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Abstract. Many optimization based clustering algorithms suffer from
the possibility of stopping at locally optimal partitions of data sets. In
this paper, we present a genetic k-Modes algorithm(GKMODE) that
finds a globally optimal partition of a given categorical data set into a
specified number of clusters. We introduce a k-Modes operator in place
of the normal crossover operator. Our analysis shows that the clustering
results produced by GKMODE are very high in accuracy and it performs
much better than existing algorithms for clustering categorical data.

1 Introduction

As a primary tool of data mining, cluster analysis divides data into meaning-
ful homogeneous groups. Many clustering algorithms have been proposed and
studied[TL2,BL4], and optimization (minimizing an object function) has been
among popular approaches. Unfortunately, some optimization based clustering
algorithms, such as the k-Means algorithm[5] and the k-Modes algorithm[6], may
stop at a local minimum of the optimization problem.

To be more precise, let us consider a given database D = {x1,xa,...,z,}
with n objects each described by d categorical variables. Chaturvedi et al.[q]
formulated the k-Modes algorithm to be a bilinear clustering model as:

Xnxd = WhnxkZixa + error, (1)

where X is the data matrix (z;;) (2;; is the j-component value of x;), W is a
binary membership matrix of n objects in £ mutually exclusive, non-overlapping
clusters(the (i, 7) entry of W is 1 if @; is in the jth cluster, 0 if otherwise), and
Z is a matrix of modes(the (j,1) entry of Z is the mode of the jth cluster in the
Ith dimension). Note that a mode is the most likely value while a center is the
mean. For example, the mode of (1,1,1,0) is 1, while the center of (1,1,1,0) is
0.75. The data matrix X in Equation () is known, whereas both W and Z are
unknown and they are estimated iteratively to minimize an L,-norm based loss

n d
function L, = Y > |xi; — @45|P, where z;; and Z;; are the (4, j)th entry of X
i=1j=1

and X = WZ. Note that in the limiting case as p — 0, the L,-norm based loss
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function becomes the simple matching distance[7]. The k-Modes algorithm starts
with an initial Z, and then iterates between estimating W given the estimates
of Z and estimating Z given the estimates of W. This process is repeated until
two successive values of the Lg loss function are equal.

Some difficulties are encountered while using the k-Modes algorithm. One
difficulty is that the algorithm can only guarantee a locally optimal solution[6].
To find a globally optimal solution for the k-Modes algorithm, genetic algorithm
(GA)[8], originally introduced by Holland[9], has been used. In GA’s, the param-
eters of the search space are encoded in the forms of strings called chromosomes.
A GA maintains a population(set) of N coded strings for some fixed population
size N and evolves over generations. During each generation, three genetic op-
erators, i.e. natural selection, crossover and mutation, are applied to the current
population to produce a new population. Each string in the population is associ-
ated with a fitness value depending on the value of the objective function. Based
on the principle of survival of the fittest, a few strings in the current population
are selected and each is assigned a number of copies, and then a new generation
of strings are yielded by applying crossover and mutation to the selected strings.

GAs have been successfully applied to clustering[I0,[11]. In particular, Kr-
ishna and Murty proposed a genetic k-Means algorithm(GKA)[12]. This GKA,
incorporating GA into the k-Means algorithm, is very effective in recovering the
inherent cluster structures and searches faster than some other evolutionary al-
gorithms used for clustering. Unfortunately, GKA works only for numerical data
sets. In the present paper, we develop a genetic clustering algorithm (called GK-
MODE) by integrating a k-modes algorithm[6] introduced by Chaturvedi et al
and the genetic algorithm. We must emphasize here that GKMODE is inspired
by the GKA, but focuses on clustering categorical data.

2 The Genetic k-Means Algorithm

The GKA[12] is a hybrid clustering algorithm that integrates the k-Means algo-
rithm and GA’s. GKA is similar to the conventional GA’s except that it uses the
k-Means operator(KMO), one step k-Means, instead of the crossover operator.
Hence GKA retains the best features of GA’s and is efficient for clustering.

Denote by D = {1, xs, ..., @, } a set of n objects with d numerical attributes.
(note that we used D as a categorical data set in Section[I]). Let Cy, Cs, ..., Cy be
k mutually exclusive, non-overlapping clusters of D and let w;; = 1 if x; € Cj,
0 if otherwise, for i = 1,2, ...,n and j = 1,2,..., k. Then the matrix W = (w;;)
has the following properties:

k
w;; € {071} and Zwij =1. (2)
j=1
. n d
Let the within-cluster variation of C;j be SU) (W) = 3 wi; 3 (w4 — 2;1), and
i=1 =1

the total within-cluster variation, also called squared Euclidean(SE) measure, be
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ko d
SW) =S SU(W) = Z Z (s Z (@it — zj1), where z;; is the I-th component
Jj=1 Jj=1li=1
of object x;, and zj;; is the I-th component of z;, the center of C; defined as

zj = <Z wwxvl) / (Z ww> for I = 1,2,...,d. The objective is to find W* =
(wj;) such that S(W*) = mV[lfnS( ).

In GKA, the search space consists of all the matrices that satisfy (@)). A
matrix W is encoded as a string sy of length n such that sy (i) = j if object
x; belongs to the jth cluster. The initial population P(0) is selected randomly.
To avoid illegal strings, i.e. partitions with empty clusters, | % | randomly chosen
data points are assigned to each cluster and the rest of the points are assigned
to randomly chosen clusters.

The selection operator randomly selects a chromosome from the previous pop-

N
ulation according to the distribution given by P(s;) = F(s;)/ > F(s;), where
i=1

N is the population size, F'(s;) represents fitness value of the s_tring s; in the
population and is defined by

0, otherwise,

where f(sw) = —S(W), f and o denote the mean and standard deviation of
f(sw) in the current population, respectively, ¢ is a constant between 1 and 3.

The mutation operator changes an allele value depending on the distance
between the cluster center and the corresponding data point. To apply the
mutation operator to the allele sy (i) corresponding to object x;, for exam-
ple, the sy (i) is replaced with a value chosen randomly from the distribution:

pj = P(sw (i) = j) = (cmdmaz — d;)/ <kcm maz — Z dl>, where d; is the Eu-
clidean distance between x; and zj, ¢, > 1 and dmax = lrgjaéc dj. To avoid
empty clusters, an allele is mutated only when d,, ;) > 0.

KMO is just one step of the k-Means algorithm: (a) calculate Z for the given
matrix W; (b) form W by reassigning each data point to the cluster with the
nearest center. KMO may result in illegal strings, which can be avoided by some
techniques, such as placing in each empty cluster an object from the cluster
with maximum within-cluster variation. Lu et al. (2004) proposed a fast genetic
k-Means algorithm(FGKA)[I3] in which illegal strings are permitted. Using the
finite Markov chain theory, GKA is proved to converge to the global optimum.

3 GKMODE

GKMODE is similar to GKA except that k-Modes Operator is used instead of
KMO and, most important, illegal strings are permitted. As in GKA, GKMODE
has five basic elements: coding, initialization, selection, mutation and k-Modes
Operator. The search space is the space of all binary membership matrices W
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that satisfy ([@). Coding in GKMODE is exactly the same as in GKA. The initial
population P(0) is randomly generated as in FGKA[I3]. We now describe the
genetic operators used in GKMODE in detail.

3.1  The Selection Operator

To describe the selection operator, let us start with the definition of fitness
value of a string. The fitness value of a string sy, depends on the value of the
loss function Lo(W), the limiting case of L,(W) as p — 0. Since the objective
is to minimize the loss function Lo(WV), a string with relatively small loss must
have relatively high fitness value. In addition, illegal strings are less desirable
and should be assigned low fitness values. As in [I3], we defined the fitness value
F(sw) of a string sy as follows,

| eLiaz — Lo(sw), if sw is legal;
Flsw) = {e(sW)me, otherwise, (3)

where c is a constant in the interval (0,3), Ly, is the maximum loss of strings
in the current population, Fj,;, is the smallest fitness value of the legal strings
in current population if it exists, otherwise it is defined as 1, and e(sw ) is the
legality ratio defined as the ratio of the number of non-empty clusters in sy
over k(so that e(sy) =1 if sy is legal).

The selection operator randomly selects a string from the current population

N
according to the distribution given by P(s;) = F(s;)/>. F(s;), where N is
j=1

the population size. The population of the next generation is determined by N
independent random experiments, i.e. apply the selection operator N times.

3.2 The Mutation Operator

In GKMODE, mutation changes a string value based on the distances of the
cluster mode from the corresponding data point. It performs the function of
moving the algorithm out of a local minimum. The closer a data point to a
cluster mode, the higher the chance of changing the data point to that cluster.

Precisely, let sy be a solution string and let z1, zs,..., 2, be the cluster
modes corresponding to sy. During mutation, the mutation operator replaces
sw (%) with a cluster number randomly selected from {1, 2, ..., k} according to the

k
distribution: p; = [¢mdmaz(€:) — (x4, 25)]/ D [€mdmaz (i) — d(x;, 21)], where

¢m > 1 is a constant, d(x;, zj) is the simple matching distance between ax; and
zj, and dpgz(®;) = 1@a§kd($ivzj)- As in FGKA[I3], d(x;,z;) is defined as
J

0 if the jth cluster is empty. In general, mutation occurs with some mutation
probability P, specified by users. By applying the mutation operator, an illegal
string may be converted to a legal one and a data point is moving towards a
closer cluster with a higher probability.
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3.3 The k-Modes Operator

In GKA, KMO is used in place of the crossover operator in order to speed up
the convergence process. In GKMODE, the k-Modes operator, one step of the
k-Modes algorithm[6], is introduced for the same reason. Let sy be a solution
string, k-Modes operator on sy which yields sy;, consisting of the following two
steps: (a) Estimate Z: Given estimates of W, the mode matrix Z is determined
as follows. The (j,1) entry z;; of Z should be the mode of (z; : € C}), where z;
is the l-component of ¢ and C; = {z; : sw (i) = j, 1 <¢ < n}. The mode matrix
Z formed above optimizes the Ly loss function[f]. (b) Estimate W: Given
estimates of Z, the binary membership matrix W is determined as follows. The

loss function Lo(W) can be written as Lo(W) = Y fi, where f;(1 < ¢ < n)
i=1

d
is defined as f; = > 0(xij, 25, ();) (0(z,y) = 0if x = y, 1 otherwise.). Note
j=1

that f; is a function only of sy (¢). Thus to minimize Lo, one can separately
minimize f; with respect to parameter sy (i) for i = 1,2,...,n. Since sy (i) has
only k possible values, i.e. {1,2,...,k}, we can try all these k values and select

d
the value that minimizes f;, i.e. sy (i) = arg 1rélli£1k >~ d(wij, z15). To account for

illegal string, we define 6(z;;,2;) = +oo if the Ith cluster is empty[I3]. This
new definition here is introduced in order to avoid reassigning all data points
to empty clusters. Thus illegal strings remain illegal after the application of
k-Modes operator.

4 Experimental Results

GKMODE and the k-Modes algorithm are both coded in Matlab scripting lan-
guage. Since Matlab is quite slow for loops, GKMODE is also coded in C++
programming language. Our experiments were conducted on a PC with 2.2 Hz
CPU and 512M RAM.

4.1 Data Sets

The soybean disease data[I4] is used to test our algorithm. We choose this data
set to test for the algorithm for three reasons. First, all attributes of the data
set can be treated as categorical; Second, the true clustering of the data set
is known; Third, the value of the objective function corresponding to the true
clustering is the global minimum.

We also tested the algorithm on the Mushroom data, the Congress Voting
data and the Zoo data[l4]. The true clusterings of the Congress Voting data and
the Zoo data have objective function values 1988 and 149, respectively, while the
clusterings produced by GKMODE(with parameters G,q, = 10, P, = 0.4, N =
10) have objective function values 1701 and 132, respectively. The Mushroom
data is big, and the algorithm did not stop in 5 hours. Due to the space limit,
the results for these three data sets are not presented here.
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4.2  Clustering Quality Measures

We used the corrected Rand index[I5] to assess the recovery of the underly-
ing cluster structure. Let D = {x1,@s,...,x,} be a data set, and let P =
{C1,Cy, ..., Ck, } and P' = {C],C5,...,Cp, } be two clusterings of D. Denote
by ni; the number of points simultaneously in C; and C]/., ie. ny; =1C; N C§|,
then the corrected Rand index is defined as

RIS OR TEE
GRE) L] EDED

The corrected Rand index 7 ranges from 0 when the two clusterings have
no similarities(i.e. when one consists of a single cluster containing the whole
data set and the other only clusters containing single points), to 1 when the two
clusterings are identical. Since we know the true clustering of the data set, the
true clustering and the resulting clustering are used to calculate ~.

4.3 Results

In the following tests, we select the constants ¢ = 1.5, ¢, = 1.5 and the input
number of clusters k = 4 for GKMODE. We tested the algorithm for different
values of the following parameters: mutation probability P,,, population size N
and maximum number of generations G, qz-

To compare the k-Modes algorithm and GKMODE, we run each of them 100
times. All objects are correctly clustered into the 4 given clusters by GKMODE
for these 100 runs. The average clustering accuracy of GKMODE is 100%. How-
ever, the average clustering accuracy of the k-Modes algorithm is about 71% and
the number of correct clusterings is 26 out of 100. The results show that the GK-
MODE produces a more accurate clustering result than the k-Modes algorithm.
GKMODE is also better than the tabu search based k-Modes algorithm[I6], in
which the number of correct clusterings is 67 out of 100.

Table [I] gives the clustering results of GKMODE under different sets of pa-
rameters. For each set of the parameters (N, P, Gpmaz), GKMODE is ran 100
times. In these tests, we choose a wide range of the mutation probability, and we
see from the table that the average clustering accuracy of GKMODE is above
88% and the number of correct clusterings is at least 49 out of 100. Because of
the limit of the number of generations, the algorithm stops before achieving the
global optimum in some cases. Even in the worst case, GKMODE is better than
the k-Modes algorithm.

From Table [I, we have following observations: (a) When N and G4, are
fixed, the average clustering accuracy tends to decrease when the mutation prob-
ability P, increases except for some cases. (b) When N and P, are fixed, the
average clustering accuracy increases when the maximum number of generations
increases except for two cases. This makes sense. But larger values of Gaz
make the algorithm run longer. Therefore, there is a trade-off between the run-
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Table 1. Clustering results of GKMODE for different parameters, the algorithm runs
100 times for each parameter setting. The input number of clusters is 4. 7 is the average
accuracy, Ny=1.0 is the number of runs that v = 1.0

N Pn Guna 7 Ny=10 | N Pn Gmaz 7 Ny=1.0

10 0.2 5 0.9982 99 20 02 5 1.0 100
0.2 10 0.9988 99 0.2 10 1.0 100
03 5 0.9962 95 03 5 1.0 100
0.3 10 1.0 100 0.3 10 1.0 100
04 5 0.9212 59 04 5 1.0 100
0.4 10 1.0 100 0.4 10 0.9995 99
05 5 0.9013 56 05 5 1.0 100
0.5 10 1.0 100 0.5 10 1.0 100
06 5 0.8868 52 06 5 1.0 100
0.6 10 1.0 100 0.6 10 0.9977 99
0.7 5 0.9785 76 0.7 5 0.9962 96
0.7 10 0.9994 99 0.7 10 0.9973 99
0.8 5 0.9344 49 0.8 5 0.9673 71
0.8 10 0.9863 86 0.8 10 0.9961 94

Average Optimal Corrected Rand Index

jective Function Value

Average Optimal Obj

3
-

3

g

8

Generation

Fig. 1. Average optimal corrected rand index changes(Left) and Average optimal ob-
jective function value changes(Right) over generations for 100 runs

ning time and the maximum number of generations. (¢) When P, and Ga.
are fixed, the average clustering accuracy of a relatively large population size N
is in general higher than that of a relatively small population size N.

We also study the average convergence of the clustering accuracy and the
objective function value over generations for two different mutation probabil-
ities. In both cases, GKMODE converges very fast to the extent that it will
reach the global optimal clustering in five generations. The convergence of clus-
tering accuracy and the convergence of objective function value are shown in

Figure [
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Conclusions

We have introduced the genetic k-Modes algorithm(GKMODE) for finding a
globally optimal partition of a given categorical data set into a specified number
of clusters. This incorporates the genetic algorithm into the k-Modes algorithm,
and our experimental results show that GKMODE is very effective in recovering
the underlying cluster structures from categorical data if such structures exist.
Note that GKMODE requires the number of clusters k as an input parameter,
how to incorporate validity indices for selecting k& into GKMODE remains an
interesting and challenging problem.
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