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Abstract

We consider a delayed network of two neurons with both self-feedback and interaction described by an all-or-none threshold
function. The model describes a combination of analog and digital signal processing in the network and takes the form of a system
of delay differential equations with discontinuous nonlinearity. We show that the dynamics of the network can be understood in
terms of the iteration of a one-dimensional map, and we obtain simple criteria for the convergence of solutions, the existence,
multiplicity and attractivity of periodic solutions.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the following model for an artificial network of two neurons{
ẋ = −µx + a11f (x(t − τ)) + a12f (y(t − τ)),

ẏ = −µy + a21f (x(t − τ)) + a22f (y(t − τ)),
(1)

whereẋ = dx/dt, x(t) andy(t) denote the state variables associated with the neurons,µ > 0 is the interact decay
rate,τ > 0 is the synaptic transmission delay,a11, a12, a21 anda22 are the synaptic weights, andf : R → R is the
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activation function. Such a model describes the evolution of the so-called Hopfield net[6,7,15]where each neuron
is represented by a linear circuit consisting of a resistor and a capacitor, and where each neuron is connected to
another via the nonlinear activation functionf multiplied by the synaptic weightsaij(i �= j). We also assume that
each neuron has self-feedback and signal transmission is delayed due to the finite switching speed of neurons.

We focus here on the computational performance described by the asymptotical behaviors of model(1), where
the signal transmission is of digital nature: a neuron is either fully active or completely inactive. Namely, the signal
transmission is of McCulloch–Pitts type[8–10,16,17,21]and we have

f (ξ) =
{

−δ, if ξ > 0,

δ, if ξ ≤ 0,
(2)

whereδ > 0 is a given constant. Therefore, the model describes a combination of analog and digital signal processing.
Differential equations of this type usually occur in control systems, e.g., in heating systems and the pupil light reflex,
if the controlling function is determined by a constant delayτ > 0 and the switch recognizes only the positions “on”
[f (ξ) = δ] and “off” [ f (ξ) = −δ]. Because each variable changes continuously but depends on the signs of other
variables, such a system retains a continuous-time framework and can be proposed as a useful simplification to
gain analytical insight (see, for example[4]). In addition, a rather confusing variety of names have been applied to
this system, such as “Glass networks”(see, for example[4,5]), “piecewise-linear equations”, “switching networks”,
“nonlinear chemical reaction networks”, “gene networks”, “Boolean kinetic equations” and variants of these. Here
we avoid this confusion by calling it “McCulloch–Pitts networks”. By the discontinuous nonlinearity, the differential
equation allows detailed analysis. It turns out that there is a rich solution structure. To simplify our presentation, we
first rescale the variables by

t∗ = µt, τ∗ = µτ, x∗(t∗) = µ

δ
x(t), y∗(t∗) = µ

δ
y(t), f ∗(ξ) = 1

δ
f

(
δ

µ
ξ

)
,

and then drop the∗ to get{
ẋ = −x + a11f (x(t − τ)) + a12f (y(t − τ)),

ẏ = −y + a21f (x(t − τ)) + a22f (y(t − τ))
(3)

with

f (ξ) =
{

−1, if ξ > 0,

1, if ξ ≤ 0.
(4)

It is natural to have the phase spaceX = C([−τ,0]; R2) as the Banach space of continuous mappings from
[−τ,0] to R

2 equipped with the sup-norm, see[13]. Note that for each given initial valueΦ = (ϕ,ψ)T ∈ X,
one can solve system(3) on intervals [0, τ], [τ,2τ], . . . successively to obtain a unique mapping (xΦ, yΦ)T :
[−τ,∞) → R

2 such thatxΦ |[−τ,0]= ϕ,yΦ |[−τ,0]= ψ, (xΦ, yΦ)T is continuous for allt ≥ 0, piecewise differentiable
and satisfies(3) for t > 0. This gives a unique solution of(3) defined for allt ≥ −τ. In applications, a network
usually starts from a constant (or nearly constant) state. Therefore, we shall concentrate on the case where each
component ofΦ has no sign change and has at most finitely many zeros on [−τ,0]. More precisely, we consider
Φ ∈ X+,+ ⋃

X+,− ⋃
X−,+ ⋃

X−,− = X0, where

C± = {±ϕ; ϕ : [−τ,0] → [0,∞) is continuous and has only finitely many zeros on [−τ,0] }
and

X±,± = {Φ ∈ X; Φ = (ϕ,ψ)T, ϕ ∈ C± andψ ∈ C±}.
Clearly, all constant initial values (except for 0) are contained inX0.



34 S. Guo et al. / Physica D 206 (2005) 32–48

Obviously, the synaptic weights have a fundamental effect on the dynamics of the networks. For a particular
connection topology, Guo and Huang[8] have shown that all solutions starting from nonoscillatory initial states
will be eventually synchronized and stabilized at a unique limit cycle, and hence such a network can be used as a
synchronized oscillator. In this paper, however, we consider the following connection topology:

(H1). a11 + a12 = 0, a11 > 0; a21 < 0, a21 < a22 ≤ −a21.

In other words, we assume that the self-feedback to neuron 1 is inhibitory, the interaction from neuron 2 to neuron
1 is excitatory and this self-feedback and interaction have equal weights. We also assume that the interaction from
neuron 1 to 2 is excitatory, but the self-feedback weight is denominated by the interaction.

By using(4) and some simple changes of variables, we can see that the semiflow defined by system(3) under
the condition(H1) is topologically equivalent to that of(3) and (4)while one of the following two conditions is
satisfied:

(H2). a11 = a12 > 0; a21 > 0,−a21 < a22 ≤ a21;

(H3). a12 < 0, a12 < a11 ≤ −a12; a21 = −a22 < 0.

Despite the low number of units, two-neuron networks with delay often display the same dynamical behaviors as
large networks and, can thus be used as prototypes for us to understand the dynamics of large networks with delayed
feedback. Much has been done when the functionf is smooth, see for example[1–3,11,12,22,24,28,29]. Whenf is
discontinuous, however, results in the aforementioned work can not be verified as the dynamical systems theory
which usually requires the continuity and smoothness of nonlinear functions involved. Recently, in[8,16,17,23],
model Eq.(1) with piecewise constant activation was studied when the synaptic connection topology satisfies
either [|a12| < a11, |a22| < a21,a11a22 − a12a21 = 0], or [a11 = a22 = 0,a12 = a21 = 1], or [a11 = a22 = 0,a12 =
−a21 = 1]. Here, we consider only the case where(H1) is satisfied, and we will show that the dynamics of model
Eq.(1) is quite regular, and is fully determined by the size of the parameters of the system and the ratioϕ(0)/ψ(0)
of the initial value, via the connection with the interaction of a one-dimensional map.

2. Preliminary results

In this section, we establish several technical lemmas which will be used for the description of the dynamics of
(3) under the condition(H1).

First, we further rescale variables in(3) by

u(t) = x(t)

a11 − a12
, v(t) = y(t)

a22 − a21
, B = a21 + a22

a21 − a22
.

Then the rescaled variables satisfy

u̇ = −u+ 1

2
f (u(t − τ)) − 1

2
f (v(t − τ)),

v̇ = −v− 1 + B

2
f (u(t − τ)) + 1 − B

2
f (v(t − τ)).

(5)

The discontinuity offmakes it difficult to apply directly dynamical system theory to system(5). But, the simple
form of (5) and (4)enables us to carry out a direct elementary analysis of the dynamics of the network due to its
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obvious connection with the following systems of linear nonhomogeneous ordinary differential equations:{
u̇ = −u,

v̇ = −v+ B;
(6)

{
u̇ = −u+ 1,

v̇ = −v− 1;
(7)

{
u̇ = −u,

v̇ = −v− B;
(8)

{
u̇ = −u− 1,

v̇ = −v+ 1.
(9)

For the sake of simplicity, in the remaining part of this paper, for a givens ∈ [0,∞) and a continuous function
z: [−τ,∞) → R, we define a mappingzs : [−τ,0] → R by zs(θ) = z(s + θ) for θ ∈ [−τ,0].

First, we have the following observation:

Lemma 2.1. If (u(t), v(t))T is a solution of system(5)with initial valueΦ = (ϕ,ψ)T ∈ X0, then the solution of(5)
with the initial valueΦ = (−ϕ,−ψ)T ∈ X0 is (−u(t),−v(t))T.

Lemma 2.1means that it suffices to investigate the asymptotical behaviors of solutions of system(5) with initial
valueΦ ∈ X0 satisfyingϕ(0) + ψ(0) ≥ 0. In what follows, let (u(t), v(t))T be a solution of(5) with initial value in
X0. For now we make an observation that we will need several times later.

Lemma 2.2. If there exists somet0 ≥ 0 such that(ut0, vt0)T ∈ X−,+ and thatϕ(t0) + ψ(t0) ≥ 0, then the first zero
of u(t) · v(t) in [t0,∞) is t1 = t0 + ln(1 − u(t0)). Moreover, we haveu(t1) = 0 and v(t1) = (u(t0) + v(t0))/(1 −
u(t0)) ≥ 0.

Lemma 2.3. If there exists somet0 ≥ 0 such that(ut0, vt0)T ∈ X+,− andu(t0) + v(t0) > 0, then either

(i) there exists somet∗0 ≥ t0 such that(ut, vt)T ∈ X+,+ for t ≥ t∗0 + τ; or
(ii) there exists somet∗0 ≥ t0 such that(ut∗0+τ, vt∗0+τ)T ∈ X−,+ andu(t∗0 + τ) + v(t∗0 + τ) > 0.

Proof. We distinguish two cases.

Case 1.[1 + u(t0)]/[1 − v(t0)] ≥ eτ . From(5) and (ut0, vt0)T ∈ X+,−, (u(t), v(t))T satisfies(9) for t ∈ (t0, t0 + τ).
By the continuity of solutions, fort ∈ [t0, t0 + τ], we have

u(t) = (u(t0) + 1) et0−t − 1, v(t) = (v(t0) − 1) et0−t + 1. (10)

Let t1 be the first zero ofu(t) · v(t) in [t0,∞). Then(10)holds for allt ∈ [t0, t1 + τ]. On the other hand,u(t) · v(t) = 0
implies

t = t0 + ln(1 + u(t0)) or t = t0 + ln(1 − v(t0)).

In view of u(t0) + v(t0) > 0, we have

t1 = t0 + ln(1 − v(t0)).
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This, together with(10), implies that

u(t1 + τ) = 1 + u(t0)

1 − v(t0)
e−τ − 1 ≥ 0, v(t1 + τ) = 1 − eτ > 0.

Moreover, it is easy to see that (ut1+τ, vt1+τ)T ∈ X+,+.

Case 2.1 < [1 + u(t0)]/[1 − v(t0)] < eτ . Using a similar argument, we get

u(t1 + τ) = 1 + u(t0)

1 − v(t0)
e−τ − 1 < 0 and v(t1 + τ) = 1 − eτ > 0.

Note thatu(t0) < 0 and(10)holds, we have somet2 ∈ [t1, t1 + τ] such thatu(t2) = 0. In fact, by(10), we have

t2 = t0 + ln(1 + u(t0)),

and we can easily show thatu(t − τ) > 0 andv(t − τ) > 0 for t ∈ (t1 + τ, t2 + τ). Therefore, (u(t), v(t))T satisfies
(6) for t ∈ (t1 + τ, t2 + τ). Thus, fort ∈ [t1 + τ, t2 + τ], we have

u(t) = u(t1 + τ) et1+τ−t =
[

1 + u(t0)

1 − v(t0)
e−τ − 1

]
et1+τ−t ,

v(t) = [v(t1 + τ) − B] et1+τ−t + B = (1 − eτ − B) et1+τ−t + B.

(11)

It follows that

u(t2 + τ) = e−τ − 1 − v(t0)

1 + u(t0)
< 0,

v(t2 + τ) = (1 − e−τ − B) · 1 − v(t0)

1 + u(t0)
+ B > 0,

and hence

u(t2 + τ) + v(t2 + τ) = (B + e−τ)

[
1 − 1 − v(t0)

1 + u(t0)

]
= (B + e−τ)

u(t0) + v(t0)

1 + u(t0)
> 0.

From(10) and (11), it is easy to see that (ut2+τ, vt2+τ)T ∈ X−,+ andu(t2 + τ) + v(t2 + τ) > 0. �

By Lemma 2.3, in order to discuss the asymptotical behaviors of (u(t), v(t))T with initial value Φ ∈ X+,−
satisfyingϕ(0) + ψ(0) > 0, it is sufficient to investigate the limiting behaviors of solution (u(t), v(t))T ast → ∞
for any initial valueΦ ∈ X+,+ ⋃

X−,+ satisfyingϕ(0) + ψ(0) > 0.
For the sake of convenience, we introduce two parametersM andmas follows

M = (1 − e−τ)

(
eτ − B

B + 1

)
, m = 1 − e−τ

B + e−τ
.

In Section3, we will show that the dynamics of the network can be understood in terms of the iteration of function
F given by
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F (x) =



f1(x), if x ∈ (m,M),

f2(x), if x ∈ (0,m],

0, if x = 0,

(12)

where

f1(x) = B(B + e−τ)(eτ + 1)x + B(eτ − 1)(B − 1)

(B eτ − B − 1)x + (1 + 3B)(eτ − 1) + B e−τ
, (13)

and

f2(x) = (B + e−τ)2x

(2 − 2 e−τ − B)x + (2 − e−τ)2
. (14)

Thus, we need to investigate the properties of functionF. Obviously,f1(x) defined on (m,M) is continuous,
monotonically increasing, and satisfies

x − f1(x) = g(x)

(B eτ − B − 1)x + (1 + 3B)(eτ − 1) + B e−τ
,

where

g(x) = (B eτ − B − 1)x2 + [(1 + 3B)(eτ − 1) + B e−τ − B(B + e−τ)(eτ + 1)]x − B(B − 1)(eτ − 1).

It is an easy exercise to show thatx − f1(x) andg(x) have the same sign on (m,M). Obviously,y = g(x) is a
quadratic function with respect tox. Moreover,

g(−B) = 2B2 eτ [B + 2(e−τ − 1)], g(M) = B(eτ − 1)

(B + 1)2
· h(B),

where

h(B) = B3(e−τ − 1 − eτ) + B2(e2τ − 3eτ + e−τ + e−2τ − 3)

+B(2 e2τ − eτ + e−2τ − 4) + e2τ + eτ − e−τ − 1.

Our motivation here is to determine the sign ofg(x) on (m,M) by investigating the properties of its graph. Thus, it
is necessary to consider the zeros of the cubic functionh(B). In fact, we have

Lemma 2.4. The polynomialh(B) has one and only one positive zero. Moreover, if τ < ln 2, then the positive
zero, denoted byB∗

1, belongs to(0,2(1− e−τ)); and if τ ≥ ln 2, then the positive zero, denoted byB∗
2, belongs to

[2(1 − e−τ),∞).

Proof. Assume that the three zeros ofh(B) areλ1, λ2 andλ3, respectively. Then

λ1 + λ2 + λ3 = e2τ − 3 eτ + e−τ + e−2τ − 3

eτ + 1 − e−τ
, λ1 · λ2 · λ3 = e2τ + eτ − e−τ − 1

eτ + 1 − e−τ
> 0,

λ1 · λ2 + λ2 · λ3 + λ3 · λ1 = −2 e2τ − eτ + e−2τ − 4

eτ + 1 − e−τ
.

If τ < ln 2, thenλ1 + λ2 + λ3 < 0. It is easy to know that one ofλ1, λ2 andλ3 must have a negative part. This,
together withλ1 · λ2 · λ3 > 0, implies that one and only one ofλ1, λ2 andλ3 is positive, denoted byB∗

1. Using
the fact thath(2(1− e−τ)) < 0 and thath(0) > 0, we haveB∗

1 ∈ (0,2(1− e−τ)). On the other hand, ifτ ≥ ln 2,
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thenλ1 · λ2 + λ2 · λ3 + λ3 · λ1 < 0. Therefore, one ofλ1, λ2 andλ3 must have a negative part. This, together with
λ1 · λ2 · λ3 > 0, implies that one and only one ofλ1, λ2 andλ3 is positive, denoted byB∗

2. In view ofh(2(1− e−τ)) ≥
0, we haveB∗

2 ∈ [2(1 − e−τ),∞). �
Now, by means of the properties of parabolay = g(x), we distinguish several cases to discuss the sign ofg(x)

on (m,M).

Case 1. B = 2(1− e−τ). It follows from the definition ofg(x) that g(m) = 0 andg(−B) = 0. If τ > ln 2 (or
τ < ln 2), thenB > 1 (resp.B < 1) and henceB eτ − B − 1 > B − 1 > 0 (resp.B eτ − B − 1 < B − 1 < 0). Thus,
the parabolay = g(x) is open upward (resp.downward). Notice thatm < M, theng(x) > 0 (resp.g(x) < 0) for
x ∈ (m,M). If τ = ln 2, thenB = 1 and henceg(x) = 0 for all x ∈ (m,M).

Case 2.0 ≤ B < 2(1− e−τ) andτ ≥ ln 2. It is easy to see thatg(m) > 0 andg(−B) < 0. If B > 1/(eτ − 1), then
the parabolay = g(x) is open upward, andx = −B lies between the two zeros. Asg(m) > 0, x = m lies to the
right of the right zero. Hence,g(x) > 0 for all x ∈ (m,M). If B < 1/(eτ − 1), then the parabolay = g(x) is open
downward, and the two zeros are separated by the linex = m. Fromh(0) > 0 andh(1/(eτ − 1)) > 0 and the fact
thath(B) has one and only one positive zero, it follows thath(B) > 0 for B ∈ (0,1/(eτ − 1)). That is,g(M) > 0.
Therefore,g(x) > 0 for x ∈ (m,M).

Case 3.0 ≤ B ≤ B∗
1 andτ < ln 2. In view ofLemma 2.4, we haveBeτ − B − 1 < B − 1 < 0, which implies that

the parabolay = g(x) is open downward, and that the two zeros are separated by the linex = m. By the definition
of B∗

1 in Lemma 2.4, h(B) ≥ 0 for allB ∈ [0, B∗
1]. That is,g(M) ≥ 0. Therefore,g(x) > 0 for x ∈ (m,M).

Case 4.B∗
1 < B < 2(1− e−τ) andτ < ln 2. Using a similar argument as above, we have that the parabolay = g(x)

is open downward. By the definition ofB∗
1,h(B) < 0. Namely,g(M) < 0. This, together with the fact thatg(m) > 0,

implies that the right zero ofg(x), denoted byx∗
1, lies betweenx = mandx = M. Therefore,g(x) > 0 forx ∈ (m, x∗

1)
andg(x) < 0 for x ∈ (x∗

1,M).

Case 5.B > 2(1− e−τ) andτ ≤ ln 2. By some simple computation, we haveg(m) < 0 andg(−B) > 0. If B >

1/(eτ − 1), then the parabolay = g(x) is open upward. In view ofLemma 2.4and the fact that 1/(eτ − 1) ≥
2(1− e−τ), we haveh(B) < 0. Namely,g(M) < 0. Thus, bothx = m andx = M lie between the two zeros of
g(x). Therefore,g(x) < 0 for all x ∈ (m,M). If 2(1 − e−τ) < B < 1/(eτ − 1), then the parabolay = g(x) is open
downward and its two zeros are separated by the linex = −B. In view of g(m) < 0, we haveg(x) < 0 for all
x ∈ (m,M).

Case 6.2(1− e−τ) < B < B∗
2 andτ > ln 2. It is easy to see thatg(m) < 0, g(−B) > 0 andh(2(1− e−τ)) > 0.

Then, by the definition ofB∗
2, we obtainh(B) > 0, i.e.,g(M) > 0. Thus, the right zero ofg(x), denoted byx∗

2, lies
betweenx = m andx = M. Moreover,g(x) < 0 for x ∈ (m, x∗

2) andg(x) > 0 for x ∈ (x∗
2,M).

Case 7.B ≥ B∗
2 andτ > ln 2. By the definition ofB∗

2, we haveh(B) ≤ 0. Namely,g(M) ≤ 0. Thus, bothx = m

andx = M lie between the two zeros ofg(x). Therefore,g(x) < 0 for all x ∈ (m,M).

FromCases (1)–(7), we can summarize the properties ofg(x) as follows.

Lemma 2.5.

(i) LetB = 2(1− e−τ). Then, g(x) > 0 if τ > ln 2; g(x) < 0 if τ < ln 2; g(x) = 0 if τ = ln 2.
(ii) LetB∗

1 < B < 2(1− e−τ). If τ ≥ ln 2, theng(x) > 0; and if τ < ln 2, then there existsx∗
1 ∈ (m,M) such that

g(x∗
1) = 0, g(x) > 0 for x ∈ (m, x∗

1), andg(x) < 0 for x ∈ (x∗
1,M).
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(iii) Let0 ≤ B ≤ B∗
1. Theng(x) > 0 for all x ∈ (m,M).

(iv) LetB ≥ B∗
2. Theng(x) < 0 for all x ∈ (m,M).

(v) Let 2(1− e−τ) < B < B∗
2. If τ ≤ ln 2, theng(x) < 0 for all x ∈ (m,M); if τ > ln 2, then there existsx∗

2 ∈
(m,M) such thatg(x∗

2) = 0, g(x) < 0 for x ∈ (m, x∗
2), andg(x) > 0 for x ∈ (x∗

2,M).

As stated before,x − f1(x) andg(x) have the same sign on (m,M). Therefore, applyingLemma 2.5, we have

Lemma 2.6. The properties of functionf1(x) defined on(m,M) are as follows:

(i) LetB = 2(1− e−τ).Then for allx ∈ (m,M),f1(x) < x if τ > ln 2;f1(x) > x if τ < ln 2;f1(x) = x if τ = ln 2.
(ii) Let B∗

1 < B < 2(1− e−τ). If τ ≥ ln 2, thenf1(x) < x for all x ∈ (m,M); if τ < ln 2, then there existsx∗
1 ∈

(m,M) such thatf1(x∗
1) = x∗

1, f1(x) < x for x ∈ (m, x∗
1), andf1(x) > x for x ∈ (x∗

1,M).
(iii) Let0 ≤ B ≤ B∗

1. Thenf1(x) < x for all x ∈ (m,M).
(iv) LetB ≥ B∗

2. Thenf1(x) > x for all x ∈ (m,M).
(v) Let 2(1− e−τ) < B < B∗

2. If τ ≤ ln 2, thenf1(x) > x for all x ∈ (m,M); if τ > ln 2, then there existsx∗
2 ∈

(m,M) such thatf1(x∗
2) = x∗

2, f1(x) > x for x ∈ (m, x∗
2), andf1(x) < x for x ∈ (x∗

2,M).

On the other hand, by using some simple arguments, we can obtain some results about the properties of function
f2(x) defined as(14).

Lemma 2.7. f2(x) defined on(0,m] is continuous,monotonically increasing, and satisfies:

(i) If B = 2(1− e−τ), thenf2(x) = x for all x ∈ (0,m].
(ii) If B < 2(1− e−τ), thenf2(x) < x for all x ∈ (0,m].

(iii) If B > 2(1− e−τ), thenf2(x) > x for all x ∈ (0,m].

Thus, by combiningLemmas 2.6 and 2.7and the definition of functionF in (12), we see that the following is
true.

Lemma 2.8. F (x) is continuous, monotonically increasing on the interval[0,M), and satisfies:

(I) In case whereτ < ln 2;
(i) If B = 2(1− e−τ), thenF (x) > x for x ∈ (m,M) andF (x) = x for x ∈ [0,m].

(ii) If B > 2(1− e−τ), thenF (x) > x for x ∈ (0,M) andF (0) = 0.
(iii) If B∗

1 < B < 2(1− e−τ), thenF (x) < x for x ∈ (0, x∗
1),F (x) > x for x ∈ (x∗

1,M),F (0) = 0andF (x∗
1) =

x∗
1, wherex∗

1 is defined as inLemma 2.6.
(iv) If 0 ≤ B ≤ B∗

1, thenF (x) < x for x ∈ (0,M) andF (0) = 0.
(II) In case whereτ > ln 2;

(i) If B = 2(1− e−τ), thenF (x) < x for x ∈ (m,M), andF (x) = x for x ∈ [0,m].
(ii) If 0 ≤ B < 2(1− e−τ), thenF (x) < x for x ∈ (0,M) andF (0) = 0.

(iii) If 2(1− e−τ) < B < B∗
2, thenF (x) > x for x ∈ (0, x∗

2),F (x) < x for x ∈ (x∗
2,M),F (0) = 0andF (x∗

2) =
x∗

2, wherex∗
2 is defined as inLemma 2.6.

(iv) If B ≥ B∗
2, thenF (x) > x for x ∈ (0,M) andF (0) = 0.

(III) In case whereτ = ln 2.
(i) If B = 2(1− e−τ) = 1, thenF (x) = x for x ∈ [0,M).

(ii) If B < 2(1− e−τ) = 1, thenF (x) < x for x ∈ (0,M) andF (0) = 0.
(iii) If B > 2(1− e−τ) = 1, thenF (x) > x for x ∈ (0,M) andF (0) = 0.
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3. Convergence and periodicity

Once the connection weights are given, the limiting behaviors of solution (u(t), v(t))T of (5) as t → ∞ are
completely determined by the initial valueΦ ∈ X0. Based on the several lemmas established in Section2, we now
distinguish some theorems to describe the asymptotical behaviors of (u(t), v(t))T. We state the first result about the
convergence.

Theorem 3.1. Suppose that there exists somet0 ≥ 0 such that(ut0, vt0)T ∈ X+,+, then (u(t), v(t))T → (0, B)T

as t → ∞. Similarly, if there exists somet0 ≥ 0 such that(ut0, vt0)T ∈ X−,−, then (u(t), v(t))T → (0,−B)T as
t → ∞.

Proof. We only consider the case where (ut0, vt0)T ∈ X+,+ for somet0 ≥ 0. The case where (ut0, vt0)T ∈ X−,−
can be dealt with analogously.

Clearly,u(t) andv(t) satisfy system(6) for t ∈ [t0, t0 + τ]. Therefore, fort ∈ [t0, t0 + τ] we have

u(t) = u(t0) et0−t

and

v(t) = (v(t0) − B) et0−t + B

Therefore,ut0+τ(θ) = u(t0 + τ + θ) > 0 andvt0+τ(θ) = v(t0 + τ + θ) > 0 for θ ∈ (−τ,0), and sout0+τ ∈ C+ and
vt0+τ ∈ C+. Repeating this argument on [t0 + τ, t0 + 2τ], [t0 + 2τ, t0 + 3τ], . . ., consecutively, we ensure that
ut ∈ C+ andvt ∈ C+ for all t ≥ 0. Therefore,(6) holds for almost allt > 0. It follows that

u(t) = u(t0) et0−t

and

v(t) = (v(t0) − B) et0−t + B.

This shows that (u(t), v(t))T → (0, B)T ast → ∞. �

Theorem 3.1means that the points (0, B)T and (0,−B)T attract each point ofX+,+ andX−,−, respectively. Next,
we have an important result about the existence of periodic solutions. Namely,

Theorem 3.2. Suppose that there exists somet0 ≥ 0 such that(ut0, vt0)T ∈ X−,+ (orX+,−) andu(t0) + v(t0) = 0,
then u(t) + v(t) = 0 for all t ≥ t0 and u(t) = −v(t) = q(t) for t ≥ t0 + τ + ln(1 − u(t0)) (respectively, for t ≥
t0 + τ + ln(1 + u(t0))), whereq : R → R is a periodic function with the minimal periodω = 2 ln(2 eτ − 1).

Proof. We only consider the case where (ut0, vt0)T ∈ X−,+. The case where (ut0, vt0)T ∈ X+,− can be dealt with
analogously.

By using Eq.(5), we can easily obtain thatu(t) + v(t) = 0 for all t ≥ t0. Therefore, it suffices to show that the
solutionu(t) of the equation

u̇ = −u+ f (u(t − τ))
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with the initial conditionut0 ∈ C− is eventually periodic with the minimal period 2 ln(2 eτ − 1). Let t1 be the first
nonnegative zero ofu(t) on [t0,∞). Then fort ∈ (t0, t1 + τ) except at most finitely manyt, we have

u̇ = −u+ 1, (15)

from which and the continuity of the solution it follows that

u(t) = et0−t [u(t0) − 1] + 1, t ∈ [t0, t1 + τ]

and, in particular,

u(t1) = et0−t1[u(t0) − 1] + 1 = 0.

This implies

t1 = t0 + ln[u(t0) − 1]

and

u(t1 + τ) = et0−(t1+τ)[u(t0) − 1] + 1 = 1 − e−τ < 0.

Also

ut1+τ(θ) := u(t1 + τ + θ) = et0−(t1+τ+θ)[u(t0) − 1] + 1 = 1 − e−(τ+θ) > 0

for θ ∈ (−τ,0]. Therefore,ut1+τ ∈ C+.
To construct a solution of(15) beyond [t0, t1 + τ], we consider the solution of(15) with the new initial value

defined byϕ∗ = ut1+τ . Let t2 be the first zero aftert1 of u. Thent2 > t1 + τ and on (t1 + τ, t2 + τ), we have

u̇ = −u− 1 (16)

and hence

u(t) = e−(t−t1−τ)[u(t1 + τ) + 1] − 1 = (2 − e−τ) e−(t−t1−τ) − 1

for t ∈ [t1 + τ, t2 + τ]. In particular,

u(t2) = (2 − e−τ) et1−t2+τ − 1 = 0,

which implies

t2 = t1 + τ + ln(2 − e−τ).

Also,

ut2+τ(θ) = u(t2 + τ + θ) = (2 − e−τ) et1−t2−θ − 1 = e−(τ+θ) − 1 < 0

for θ ∈ (−τ,0]. Therefore,ut2+τ ∈ C−.
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Repeating the above arguments and lettingt3 be the first zero aftert2 of u, we have thatt3 > t2 + τ and that(15)
holds on (t2 + τ, t3 + τ). Consequently,

u(t) = e−(t−t2−τ)[u(t2 + τ) − 1] + 1 = (e−τ − 2) e−(t−t2−τ) + 1

for t ∈ [t2 + τ, t3 + τ]. In particular,

u(t3) = (e−τ − 2) et2−t3+τ + 1 = 0,

which implies

t3 = t2 + τ + ln(2 − e−τ).

Also,

ut3+τ(θ) = u(t3 + τ + θ) = (e−τ − 2) et2−t3−θ + 1 = 1 − e−(τ+θ) > 0

for θ ∈ (−τ,0]. Therefore,ut3+τ ∈ C+.
This also shows thatut3+τ(θ) = ut1+τ(θ) for θ ∈ (−τ,0]. Due to the uniqueness of the Cauchy initial value

problem (see Hale and Verduyn Lunel[13]), we haveu(t + t3 + τ) = u(t + t1 + τ) for t ≥ 0. Namely, fort ≥ t1 + τ,
u(t) is periodic with the minimal periodω = t3 − t1 = 2 ln(2 eτ − 1). �

As a consequence, if the initial valueΦ = (ϕ,ψ)T is neutralizing, (i.e.,ϕ = −ψ) then the solution (u, v)T :
[−τ,∞) → R

2 is neutralized, that is,u(t) = −v(t) for all t ≥ 0, due to the uniqueness of the Cauchy initial value
problem of(5) (see Hale and Verduyn Lunel[13]). The above result shows that the solution (u(t), v(t))T of (5) is
neutralized even if the initial valueΦ is not neutralizing butϕ(0) = −ψ(0) and (ϕ,ψ)T ∈ X+,− ⋃

X−,+. Moreover,
it is interesting to note that the periodic functionq and its minimal periodω are both independent of the choice of
the initial value ofΦ ∈ X+,− ⋃

X−,+ with ϕ(0) = −ψ(0). Moreover, note thatω/(2τ) → 1 asτ → ∞.
It remains to discuss the case where the initial valueΦ = (ϕ,ψ)T ∈ X−,+ andϕ(0) + ψ(0) ≥ 0. In view of

Lemma 2.2, the first zero ofu(t) · v(t) in [0,+∞) is t1 = ln(1 − ϕ(0)). Moreover,u(t1) = 0 andv(t1) = (ϕ(0) +
ψ(0))/(1 − ϕ(0)) ≥ 0. It is easy to see that the values of [t1, u(t1), v(t1)] are completely determined byϕ(0) and
ψ(0). Without loss of generality, we letu(0) = ϕ(0) = 0 andv(0) = ψ(0) = v ≥ 0. We will show that the behavior
of (u(t), v(t))T as t → +∞ is completely determined by the valuev. Recall that ifv = 0, then byTheorem 3.2,
(u(t), v(t))T is eventually periodic and coincides with the periodic solution (q(t),−q(t))T. Our analysis below shows
that the behavior of (u(t), v(t))T ast → +∞ can be understood in terms of the iteration of a one-dimensional map
in casev > 0.

We start with

Case 1. v ≥ eτ − 1. In view of (5) andΦ = (ϕ,ψ)T ∈ X−,+, (u(t), v(t))T satisfies system(7). By the continuity
of the solution, fort ∈ [0, τ], we have

u(t) = [u(0) − 1] et0−t + 1 = 1 − e−t ,

v(t) = [v(0) + 1] et0−t − 1 = (1 + v) e−t − 1.
(17)

It follows thatu(τ) = 1 − e−τ > 0 andv(τ) = (1 + v) e−τ − 1 ≥ 0. From(17), it follows that (uτ, vτ)T ∈ X+,+.
Thus, byTheorem 3.1, we have (u(t), v(t))T → (0, B)T ast → ∞.

Case 2.M ≤ v < eτ − 1. Using a similar argument as above, we have that(17) holds for t ∈ [0, τ]. Moreover,
u(τ) = 1 − e−τ > 0 andv(τ) = (1 + v)e−τ − 1 < 0. Recall thatv(0) = v > 0, there existst2 ∈ [0, τ] such that
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v(t2) = 0. From(17), we have

t2 = ln(1 + v).

Moreover, from(17), it follows thatu(t − τ) > 0 andv(t − τ) > 0 for t ∈ (τ, t2 + τ). Thus, (u(t), v(t))T satisfies
(6) for t ∈ (τ, t2 + τ). Namely, fort ∈ [τ, t2 + τ], we have

u(t) = u(τ) eτ−t = (1 − e−τ) eτ−t ,

v(t) = [v(τ) − B] eτ−t + B = [(1 + v) e−τ − 1 − B] eτ−t + B.
(18)

It follows thatu(t2 + τ) = (1 − e−τ)(1 + v) > 0 andv(t2 + τ) = B + e−τ − (1 + B)(1 + v) > 0. Also sinceu(τ) =
1 − e−τ > 0 andv(τ) = (1 + v) e−τ − 1 < 0, there existst3 ∈ (τ, t2 + τ) such thatv(t3) = 0. From(18), we see
that

t3 = τ + ln[B + 1 − (1 + v) e−τ ] − lnB.

Moreover, from(17) and (18), we haveu(t − τ) > 0 andv(t − τ) < 0 for t ∈ (t2 + τ, t3 + τ). Thus, (u(t), v(t))T

satisfies system(9) for t ∈ (t2 + τ, t3 + τ). It follows that fort ∈ [t2 + τ, t3 + τ], we have

u(t) = [u(t2 + τ) + 1] et2+τ−t − 1 =
(

1 + 1 − e−τ

1 + v

)
et2+τ−t − 1,

v(t) = [v(t2 + τ) − 1] et2+τ−t + 1 =
(
B − 1 + e−τ − 1 + B

1 + v

)
et2+τ−t + 1.

(19)

This implies

u(t3 + τ) = (1 + B)(1 + v) + B(1 − e−τ) − (1 + B) eτ

(1 + B) eτ − (1 + v)
> 0,

v(t3 + τ) = (B − 1 + e−τ)(1 + v) − (1 + B)

(1 + B) eτ − (1 + v)
· B + 1 > 0.

From(18) and (19), it is easy to see that (ut3+τ, vt3+τ)T ∈ X+,+. Thus, byTheorem 3.1, we have (u(t), v(t))T →
(0, B)T ast → ∞.

Case 3.m < v < M. Using a similar argument as above, we have thatu(t3 + τ) < 0 and thatv(t3 + τ) > 0, which,
together with the fact thatu(t2 + τ) = (1 − e−τ)/(1 + v) > 0 and thatv(t2 + τ) = B + e−τ − (1 + B)/(1 + v) > 0,
implies that there existst4 ∈ (t2 + τ, t3 + τ) such thatu(t4) = 0. It follows from(19) that

t4 = t2 + τ + ln

(
1 + 1 − e−τ

1 + v

)
= τ + ln(v+ 2 − e−τ).

From (18) and (19), we see thatu(t − τ) > 0 andv(t − τ) > 0 for t ∈ (t3 + τ, t4 + τ). Therefore, (u(t), v(t))T

satisfies(6) for t ∈ (t3 + τ, t4 + τ). Namely, fort ∈ [t3 + τ, t4 + τ], we have

u(t) = u(t3 + τ) et3+τ−t = (1 + B)(1 + v) + B(1 − e−τ) − (1 + B) eτ

(1 + B) eτ − (1 + v)
et3+τ−t ,

v(t) = [v(t3 + τ) − B] et3+τ−t + B =
[
1 − B + (e−τ + B − 1)v+ e−τ − 2

(1 + B) eτ − (1 + v)
B

]
et3+τ−t + B.

(20)
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It follows that

u(t4 + τ) = (1 + B)(1 + v) + B(1 − e−τ) − (1 + B) eτ

(2 + v− e−τ)B eτ
< 0,

v(t4 + τ) = (1 − B)(1 + B) eτ − (1 − B)(1 + v)

(2 + v− e−τ)B eτ
+ (e−τ + B − 1)v+ e−τ − 2

(2 + v− e−τ) eτ
+ B > 0.

Moreover, from(19) and (20), we see that (ut4+τ, vt4+τ)T ∈ X−,+ andu(t4 + τ) + v(t4 + τ) > 0. Again byLemma
2.2, the next zero ofu(t) · v(t), i.e., its fifth zero in [0,∞), is t5 = t4 + τ + ln[1 − u(t4 + τ)] and satisfies that
u(t5) = 0 and

v(t5) = u(t4 + τ) + v(t4 + τ)

1 − u(t4 + τ)
= B(B + e−τ)(eτ + 1)v+ B(eτ − 1)(B − 1)

(B eτ − B − 1)v+ (1 + 3B)(eτ − 1) + B e−τ
= f1(v) > 0,

where the functionf1 is defined as(13). If f1(v) ∈ (m,M), then we can repeat the same analysis and construction
to getf 2

1 (v) = f1(f1(v)) assuming that the initial condition is the valuef1(v). If f 2
1 (v) ∈ (m,M), we continue to

iteratef1 to get a sequence:

v, f1(v), f 2
1 (v), . . . , f n

1 (v), . . . ,

wherefn
1 (v) = f1(fn−1

1 (v)).

Case4.0 < v ≤ m. Using a similar argument as above, we haveu(t2 + τ) = (1 − e−τ)/(1 + v) > 0 andv(t2 + τ) =
B + e−τ − (1 + B)/(1 + v) ≤ 0. From(17) and (18), we see that (ut2+τ, vt2+τ)T ∈ X+,− andu(t2 + τ) + v(t2 +
τ) > 0. Let t3 be the next zero ofu(t) · v(t), i.e., the third zero in [0,∞), thenu(t − τ) > 0 andv(t − τ) < 0 for
t ∈ (t2 + τ, t3 + τ). Thus, (u(t), v(t))T satisfies(9) for t ∈ (t2 + τ, t3 + τ). Namely,(19)holds fort ∈ [t2 + τ, t3 + τ].
This implies that

t3 = t2 + τ + ln

(
1 − e−τ − B + 1 + B

1 + v

)
= τ + ln[(1 − e−τ − B)v+ 2 − e−τ ],

u(t3 + τ) = (2 e−τ + B − 1)v+ (1 − e−τ)(e−τ − 2)

(1 − e−τ − B)v+ 2 − e−τ
< 0, v(t3 + τ) = 1 − e−τ > 0.

In view ofu(t2 + τ) = ((1 − e−τ)/(1 + v)) > 0, there existst4 ∈ (t3, t3 + τ) such thatu(t4) = 0. This, together with
(17), implies that

t4 = t2 + τ + ln

(
1 + 1 − e−τ

1 + v

)
= τ + ln(v+ 2 − e−τ).

From (19), we see thatu(t − τ) > 0 andv(t − τ) > 0 for t ∈ (t3 + τ, t4 + τ). Therefore, fort ∈ (t3 + τ, t4 + τ),
(u(t), v(t))T satisfies(6). Namely, fort ∈ [t3 + τ, t4 + τ],

u(t) = u(t3 + τ) et3+τ−t = (2 e−τ + B − 1)v+ (1 − e−τ)(e−τ − 2)

(1 − e−τ − B)v+ 2 − e−τ
et3+τ−t ,

v(t) = [v(t3 + τ) − B] et3+τ−t + B = (1 − B − e−τ) et3+τ−t + B.

(21)
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It follows that

u(t4 + τ) = (2 e−τ + B − 1)v+ (1 − e−τ)(e−τ − 2)

v+ 2 − e−τ
< 0,

v(t4 + τ) = (1 − B − e−τ) · (1 − e−τ − B)v+ 2 − e−τ

v+ 2 − e−τ
+ B > 0.

By (19) and (21), we have (ut4+τ, vt4+τ)T ∈ X−,+ andu(t4 + τ) + v(t4 + τ) > 0. This, together withLemma 2.2,
implies that the next zero ofu(t) · v(t), i.e., its fifth zero in [0,∞), is t5 = t4 + τ + ln[1 − u(t4 + τ)] and satisfies
thatu(t5) = 0 and

v(t5) = u(t4 + τ) + v(t4 + τ)

1 − u(t4 + τ)
= (B + e−τ)2v

(2 − 2 e−τ − B)v+ (2 − e−τ)2
= f2(v) > 0,

where the functionf2 is defined as(14). If f1(v) ∈ (0,m], then we can repeat the same analysis and construction
to getf 2

2 (v) = f2(f2(v)) assuming that the initial condition isf2(v). If f 2
2 (v) ∈ (0,m], we continue to iteratef2 to

get a sequence:

v, f2(v), f 2
2 (v), . . . , f n

2 (v), . . . ,

wherefn
2 (v) = f2(fn−1

2 (v)).

As discussed above forCases (1)–(4), usingF and its iterates we can characterize the behavior of the solution
(u(t), v(t))T of system(5) with initial valueΦ = (ϕ,ψ)T ∈ X−,+ andϕ(0) + ψ(0) ≥ 0. More precisely, if there
exists somev∗ ∈ [0,M) such that limn→∞ Fn(v) = v∗ = F (v∗), then the solution (u(t), v(t))T corresponding tov
approaches the periodic solution (u∗(t), v∗(t))T corresponding tov∗ ast → ∞. On the other hand, if there exists
some integern∗ ≥ 1 such that

Fn∗−1(v) < M ≤ Fn∗
(v),

then, according to the arguments inCases (1) and (2), the solution (u(t), v(t))T corresponding tov converges to
(0, B)T ast → ∞.

Using the properties ofF (x) described inLemma 2.8, we now describe the following main theorem.

Theorem 3.3. Letη = (ϕ(0) + ψ(0))/(1 − ϕ(0)) ≥ 0.The behaviors of the solution(u(t), v(t))T of system(5)with
initial valueΦ = (ϕ,ψ)T ∈ X−,+ andϕ(0) + ψ(0) ≥ 0 are as follows:

(i) Suppose thatB = 2(1− e−τ) and τ > ln 2. If η ∈ [0,m], then (u(t), v(t))T is eventually periodic and of
the minimal periodω = 2 ln(2 eτ − 1); If η ∈ (m,M), then (u(t), v(t))T approaches the periodic solution
corresponding toη = m ast → ∞; If η ∈ [M,∞), then(u(t), v(t))T converges to(0, B)T ast → ∞.

(ii) Suppose thatB = 2(1− e−τ) and τ < ln 2. If η ∈ [0,m], then (u(t), v(t))T is eventually periodic with the
minimal periodω = 2 ln(2 eτ − 1); If η ∈ (m,∞), then(u(t), v(t))T converges to(0, B)T ast → ∞.

(iii) Suppose that0 ≤ B < 2(1− e−τ) and τ ≥ ln 2 or 0 ≤ B ≤ B∗
1 and τ < ln 2. Then(u(t), v(t))T approaches

the periodic solution(q(t),−q(t))T ast → ∞.
(iv) Suppose thatB > 2(1− e−τ) andτ ≤ ln 2 or B ≥ B∗

2 andτ > ln 2.Then(u(t), v(t))T converges to(0, B)T as
t → ∞.

(v) Suppose thatB∗
1 < B < 2(1− e−τ) andτ < ln 2.Then there existsT1 ≥ 0 andΦ1 = (ϕ1, ψ1)T ∈ X−,+ with

ϕ1(0) + ψ1(0) > 0 such that fort ≥ T1, the solution(u1(t), v1(t))T of (5) with initial valueΦ1 is periodic.
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Moreover, ast → ∞, other solutions of system(5)with initial valueΦ = (ϕ,ψ)T ∈ X−,+ andϕ(0) + ψ(0) >
0 either converge to(0, B)T or approached the periodic solution(q(t),−q(t))T.

(vi) Suppose that2(1− e−τ) < B < B∗
2 andτ > ln 2.Then there existsT2 ≥ 0 andΦ2 = (ϕ2, ψ2)T ∈ X−,+ with

ϕ2(0) + ψ2(0) > 0 such that fort ≥ T2, the solution(u2(t), v2(t))T of (5) with initial valueΦ2 is periodic
with the minimal periodω = 2τ + ln[(2 − 2 e−τ − B)x∗

2 + (1 − e−τ)2 + 3 − 2 e−τ ], wherex∗
2 is defined as in

Lemma 2.5. Moreover, as t → ∞, other solutions of system(5) with initial valueΦ = (ϕ,ψ)T ∈ X−,+ and
ϕ(0) + ψ(0) > 0 either converge to(0, B)T or approached the periodic solution(u2(t), v2(t))T.

(vii) Suppose thatB = 1 andτ = ln 2. If η ∈ [0,M), then(u(t), v(t))T is eventually periodic; If η ∈ [M,∞), then
(u(t), v(t))T → (0, B)T ast → ∞.

Theorem 3.3means thatB and τ can be regarded as bifurcation parameters. Moreover, byLemma 2.1and
Theorem 3.3, we can easily determine the behaviors of the solution (u(t), v(t))T of system(5) with initial value
Φ = (ϕ,ψ)T ∈ X+,− andϕ(0) + ψ(0) ≤ 0.

4. Summary and outlook

The underlying purpose of this article is to help advance the idea that even the simplest two-neuron network
also possesses a great deal of dynamics[1–3,8–11,16,17,22–24,29]and gain some useful insights into what we
can achieve for a more general system of delay differential equations. In particular, a model equation with the
McCulloch–Pitts nonlinearity describes a combination of analog and digital signal processing in a network of two
neurons with delayed feedback. The piecewise-linear nature makes the network mathematically tractable without
removing the possibilities for very interesting and varied dynamics. It was shown in[8–10,16,17,23]that the
dynamics of Eq.(3)with can be understood in terms of the iteration of a one-dimensional map explicitly constructed
from the delay and the synaptic weights. It might be argued that thehard switchingof the model equation is not
biologically reasonable, but similar models with very steep sigmoid switching appear to behave similarly and in
fact, complexity of behavior seem to be lost as the gain is decreased (see, for example[5,18,27]). Rigorous treatment
of the question of the high-gain limit has been done for fixed points and some limit cycles[25], but is not considered
here.

Because the connection weights have a fundamental effect on the dynamics of the networks. Here, under the
condition (H1), we rewrite(3) as (5) and only need to depict the dynamics of Eq.(5), i.e., the convergence of
solutions, the existence, multiplicity and attractivity of periodic solutions. We have shown that if the initial dataΦ =
(ϕ,ψ)T ∈ X is given so thatϕ andψ do not change sign on the initial time interval, then the dynamical behavior of the
corresponding solution is completely determined by the sizes ofB andτ and the relation betweenϕ(0) andψ(0). If
ϕ(0) + ψ(0) = 0 and (ϕ,ψ)T ∈ X+,− ⋃

X−,+, then the solution is eventually periodic. If (ϕ,ψ)T ∈ X+,+ ⋃
X−,−,

then the solution is stabilized at the two stationary points (0, B)T and (0,−B)T. If (ϕ,ψ)T ∈ X+,− ⋃
X+,−, then

we can regardB andτ as bifurcation parameters to discuss the limiting behavior of the solution. For example, if
τ < ln 2, then as the nonnegative numberB is increased past the three critical values: 0,B∗

1 and 2(1− e−τ), the
dynamics of model equation undergoes transition from one attracting periodic solution, to three periodic solutions
(one is repulsive and the other two are attracting), then to infinitely many periodic solutions with a common period,
and finally to only one repulsive periodic solution; Ifτ > ln 2, then asB is increased past the three critical values: 0,
2(1− e−τ) andB∗

2, the dynamics of model equation undergoes transition from one attracting periodic solution, to
three periodic solutions (one is attracting and the other two are repulsive), then to infinitely many periodic solutions
with a common period, and finally to only one repulsive periodic solution; At last, ifτ = ln 2, then asB is increased
past 2(1− e−τ), the dynamics of model equation undergoes transition from one attracting periodic solution, to
infinite periodic solutions with a common period, and finally to only one repulsive periodic solution. These results
are consistent with those of Edwards[4] where they applied a coherent method of analysis to ann-dimensional
system and obtained surprising long and complex limit cycles.
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By using the modern theory of monotone dynamical systems (Smith[26] and Hirsh[14]) and a discrete Liapunov
functional introduced by Mallet-Paret and Sell[20] and the geometric approach of Krisztin et al.[19], Chen and
Wu [1,2] considered model Eq.(3) with smooth sigmoid signal function. It is natural to ask whether the techniques
developed in the aforementioned references which usually require a strictly monotone signal function can be
generalized to the case where the signal function is monotone but not strictly monotone. The McCulloch–Pitts
nonlinearity provides an important motivation from the viewpoint of artificial neural networks for understanding
the dynamics of model Eq.(3) with a monotone but not strictly monotone nonlinearity, which could be a starting
point towards the development of the aforementioned generalization. In this paper, the digital nature of the signal
function allows us to relate Eq.(3) to four systems of simple linear nonhomogeneous ordinary differential equations
and to depict the asymptotical behaviors of all solutions whose initial states do not oscillate. In future work, we
desire to describe the dynamics of solutions of(3) and (4)with initial data inX \X0 (i.e., solutions whose initial
states oscillate with high frequencies).
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