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Abstract. In this paper, we consider the population growth of a single species
living in a two-dimensional spatial domain. New reaction-diffusion equa-
tion models with delayed nonlocal reaction are developed in two-dimensional
bounded domains combining different boundary conditions. The important
feature of the models is the reflection of the joint effect of the diffusion dy-
namics and the nonlocal maturation delayed effect. We consider and ana-
lyze numerical solutions of the mature population dynamics with some well-
known birth functions. In particular, we observe and study the occurrences of
asymptotically stable steady state solutions and periodic waves for the two-
dimensional problems with nonlocal delayed reaction. We also investigate
numerically the effects of various parameters on the period, the peak and the
shape of the periodic wave as well as the shape of the asymptotically stable
steady state solution.

1. Introduction. Mathematical modelling of population dynamics is a fast grow-
ing division, which has been playing more and more important roles in discovering
the relation between species and their environment and in understanding the dy-
namics involved in the corresponding biological and physical processes.

A well-known logistic equation with time delay (see [9]) is given by:

du(t)
dt

= pu(t)
(
1− u(t− r)

K

)
, t > 0, (1)

where u(t) is the total population of the species at time t ≥ 0, p > 0 is the birth
rate coefficient, K > 0 is the carrying capacity of the environment, and r ≥ 0 is
the delay parameter reflecting the fact that the current growth rate is governed by
the relative size of the population at time r ago, in comparison with the carrying
capacity.

Then, by introducing simply a diffusion term and incorporating a discrete delay
in the birth term, a widely used reaction-diffusion equation with delay and local
effect on a two-dimensional bounded domain (see [1], [3], [4], and [9]) is described
as:

∂u

∂t
= D

∂2u

∂x2
+ D

∂2u

∂y2
+ pu(t, x, y)

(
1− u(t− r, x, y)

K

)
, t > 0, (2)
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where u(t, x, y) is the density of the population of the species at time t ≥ 0 and
location (x, y), and D is the diffusion coefficient.

In recent years, new mathematical models incorporating delayed effects have
been studied. Smith in [10] and Smith and Thieme in [11] derived a scalar delayed
differential equation for the population with immature and mature age classes. The
maturation period was regarded as the time delay. Using the same idea, a system
of delayed differential equations for mature population in a patchy environment
was proposed by So, Wu and Zou in [12]. Furthermore, in [13], they derived a
non-local reaction-diffusion equation with time delay in a continuous unbounded
one-dimensional spatial domain. Existence of travelling wavefronts for this model
was also studied in [13]. Moreover, Liang and Wu [6] considered a species living in
a spatially transporting one-dimensional field and derived a reaction advection dif-
fusion equation model with an advection term accounting for the spatial transport
and a spatial translation in the delayed nonlocal effect term. Travelling wavefronts
for the unbounded one-dimensional domain were studied both theoretically and
numerically in [6].

However, there is particular interest in studying the species population with
nonlocal delayed effect living in a high-dimensional bounded spatial field. It is
very important and difficult to investigate the asymptotically stable steady state
solutions and the periodic wave solutions for the high-dimensional problems with
nonlocal delayed effects. In this paper, we consider the population growth of a
single species living in a two-dimensional spatial domain. Only two age classes,
that is, immature and mature populations are assumed for the species and the
fixed maturation period is regarded as the time delay. Both the death rate and the
diffusion rate of the mature population are further supposed to be age independent.
New reaction-diffusion equation (RED) models with delayed nonlocal reaction are
developed in two-dimensional bounded domains. The important feature of the mod-
els is that they reflect the joint effect of the diffusion dynamics and the nonlocal
maturation delayed effect in the bounded two-dimensional domain. We focus on
the numerical computation and analysis of the mature population dynamics on the
two-dimensional bounded domains with some well-known birth functions combin-
ing with Neumann and Dirichlet boundary conditions. In particular, we investigate
numerically the occurrences of the asymptotically stable steady state solutions and
the periodic waves for certain ranges of birth rate and death rate parameters. In
addition, the effects of various parameters on the periodic waves and the asymptot-
ically stable steady state solutions are further investigated. Moreover, the initial
condition is considered as a function of time and space, and its effect on the mature
population dynamics is also studied.

The paper is organized as follows. In the next section, we derive the new
reaction-diffusion equation models with delayed nonlocal reactions in two dimen-
sional bounded domains. In Section 3, we introduce numerical methods for simu-
lating the models in two-dimensional bounded domains. We report our numerical
results and analyze in detail the dynamical behaviours of the processes in Section
4. Finally, we draw some conclusions in Section 5.

2. RDE Models in 2-D. Starting from the age-structured population dynamic,
we consider the population growth of a single species in a two-dimensional bounded
domain. The reaction-diffusion equation models with delayed nonlocal reactions
will be derived for the maturation population in 2-D. Let Ω = [0, Lx] × [0, Ly] be
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the spatial living two-dimensional domain of the species, u(t, a, x, y) denote the
density of the population of the species at time t ≥ 0, the age a ≥ 0 and the spatial
location (x, y) ∈ Ω. Let D(a) and d(a) denote the diffusion rate and death rate at
age a respectively. Then, the population density function u(t, a, x, y) satisfies

∂u

∂t
+

∂u

∂a
= D(a)

∂2u

∂x2
+ D(a)

∂2u

∂y2
− d(a)u, t > 0, a > 0, (x, y) ∈ Ω. (3)

At first, let us consider the Neumann boundary condition:

∂

∂x
u(t, a, 0, y) = 0,

∂

∂x
u(t, a, Lx, y) = 0, 0 ≤ y ≤ Ly, (4)

∂

∂y
u(t, a, x, 0) = 0,

∂

∂y
u(t, a, x, Ly) = 0, 0 ≤ x ≤ Lx, (5)

for t ≥ 0 and a ≥ 0.
Assume that the population has only two age stages as mature and immature

species. Let r ≥ 0 denote the fixed maturation time for the species and al > 0 be
the life limit of an individual species. Therefore, u(t, al, x, y) = 0 at any time t > 0
and any (x, y) ∈ Ω. The total mature population is denoted by w(t, x, y) and

w(t, x, y) =
∫ al

r

u(t, a, x, y)da, t ≥ 0, (x, y) ∈ Ω.

Since only the mature population can reproduce, we have

u(t, 0, x, y) = b(w(t, x, y)), t ≥ 0, (x, y) ∈ Ω, (6)

where b(·) : [0,∞) → [0,∞) is the birth function.
Suppose Dm and dm are the age-independent diffusion rate and death rate for the

mature population respectively, that is, D(a) = Dm and d(a) = dm for a ∈ [r, al].
Then integrating (3) leads to

∂w

∂t
= u(t, r, x, y) + Dm

∂2w

∂x2
+ Dm

∂2w

∂y2
− dmw. (7)

Further, we can eliminate u(t, r, x, y) from (7), which can be achieved as follows.
Let us fix s ≥ 0 and define V s(t, x, y) = u(t, t − s, x, y) for s ≤ t ≤ s + r. Then,
from (3), it follows, for s ≤ t ≤ s + r, that

∂V s

∂t
= D(t− s)

∂2V s

∂x2
+ D(t− s)

∂2V s

∂y2
− d(t− s)V s, (8)

with
V s(s, x, y) = b(w(s, x, y)), (x, y) ∈ Ω (9)

and the corresponding boundary conditions

∂

∂x
V s(t, 0, y) = 0,

∂

∂x
V s(t, Lx, y) = 0, y ∈ [0, Ly], t ≥ 0, (10)

∂

∂y
V s(t, x, 0) = 0,

∂

∂y
V s(t, x, Ly) = 0, x ∈ [0, Lx], t ≥ 0. (11)

Note that (8) is a linear reaction diffusion equation in 2-D, we can solve (8)-(11)
by the method of separation variables. Let V s(t, x, y) = Ψ(t)Φ(x, y). From (8) it
leads to

Ψ′(t)Φ(x, y) = D(t− s)Ψ(t)
(
Φ′′xx(x, y) + Φ′′yy(x, y)

)
− d(t− s)Ψ(t)Φ(x, y).
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The corresponding eigenvalue problem of (8) - (11) is

−
(∂2Φ

∂x2
+

∂2Φ
∂y2

)
= λΦ, (x, y) ∈ Ω, (12)

Φx(0, y) = 0, Φy(Lx, y) = 0, y ∈ [0, Ly], (13)
Φx(x, 0) = 0, Φy(x, Ly) = 0, x ∈ [0, Lx]. (14)

We have the following solutions of (12) - (14):

λn =
(

nπ

Lx

)2

, n = 0, 1, 2, · · ·,

λm =
(

mπ

Ly

)2

, m = 0, 1, 2, · · ·,

λn,m =
(

mπ

Lx

)2

+
(

mπ

Ly

)2

, n, m = 0, 1, 2, · · ·,

Φn,m(x, y) = cos
√

λnx cos
√

λmy, n,m = 0, 1, 2, · · ·.
Further, we obtain the following series solution for (8) - (11):

V s(t, x, y) =
∞∑

n,m=0

an,m(s)e−
∫ t

s
[λn,mD(θ−s)+d(t−θ)]dθ cos

√
λnx cos

√
λmy, (15)

where

a0,0(s) =
1

LxLy

∫ Lx

0

∫ Ly

0

b(w(s, zx, zy)) dzxdzy,

a0,m(s) =
2

LxLy

∫ Lx

0

∫ Ly

0

b(w(s, zx, zy)) cos
√

λmzy dzxdzy, m = 1, 2, · · ·,

an,0(s) =
2

LxLy

∫ Lx

0

∫ Ly

0

b(w(s, zx, zy)) cos
√

λnzx dzxdzy, n = 1, 2, · · ·,

an,m(s) =
4

LxLy

∫ Lx

0

∫ Ly

0

b(w(s, zx, zy)) cos
√

λnzx cos
√

λmzy dzxdzy,

n, m = 1, 2, · · ·.
Let DI and dI denote the diffusion and death rates of the immature population,

respectively, i. e., D(a) = DI(a) and d(a) = dI(a) for a ∈ [0, r]. Let

ε = e−
∫ τ
0 dI(a) da, α =

∫ τ

0

DI(a) da, (16)

with the use of the relation u(t, r, x, y) = V t−r(t, x, y), we finally obtain a reaction-
diffusion equation model in 2-D with delayed nonlocal reaction and the Neumann
boundary condition as following:

∂w

∂t
= Dm

∂2w

∂x2
+ Dm

∂2w

∂y2
− dmw + F (x, y, w(t− r, ·)), (17)

(x, y) ∈ Ω, t ∈ (0, T ],
w(t, x, y) = w0(t, x, y), (x, y) ∈ Ω, t ∈ [−r, 0], (18)
∂

∂x
w(t, 0, y) = 0,

∂

∂x
w(t, Lx, y) = 0, 0 ≤ y ≤ Ly, (19)

∂

∂y
w(t, x, 0) = 0,

∂

∂y
w(t, x, Ly) = 0, 0 ≤ x ≤ Lx, (20)
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where w0(t, x, y) is an initial function which should be specified, and

F (x, y, w(t− r, ·)) =
ε

LxLy

∫ Lx

0

∫ Ly

0

b(w(t− r, zx, zy)) ·
{

1 +
∞∑

n=1

[
cos

nπ(x− zx)
Lx

+ cos
nπ(x + zx)

Lx

]
e−α( nπ

Lx
)2

+
∞∑

m=1

[
cos

mπ(y − zy)
Ly

+ cos
mπ(y + zy)

Ly

]
e
−α( mπ

Ly
)2 (21)

+
∞∑

n=1

∞∑
m=1

[
cos

nπ(x− zx)
Lx

+ cos
nπ(x + zx)

Lx

]
·

[
cos

mπ(y − zy)
Ly

+ cos
mπ(y + zy)

Ly

]
·

e
−α[( nπ

Lx
)2+( mπ

Ly
)2]

}
dzxdzy.

The homogeneous Neumann boundary condition indicates an isolating boundary,
and no species can go through the boundary. In the same way, we can consider
the problem with the Dirichlet boundary condition, mixed boundary condition and
periodic boundary condition. The similar 2-D reaction-diffusion equation models
are obtained but with different delayed nonlocal reaction terms.

The 2-D model with delayed nonlocal reaction and the Dirichlet boundary con-
dition is

∂w

∂t
= Dm

∂2w

∂x2
+ Dm

∂2w

∂y2
− dmw + F (x, y, w(t− r, ·)),

(x, y) ∈ [0, Lx]× [0, Ly], t > 0, (22)
w(t, x, y) = w0(t, x, y), (x, y) ∈ [0, Lx]× [0, Ly], t ∈ [−r, 0], (23)
w(t, x, 0) = 0, w(t, x, Ly) = 0, 0 ≤ x ≤ Lx, t ≥ 0, (24)
w(t, 0, y) = 0, w(t, Lx, y) = 0, 0 ≤ y ≤ Ly, t ≥ 0, (25)

where

F (x, y, w(t− r, ·)) =
ε

LxLy

∫ Lx

0

∫ Ly

0

b(w(t− r, zx, zy)) ·
∞∑

n=1

∞∑
m=1

[
cos

nπ(x− zx)
Lx

− cos
nπ(x + zx)

Lx

]
· (26)

[
cos

mπ(y − zy)
Ly

− cos
mπ(y + zy)

Ly

]
e
−α[( nπ

Lx
)2+( mπ

Ly
)2]

dzxdzy.
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The 2-D model with delayed nonlocal reaction and the mixed boundary condition
is

∂w

∂t
= Dm

∂2w

∂x2
+ Dm

∂2w

∂y2
− dmw +

ε

LxLy

∫ Lx

0

∫ Ly

0

b(w(t− r, zx, zy)) ·
{ ∞∑

n,m=1

[
cos

(2n− 1)π
2Lx

(x− zx)− cos
(2n− 1)π

2Lx
(x + zx)

]

[
cos

(2m− 1)π
2Ly

(y − zy)− cos
(2m− 1)π

2Ly
(y + zy)

]
·

e
−α((

(2n−1)π
2Lx

)2+(
(2n−1)π

2Ly
)2)

}
dzxdzy, (27)

(x, y) ∈ [0, Lx]× [0, Ly], t > 0,

w(t, 0, y) = 0,
∂

∂x
w(t, Lx, y) = 0, y ∈ [0, Ly], t ≥ 0, (28)

w(t, x, 0) = 0,
∂

∂y
w(t, x, Ly) = 0, x ∈ [0, Lx], t ≥ 0, (29)

w(t, x, y) = w0(t, x, y), (x, y) ∈ [0, Lx]× [0, Ly], t ∈ [−r, 0]. (30)

The 2-D model with delayed nonlocal reaction and the periodic boundary is

∂w

∂t
= Dm

∂2w

∂x2
+ Dm

∂2w

∂y2
− dmw +

ε

4LxLy

∫ Lx

−Lx

∫ Ly

−Ly

b(w(t− r, zx, zy)) ·
{

1 + 2
∞∑

n=1

[
cos

nπ

Lx
(x− zx)

]
e−α( nπ

Lx
)2 + 2

∞∑
m=1

[
cos

nπ

Ly
(x− zy)

]
e
−α( nπ

Ly
)2

+4
∞∑

n,m=1

[
cos

nπ

Lx
(x− zx) cos

nπ

Ly
(x− zy)

]
e
−α( nπ

Lx
)2+ nπ

Ly
)2

}
dzxdzy (31)

(x, y) ∈ [−Lx, Lx]× [−Ly, Ly], t > 0,

w(t,−Lx, y) = w(t, Lx, y), y ∈ [−Ly, Ly], t ≥ 0, (32)
∂

∂x
w(t,−Lx, y) =

∂

∂x
w(t, Lx, y), y ∈ [−Ly, Ly], t ≥ 0, (33)

w(t, x,−Ly) = w(t, x, Ly), x ∈ [−Lx, Lx], t ≥ 0, (34)
∂

∂x
w(t, x,−Ly) =

∂

∂x
w(t, x, Ly), x ∈ [−Lx, Lx], t ≥ 0, (35)

w(t, x, y) = w0(t, x, y), (x, y) ∈ [−Lx, Lx]× [−Ly, Ly], t ∈ [−r, 0]. (36)

Models (17) - (21), (22) - (26) as well as (27) - (30) and (31) - (36) are two-
dimensional reaction-diffusion equations with time delay and nonlocal reaction.
Here, ε reflects the impact of the death rate of immature and α represents the effect
of the dispersal rate of the immature on the growth rate of the mature population.
F (x, y, w(t − r, ·)) represents the nonlocal spatial effect with time delay. When
α → 0 and ε → 1, that is, if all immature population live to maturity without
death and dispersal, then the model equation becomes

∂w

∂t
= Dm

∂2w

∂x2
+ Dm

∂2w

∂y2
− dmw + b(w(t− r, x, y)), (x, y) ∈ Ω, t > 0, (37)

which is the local time delay problem on a bounded domain. This local delay prob-
lems have been widely studied in many papers, such as [16], [7], [14] and [15] for the
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finite domain case. The problems with delayed nonlocal effects in a one-dimensional
bounded domain have recently been studied in [5] by Liang, So, Zhang and Zou. In
the following sections, we will focus on the numerical computation and numerical
analysis of 2-D reaction-diffusion equation models with delayed nonlocal reaction
combining with Neumann and Dirichlet boundary conditions. In particular, we will
observe numerically the dynamical behaviours of the population processes.

3. Numerical Schemes on 2-D Domains. In order to investigate numerically
the above RDE models in 2-D, we will introduce numerical methods in this section.
Let us consider the 2-D model with the Dirichlet boundary condition:

∂w

∂t
= Dm

∂2w

∂x2
+Dm

∂2w

∂y2
−dmw+F (x, y, w(t−r, ·)), (x, y) ∈ Ω, t > 0, (38)

where Ω = [0, Lx]× [0, Ly], and

F (x, y, w(t− r, ·)) =
ε

LxLy

∫ Lx

0

∫ Ly

0

b(w(t− r, zx, zy)) ·
∞∑

n=1

∞∑
m=1

[
cos

nπ(x− zx)
Lx

− cos
nπ(x + zx)

Lx

]
· (39)

[
cos

mπ(y − zy)
Ly

− cos
mπ(y + zy)

Ly

]
e
−α[( nπ

Lx
)2+( mπ

Ly
)2]

dzxdzy

w(t, x, y) = w0(t, x, y), (x, y) ∈ Ω, t ∈ [−r, 0], (40)
w(t, x, 0) = 0, w(t, x, Ly) = 0, 0 ≤ x ≤ Lx, t ≥ 0, (41)
w(t, 0, y) = 0, w(t, Lx, y) = 0, 0 ≤ y ≤ Ly, t ≥ 0. (42)

Take a uniform spatial grid for the domain Ω = [0, Lx] × [0, Ly] with nodes
(xi, yj), i = 0, 1, 2, · · · ,mx; j = 0, 1, 2, · · · ,my such that

0 = x0 < x1 < · · · < xi < · · · < xmx = Lx,

0 = y0 < y1 < · · · < yj < · · · < ymy = Ly,

where mx and my are positive integers. Denote spatial step sizes ∆x = Lx

mx
and

∆y = Ly

my
, then, xi = x0 + i∆x for i = 0, 1, 2, · · · , mx and yj = y0 + j∆y for

j = 0, 1, 2, · · · ,my.
Similarly, let n = 0, 1, 2, · · · , k, and let T be the final time, a uniform partition

on the time interval is defined as

0 = t0 < t1 < · · · < tn < · · · < tk = T,

where k is a positive integer and the time step size is ∆t = T
k ; tn = n∆t for

n = 0, 1, 2, · · · , k. Further, denote Wn
i,j as the approximate value of w(tn, xi, yj).

By using the backward-difference method, the differential operators in (38) can
be approximated by

∂w

∂t
(tn, xi, yj) =

wn
i,j − wn−1

i,j

∆t
+ O(∆t), (43)

∂2w

∂x2
(tn, xi, yj) =

wn
i−1,j − 2wn

i,j + wn
i+1,j

(∆x)2
+ O((∆x)2), (44)

∂2w

∂y2
(tn, xi, yj) =

wn
i,j−1 − 2wn

i,j + wn
i,j+1

(∆y)2
+ O((∆y)2), (45)
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for n = 1, 2, · · · , k, i = 1, 2, · · · ,mx and j = 1, 2, · · · , my.
Additionally, in order to obtain a numerical scheme of equation (38) on the

spatial and time nodes, we need to deal with the delayed nonlocal effect term
F (x, y, w(t−r, ·)) discretely. Let W

n−k(r)
i,j be the approximation of w(tn−r, xi, yj).

If r = kr∆t for the integer kr ≥ 0, then W
n−k(r)
i,j is defined at the nodes of the space-

time field as Wn−kr
i,j . However, if kr∆t < r < (kr + 1)∆t, we will define W

n−k(r)
i,j

to be the linear interpolation of Wn−kr
i,j and W

n−(kr+1)
i,j . High-order interpolations

can be defined from multilevel values to approximate W
n−k(r)
i,j for increasing the

accuracy.
Furthermore, let SN,M (x, y, zx, zy) be the approximation function to the infinite

series function of the term F (x, y, w(t− r, ·)) that is,

SN,M (x, y, zx, zy) =
N∑

n=1

M∑
m=1

[
cos

nπ(x− zx)
Lx

− cos
nπ(x + zx)

Lx

]
·

[
cos

mπ(y − zy)
Ly

− cos
mπ(y + zy)

Ly

]
e
−α[( nπ

Lx
)2+( mπ

Ly
)2](46)

with the rate of O(e−α[( Nπ
Lx

)2+( Mπ
Ly

)2]). Here, N and M are large positive integers.
Therefore,

Fn
i,j = F (xi, yj , W

n−k(r)
i,j )

≈ ε

LxLy

∫ Lx

0

∫ Ly

0

b(Wn−k(r)(zx, zy))SN,M (xi, yj , zx, zy)dzxdzy, (47)

which is used to approximate the delayed nonlocal effect term. The quadrature
techniques can be applied to this formula (47). Composite Simpson’s method (see,
[2]) is used to obtain the delayed nonlocal effect terms F (x, y,W (t − r, ·)) in our
computations and the truncation error is O((∆x)4 + (∆y)4).

Finally, we obtain the finite difference scheme for the 2-D RDE model (38) with
delayed nonlocal reaction:

Wn
i,j =

1
µ

{
Dm(Wn

i+1,j + Wn
i−1,j) + Dmν(Wn

i,j+1 + Wn
i,j−1) + (∆x)2(

Wn−1
i,j

∆t
+ Fn

i,j)
}

(48)
where ν = (∆x

∆y )2 and µ = 2Dm(1 + ν) + ∆x2(dm + 1
∆t ).

Many solution techniques of equations can be applied to solve the system above,
such as the Jacobi iterative method, Gauss-Seidel iterative method and SOR iter-
ative method (see, [2]). Let us give a short description of these iterative methods.
Consider the solution of a general system of equations Ax = b. Let xi refer to
the ith element of the vector x, k ≥ 1 represent the iteration number, and aij ,
bi, i, j = 1, 2, · · · , n be the components of the matrices An×n and b respectively.
Assume aii 6= 0 for i = 1, 2, · · · , n. Then, the Jacobi iterative method can be
expressed as

x
(k)
i =

−∑n
j=1,j 6=i aijx

(k−1)
j + bi

aii
,

for i = 1, 2, · · · , n, and the Gauss-Seidel iterative method has the form

x
(k)
i =

−∑i−1
j=1 aijx

(k)
j −∑n

j=i+1 aijx
(k−1)
j + bi

aii
,
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for i = 1, 2, · · · , n.
Furthermore, the SOR iterative method is described as

x
(k)
i = (1− ω)x(k−1)

i +
ω(−Σi−1

j=1aijx
(k)
j − Σn

j=i+1aijx
(k−1)
j + bi)

aii
,

for i = 1, 2, · · · , n, where ω > 0 is called the relaxation factor. When ω = 1, this
method becomes the Gauss-Seidel iterative method. Normally, the SOR method
has the fastest convergence rate if 1 < ω < 2, and the Gauss-Seidel iterative
method converges faster than the Jacobi iterative method. The Gauss-Seidel it-
erative method is applied to solve the system of equations (48) in our numerical
computations.

4. Numerical Analyses of 2-D Models. We now study numerically the solu-
tions of the two-dimensional reaction-diffusion equation models with delayed non-
local reaction derived in Section 2. In our computations, two birth functions which
were widely used in the studying of Nicholson’s blowflies equation (for example, see
[5], [6], [9], and [13]) are considered:

b1(w) = pwe−awq

, (49)

with p > 0, q > 0, and a > 0, and

b2(w) =
{

pw(1− wq

Kq
c
), 0 ≤ w ≤ Kc,

0, w > Kc,
(50)

with p > 0, q > 0, and Kc > 0. q = 1 has been normally used in the literature, here
we use q as a parameter to reflect the intensity of competition for limited resources
that accounts for the crowding effect. Additionally, the initial condition w0(t, x, y)
is given to be a space-time function in the domain Ω× [−r, 0].

By using the finite difference method coupled with the iterative technique de-
scribed in Section 3, we can obtain the numerical solutions of the two-dimensional
reaction-diffusion equation with delayed nonlocal reaction. Our numerical simula-
tions show that the positive stable steady state solutions exist under a large range
of the biological parameters. In addition, the positive periodic wave appears when
the ratio of the birth parameter over the death parameter is greater than a certain
value, and many other parameters also affect the periodic solution of the dynamical
system. Furthermore, some impacts can be made by the initial condition on the
mature population dynamics.

4.1. 2-D Neumann Problems with b1(w). First, we consider the Neumann
problem with delayed nonlocal reaction and the birth function b1(w) = pwe−awq

.
This birth function with q = 1 has been widely used in the well-studied Nicholson’s
blowflies equation. It increases monotonically before reaching the peak and then
decays almost exponentially to zero.

Let the spatial domain Ω = [0, π]× [0, π]. The Neumann boundary condition for
the total mature population w(t, x, y) is given as

∂

∂x
w(t, 0, y) = 0,

∂

∂x
w(t, π, y) = 0, 0 ≤ y ≤ π (51)

and
∂

∂y
w(t, x, 0) = 0,

∂

∂y
w(t, x, π) = 0, 0 ≤ x ≤ π (52)
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Figure 1. The distribution of the mature population at (π
2 , π

2 )
under delayed nonlocal reaction with the birth function b1(w). The
data are Dm = 1, dm = 1, α = 1, ε = 1, q = 1, a = 1, and r = 1.
The initial function is given as w0(t, x, y) = 2+cos 4x cos 4y cos 4πt
in Ω × [−r, 0]. Take the birth rate parameter p as p = 5, p = 15
and p = 50.

for t ≥ 0. The initial function w0(t, x, y) on Ω× [−r, 0] is given as

w0(t, x, y) = wc + cosnxx cosnyy cos ntπt,

where nx, ny and nt are positive integers and wc ≥ 0. The graph of this initial
function is a periodic wave, which shows as cosine waves with period lengths of 2

nt

along the t-direction, 2π
nx

along the x-direction, and 2π
ny

along the y-direction in the
domain [0, π]× [0, π]× [−r, 0], respectively. The value of wc represents the central
value of the initial periodic wave. We take the uniform time grid with the step size
∆t along the t-direction and the uniform spatial grid with the step sizes ∆x, ∆y
along the x-direction, and the y-direction, respectively.

Example 1. Let the diffusion coefficient Dm = 1 and the death rate dm = 1
for the mature population, α = 1, ε = 1 for the immature population and the
maturation age (the time delay) r = 1. Let q = 1 and a = 1 in the birth func-
tion b1(w) = pwe−awq

. Choose wc = 2, nx = 4, ny = 4, and nt = 4, then
w0(t, x, y) = 2 + cos 4x cos 4y cos 4πt. Take ∆x = ∆y = π

16 ≈ 0.196 and ∆t = 0.01.
We then numerically observe the solutions by varying the birth rate p as p = 5,
p = 15, and p = 50.

The numerical solutions are shown in Figure 1 - 3. It is clear that the positive
solutions exist for some parameters. Figure 1 shows the numerical solutions at the
central point (π

2 , π
2 ) of the domain. The horizontal axis indicates the t-direction

and [−1, 0] refers to the initial time interval. The vertical direction represents the
value of total mature population. In Figure 1, if p is less than a number, such
as p = 5, the solution converges to a steady value less than wc = 2.0. Increasing
the value of p to a certain range, for example, when p = 15, the solution still
converges to a steady value but bigger than wc and with oscillation for some time



MODELLING POPULATION GROWTH 121

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

3.5

4

4.5

X

W

t=−0.6
t=0.01
t=0.1 
t=0.5
t=3
t=6

Figure 2. The distribution of the mature population along the x-
direction at y = π

2 with the birth function b1(w). Data are p = 5,
r = 1, Dm = 1, dm = 1, α = 1, ε = 1, q = 1, and a = 1. The
initial condition function is w0(t, x, y) = 2 + cos 4x cos 4y cos 4πt.
The curves are at t = −0.6, 0.01, 0.1, 0.5, 3, and 6.

at the beginning. Further increasing the value of p, for instance, when p = 50,
a periodic solution occurs. Despite using the same periodic initial function, these
solution graphs (p = 5, 15, 50) show different properties. In addition, in the periodic
solution case (p = 50), both the period size and the peak value of the solution wave
of the population dynamical process increase greatly compared with those of the
initial periodic wave when t ∈ [−1, 0].

The numerical solutions of the case p = 5 along the x-direction at y = π
2 and at

t = −0.6, 0.01, 0.1, 0.5, 3, and 6 are shown in Figure 2. We can see clearly that
the graph of the periodic initial wave is a portion of cosine wave within two periods
along the x-direction in the domain x ∈ [0, π] when t ∈ [−1, 0], such as at t = −0.6.
However, with the increasing of time, the solution graphs are still periodic waves at
the beginning, but the amplitude decreases continuously, for instance, at t = 0.01
and t = 0.1. A short time later, the solution graphs become straight lines along
the x-direction at t = 0.5 and t = 3. Finally, the straight lines overlap completely
(see, at t = 3 and t = 6), which means that the solutions reach one steady value.
The steady solution of the case with p = 5 and the Neumann boundary condition
is a constant.

With the increasing of birth rate p, we obtain a periodic wave when p = 50.
The three-dimensional surface of the wave at y = π

2 is shown in Figure 3. In this
figure, x ∈ [0, π] and t ∈ [−1, 20], and [−1, 0] represents the initial time interval.
It is clearly seen that, after a short time, the solution appears periodically, and
the values along the x-direction at every fixed time t are constants correspondingly
since the Neumann boundary condition is provided.

Example 2. In this test, we investigate numerically the effects of the matura-
tion age (the time delay) r on the mature population dynamics. Fix the diffusion
rate Dm = 1 and the death rate dm = 1 for the mature population, α = 1, ε = 1
for the immature population. Let p = 50, q = 1, and a = 1 in the birth function
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Figure 3. The three dimensional surface of the periodic wave
y = π

2 for the Neumann boundary condition and the birth function
b1(w). Data are p = 50, r = 1, Dm = 1, dm = 1, α = 1, ε = 1,
q = 1, a = 1, and the initial function w0(t, x, y) = 2 +
cos 4x cos 4y cos 4πt.
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Figure 4. The effects of the time delay on the mature population
at (π

2 , π
2 ) with the birth function b1(w). The data are p = 50,

Dm = 1, dm = 1, α = 1, ε = 1, q = 1, and a = 1. The initial
condition function is w0(t, x, y) = 2+cos 4x cos 4y cos 4πt. It shows
the effects of the time delay r = 0.5, r = 1.0, and r = 1.5.

b1(w) = pwe−awq

and the initial function w0(t, x, y) = 2 + cos 4x cos 4y cos 4πt on
Ω × [−r, 0]. Take ∆x = ∆y = π

16 ≈ 0.196 and ∆t = 0.01. Then, varying the
maturation age r = 0.5, r = 1.0, and r = 1.5, the numerical solutions at the central
point (π

2 , π
2 ) of the domain are shown in Figure 4.

Figure 4 indicates that when r = 1.0, the solution is a periodic wave. However,
when increasing the value of r from r = 1.0 to r = 1.5 while all the other parameters
keep same, the solution is still a periodic wave, but both the period, and the peak
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Figure 5. The effects of the initial function on the ma-
ture population with the birth function b1(w). The initial
condition functions are chosen as (i). w0(t, x, y) = 2 +
cos 4x cos 4y cos 4πt; (ii). w0(t, x, y) = 2 + cos 4x cos 4y cos 8πt;
(iii). w0(t, x, y) = 6 + cos 4x cos 4y cos 4πt, and (iv). w0(t, x, y) =
12 + cos 4x cos 4y cos 4πt. Other data are p = 50, r = 1.0, Dm = 1,
dm = 1, α = 1, ε = 1, q = 1, and a = 1.

value are increased significantly. Moreover, when decreasing r (see, r = 0.5), the
solution does not show the periodic property but converges to a steady value finally.
It is clear that the large delay leads to the occurrence of the periodic solution and
affects on both the period length and the peak value.

Example 3. In this simulation, we observe the effects of the initial functions on
the solutions. Let p = 50, q = 1, and a = 1 in the birth function b1(w) = pwe−awq

.
Take the diffusion rate Dm = 1 and the death rate dm = 1 for the mature popula-
tion, α = 1, ε = 1 for the immature population and the maturation age (the time
delay) r = 1. Let ∆x = ∆y = π

16 ≈ 0.196 and ∆t = 0.01. Consider four different
initial functions:

Case 1: nx = 4, ny = 4, nt = 4 and wc = 2. The initial function is w0(t, x, y) =
2 + cos 4x cos 4y cos 4πt for (x, y, t) ∈ Ω× [−r, 0];

Case 2: nx = 4, ny = 4, nt = 8 and wc = 2. The initial function is w0(t, x, y) =
2 + cos 4x cos 4y cos 8πt for (x, y, t) ∈ Ω× [−r, 0];

Case 3: nx = 4, ny = 4, nt = 4 and wc = 6. The initial function is w0(t, x, y) =
6 + cos 4x cos 4y cos 4πt for (x, y, t) ∈ Ω× [−r, 0];

Case 4: nx = 4, ny = 4, nt = 4 and wc = 12. The initial function is w0(t, x, y) =
12 + cos 4x cos 4y cos 4πt for (x, y, t) ∈ Ω× [−r, 0].

The numerical solutions at the central point (π
2 , π

2 ) of the domain are shown
in Figure 5. For nt = 4, the initial wave contains two periods in the initial time
interval [−1, 0], while for nt = 8, it contains four periods. We note that for cases
(i) and (ii) with the same wc, despite the periodic initial curves include different
periods in the initial time interval, the final solution graphs (the solid line and the
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Figure 6. The distribution of the mature population at (π
2 , π

2 )
under nonlocal delayed effects with the birth function b2(w). While
the birth rate parameter p = 1.0, p = 2.0, and p = 5.0 is varied,
other data are Dm = 1, dm = 1, α = 1, ε = 1, q = 2, Kc = 2,
r = 1, and the initial condition function is w0(t, x, y) = 2 +
cos 4x cos 4y cos 4πt.

dotted line) overlap completely. Furthermore, with the increasing of value of wc

to wc = 6 in case (iii) and wc = 12 in case (iv), the solutions (the dash line and
the dash-dotted line) are behind the one of cases (i) and (ii). However, the final
periodic waves for all the cases with different values of wc have the same period
size and the same peak value. The value of wc only affects both the oscillation
amplitude at the beginning and the phase angles of the waves.

4.2. 2-D Neumann Problems with b2(w). Now, we consider the numerical so-
lution with the birth function

b2(w) =
{

pw(1− wq

Kq
c
), 0 ≤ w ≤ Kc,

0, w > Kc,

with p > 0, q > 0, and Kc > 0.
For this birth function, we show the effects of the birth rate parameter p as well

as parameter q of the birth function on the solution of the mature population.

Example 4. Take α = 1 and ε = 1 for the immature population, and the diffu-
sion rate Dm = 1 and the death rate dm = 1 for the mature population. Let q = 2
and Kc = 2 in the birth function. Choose the initial condition on Ω × [−r, 0] as
w0(t, x, y) = 2 + cos 4x cos 4y cos 4πt. Let ∆x = ∆y = π

16 ≈ 0.196 and ∆t = 0.01.
We then observe numerically the effects of the birth rate p. Change p = 1.0, 2.0 to
5.0 and fix r = 1.0.

The numerical solutions at the central point (π
2 , π

2 ) of the domain are shown in
Figure 6. In this figure, when p is smaller, such as p = 1.0, the solution converges
monotonously and decreasingly to a steady value, which is less than the central
value of the periodic initial wave wc = 2. However, when increasing p to p = 2.0,
the solution also converges to a steady value but bigger than wc = 2. Furthermore,
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Figure 7. Illustration of three-dimensional surfaces of the asymp-
totically stable steady state solutions for the Neumann boundary
condition and the birth function b2(w) at y = π

2 . (i). The bot-
tom surface is for p = 1.25, and the initial condition function is
a constant w0 = 1.0; (ii). The top surface is for p = 2.0, and
the initial condition function is a periodic function w0(t, x, y) =
1.5 + 0.1 cos 4x cos 4y cos 4πt. Other data are r = 1.0, Dm = 1,
dm = 1, α = 1, ε = 1, Kc = 2.0 and q = 2.0.

when p goes over a certain range (see the graph for p = 5.0 in Figure 6), the solution
wave shows periodic properties with a slight waveform distortion.

Moreover, we calculate the case with a constant initial condition. Fix r = 1.0,
Dm = 1, dm = 1, α = 1, ε = 1, Kc = 2.0, and q = 2.0, and then con-
sider two cases: (i). p = 1.25 and the initial condition function is a constant
w0 = 1.0, and (ii). p = 2.0 and the initial condition function is a periodic function
w0(t, x, y) = 1.5 + 0.1 cos 4x cos 4y cos 4πt. The three-dimensional surfaces of the
solution waves of these two cases at y = π

2 are shown in Figure 7. It is clear that
despite the different initial conditions, the solutions of these two cases converge
to some steady values (constants) respectively. Furthermore, these steady values
(constants) are less than the average values of the corresponding initial conditions
when p is varying in a small value range, such as p = 1.25 and p = 2.0. It is
consistent with the results in Figure 6.

Example 5. Let the diffusion coefficient Dm = 1 and the death rate dm = 1
for the mature population, α = 1, ε = 1 for the immature population, and the
maturation age (the time delay) r = 1. Give the initial condition on Ω× [−r, 0] as
w0(t, x, y) = 2 + cos 4x cos 4y cos 4πt. Take ∆x = ∆y = π

16 ≈ 0.196 and ∆t = 0.01.
We then study the effects of parameter q of the birth function b2(w) on the solution
of the mature population. Two cases are chosen as (i). p = 5.0, q = 1.0, and
Kc = 2.0; (ii). p = 5.0, q = 0.5, and Kc = 2.0.

The numerical solutions at the central point (π
2 , π

2 ) of the domain are shown
in Figure 8. It illustrates the computation of cases with different values of the
parameter q. When varying the value q = 0.5, 1.0, and 2.0, the period lengths, the
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Figure 8. The effects of parameter q on the mature population
at (π

2 , π
2 ) with the birth function b2(w). Vary q = 0.5, 1.0 to 2.0.

Other data are p = 5.0, r = 1.0, Dm = 1, dm = 1, α = 1, ε = 1,
Kc = 2.0, and the initial condition function w0(t, x, y) = 2 +
cos 4x cos 4y cos 4πt.

peak heights, and even the shapes of the periodic waves have changed. Moreover,
when q is smaller, such as q = 0.5, a steady solution exists instead of a periodic
wave.

4.3. 2-D Dirichlet Problems with Delayed Nonlocal Reaction. In this part,
we will consider the numerical solutions for Dirichlet problems with delayed non-
local reaction on the domain Ω = [0, π] × [0, π] for both birth functions b1(w) and
b2(w) given in (49) and (50). We show the effects of the diffusion rate Dm, the
time delay parameter r as well as the birth rate p in a bigger value range with
a larger value of Dm on the mature population. Moreover, some results for one
special initial condition are also reported.

Example 6. In this simulation, we consider Dirichlet problems with the birth
function b1(w) and show the effects of the diffusion rate Dm on the solution of the
mature population. Furthermore, the solution with one special initial condition is
also investigated. The numerical computation results are given in Figure 9 - 13.

Let the birth rate p = 800, the time delay r = 1, the death rate dm = 1,
α = 1, ε = 1, q = 1, and a = 1. Give the initial condition in Ω × [−r, 0] as
w0(t, x, y) = sinx sin y cos t. Therefore, the graph of this initial function is a span
of cosine wave in the initial time interval [−1, 0] along the x-direction and the y-
direction, it is 1

2 period of a sine wave. Let ∆x = ∆y = π
16 ≈ 0.196 and ∆t = 0.01.

We will show the effects of the diffusion rate Dm on the solution of the mature
population by numerically computing the solution with different diffusion rates
Dm = 0.1, 1.0 and 10. The numerical computation results at the central point
(π

2 , π
2 ) of the domain are shown in Figure 9. It can be seen that for this Dirichlet

problem with the birth function b1(w) = pwe−awq

, periodic solutions exist for
the case with p = 800 under a certain range of diffusion rates, such as the case
Dm = 1.0. However, when Dm = 10 and Dm = 0.1 as well as other parameters
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Figure 9. The effect of the diffusion rate Dm on the mature pop-
ulation with the birth function b1(w) at (x, y) = (π

2 , π
2 ). Change

Dm = 0.1, 1.0, 10. Other data are p = 800, r = 1.0, q = 1, a = 1,
dm = 1, α = 1, ε = 1. The initial condition is w0(t, x, y) =
sin x sin y cos t.
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Figure 10. The three-dimensional surface of the periodic wave
for the homogeneous Dirichlet boundary condition and the birth
function b1(w) at y = π

2 . While p = 800, q = 1, a = 1, r = 1,
Dm = 1, dm = 1, α = 1, and ε = 1, the initial condition function
w0(t, x, y) = sin x sin y cos t.

keeping the same, the solutions are not periodic waves but converge to some steady
values respectively.

The three dimensional surface of the periodic wave for the homogeneous Dirichlet
boundary condition with the parameters above and Dm = 1.0 is shown in Figure
10. It can be seen that after the initial time interval, the solution shows the periodic
feature along the t-direction very quickly. Moreover, the graphs of the solutions
along the x-direction appear in arc curves with zero values at x = 0 and x = π.
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Figure 11. The distribution of the mature population along the
x-axis at y = π

2 for the homogeneous Dirichlet boundary condition
and the birth function b1(w) at different time levels. The data are
p = 100, r = 1.0, q = 1, a = 1, Dm = 1, dm = 1, α = 1, ε = 1, and
w0(t, x, y) = 2 + sin 5x sin y cos 4πt.

We then show the case with a small birth rate p. Let r = 1.0, Dm = 1, dm = 1,
α = 1, ε = 1, and q = 1.0. Take p = 100, and the initial condition on [0, π]× [0, π]×
[−1, 0] is specified as w0(t, x, y) = 2+sin 5x sin y cos 4πt, which does not satisfy the
homogeneous Dirichlet boundary condition in the initial time interval. Figure 11
shows the numerical solutions along the x-direction at y = π

2 and at different
time levels. In this figure, the horizontal direction represents the x-direction of
the domain, and the vertical direction represents the values of the total mature
population. From Figure 11, we can see that the graph at t = −0.3, which belongs
to the initial time interval [−1, 0], is a segment of the periodic wave within two and
half periods. However, a short time later (for example, when t = 0.05 and t = 0.1),
the solution graph becomes a symmetric curve with zero values at x = 0 and
x = π. Gradually, with increasing of time t, the solution curve becomes a smooth
arc at t = 0.6. Finally, it tends to an identical smooth arc. The solutions overlap
completely at t = 1.0 and t = 3.0 in Figure 11. This implies that the solution of
this case converges to a steady solution in a certain time. Furthermore, the curve
at t = 0.1 is over the steady curve, but the one at t = 0.6 is under it. It means
that the solution curve oscillates at the beginning. Moreover, although the initial
condition does not match the homogeneous boundary condition, the final solution
keeps the same properties as those of the case with normal initial condition.

Figure 12 shows the three-dimensional surface of the asymptotically stable steady
solution. It can be seen that, after the initial time interval, the solution converges
quickly to a stable steady-solution as the time t increases. The shape of the solutions
along the x-direction appears in a steady arc curves with zero values at x = 0 and
x = π.

Furthermore, we observe numerically the effect of the large diffusion rate Dm

of the mature population on the asymptotically stable steady state solutions for
the homogeneous Dirichlet boundary condition. The solutions are shown in Fig-
ure 13. It is clear that the shapes of asymptotically stable steady state solutions
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Figure 12. The asymptotically stable-steady solution for the ho-
mogeneous Dirichlet boundary condition and the birth function
b1(w) at y = π

2 . While p = 100, q = 1, a = 1, r = 1,
Dm = 1, dm = 1, α = 1, and ε = 1, the initial condition func-
tion w0(t, x, y) = 2 + sin 5x sin y cos 4πt.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

X

W

Dm=1.0
Dm=3.0
Dm=5.0
Dm=8.0
Dm=10.0
Dm=50.0

Figure 13. The effect of the large diffusion rate Dm of the ma-
ture population on the shapes of asymptotically stable steady state
solutions of the mature population along x-axis at y = π

2 for the
homogeneous Dirichlet boundary condition and the birth function
b1(w). The data are p = 100, r = 1.0, q = 1, a = 1, dm = 1, α = 1,
ε = 1, and w0(t, x, y) = 2 + sin 5x sin y cos 4πt; Dm are chosen as
1.0, 3.0, 5.0, 8.0, 10.0, and 50.0.

along x−axis are getting close to zero when the diffusion rate Dm increases from
Dm = 1.0 to a very large value Dm = 50.0. The mature population will turn to
extinction if the diffusion rate Dm of the matured population is extremely large.
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Figure 14. The effects of the time delay on the mature popula-
tion with the birth function b2(w) and a homogeneous Dirichlet
boundary condition. Choose r = 1.0 and r = 2.0. Other data are
p = 50, Dm = 1, dm = 1, α = 1, ε = 1, q = 2, and Kc = 2. The
initial condition function is w0(t, x, y) = sin x sin y cos t.

Example 7. Finally, we consider the Dirichlet problems with the birth func-
tion b2(w). We illustrate the effects of the time delay r on the mature popu-
lation and the numerical results. Let the death rate dm = 1, α = 1, ε = 1,
q=2, Kc = 2, ∆x = ∆y = π

16 ≈ 0.196 and ∆t = 0.01. The initial condition is
w0(t, x, y) = sin x sin y cos t. Choose case (i). vary r = 1.0 to r = 2.0, fix Dm = 1.0
and p = 50; and case (ii). fix r = 1.0 and Dm = 10.0, vary p = 250, p = 500 to
p = 1000.

The numerical solutions at the central point (π
2 , π

2 ) of the domain for cases (i) and
(ii) are shown in Figure 14 and 15. It is clear that for this Dirichlet problem with
the birth function b2(w), the values of time delay will affect the periodic solutions
(see Figure 14) not only on the period sizes and the peak values of the periodic
waves, but also on the wave shapes. With the increasing of time delay r to r = 2.0,
the solution graph oscillates intensely and enduringly at the beginning of the time.

Moreover, in Figure 15, when the diffusion rate Dm is fixed as a value Dm = 10.0,
with the increasing of the value of the birth rate p in a big value range from p = 250,
p = 500 to p = 1000, the solution curves become much sensitive. It is remarkable
that when p = 250, the solution converges to a steady solution, and when p = 500
and p = 1000, the solution waves show some periodical characteristics but with flat
roofs for the graph (p = 500) and with shape distortion for the graph (p = 1000).

5. Conclusions. In this paper, we developed some new Reaction Diffusion Equa-
tion (RDE) models with delayed nonlocal reaction for the growth dynamics of a
single species population living in a two-dimensional bounded domain. The models
reflect the joint effect of the diffusion dynamics and the nonlocal maturation delayed
effect. The mature population dynamics with two widely used birth functions are
investigated numerically in Section 4. We observe that when the ratio of the birth
rate parameter p over the death parameter dm is in a certain range, the solution
of the mature population is positive and converges to a stable steady-solution in



MODELLING POPULATION GROWTH 131

0 2 4 6 8 10 12 14 16 18 20
−5

0

5

10

15

20

T

W

p=250
p=500
p=1000

−1 

Figure 15. The distributions of the mature population with the
birth function b2(w) and the homogeneous Dirichlet boundary con-
dition when the birth rate p is changed. The data are r = 1.0, Kc =
2, q = 2, dm = 1, α = 1, ε = 1, and w0(t, x, y) = sin x sin y cos t.
Give the diffusion rate Dm = 10.0 and the birth rate p as p = 250,
p = 500 and p = 1000.

the t-direction. Outside of this range, positive periodic wave solutions occur. Ad-
ditionally, numerical results show that the period, the peak, and the shape of the
periodic wave can be affected by other parameters, for example, the value of time
delay r, the diffusion rate Dm, and even the birth function parameters Kc and q.
Meanwhile, the shape of the asymptotically stable steady-solution is also affected
by these parameters. The mature population for the homogeneous Dirichlet bound-
ary condition turns to extinction if the diffusion rate Dm of the mature population
becomes extremely large. Furthermore, the numerical computations also show that
the initial condition has some effects on the mature population dynamics without
essential changes. The theoretical analysis of properties of these models especially
the relations between these parameters and the existence of the periodic waves will
be a next step work in the near future.
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