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Abstract. In this paper, we obtain sharp estimates for the growth of strong solutions 
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for the initial value problem for a related homogeneous neutral equation, by using the 
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1. Introduction. Despite its profound importance in the theory of con
trol and the theory of dynamical systems and their applications, obtaining 
the sharpest estimates for solutions to functional differential equations re
mains to be a challenging task although some significant progress has been 
achieved, see, for example, [1]-[7], [22]. 

In this paper, we obtain some sharp estimates of the strong solutions 
for difference differential equations of neutral type. This is of course a well
known classical problem, and our result( estimate) is based on some previous 
work by one of the authors about the initial value problem for a corresponding 
homogeneous equation (see [8]-[14] for more details). As such, our work 
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depends heavily on the Riesz basisness of the system of exponential solutions 
(see [8]-[14]). 

The remaining part of this paper consists of four sections. Section 2 pro
vides the statement of the problem and the formulation of the results. The 
basic results are proved in Section 3. Section 4 gives examples to demon
strate that our estimates are sharp, and this section also contains some re
marks, comments, and the comparison of our results with some earlier rel
evant works. Section 5, the Appendix, is devoted to the proof of the Riesz 
basis. 

2. The Problems and Results. Denote by W~r((a,b),C7 ), (-oo < 
a < b ::; +oo), weighted Sobolov spaces of vector valued functions with values 
in C, endowed with the norms: 

Here and in what follows, W~,o = W~, V(jl(t) = ::;V(t),p,j = 1,2, .. ·; 11.11 
is the norm in the space C7

• 

(1) 

We consider the following nonhomogeneous equation 

Du - "L;;0(BJ(t- hJ) + DJ~~(t- hJ)) + J~' B(s)u(t- s)ds 
+ f

0
h D(s)u(!l(t- s)ds = f(t), t > 0; 

subject to the usual Cauchy initial condition 

(2) u(t) = g(t), t E [-h,O]. 

Here BJ,DJ(j = 0,1, .. ·,n) are square (TxT) matrices with constant com
plex elements; the real numbers hJ are such that 0 = ho < h1 < · · · < hn = h; 
the elements BiJ(s),DiJ(s)(i,j = 1,2,···,7) of matrices B(s) and D(s) be~ 
long to the space L2 (0, h). Moreover, the non-homogeneous term f belongs 
to L2 ((0, T),C7

) for an arbitrarily given T > 0, and the initial function g 

belongs to WJ(( -h, 0), C7
). 

DEFINITION 2.1. A vector--valued function u E WJ((-h,T),C) for 
arbitrary T > 0 is called a strong solution of the problem (1), (2), if u(t) 
satisfies equation (1) almost everywhere on the semiaxis n+ = (O,+oo) and 
u satisfies the initial condition (2). 

In order to describe our main results we have to introduce certain nota
tions. 
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We denote by L(A) the matrix-valued function 

(3) 
L(A) = L:.7~0 (BJ + ADJ)exp( -AhJ) 

+ foh B(s)exp( -As)ds +A J0h D(s)exp( -As)ds. 

Let l(A) = detL(A) be the characteristic quasipolinomial (see [1] for more 
details) of the equation (1). We shall let Aq denote a typical zero (referred 
as characteristic mtmber) of the function l(A) with multiplicities vq, and we 
shall arrange these zeros, counting multiplicities, in increasing order of their 
modulus, and we will denote by A the set of all zeroes of the function l(A). 

We denote the eigenvectors from the canonical system of eigen and 
associated (root) vectors, corresponding to the characteristic number Aq, 
by Xq,j,o, (j = 1, 2, · · ·, vq), their adjoint vectors of order s by Xq,J,s (s = 
1,2,· · ·,PqJl· Here, the indexj shows what is the number of the vector Xq,J,O 
in a specially chosen basis of the subspace of the solutions of the equation 
L(Aq)x = 0. See [16], [17] for more details. 

Therefore, we have the following set of exponential solutions of the equa
tion ( 1) in homogeneous case (! ( t) =:= 0) 

(4) 

Now we formulate two technical results which will be used in what fol
lows. 

LEMMA 2.2. Suppose that detD0 # 0, detDn # 0. Then each of the 
following values 

are finite. 
We denote by D(Aq, p) the disk of radius p > 0 with center in the point 

Aq, define a domain G(A, p) in the following way 

G(A,p)=:=C\( u D(Aq,p)). 
!.q E 1\ 

LEMMA 2.3. Suppose that detD0 # 0, detD, # 0. Then there exists 
{3 > 0 so that each of the following set of contours r n = {A E C : Re>. = 
~+ + {3, "fn ::0: ImA ::0: 'Yn+!} U {A E C : ~- - {3 ::0: ReA ::0: ~+ + {3, ImA = 
'Yn+d U {A E C : ReA = ~- - {3, 'Yn ::0: fmA ::0: 'Yn+I} U {A E C : ~- -
{3 ::; ReA ::; ~+ + {J,ImA = 'Yn},{J > 0, belong to the domain G(A,p) for 
sufficiently small p > 0, and the following conditions are satisfied: there exist 
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positive constants 5, l:. such that the sequence of real numbers { 'Yn} satisfy the 
inequalities: 0 < 5 ::; 'Yn+l- 'Yn ::; l:. < +oo, n E Z, and the number N(r n) of 
zeroes of the function l(.A) (counting multiplicities), which lie in the domains 
Gn bounded by the contours r n' are uniformly bounded with respect to n, i.e. 
there exists a constant M > 0 so that 

(5) maxN(fn)::; M. 
n 

The above two lemmas can be reduced from the results of [15], and we 
refer to [9] for their proofs. 

The next theorem is the main result of this article. 
THEOREM 2.4. Let detDo # 0, detDn # 0. Suppose also that f E 

L 2 ((0,T),C) for an arbitrary given T > h, and g E Wf((-h,O),C7
). Then 

the pr-oblem (1), (2) has a unique solution and this solution u(t) satisfies 

6 
llullwJ(t-h,t) ::; do(t + 1)M-Iexp(N+t)llgllwJ(-h,o) 

( ) +d1v't(J;(t- s + 1)2(M-llexp(2N+(t- s))llf(s)ll 2ds) 112 

for t E [ h, T], with constants d0 and d1 independent of functions g and f as 
well as the constant T. 

We add a few remarks to illustrate the significance of the above result. 
REMARK 2.5. If the set A of zeroes Aq is separate, i.e. infAp;'Aqi.AP

.Aql > 0, then in the estimate (6) constant M (see (5)) may by replaced by 
N = maxA,EAVq· 

REMARK 2. 6. The estimate ( 6) is sharp in the following sense. It is 
impossible to change constant N+ by N+ - € for every € > 0. Moreover, v't 
can't be omitted. In Section 4, will have some examples to illustrate these. 

COROLLARY 2. 7. Suppose the conditions of the Theorem 2.4 are satis
fied. Then we have the following 

(7) 
llu(t)ll::; d2(t + l)M-lexp(N+t)llgllwJ(-h,O) 

+dsv't(J;(t- s + 1)2(M-I)exp(2N+(t- s))llf(s)ll 2ds) 112 

for t E [ h, T], with constants d2 and d3 independent of functions g and f. 
The above corollary immediately follows from Theorem 2.4 and trace 

theorem(see for example [21]). 
We conclude this section with a result about the estimate of solutions of 

the problem (1)- (2) in the special case when the support of function f is 
compact. 
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PROPOSITION 2.8. Let detD0 I O,detDn I 0, g E Wi((-h,O),C7
) and 

assume that f has o. compact suppor·t 0. Then we have 

for all t 2: h, with constants d0 and d2 independent of the functions f and 
g. 

In the proofs to be provided next section, we shall use the solvability 
result of the problem (1), (2) in weighted Sobolev space Wi,,.(( -h, +oo), C) 
(see for example [8], [10]). In order to make the article self-contained, we 
state this solvability result below. 

Let L 2,,.(R+, C7
) be the Hilbert space of vector-valued functions equipped 

with the norm 

IIJII~o,,, = (i+oo exp( -2rt)ll.f(t)ll 2dt) 112
, r E R. 

LEMMA 2.9. SupposedetDo I 0, g E Wi((-h,O),C), f E L2,r0 (R+,C) 
for a certain r·0 E R. Then there e.xists conBtant r,(r, > r0 ) such that for 
every r > r, problem (1)-(2) has a unique solution u E Wi,,.((-h,O),C7

) 

satisfying the following inequality 

with constant c,. independent of the functions f and g. 

3. Proofs of the Main Results. We should emphasize that the main 
result Theorem 2.4 is based on the estimates of the solutions for homogeneous 
equation (.f(t) = 0) obtained earlier in [9], [10]. 

Also since equation (1) is linear, we shall consider the problem (1)-(2) 
in the case g(t) = 0. 

In the first step, we consider the problem (1)-(2) where the non-homo
geneous term f has the support contained in [0, h] and initial function g = 0. 

Denote the solution of this problem by uh(t). Using the results in [9] 
and [10], we have 

(9) .ft'o exp( -2rt)(llu),1l(t)ll2 + lluh(t)ll2)dt :S eriiJIILro,h] 

for some constant r and constant c,. independent of the function f. 
It follows immediately that 

(10) 
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with the constant c1 independent of the function f. 
We then consider the following initial-value problem 

(11) (Dv)(t) = O,t > h; 

(12) v(t) = uh(t), t E [0, h]. 

Due to the uniqueness of the Cauchy initial value problem, we have v(t) = 

uh(t) for all t > h. 
An estimate of the solution for the homogeneous equation (1) (J(t) = 0) 

with initial data (2) was established earlier in [9], [10] and it has exactly 
the same form (6) with f(t) = 0. Substituting g by uh, u by v and segment 
[-h, 0] by [0, h], we obtain 

(13) llvllwJ[t-h,t] :S dt(t + 1)M-texp(N+t)lluhllwJ[o,h]• t > h, 

with constant d1 independent of the function uh. 
From estimates (10)-(13) the following inequality follows 

(14) 

with constant d2 independent of the function f. 
For the second step of the proof of Theorem 2.4, we need the following 

technical lemma whose proof is deferred to the end of this section. 
LEMMA 3.1. Suppose that detDo of 0, detDn of 0, the support off is 

contained in [jh- h,jh] for some integer j > 1, the initial function g = 
0. Then, for· the solution of the problem (1)-(2) we have the following 
assertions: 

(i) u(t) = 0, fort< jh- h, j = 1, 2, · · ·; 
( ii) For each k > j we have 

(15) llullwJ[kh-h,khl :S d((k- j + 1)h)M-1exp(N+(k- j)h)llfiiL,[jh-h,jhJ, 

with constant d independent of the function f. 
For the proof of the estimate (6) on the whole interval, we need, in 

addition to Lemma 3.1, the following representation of the function f: 

00 

(16) f(t) = L Jj(t), Ii(t) = X(jh h, jh)f(t), 
j=l 

where X (j h - h, j h) is a characteristic function of the interval (j h - h, j h). 
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The essential part of the remaining part of the proof for the estimate 
(6) is the fact that the functions IJ(t) with j > k do not influence on the 
solution u on the segment [0, kh]. Also, as mentioned earlier, the estimates for 
solutions of the homogeneous equation are based on the fact that exponential 
solutions give a Riesz basis for the spaces involved. More precisely, we have 
the following 

THEOREM 3.2. Let detD0 # 0 and detDn # 0. Then the system of 
the subspace Wn = Span~,,EGn {Yq,j,s(t)} forms the Riesz basis (unconditional 
basis) in the space W,i((-h,O),C7

). If, in addition, we have inf~,p;f-I,IAv
Aql > 0, then the system of subspaces V,~, = Span,~, {Yq,j,s(t)} forms the Riesz 
basis (unconditional basis) in the space WJ(( -h, 0), C7

). 

The proofs of this results and estimates of the solutions of the homoge
neous equation (1) can be found in [8], [9] (in the case B(s) = 0, D(s) = 0). 

In our situation, the proofs are completely the same. Only certain tech
nical details have to be added. We give the proof of Riesz basisness in the 
Appendix. 

We should mention that more general results for the equations of arbi
trary order m with matrix coefficients can be found in [13] and [14]. The 
most complete results about Riesz basisness of the system of exponential 
solutions in the scalar case ( r = 1) for equations of neutral type and of arbi
trary order were obtained in [12] and [26]. These articles also proved results 
about Riesz basisness of the system of divided differences constructed by the 
system of exponential solutions, these are rather useful in the situation when 
the set A is not separate. All results in [12] and [26] were obtained in the 
scale of Sobolev spaces of arbitrary orders (s :::0: m, s # l + 1/2, l E N). We 
should also mention that Riesz basisness of exponential solutions {Yq,J,s(t)} 
of homogeneous equation (1) in the space M2 = e ED £ 2((-h,O),C,') was 
obtained in [27] under an additional condition (the set A is separate). In the 
particular case for the equation with one delay (in our notations: detDn # 
0, Dj # 0, j = 1, n- 1, Do = I, Bj = 0, j = 0, n), ne can find results about 
Riesz basisness of exponential solutions in [28]. 

Before getting into the details of the proofs of our main results, let us 
briefly indicate how this Riesz basis is used in obtaining the sharp estimates 
for the solutions of equation (1), in the simplest case of a scalar equation 
when all roots Aq are simple. In this case, the system of the exponential 
solutions 

exp(-\qt) 
Zq(t) = l-\ql + 1 'Aq E A, 

forms the Riesz basis in the space W:f(( -h, 0), C7
). 
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Denote by V the orthogonaizer, i.e. the bounded operator, acting in the 
space WJ( ( -h, 0), C) and turning the system { zq(t)} into orthonormal basis 
of the space WJ((-h,O),C). Decompose the initial function g by the basis 
{zq(t)} as 

g(s) = L CqZq(s),s E [-h,Oj . 
.\qEA 

The desired estimate now follows from the following chain of the inequalities: 

llu(t + .)11~:/(-h,O) - IIV-12::.\,EAcqe.\'t(Vzq)(.)ll~:i(-h,o) 
::; IIV-1112exp(2N+tli:>.,EAicql2 
::; II v-1II 2 IIVII2exp(2N+t) 11911~:/(( -h,O). 

Note that we need the aforementioned Riesz basis in order to ensure that the 
bounded operator V has a bounded inverse v-1 (see [17] for more details). 

Now we are ready to give 
Proof of Lemma 3.1 The first assertion of Lemma 3.1 is valid due to 

the unique solvability of the problem (1)-(2) in the space Wi r(( -h, +oo ), C7
) 

for some r E R(see [8] for more details). ' 
This means that if u(t) = 0 for t E [-h, OJ and if the right-hand side 

j(t) = 0 for t E [0, T], then the solution u(t) = 0 for t E [0, T]. In other 
words, the operator D is a causal operator( an operator of Volterra type). 

In order to obtain the assertion ( ii), we change the variables by t = 
(jh- h)+ r (note we are abusing r here, and hope this will not cause any 
confusion) and set 

(17) u(r) = u(jh- h + r)](r) = f(jh- h + r). 

It is clear that u( T) is a solution of the following problem 

(18) (Du(r)) = f(r),r > 0; 

and 

(19) u(r) = O,r E [-h,O]. 

Taking into account that the support of 1 is contained in [0, h] due to 
the inequality (14), we have 

with constant c1 independent of the function f. 
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Therefore, from (20) we obtain 

(21) llullw:)(jh-2h+t,jh-h+t) ::; c1(t + 1)M-lexp(N+t)IIJII£2(jh-h,jh)· 

Using the change of variables T = jh- h + t once more, we obtain from (21) 
the following inequality 

(22) llullwi(T-h,T) . M 
1 

. 

::; c1 (1 + T- (Jh- h)) - exp(N+(T- (Jh- h)))IIJIILz(jh-h,jh)· 

Setting T = kh, we obtain from (22) the assertion (ii) of Lemma 2.2. 

Proof of Theorem 2.4: First of all, we consider the case T = kh, k E N. 
It is rather clear that functions fj(t) (see (16)) for j > k do not have any 
influence to the solution u(t) on the interval [0, kh]. 

Denote by uj(t) the solution of the problem (1)-(2) for the right parts 
off = fj and g = 0. Then, for t ::; kh, we have the representation 

k 

(23) u(t) = L uj(t). 
j=l 

Using well-known inequality 

(a1 + a2 + · · · + ak)2 ::; k(af +a~+···+ aD, aj E R, 

we obtain the estimate 

(24) 
llull~:)(kh-h,kh) < (I:;~=lllujllwJ(kh-h,kh)) 2 

< k(I;~=IIIujll~i(kh-h,kh)). 

From the inequalities (15) and (24) fort = kh, we deduce the following 
estimate 

(25) 

llull~}(kh-h,kh) 
::; elk L~=lu;Lh(kh- 7 + lj2(M-!)exp[2N+(kh- 7)]11Jj(T)II2d7] 

= c1k J
0
kh(kh- 7 + 1j2(M-l)exp[2N-t-(kh- 7)]11f(7)11 2d7 

= c1k J;(t- 7 + 1)2(M-llexp[2N+(t -7)]11f(7)ll 2d7 

with constant c1 independent of the function f. 
Now, we consider the case of arbitrary real t > h. Let us choose such k 

that kh 2: t. It is evident that 

(26) lluii~J(t-h,t) ::; 2(llull~}(kh-2h,kh-h) + llull~}(kh-h,kh)). 
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Using the inequality (25), we have the following estimate 

lluii~J(t-h,t) 
::; c2(k- 1) J

0
kh-h(kh ~ h- T + 1) 2(M-!)exp[2~+(kh- h- r)JIIf(r)Wdr 

+c2k J:h(kh- T + 1) 2(M- 1lexp[2~+(kh- r)JIIJ(r)ll 2dr 
::; c3k fokh(kh- T + 1) 2(M- 1lexp[2~+(kh- r)JIIf(r)ll 2dr 

(27) 
with constant c2, c3 independent of the function f. 

The solution u(r) on the segment [0, t] does not depend on the function 
f(r) forT> t, thus we can substitute the £ 2-norm of the right-hand side of 
(27) on the interval (0, kh) by the £ 2-norm on the interval (0, t). 

Finally, we note that for t I';; kh (for sufficiently large k), we have 

(kh- T + l)M-1 
I';; (t- T + 1)M-1. 

From the inequality (27), we then obtain the assertion (6) of Theorem 2.4, 
completing the proof. 

We conclude this section with a 
Proof of Proposition 2.8. Due to the compactness of the support of the 
function f, there are only a finite number of nonzero terms in the represen
tation (16). Thus there will be only a finite number functions uj(t) in the 
representation (23) of the solution, and hence the multiplier k in the esti
mate (24) may be substituted by a constant independent of k. As a result, 
the term Vi in the inequality (6) can be dropped. 

4. Examples, Remarks and Comments. The following example 
shows that our estimates of solutions to the homogeneous equation (! = 0) 
is sharp in the sense that it is impossible to replace the constant ~+ by a 
constant N+ - E for an arbitrary positive E. 

Example 1. We consider the following difference differential equation 

(28) 
du du 
dt - au(t) - dt (t- 1) + au(t- 1) = 0, t > 0, 

It is known (see [20], and also [2], [3] (chapter 9)) that each root >.q of 
the characteristic quasipolynomial 

La(>.) =).+a- c'(>.- a) 



SHARP ESTIMATES OF SOLUTIONS TO NEUTRAL EQUATIONS 447 

of the equation (28) is on the imaginary axis (Re>.q = 0) with multiplicity 
{tq = 1. Therefore, ~+ = ~- = 0, N = max>.,EAftq = 1. 

Under our definition of the solution for the initial value problem associ
ated with the equation (28), the following estimate holds 

(29) llullw;'(t-l,t) ::; dll9llw;'(-l,O)> t > 1, 

with the constant d independent of the function g. 
We should emphasize here that our conclusion does NOT contradict the 

result of'[20], as we consider solutions from Sobolev space W:}, while in the 
article [ 20 l the initial function g does not belong to the space w2 ( -1' 0). 

The following example shows the sharpness of the estimate for the non
homogeneous equation. 
Example 2 Consider the following problem (in the scalar case with m = 1 ): 

(30) u(ll(t) + u(ll(t- 1) = 1, t > 0, 

with 

(31) u(t) = O,t E [-1,0]. 

The solutions can be constructed step by step as follows: 

Therefore, we have 

u(t) = { k, 
t- k, 

t E [2k -1,2k], 
t E [2k, 2k + 1]. 

llullw;'ln-l,n] ""n, 
IIJIIL2[0,n] "" ,fii, n E N. 

For the characteristic quasipolynomial 

the following assertions ~- = ~+ = 0, M = N = max,~,EAVq hold true. 
Fort= n, the right-hand side of the inequality (6) for our example likes 

Thus it is impossible to substitute ~+ by ~+- E with some E > 0 and to omit 
,;t. 



448 V.V. VLASOV AND J. WU 

We now make a few comments about existing results and the significance 
of our findings. First of all, the estimates similar to ( 6) for which the quantity 
~+is replaced by~++ E with some E > 0 are well-known (see [1]-[7] for more 
details). In the so called critical and supercritical cases (the situations where 
the roots Aq of the quasipolynomial l(>.) approach or lie on the imaginary 
axis, more refined estimates are needed and can be can be found in [2], [3], 
[20]). A natural and important question is whether one can refine these 
estimates by setting E = 0. Theorem 2.4 gives, in a certain sense, a positive 
answer to this question. 

We should emphasize the spectral character of our approach and we 
show how effective this approach is. Due to the fact that equation (1) 
has a convolution type, it is rather natural to use the method based on 
a Laplace transform. But then it is impossible to obtain the estimate (6), 
since any method based on the Laplace transform must involve the inverse 
of the Laplace transform that involves integration along lines parallel to the 
imaginary axis with a positive distance E > 0 to the spectra (the set of all 
zeroes A of the quasipolynomiall(>.)). 

It is also relevant to remark that our main purpose here is to obtain the 
sharpest estimates for solutions offunctional differential equations of neutral 
type. For the retarded type equations, the structure of the set of roots A is 
different and in particular, there is a dominating (with the most real part) 
zero Aq of the characteristic quasi polynomial. In this case, Laplace transform 
method should be rather effective. 

5. Appendix: Proof of Riesz Basisness of Exponential Solu
tions. The proof below of the Theorem 5.4 about Riesz basisness of expo
nential solutions is rather technical, so we start with a short discussion of 
the main steps involved in the proof. 

To prove Theorem 5.4, we need to verify the conditions (Lemma 5.8 · 
obtained in [16]) about Riesz basisness of root subspaces in terms of resolvent 
of an operator in an abstract Hilbert space. In order to do so, we must obtain 
the representation of the resolvent of the differential operator A subject to 
the nonlocal boundary conditions (32). It is thus important to note that 
this operator A is the generator of a C0-semigroup of the shift operator 
along the trajectories of strong solutions of the homogeneous equation (1) 
(J(t) = 0) (this construction is similar to the well-known one presented in [2] 
and[3] for the space of continuous functions.) Another important step in our 
long technical proof is to verify that the resolvent of the operator A satisfies 
the inequalities formulated in Lemma 5.8, and to obtain these estimates we 
will need the lower estimates of quasipolynomials (see [1] and [15] for more 
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details). 
We start by recalling some results characterizing the system of exponen

tial solutions of equation (1). 
PROPOSITION 5.1. Let detD0 i= 0. Then exponential solutions (4) form 

a minimal system in the space Wi(( -h, 0), C 7
). 

LEMMA 5.2. Let detD0 i= 0, detDn i= 0. Then there exist constants 
a and fJ such that the set A lies in the vertical strip {.A : a < Re.A < 
fJ} and the system of exponential solutions Yq,,i,s(t) is complete in the space 
Wi((-h,O),C7

). 

In the next Lemma we give the estimates of matrix-valued function 
£-l(.A), 

LEMMA 5.3. Let detD0 i= 0 and detDn i= 0. Then there exists the 
system of contours f n = {A E C : Re.A = a, In :S I m.A :S In+!} U {.A E C : 
a :S Re.A :S {J, lm.A =In+!} U {A E C: Re.A = {J, In :S lm.A :SIn+!} U {.A E 
C: a:::; Re.A:::; {J, Im.A =In}, ·in the set G(A, p) for sufficiently small p > 0, 
that satisfies the following conditions: 

(i) 0 < o :::; In+! -In :::; L:l. < +oo with some positive constants o and L:l.; 
(ii) there exists a constant K such that: 

sup I>-IIW1(.A)II :S K, n E Z . 
.\Ern 

Recall that we denote by Wn subspaces of the space Wi((-h,O),C7
) 

which are the span of all exponential solutions Yq,j,s(t) corresponding to the 
numbers Aq lying in the domains bounded by contours r n; by V>., subspaces 
of the space Wi ( ( -h, 0), C7

) which are the span of all exponential solutions 
yq,j,s(t), corresponding to the number Aq. 

We recall the formulation of Theorem 3.2 about Riesz basisness. For the 
convenience of reference, we reformulate this as follows. 

THEOREM 5.4. Let detD0 i= 0 and detDn i= 0. Then the system of 
subspaces {Wn}nEZ forms a Riesz basis of subspaces in the space 
Wi(( -h, 0), C 7

). 

The following theorem makes the previous one more precise in the case 
of a separate set A. 

THEOREM 5.5. Let detD0 i= 0 and detDn i= 0. Assume also the set A is 
separate, that is, inf I.AP- .Aql > 0. Then the system of subspaces {V>. }>. EA 

Av:/:Aq q q 

forms a Riesz basis of subspaces in the space Wi(( -h., 0), C 7
). 

Let us consider operator Ay = y<ll, acting in the space Wi ([ -h, OJ, C7
) 
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with the following domain: 

n 
DomA = {y: y E W:f([-h,O],C7

), "L,(Bky(-hk) +Dky(1l(-hk)) 

(32) k=O 
h 

+ J(B(s)y(-s) +D(s)y(ll(-s))ds = 0}. 
0 

We denote by { Pn}nEZ a system of Riesz spectral projectors of the operator 
A, corresponding to contours r n: 

(33) (Pnf) = - 2~i J RA(A)jdA, 

rn 

where RA(A) is the resolvent of the operator A. 
It can be easily shown that the system of exponential solutions ( 4) of 

equation ( 1) coincides with the system of eigen and associated vectors of the 
operator A defined in (32). Therefore, Theorem 3.2 (5.4) is a corollary of 
the following 

THEOREM 5.6. Let detD0 i' 0, detDn i' 0. 
Then the system of subspaces Wn = PnW2

1([-h, 0], C 7
), corresponding to the 

system of projectors {33) with contours fn, satisfying conditions of Lemma 
5.3, form Riesz basis of subspaces in the space W~J([-h, 0], C 7

). 

We shall prove Theorem 5.6 based on the following 
PROPOSITION 5. 7. Suppose that detD0 i' 0, detDn i' 0. Then the 

matrix-valued junction L-1 (A) satisfies the following estimates 

(34) IIL-1(A)II::; c(IAI + W\ A E G(A,p) U {ReA> 0}, 

(35) IIL-1(A)II::; co(IAI + 1)-1exp(ReAh), A E G(A,p) U {ReA< 0}, 

where c, c0 are constants. 
This proposition can be reduced from the results of chapter 12 of mono

graph [1] and the results of article [15]. The proof is based on the lower 
estimates of quasi polynomials. We give the proof of Proposition 5. 7 at the 
end of the Appendix, for the sake of completeness. 

(36) 

We will also need the following result, and we refer to [16] for a proof. 
LEMMA 5.8. If for· every elements j, g E W:f(( -h, 0), C 7

) = H 

~I l(RA(A)j,g)HdAI::; constii!IIHII9IIH, 
rn 
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then the system of the subspaces Wn forms unconditional (Riesz) basis in the 
closure of it's span; and if additionally the system Wn is complete in H then it 
forms unconditional {Riesz) basis in the whole space H = Wi((-h,O),C). 

Let us now calculate the resolvent of the operator A : RA (.\)z = y or 
y(l) = ,\y + z. We have 

t 

y(t) = e>-t(C + j e->-'z(s)ds), 

0 

where constant vector C may be found from the conditions (32). Namely, 
using the equality 

y(l) = ,\y + z, 

we have from condition (32) the following 

n -hk 

2:: Bke->-h•[C + J e->-'z(s)ds] 
k=O 0 

-hk 
+Dk(,\e->-h•[C + J e->-'z(s)ds] + z(-hk)) 

0 
h _, 

+ J(B(s)e->-'[C + J e->-rz(r)dr] 
0 0 _, 

+D(s)(,\e->-'[C + J e->-rz(r)dr] + z(-s))ds = 0. 
0 

As z E Wi([-h,O],C7
), we obtain 

-t -t J e->-'z(s)ds = ~(z(O)- z(-t))e>-1
) + ~ J e->-sz(l)(s)ds. 

0 0 

Hence condition (32) takes the form 

n -hk 
l::(Bke->.hk[C + J e->-sz(s)ds] 
k=O 0 

-hk 

+Dk,\e->.hk[C + :.!p. + ~ J e->-'z(1)(s)ds]) 
0 

h -8 

+ J B(s)e-''(C +J e->-rz(r)dr) 
0 0 _, 

+D(s),\c>-'(C + :.!p. + ~ J e->.rz( 1)(r)dT)ds = 0, 
0 
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or 

n n -hk 
-L(>-)C = I:; Dke->-h•z(O) +I:; (Bke->-h• J e->-sz(s)ds 

k=O k=O 0 
-h. h 

+Dke->-h• J e->-sz(ll(s)ds) + J D(s)e->-'z(O)ds 
0 0 

h -s -s 
+ J(B(s)e->-s J e->-rz(T)dT + D(s)e->-s J e->-rz(1l(T)dT)ds. 

0 0 0 

Let us denote by F(>-) the following vector-valued function: 

n h 
F(>-) = L-1(>-)[I:; Bke->-h• + J B(s)e->-'ds]~ 

k=O 0 
n -hk -hk 

-L-1 (>-)[L;(Bke->-h• J e->-sz(s)ds+Dke->-h• J e->-sz(ll(s)ds) 
k~ 0 0 

h -s -s 
+ J(B(s)e->-s J e->-rz(T)dT + D(s)e->-' J e->-rz(1l(T)dT)ds]. 

0 0 0 

Then the resolvent of the operator A may be rewritten as 

t 

(37) RA(>-)J = -e>-1F(>-)- e>-tf~O) + J e>-(t-s) f(s)ds. 

0 

We now rewrite the vector-valued function F(>-) as 

(38) F(>-) = Q(>-) + L-1 (>-)P(>-), 

where 

n h 

Q(.\) = L- 1(.\)[I:; Bke->-h• + J B(s)e->-'ds]~, 
k=O 0 

n 
P(.\) = I:; e->-h•Gk(.\) + Gn+t(.\), 

k=O 
-h. 

Gk(.\) = J e->-s(Bd(s) + Dd(1l(s))ds, 
0 

h -s -s 
Gn+l(.\) = J(B(s)e->-s J e->-rj(T)dT + D(s)e->-s J e->-rj(ll(T)dT)ds. 

0 0 0 

Now let us give the estimate of the vector-valued function F(.\). Note that 
the vector-valued functions Gk(.\) are entire functions of exponential type 
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(not more than hk) and belong to Hardy space in every strip {A A < 
ReA :<:; B}. Moreover, the following inequalities hold: 

+oo 

(39) A~~~B j IIGk(x + iy)Wdy :S: clllfii~J(-h,o) 
-00 

with a constant c1 independent of the function f(t). Hence, we obtain 

+oo 

(40) A~~~B j IIP(x + iy)Wdy :S: c2IIJII~1C-h,O) 
-oo 

with a constant c2 independent of the function j(t). 
By Proposition 5. 7 and the trace theorem we derive the following esti

mates of the function Q(A) in the domain I1p(a1, /31) = G(A, p) n {A : a 1 < 
ReA< /31} 

(41) IIQ(A)II :S: ca(IAI + l)-2 llfllw](-h,o)> ca =canst> 0. 

Here a 1 , /31 are constants with a 1 :S: a, f3 :::; f3J. 
Using representation (38), Proposition 5.7 and estimates (40) and (41) 

(for ReA= a, ReA= /3), we conclude that 

+oo 

(42) j (1 +I~+ iMI 2 )IIF(~ + if.l)Wdf.l :S: c411fii~J(-h,O)> ~=a, /3; 
-00 

with a constant c4 independent of the function f ( t). 
By Lemma 5.2, the system {Wn}nEZ is complete in the space 

WW -h, 0), C 7
). So we need only to verify inequality (36). 

Due to Lemma 5.8 and (37), we need only to prove that 

(43) I.: I j(e>.tF(A),g(t))wJdAI :S: constllfllw:~ll9llwJ-
nEZ I'n 

This is due to Cauchy theorem - an integral of holomorphic functions 
along closed contours r n is equal to zero. The second and third items in 
(37) are holomorphic functions (exept one simple pole). The third item 
is holomorphic everywhere in arbitrary bounded domain; the second item 
is holomorphic everywhere except simple pole A = 0. So if we substitute 
resolvent (37) in the expression (36) the integrals of the second and third 
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items will be equal to zero. Therefore, the inequality (36) will have form 
(43). 

We have 

where 

0 

9t(.\) = j e>.t9(t)(t)dt, 

-h 

0 

go(.\) = j e>.t9(t)dt. 

-h 

Thus ( 43), holds if 

2::: I j(.\JF(.\),9J(""f..))d.\l::; constllfllwJII9IIwJ, j = 0, 1. 
nEZ rn 

We note that the vector-valued function 91 and 9o are entire functions 
of exponential type, belong to the Hardy space H2(A, B) in every strip 

{.\: A::; Re.\ ::; B}, 

since Hardy theorem ensures that the Laplace transform of a function be
longing to the space L2(0, +oo) is an element of Hardy space H2 (C+) in the 
right half plane { .\ : Re.\ > 0}. 

In the integral representation of function 9o ( .\) and 91 ( .\) we change the 
variables from t to (-t): 

h 

lit(.\)= j e->.t9(1)(-t)dt; 

0 

h 

§o(.\) = j e->.t9( -t)dt. 

0 

Functions 9(1)( -t) and 9( -t) have compact support belonging to seg
ment [O,h]. These functions are elements of the space L2((0, h), C'"). More
over, functions exp(at)9(1)(-t),exp(at)9(-t) are also elements of space 
L2 ((0, h), C'") for arbitrary a. Due to this fact the Laplace transforms 91(.\) 

and 9(.\) belong to Hardy space H 2(Re.\ > -a) for arbitrary a E JR. So these 
functions belong to Hardy space H 2 (.\: A::; Re.\::; B). 
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It is well-known that for Hardy space H2 (<C+) the following equality is 
valid 

+co 

llfi!L,(JR+) =(sup j lf(x + iy)l 2dy) 112
, 

x>O 
-oo 

here ](x + iy) is the Laplace transform of the function f(t). From this 
equality we easily deduce the following estimate: 

+co 

(44) sup j llgJ(x + iy)Wdy::; kJIIg(j)ll},,(-h,o)' j = 0, 1, 
A:Sx:SB 

-oo 

with constants k0 and k1 independent of the function g. 
So, for A = a, B = f3 we obtain 

e+iln+l 

I: I J (.>-JF(.\),gl~))d>-1 
nEZ e-H!n 

+oo 
(45) ::; f l((~+iJ.t)JF(~+iJ.t),gJ(~ iJ.t))ldJ.t 

-oo 
+co 

::; cs( J (1 +I~+ iJ.ti 2J)IIF(~ + iJ.t)WdJ.t) 112 llgUliiD2(-h,o) 
-oo 

with constant c5 independent of the function g(t), (j = 0, 1, ~=a, {3). 
Therefore, from inequalities (42), (45) we have 

{+i'Yn+l 

(46) 'EI j (.>-JF(>-),gJ(:\))d>-1::; c7llfllwJ(-h,oJIIgUlli£,(-h,oJ 
nEZ {+hn 

with constant c6 independent of the functions f and g (j- 0, 1, ~=a, {3). 
Thus, we obtain a part of the estimate ( 43) on the vertical sides of 

contours r n· In order to prove the part of estimate ( 43) on the horizontal 
sides of contours r no we need the following proposition which is a significant 
modification of theorem 3.3.1 from [24]. 

Denote by Mv2 (R) the set of all entire functions of exponential type v, 
which belong to the space L2 (R) as functions of real argument t E R. 

LEMMA 5.9. Let v(z) E Mv2 (R), and let sequence of real numbers 
{tn}nEZ satisfy the condition: 0 < 5 ::; tn+l- tn ::; t. < +oo, with certain 
positive constants 5 and t.. Then the following inequality takes place: 

+co 
('E lv(tnWll/2::; o-1/2(1 + vt.)( j lv(tWll/2 
nEZ -co 
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We shall give the proof of Lemma 5.9 at the end of the Appendix. 
According to representation ( 38), we have 

Due to Lemma 5.3 and estimate (41), we have 

From the latter inequality we obtain the estimate 

fJ+i!n 

(47) I 11.\Q(.\)W d.\ :'0 cg(lnl + W2 ll!ll~:i(-h,O) 
a+i')'n 

with a constant c9 independent of the function j(t). 
In turn, applying Lemma 5.9 to the vector-valued function gi(.\) and to 

tn = "/n, t = y, we have 

n=+oo 
L l(gj(X + i"!n),elW 

n=-oo 
+oo +oo 

::; c1o J l(gi(x+iy),el)!2dy::; en f llgi(x+iv)Wdy, 
-00 -oo 

for x E [a, ,6], j = 0, 1, where { e1}[=1 is an orthonormal basis of the space 
C 7

• Then, due to (44), we have 

(48) n:;:;;;-oo a 
+oo 

::; c12 sup J llgi(x + iy)Wdy::; cdlg(jlli£,(-h,o),j = 0, 1, 
aS:x-::J3-oo 

with constants c10 , c11 , c12 , c13 independent of the function g(t). 
Taking into account that function (P(.\), e1), l = 1, 2, ... , r, .\ = iz, also 

satisfy the conditions of Lemma 5.9, by analogy with estimate gi(.\), we 
obtain the inequality 

n=+oo +00 

(49) L IIP(x+i"fn)ll~r :'0 C14 I IIP(x+iy)ll~rdy, X E [a,,B]. 
n=-oo _

00 
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Then, according to estimates (49) and (40), we have 

n=+oo (J 

L J IIP(x + irn)Wdx :S C15IIJII~J,(-h,O) 
n=-oo a 

with a constant c15independent of the function j(t). 
From the latter inequality and estimate (Lemma 5.3) 

sup 1>-IIIL-1(>-)11 :S Ko =canst, n E Z, 
AEln 

we obtain inequality 

n=+oo 
(50) L J 11>-L-1(>-)P(>.)Wid.XI :S C1611JII~J(-h,0)' 

n=-oo ln 

where ln ={.X E C: Im>. = "fn, a :S Re>. :S ,6}. 
Taking into account representation (38) and estimates (47) and (50), we 

have 

(51) 
n=+oo 

L j 11>-F(>.)Wid.XI :S c17IIJII~:1(-h,o) 
n=-ooln 

with a constant c17 independent of the function j(t). 
Hence from estimates (48), (51) and inequality 

n=+oo 
L II(>.JF(>.),gj(:\))d>-1 

n=-oo ln 
n=+oo n=+oo 

::::: ( 2:: I li>.JF(>-lWid>-1) 112( 2:: I llgj(:\JWid>-1)112, j = o, 1, 
n=-ooln 

the following estimate follows: 

n=+oo 

(52) L I j (>.J F(>.), 9J(:\) )d>.i :S c1sll/llw:1( -h,o) llg(jl llw,'(-h,O)> j = 0, 1, 
n=-oo ln 

with constant c18 independent of the functions f(t) and g(t). 
So, according to Lemma 5.8, the sequence of subspaces {Wn}nEZ forms 

an unconditional basis (Riesz basis) of the space W](( -h, 0), C7
). 
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The estimate (6) of homogeneous equation (1) (j(t) = 0) is a corollary 
of our results in this Appendix about Riesz basisness of the system {Wu} 
and Theorem 1 in [23]. For another independent proof on the estimate of the 
homogeneous equation (in the scalar case m = 1), see [12], [26]. 

The proof of Theorem 5.5 is similar and thus is omitted. 
Proof of Lemma 5.7. Let v(z) E Mv be an entire function of v-type, 

such that v(t) E L2( -oo, +oo). Then the following holds: 

+oo tk+l 

j lv(tWdt = L I lv(tWdt = L lv(~kWL':..tk, 
_ 00 kEZ tk kEZ 

where ~k E [tk, tk+ll· Due to generalized Bernstain inequality (see [24])and 
Holder inequality, and using llall - llbll ::; lla- bll, we have 

IO::::kEZ lv(~k)IZ.6.tk) 112 - C2::::kEZ lv(tk)l2.6.tk) 112
1 

l'.k 
::; (LkEZ lv(~k)- v(tk)IZ.6.tk)1/2 = (2::::kEZ I J v(ll(t)dtl2.6.tk)1/2 

l'.k 
::; (LkEZ(f lv(ll(t)l2dt)(~k- tk).6.tk) 112 

tk 
tk+1 

::; (2::::kEZ f lv(ll(t)l2dt)112 sup(L':..tk) 
tk kEZ 

+oo 
::; .6.( f lv(ll(t)l2dt) 112 

-00 

::; .6.vllv(t)ll£,. 

From this, we obtain 

(LkEZ lv ( tk) 12 L':..tk) 112 

tk 

= [(LkEZ lv(tk)l2.6.tk) 1!2
- (LkEZ lv(~k)l2.6.tk) 1 !2 ] + (LkEZ lv(~k)I2L':..tk) 112 

::; (1 + .6.v)llvli£,. 
(53) 
Hence, we have 

s112(L lv(tkWl 112 ::; (L lvUkW.6.tk) 112 . (54) 
kEZ kEZ 

So from (53) and (54) we get the desired inequality. 
We now turn to the proof of Proposition 5.7, that is a consequence of 

several results in [1] and [15]. To be more specific, we add a few com
ments here. The estimate of the matrix function .c-1 (.\) outside the band 
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.\ :::; Re.\ ::; B, A < 0, B > 0, can be established by a straightforward verifi
cation (see also [1], Chap.12). The estimates of the matrix function L-1(.\) 

on the set G(A, p) n{.\: A< Re.\ < B} can be derived using the lower esti
mate of the quasipolynomiall(.\). Indeed, by virtue of the fact that detD0 I 
and detDn I 0 the coefficients at .\7 and .\7 exp( -.\rh) are determined by 
the quantities det(.\D0 + Bo) and det((.\Dn + Bn)exp( -.\h)) (see [1],p.429, 
formula 12.2.12) that differ from zero if l.\1 is large. Then in correspondence 
with inequality (3.12) in [25], we obtain the estimate 

(54) ll(.\)1 ~ Czo(l.\j' + 1), .\ E G(A, p) n{.\: A::; Re.\::; B}. 

Since the entries of the matrix function L -I(.\) are composed of cofact.ors of 
L(.\) and quasipolynomiall(.\), from estimate (55) we get inequalities (34) 
and(35) in the band {.\ : A::; Re.\ ::; B}, A< 0, B > 0. 

Therefore, the proof of the existence of the sequence { 'Yn}nEZ, mentioned 
in Lemma 5.3, follows from Lemma 4 and 5 in [15] as follows: Consider r 

different zeros Aq; (j = 1, 2, · · ·, r) of the quasipolynomiall(.\) and introduce 
the function 

.\rh 
ry(.\) = exp( 2 )1(.\)/(.\- Aq1 ) · • • (.\- AqJ· 

Using the fact that detD0 I 0 and detDn I 0, and repeating literally the 
corresponding arguments in [11], we get that the function ry1(z) = ry( - 2~;i) 
satisfies the conditions of Lemma 5 in [15]. Also for sufficiently small p > 0, 
on every interval of unit length we can determine a number 'Yn such that the 
straight line I m.\ = 'Yn does not intersect the exceptional set U D(.\q, p). 

>.,EA 

Hence we have the assertion of Lemma 5.3. 
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