 1y < F (max + 6/ <K + 6

and hencé’(1,) > 0. Therefore, we have

S, x)> {aoﬁV’@(t)) — Bo + di — eePort f ” b ()G (y) dy} e Po.
- (3.33)

To estimate the right-hand side of the above inequality, we should congiden three
cases: (i) ()| < Mo, (i) E(r) = Mo and (iii) (1) < — Mo.
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Case (i):|¢(1)| < Mp. By virtue of (3.30) and (3.33), we have

Swh) (@, x)=> {ooﬂV’@(t)) — Bo+dv — e€P1b] / h G(y) dy} de~Po!

=>0.
Case (ii):&(1) > Mo. Fory € [—3&(1), 3E(1)], we have
FMo< 5E(1) <& — y<ZEM).
Furthermore, for any < (0, 4], due togpd < 1, we also obtain
E(t) — C(e)r1 — y — crp + ad(1 — forryehor
> 1Mo — C(e)r1 — erp + 0pd(1 — fon)
> 2 Mo — colc, rir2)
and
&) — C(orL—y — cra= 3Mo — C(c)r1 — cra> 3Mo — co(c, r1r2).
Therefore, by (3.26)—(3.28), we have from (3.32) that
K — 0" < <K +9"
and
b'(n) <b'(K) + &*.
Consequently, by (3.29) and (3.33), we have
S, x)

> 100V (E(t)) — o + dy — eePo / b' ()G () dy} dePor

[e¢)
> | —Bo + d1 — eelot / b'(n)G(y) dY} s P!
o0

&)/2 00
b ()G (y) dy — b / B ()G (y) dy
/2 &m/2

> 1 —fo+di — eePort /

—&(1)

e9]

—<ém/2
— eebor / b (1)G(y) dy} dePor
> — o+ di— e (K) + ) / G(y)dy

B e/jorl , oo —Mp/2 q
ST G(y)dy
Mo/2 —00

>0.

Case (iii):£(r) < — Mp. The proof in this case is similar to that in case (ii) and hence is
omitted. [
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Theorem 3.1(Uniqueness Assume that3.1) has a non-decreasing travelling wavefront
(V(x+C(o)t), F(V)(x+C(c)t)). Then for any travelling wavefronV (x + C(c)1), F (V)
(x+C(c)t)) withO< V < vmax, We haveC (c)=C(c) andV (-) =V (-+ &) for someg € R.

Proof. We extend the standard proof[i8,6,10]to our case. Since andV have the same
limit as ¢ — o0, there existt € R and a sufficiently largé > 0 such that for every
s € [-r1, 0] andx € R,

Vi +C@s+9 =< Vx+C0)s) <V(x+C@)s +E+h) +,
and
V(x + C(e)s + & — apd (ot — e o) — 5efos
<V(x+ C(c)s)
<V +C(0)s + E+h + apd(eforr — ePo) 4 eFos,
wherefy, g0 andy are constants given in Lemma 3.4. Noting that the opetatoy(-) de-

finedin Lemma 3.1 is non-decreasing i non-decreasing, we can still use the comparison
result to obtain that for al >0 andx € R,

V(x + C(o)t + & — apd(eforr — g bory _ 5 Fot
<Vx+C()t)
<V(x + C(e)t + &+ h + ago(eforr — g Pory 4 sePor

Keeping¢ = x + C(c)t fixed and letting — oo, we have from the first inequality that
C(c)<C(c) and from the second inequality th@tc) > C(c). This yieldsC(c) = C(c).
Moreover, we get

V(E+E—000ef01) < V(&) < V(E+ E+ h + opoefo1) for ¢ e R. (3.34)
Define
EF=inf{&EVEOSVE+O) &=sup& V=V (+ ).

By (3.34), we find that botl* and¢, are well defined. In particular, siné&(-4-£,) < V() <
V(- + &), we haves, <&

To complete the proof, we show nafy > &*. Assume to the contrary thdt < &* and
V() # V(- + &). Since lime_, o, V' (&) =0, it follows that there exists a large constant
M = M(V) > 0 such that

VIO iflE=M.

By the fact thati’ () <V (- + &*) andV (-) # V(- +£*), we can conclude from Remark 3.4
thatV() <V( + &*) on R. Therefore, by the continuity &f and V, there exists a small
h > 0 such that

V(O <V(E+E —h) (3.35)
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provided that® € [-M — 1 — &*, M + 1 — &]. When|é + &*| > M + 1, we have
VE+E =) =V >VE+E =) = V(E+E
= —hV'(E+ & —0h)
= —h,
which, together with (3.35), implies that for amye [—r1, 0] andx € R,
V(x4 C(c)s + & — i + aoh (€ — e Posyy 4 e Pos >V (x + C(c)s).
Therefore, we have by the comparison principle that
V(x +C)t + & — h+ ooh(efor — e Poryy 4 he Pl >V (x + C(o)r).  (3.36)
In (3.36), as before we keep= x + C(c)r fixed and let — oo to obtain
VE+E =)=V (©).
This contradicts the definition of* since 4 >0. Henceé, = &* and the proof is

complete. [J

Remark 3.5. In particular, whernr = 0 andr; = 0, system (3.1) is independent of
Therefore, if taking = 7, then by Theorem 3.1 we know that the travelling wavefront to
(3.1) (or to (1.3)) is unique (up to translation). This result can also be s¢6éh in

4. Existence of travelling wavefront for Eq. (1.3)

To give the existence of travelling wavefront for Eq. (1.3), we first consider system (3.1)
with delayr; = 0 andr; = 1, namely,

0 Q%w(t, x)
& w(t,x) = D(c) oz diw(t, x)
o[, Glx — et — Yblpt. ) dy, 120, *1)
P, x)=wt,x)+re [0 f(x —ct—y)b(pt, y)dy, >0,
wherec € R is a parameter.
Let{ € C*°(R, R) be a fixed function with the following properties:

((s)=0 ifs< -2, {s)=1 ifs=>2;
0<l(s)<1; ()KL ifse(=22).

Then we have the following result.

Lemma 4.1. Assume that the parameters ¢ and r sat{@¥), (2.7)and(3.5). Then there
exist two small constants > 0, ¢g > 0 and a large constanfy > 0, which are independent
of ¢ andzt such that(vf(t, X), F(vf)) and(vy (1, x), F(vy)) defined by

Uf(h x) = Umax+ 0" — vmax{(—¢o(x + Cor))
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and
vy (t, x) = —0" 4+ vmax{(¢o(x — Cot))

are a supersolution gf.1)for ¢ >0, and a subsolution f3.1) for ¢ <0, respectively

Proof. From (3.9), we have & F’(0) = 1/(1 — reb'(0)). By (H3), we can find three
constantg € [1/2, 1),/ >0 anddé* <min{u™/2, (K —u™)/2, dp/2} such that

pd1 > —) / G(y)dy x [max{b’(0), b'(K)} + 11,
<E — p) 0 <K,
P
0<b () <b'(0) +1 forny e [=26%, 25", (4.2)

and
0<b/ () <b(K)+1 forye[K — 26", K + 25"].

We can choose two positive constasits- 0 andMg > 0, with ¢* sufficiently small and/g
sufficiently large, such that

and

00 —Mo
—min{Mx(r, 6%), Ma(r, 6™)}+ K &b 0™ +2K &by |:f +/ G(y) dy] <0

Mo 00

Takex € (0, 1) sufficiently small such that

*

o<5(5)<% if s <—2+x,

*

1>0(s) >1_% if s > 2—x. 4.3)
Take® > 0 small enough such that

1—d)(R2—Kk/2)>2—k.
Finally, takeeg > O small enough such that

eoMo< (2 — k),
F(=0")

Dggvmax 5 {dl + 5

——Ze(b'(0) + l)/ G(y) dy} <0 (4.4)
and

00 —Mp 00
D(©)Zvmax-+ 260 amaré” f G(y) dy + devmax [ / + / G(y) dy]
—00 —00 Mo
<min{M1(r, 5*), Mo(r, 5*)}. (4.5)
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We also set
M =min{{(s); =2 + k/2<s <2 —k/2} >0

and take

1 o0
Co= = [DSSUmaX + divmax + b (F (Vmax)) / G(y)dy + devmaxd’ maX:|
—00

€0VUmax:

> 0. (4.6)

Next we shall prove thatv; , F(vy)) is a subsolution of (4.1) for <O0. The proof that
(vf, F(vf)) is a supersolution of (4.1) far>0 is analogous and hence is omitted. Set
¢ =x — Cot. Substituting(vy , F(v7)) into (4.1), we find that the second equation is
naturally satisfied. For the first equation, we have

v (1, 0% (1,
SO (1, x)) = %tx) — D(o) %;x) +d] (1. %)
— 8/ G(x —ct — y)b(F(vy))dy 4.7

= — Cocovmax (80&) — D(c)e5vmax(” (e0&) + div (1, x)
—8/ G(x —ct — y)b(F(vy))dy

= — Cocovmax (¢0&) — D(c)edvmax(” (¢0&) + dvy (1, x)

—Sb(F(vl_))(t,X)/ G(y)dy

— f [b(F (7)1, x — ¢t — y)) — b(F(v])(t, x))1G () dy
= — Cocovmax (¢0&) — D(c)e3vmax” (¢0&)
- dyv] (1 %) — eb(F D)) (1. ) / G(y)dy

- 8/ b'(INIF (v)(t, x — ¢t —y) = F(vp)(, x)1G(y) dy,
(4.8)

wheren = 0F (v )(t, x) + (L = O)F(v))(t, x —cT — y).

Sincegé € (—o0, 00), for our proof we shall split the intervél-oo, o) into three parts:
(=00, =24+ K/2], [2—K/2,00) and(—2 + k/2, 2 — K/2).

Case (i)eoé € (—o0, =2+ Kk/2].

In this case we hav@¢é < — 2+ k, 0<{(e0é) <&%/2,

—0"<vy (1, 0) < — 0" + vmaxe™/2< — 0" + (1 — p)o* = —pd* < — %5*,
and

F(=6")<F(vp)(t,x).
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SetE;(t,x)={y € R; F(v;)(t,x —ct—y) <0}. Itthen follows from (4.2), (4.4) and (4.7)
that

S(vl_)(t, x)< D(C)Scz)vmax-i- dlvl_(t, x) — Sf ( )b/(fl)F(vl_)
E;i(t,x
x (t,x —ct—y)G(y)dy
< D©Ochumax— dipd” ~ F-690© +1) [~ Gy

F(—o6* o0
= D(O)eZvmax — 0" {dlp+ w041 / G(y)dy}

goa

whereij = 0F (v )(t, x — ¢t — y) € [F(—=0%), 0] € [-26, 0].
Case (ii):e0l>2 — /2.
In this casegoé >2 — 1/2, 1— &*/2<{(e0¢) <1,

Umax—5*>vl_(f,x)> — 0" + vmax(1— 5*/2)>Umax—5* - (1—17)5*

2 Umax — %5*.

and thus from (3.15)

d1vy (1, ) — eb(F )1, ) f GOy dy< — Mi(r, 5%).

By the choice oy and®, we have

> w2 —xK/2) > Mo
€0

¢
Forc<0andy € [—®¢&, @], it follows
eo(€ —ct—y)=Zeo(l — @)& —eoct > (1 — w)eol = (1 — @) (2 — k/2) 22 — K,
and hence from (3.7) and (4.3) we obtain
(0%
[ IFGDx = =5 - FoD (0G0 dy

—é

é
<2f I (1, x — et — y) — v] (1. 0)|G(y) dy

—é

¢
< 2uma |  Idteof — et =)~ L@DIG) oy

o0
< 2omar” / G(y)dy

—00
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and

—é 0
/ +f¢ [P x — et — y) — FQ) (1[G () dy

—é 00
g/ +/ 2llvy (1, x — et — ) — vp (1. O G(y) dy
—00 [014

—é 00
<4Umax(/ +/:V G()’)d)’> .
—00 [0)4

Therefore, we have from (4.5) and (4.8) that

S, x) < D(c)edvmax — M1(r, §%)

(0)4
4 b’maxsf IFGDEx =) = FOD@ 060t

PRVR I i _
+ 4 maxvmax + . G(y) dy

| /—o0 é |
00

< D(C)S%Umax — M (r, 5*) + 28b{ﬂn,—,\xvm.’;\xg>k / G(y) dy
o0

- Mo o -
+ablgama [+ [ Gordy
LJ —o0 Mo a
<0.
Case (iii): In this case, we have from (4.6) and (4.8) that
S, x) < — CotovmaxM + Degvmax + dvmax + b(F (vmax)

o0
X / G(y)dy + 4vmaxdbimax

—00

=0.

Combining cases (i)—(iii), we obtain the desired result and hence the proof is compléte.

Remark 4.1. In a similar manner, we can also prove th§(t, X) =Vmax+ 0" — max{ (—éc
(x+Cct)) andv, (1, x) = —0" 4+ vmax( (e (x — C¢t)) are a supersolution and subsolution of
(4.1) for allc satisfying (2.6), respectively. Heeg = &5/ (1 + |c|t) andC, = (1 + |c¢|t)Co.

Lemma 4.2. For every c and r satisfyin(p.6), (2.7)and(3.5),there exists a unique strictly
monotonic travelling wavefront solutiq (x + C (¢)t), F(V)(x 4+ C(c)t)) for systen{4.1)
with speed”(c¢) being a continuous function of ¢

Proof. The proof for the existence of travelling wavefront is similar to that of Appendix

in [6]; see also the proof of Theorem 3.1[B]. The monotonicity of this wavefront can

be obtained from Lemma 3.2 (or Remark 3.4). Furthermore, we can obtain the uniqueness
result directly from Theorem 3.1.
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Next we shall show thaf'(¢) is a continuous function af.
Suppose thatV,.(x + C(c)t), F(V.)(x + C(c)t)) is the travelling wavefront with speed
C(c). Without loss of generality, we assume that %,(0) = F'(i1) < vmax- Then we have

{ C(e)V.=D()V/(&) —d1V(E) + Sffooo G(¢—ct—y)b(U(y))dy,
U=V +re ffooo f(&—ct—ybU(E))dy,
whereé = x + C(c)t, or equivalently,

CV,=D)V/(&) —diV(&) + / G(¢ —ct— y)b(F(V)(y))dy.

Hence re-writing the above equation into an integral one, we obtain

o 1 [ EUCOEDH (V) (s) ds }
O DO @) [ + [ 2 COE (V) () ds | @9
where
_ C(c) —/C?(c) +4D(c)dy
/1(C () = b <0,
_ C(0) +/C?(c) +4D(c)dy
72(C(e) = 5D >0,
and
He (Vo) (s) = / G(s —ct = b(F(V)(7)) dy.

Since 0KV <vmax 0K F (V)< K and

Vv C2(c) +4D(c)d1 > 2 [ dy ’
D(c)

42(C(c)) — 41(C(c)) = DO

using a similar argument as that in Lemma 3.5, we can obtain

i < —%)
2/D(O)d;

Suppose that, satisfies (2.6) and, — ¢, butC(c,) does not converge 6(c), then there

exists a subsequeneg, — ¢ so thatC(c,,) — b # C(c). By the Arzela—Ascoli theorem,
we can choose a subsequencécf}, also denoted byc,, }, such thatVC”k (.) converges

to a continuous functio () in R. Let H* = sug|c,|}- Sincchnk(-) is non-decreasing,
Ve, (0) = F(u) and by (A.3) and (A.4) in the Appendix ¢8], there exist a small positive
constant,, two large positive constanfg* and L*, which are independent afandt so
that

Ve, (X) < F () — Ox Ifx< —M"—L*H*t1< — M* — L¥|cy, |1,
and

Ve, (X) 2 F () — O0x fxZ>M*+ L*H*t>M" 4 L¥|c,, 1.
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It then follows thatV (-) is non-decreasing,QV (-) < vmax and

lim sup V(x) < F(ii) — 0y, lim inf V(x) = F(it) — .
xX—

X—>—00

In Eq. (4.9) withcbeing replaced by, , we letc — oo and apply the dominant convergence
theorem to get

1
D(c)(42(b) — 41(D))

4 ) 0o V
x [ / 1O g (V) (s) ds + / 2O g (V) (s) ds} :
- ¢

V() =

e e]

which means thaV (x + bt) is also a solution of (4.1). But for the given parametgby
the uniqueness of travelling wavefront of Eq. (4.1) we obtain that C(c), which is a
contradiction. This completes the proof]

Theorem 4.1. Assume that r satisfies
D —r?Co>0. (4.10)

Then(1.3) admits a strictly monotonic travelling wavefrofit (x + ¢*t), F(V)(x + ¢*1))
with |¢*| < Co, whereCy is provided in Lemmd.1.

Proof. By (4.10), we know that for anysatisfying|c| < Cp, (2.6) and (2.7) hold. Therefore,
we have from Lemma 4.2 that there exists a strictly monotonic travelling wavefrgnt+
C(o)t), F(V)(x + C(c)t)) for Eq. (4.1). Next we will show that there exists at least ohe
so thatC(c*) = ¢* and|c*| < Cop.

Tothis end, it suffices to prove that the curvesc andy =C(c) have atleast one common
pointin region|y| < Cop of the(c, y) plane. For <0, letv; (¢, x) be the subsolution of (4.1)
givenin Lemma4.1. Then there exists a large positive conXtanth that/ (-) > v; (0, - —
X). Therefore, by the comparison, it follows tHatx + C(c)r) >v_(z,x — X) forall >0
andx € R.Hence by the choice of (lettingdé™ — 0), itis easy to deduce th&t(c) > — Co.
Similarly, we can show thaf' (¢) < Cq for ¢ > 0. We know from Lemma 4.2 thd(c) is a
continuous function ot for any |c| < Co < /D/r. Thus by (4.10) we conclude that there
is at least one common point so thatC(c*) = ¢* in the region|c| < Co < +/D/r and
|y| < Co. This completes the proof.[]
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