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Periodic Solutions of Delay Differential Equations with
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We consider a scalar delay differential equation with a small parameter, and
employ Walther’s method to obtain a result on the existence and stability
of a slowly oscillatory periodic solution that represents a refinement of the
estimate for the Lipschitz constant of a returning map. We also develop a
matching method and obtain asymptotic expansions of the slowly oscillatory
periodic solution and its minimal period.

KEY WORDS: Periodic solutions; stability; Walther’s method; matching
method; asymptotic expansion.

AMS subject classifications: 34K15; 34K20; 34C25.

1. INTRODUCTION

We are here concerned with the delay differential equation

x′ =−ax(t)−bfε(x(t −1)), (1.1)

where a is real, b > 0 and ε is a small positive parmeter, fε(x) is a nonlin-
ear function which approximates the sign function (in a sense to be made
precise later), and satisfies a sign condition

fε(x)x >0 for x �=0.
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We shall concentrate on the case where a > 0, for the case where a � 0
the idea is entirely similar. Such an equation arises naturally from describ-
ing synchronized activities of a network of neurons with delayed negative
feedback (see [1, 8]).

Our focus here is on the existence, stability and asymptotic expan-
sion of periodic solutions when ε is small. A new constructive method was
recently developed by Walther in [3, 4] to obtain not only existence but
also stability of a slowly oscillatory periodic solution, based on a care-
ful construction of a closed cone and a contractive returning map whose
unique fixed point gives the periodic solution. This method, referred to as
Walther’s method in the sequel, was also employed to deal with equations
with state-dependent delay in [5, 6] and systems of delay differential equa-
tions arising from phase-locking in neural networks [9].

Our first purpose is to refine some of the estimates in [3, 4] for the
Lipschitz constant of the returning map, enabling us to obtain a sharper
sufficient condition for Eq. (1.1) to have a stable slowly oscillatory peri-
odic solution. Our second purpose is to develop the matching method in
order to derive explicitly asymptotic expansions of the slowly oscillatory
periodic solution.

2. RETURNING MAP AND A SHARP ESTIMATE FOR ITS
LIPSCHITZ CONSTANT

In this section, we first recall the notion of a returning map intro-
duced in [3, 4], and we then derive a sharper estimate of the Lipschitz con-
stant for this map. We note that even in the case where fε(x) is monotone
and f ′

ε(x) is increasing, our estimate represents an improvement over the
work of Walther [3, 4]. In particular, for the nonlinearity

fε(x)=
∫ x/ε

0

1
1+ tγ

dt,

we conclude that Eq. (1.1) has a stable periodic solution if γ >
√

2 and ε

is sufficiently small.
We first specify that by a solution of Eq. (1.1), we mean either a

continuous real function on R which is differentiable and satisfies Eq.
(1.1) almost everywhere, or a continuous real function on some interval
[t0 − 1,∞), t0 ∈ R, which is differentiable and satisfies Eq (1.1) almost
everywhere on (t0,∞). Denote by C the space of all continuous real func-
tions on the interval [−1,0], with the norm given by ||φ|| = max−1�t�0
|φ(t)| for φ ∈ C. For each φ ∈ C, one can solve Eq. (1.1) step by step
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on consecutive intervals [0, 1], [1, 2],. . . , and obtain a solution x(t) on
[−1,∞) with x(t)=φ(t) for −1� t � 0.

We start with solving Eq. (1.1) when fε(x) is exactly the sign func-
tion. The following is straightforward, and was obtained in [4].

Lemma 1. Suppose that y is the solution of the following equation

y′(t)=−ay(t)−b sign(y(t −1)) (2.1)

with the initial function φ(t)>0 f or t ∈ [−1,0) and φ(0)=0. Then y(t) is
eventually periodic in the sense that y(t +T )=y(t) for t �0, where

T =2+ 2
a

1n(2− e−a),

and in the interval [0, T ], y(t) has the following expression:

y(t)=




b
a
(e−at −1), 0� t �1,

b
a
((1−2ea)e−at +1), 1� t � t1,

b
a
((2− e−a)e−a(t−t1) −1), t1 � t �T

(2.2)

with

t1 = T

2
+1=1+ 1

a
ln(2ea −1).

We should mention that this periodic solution y(t) is an S-solution,
i.e.,

y(t)=−y

(
t − T

2

)

and also satisfies Eq. (2.1) for t in the interval (−∞,∞). The period T
as a function of a is decreasing in a, and T → 4 as a → 0, and T → 2
as a →∞.

Our next step is to study periodic solutions of Eq. (1.1) when the
nonlinearity fε(x) is continuous, bounded and close to the sign function
sign(x) when ε is small. More precisely, we define

Nε ={ f :f is continuous and odd, |f (x)|�M for x ∈R,

|f (x)−1|� δ(ε) if x �β(ε)}, (2.3)

where M is a positive constant, β(ε) and δ(ε) tend to zero when ε tends
to zero. Like in [3, 4], the symmetry restriction for fε(x) can be removed,
but it is used here to shorten our presentation.
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We shall fix a fε in Nε, and restrict the initial data φ to the following
closed convex set

Aε ={φ ∈C :β(ε)�φ(t) for−1� t �0, φ(0)=β(ε)}.
Note that for given φ ∈Aε, Eq. (1.1) has a unique solution x =xφ,fε which
exists in the interval [−1,∞). The relation

Ffε (t, φ)=xt , x =xφ,fε , xt (s)=x(t + s), −1� s �0

defines a continuous semiflow F =Ffε on C.
Now, we introduce some notations frequently used in the field of

asymptotic analysis (see [2, 7]).
Let h(ε) and g(ε) be two real functions defined in R. By

h(ε)=O(g(ε)) as ε →0,

we mean that there is a constant K >0 and a neighborhood U of the ori-
gin such that |f (ε)|�K|g(ε)| for all ε in U. By

f (ε)=o(g(ε)) as ε →0,

we mean that for every small η>0, there exists a neighborhood Uη of the
origin such that |f (ε)|�η|g(ε)| for all ε in Uη. If f (ε)/g(ε) tends to unity,
then we write

f (ε)∼g(ε) as ε →0.

Finally, let {ϕn(ε, t)} be an asymptotic sequence as ε→0, i.e., ϕn+1(ε, t)=
o(ϕn(ε, t)) as ε→0 for every n�0, where t belongs to some interval [a, b],
and suppose that f (ε, t) has the asymptotic expansion

f (ε, t)=
N−1∑
n=0

fn(ε, t)+O(ϕN(ε, t)) as ε →0.

If the neighborhood U in the definition of the O-symbol is independent of
t ∈ [a, b], then we say the above expansion is a uniform asymtotic expan-
sion with respect to t in [a, b].

With the above notations, we can now state the following result con-
cerning the solution x =xφ,fε .

Lemma 2. Let xφ,fε be the solution of Eq. (1.1) with the initial func-
tion φ ∈Aε. Then there exist two points w and s, 0<w <s,

w = 2β(ε)

b
+o(β(ε)), s =1+ 1

a
ln(2− e−a)+O(β(ε), δ(ε)), ε →0, (2.4)
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so that xφ,fε (w)=xφ,fε (s)=−β(ε). Moreover

xφ,fε (t)=y(t)+O(β(ε), δ(ε)) for 0� t � s (2.5)

and

xφ,fε (t)�−β(ε), t ∈ [s −1, s],

where y is the function defined in (2.2), and

O(β(ε), δ(ε))=O(max{β(ε), δ(ε)}).
Remark 1. It follows from (1.1) and (2.5) that there exist two posi-

tive constants K1(a, b) and K2(a, b) which are independent of ε such that

|xφ,fε (t)|�K1, (2.6)

∣∣∣∣dxφ,fε (t)

dt

∣∣∣∣�K2 (2.7)

for t �0 and

1<s =1+ 1
a

ln(2− e−a)+O(β(ε), δ(ε))<2,

when ε is small.
The proof of this lemma involves the use of the variation-of-constants

formula given by

x(t)=x(0)e−at −b

∫ t

0
e−a(t−s)fε(x(s −1))ds. (2.8)

Note that when x(s − 1) lies in the interval (−β(ε), β(ε)), the value of
fε(x(s − 1)) may change abruptly, hence we call the corresponding inter-
val of s the inner layer. Likewise, an interval outside this region is called
an outer layer. In order to obtain the result in Lemma 2, we need to split
the integral interval in (2.8) into inner and outer layers.

Proof of Lemma 2. Since φ ∈Aε, we have φ(t)�β(ε) and

1− δ(ε)�fε(φ(t))�1+ δ(ε)

for t ∈ [−1,0]. Inserting this into Eq. (1.1) gives

−ax −b(1+ δ(ε))�x′(t)�−ax −b(1− δ(ε)), t ∈ [0,1].

Therefore, we have

g−(t)�x(t)�g+(t), t ∈ [0,1], (2.9)
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where

g+(t)=−b(1− δ)

a
+
(

β(ε)+ b(1− δ)

a

)
e−at

and

g−(t)=−b(1+ δ(ε))

a
+
(

β(ε)+ b(1+ δ)

a

)
e−at .

Define three points w−,w,w+ by

g−(w−)=−β(ε), x(w)=−β(ε), g+(w+)=−β(ε).

We can readily deduce that

1
a

ln
b(1+ δ)+aβ(ε)

b(1+ δ)−aβ(ε)
=w− �w �w+ = 1

a
ln

b(1− δ)+aβ(ε)

b(1− δ)−aβ(ε)
,

and we obtain that w+ and w− have the following approximations:

w+ = 2β(ε)

b
+o(β(ε)), w− = 2β(ε)

b
+o(β(ε)). (2.10)

It follows from (2.9) that

x(t)=y(t)+O(β(ε), δ(ε)) (2.11)

for t ∈ [0,1], where y is the function defined in (2.2). In particular, at t =1,
(2.11) becomes

x(1)=y(1)+O(β(ε), δ(ε))= b

a
(e−a −1)+O(β(ε), δ(ε)). (2.12)

Next we shall give the estimate for x(t) when t > 1, by using (2.11) and
(2.12). For t ∈ [1,1+w+], using |fε|�M and Eq. (1.1) we have

x(t) = x(1)e−a(t−1) −b

∫ t

1
e−a(t−s)fε(x(s −1))ds

= x(1)+O(β(ε), δ(ε)). (2.13)

Also by the explicit function y(t), we can easily show that

y(t)=y(1)+O(β(ε), δ(ε)), t ∈ [1,1+w+]. (2.14)

Combining (2.12)–(2.14) gives

x(t)=y(t)+O(β(ε), δ(ε)), t ∈ [1,1+w+]. (2.15)
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In particular, at t =1+w+, we have

x(1+w+)=y(1+w+)+O(β(ε), δ(ε)) (2.16)

as ε →0.
Finally when t � 1 +w+, using the information that x(t)<−β(ε) for

t ∈ [w+,1+w+] (due to (2.9) and (2.15)), we obtain from Eq. (1.1) that

−ax −b(−1+ δ)�x′(t)�−ax −b(−1− δ), (2.17)

or equivalently

G−(t)�x(t)�G+(t), (2.18)

where

G+(t)=x(1+w+)e−a(t−1−w+) + b(1+ δ)

a
(1− e−a(t−1−w+))

and

G−(t)=x(1+w+)e−a(t−1−w+) + b(1− δ)

a
(1− e−a(t−1−w+)).

As before, define three points s−, s, s+ by

G−(s−)=−β(ε), x(s)=−β(ε), G+(s+)=−β(ε).

Using (2.2), (2.10), (2.16) and (2.18), we can easily deduce

x(t)=y(t)+O(β(ε), δ(ε)), t ∈ [1+w+, s]

and

s+ � s � s−,

where

s+ =1+ 1
a

ln(2− e−a)+O(β(ε), δ(ε)),

s− =1+ 1
a

ln(2− e−a)+O(β(ε), δ(ε)).

Thus we have proved (2.4) and (2.5). It remains to show xφ,f (t)�−β(ε) for
t ∈ [s −1, s]. Indeed, for t ∈ [s −1,1+w+], by (2.5) we have xφ,f (t)�−β(ε).
When t ∈ [1+w+, s], by (2.17) we know that xφ,f (t) is increasing and attains
the value −β(ε) at the point t = s. This completes the proof.
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Lemma 2 enables us to construct a returning map

Rfε : Aε 	φ 
→−Ffε (q,φ)∈Aε, (2.19)

where q = s >1 satisfies

xφ,fε (q)=−β(ε).

In addition, for any initial function φ ∈ Aε, there exists a constant k > 0
which is independent of ε and φ so that for q −1� t �q, we have

−xφ,fε (t)�k(q − t)+β(ε). (2.20)

To see this, we recall from Lemma 2 that

q = s =1+ 1
a

ln(2− e−a)+O(β(ε), δ(ε)).

Choose a point p = 1 + (1/2a)ln(2 − e−a). It follows from Lemma 2 that
for t ∈ [q − 1, p], the solution xφ,fε (t) has a negative upper bound which
only depends on the coefficients a and b. For t ∈ [p, s], using the fact
x(t)�−β(ε) and x(t −1)�−β(ε), we have from (1.1) that

x′(t)=−ax −bfε(x(t −1))�b(1− δ(ε)).

Therefore, in the whole interval [q − 1, q], we can choose a constant k =
k(a, b), dependent only on a, b, so that (2.20) holds.

Due to this fact, we can further restrict the initial data to the follow-
ing subset of Aε:

Ak
ε ={φ ∈Aε;φ(t)�−kt +β(ε) for t ∈ [−1,0]}.

It is shown in [3, 4] that for every fixed point φ of Rfε , the solution
x =xφ,fε (t) extends to a periodic S-solution with the minimal period Tε =
2q. Here by an S-solution, we mean x(t) satisfies x(t +q)=−x(t) for t ∈R.

Next we shall give an estimation of a Lipschitz constant for Rfε in
(2.19), restricted to Ak

ε . A Lipschitz constant for a given map T : DT →
Y,DT ⊂X, X and Y being normed linear spaces, is given by

L(T )= sup
ξ∈DT ,η∈DT ,ξ �=η

‖T (ξ)−T (η)‖
‖ξ −η‖ .

In the case where DT =X =R,β ∈R, and fε =T , we set

Lβ =Lβ(fε)=L(fε|[β,∞)).
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Theorem 1. Rfε restricted to Ak
ε is Lipschitz continuous, with an upper

bound of the Lipschitz constant given by(
bLβ(ε) +b2L2

β(ε) +9β2L(fε)Lk/2

)(
1+ K2

b(1− δ(ε))

)
.

Proof. Step 1. For φ, φ̄ in Ak
ε , it follows from Lemma 2 that there

exist w <s, w̄ < s̄, s, s̄ >1 so that

xφ,fε (w)=xφ,fε (s)=−β(ε)

and

xφ̄,fε (w̄)=xφ̄,fε (s̄)=−β(ε).

By (2.4) in Lemma 2 again, we have

w ∼ 2β(ε)

b
, w̄ ∼ 2β(ε)

b
as ε →0.

Denote

η=max(w, w̄). (2.21)

Then we have from (1.1)

|xφ,fε (t)−xφ̄,fε (t)| = b

∫ t

0
e−a(t−s)|fε(φ(s −1))−fε(φ̄(s −1))|ds

� ηbLk/2‖φ − φ̄‖ (2.22)

for any t ∈ [0, η], and

|xφ,fε (t)−xφ̄,fε (t)|�bLβ(ε)‖φ − φ̄‖ (2.23)

for any t ∈ [0,1]. Here to obtain (2.22), we have made use of the fact that

φ(t −1)>
k

2
, φ̄(t −1)>

k

2
for t in the small region [0, η].

Step 2. For t ∈ [1,1+η], we have by (2.22) and (2.23) that

|xφ,fε (t)−xφ̄,fε (t)|
�bLβ(ε)‖φ − φ̄‖+b

∫ t

1
e−a(t−s)|fε(x(s −1))−fε(x̄(s −1))|ds

�bLβ(ε)‖φ − φ̄‖+bL(fε)

∫ 1+η

1
|x(s −1)− x̄(s −1)|ds

� {bLβ(ε) +b2L(fε)Lk/2η
2}‖φ − φ̄‖. (2.24)
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Step 3. We may assume, without loss of generality, that s � s̄ < 2.
The Case where s̄ < s < 2 can be dealt with similarly. Note that when t ∈
[1+η, s], we get from (2.23) that

|xφ,fε (t −1)−xφ̄,fε (t −1)|�bLβ(ε)‖φ − φ̄‖,
hence by (1.1) and (2.24), we obtain

|xφ,fε (t)−xφ̄,fε (t)| � |xφ,fε (1+η)−xφ̄,fε (1+η)|
+b

∫ t

1+η

e−a(t−s)|fε(x(s −1))−fε(x̄(s −1))|ds

� {bLβ(ε) +b2L(fε)Lk/2η
2}‖φ − φ̄‖+b2L2

β(ε)‖φ − φ̄‖
= LRs ‖φ − φ̄‖, (2.25)

where

LRs =bLβ(ε) +b2L2
β(ε) +b2L(fε)Lk/2η

2.

In particular, at the point t = s, we have

|−β(ε)−xφ̄,fε (s)|= |xφ,fε (s)−xφ̄,fε (s)|�LRs ‖φ − φ̄‖. (2.26)

Step 4. For the solution xφ̄,fε (s), t ∈ [s, s̄], by Lemma 2 we can read-
ily derive that

x′(t)=−ax −bfε(x(t −1))�−bfε(x(t −1))�b(1− δ).

Then

|xφ̄,fε (s)− (−β(ε))| = |xφ̄,fε (s)−xφ̄,fε (s̄)|
= ∣∣ ∫ s̄

s

ẋ(s)ds
∣∣

� b(1− δ(ε))|s − s̄|,
which implies, by (2.26), that

|s − s̄|� LRs ‖φ − φ̄‖
b(1− δ(ε))

. (2.27)

Step 5. Note that

|Rfε (φ̄)−Rfε (φ)| = |Ffε (s̄, φ̄)−|Ffε (s, φ)|
� |Ffε (s, φ̄)−Ffε (s, φ)|+ |Ffε (s̄, φ̄)−Ffε (s, φ̄)|.
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By (2.7), the value of |Ffε (s̄, φ̄)−Ffε (s, φ̄)| is bounded by

|xφ̄,f
s̄ (θ)−x

φ̄,f
s (θ)| = ∣∣ ∫ s̄+θ

s+θ

ẋ(u)du
∣∣

� K2|s̄ − s|
� K2LRs ‖φ − φ̄‖

b(1− δ(ε))
, −1� θ �0,

and the value of |Ffε (s, φ̄)−Ffε (s, φ)| is bounded by the right-hand side
of (2.25).

Therefore, the Lipschitz constant for Rfε is bounded by

LRs

(
1+ K2

b(1− δ(ε))

)
. (2.28)

Finally, by (2.21) and Lemma 2, we have 0 <η � (3/b)β(ε) as ε is small.
Inserting this into (2.28), we obtain the estimate of the Lipschitz constant
of Rfε in our theorem. This completes the proof.

Remark 2. If

fε(x)=α(r)

∫ x/ε

0

1
1+ t r

dt

with α(r) properly chosen so that

α(r)

∫ ∞

0

1
1+xr

dx =1,

we can choose β(ε) = εs with 0 < s < 1. Then L(fε) = O(1/ε),Lk/2 =
O(εr−1),Lβ(ε) =O(εr−1−rs)

and

L(fε)Lk/2β
2 =O(εr−2+2s).

If r >
√

2, we can take s =1− (
√

2/2) so that

r −2+2s >0, r −1− rs >0.

Hence,

Lβ(ε)
→0, L(fε)Lk/2β

2 →0 as ε →0.

Then we can conclude from Theorem 1 that the Lipschitz constant for
Rfε approaches zero as ε tends to zero provided that r >

√
2. Our result

removes the assumptions of the monotonicity of the functions fε and f ′
ε

in [3], and extends the parameter r from (3/2,∞) to (
√

2,∞).
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3. ASYMPTOTIC ANALYSIS OF PERIODIC SOLUTIONS

In Section 2, we obtained an estimate for the Lipschitz constant Rfε .
Using the argument of [3, 4], we know that if the function fε is chosen so
that Rfε <1, then there exists a stable periodic solution for problem (1.1).

In this section, we give an approximation formula for this stable peri-
odic solution. We know that the minimal period of the periodic solution
tends to a constant as ε tends to zero, this information is however not
sufficient for the approximation formula of the periodic solution. We need
to derive the exact functional relation between the minimal period and ε.
We shall obtain this by developing the approach of asymptotic analysis, a
powerful tool to solve ODEs and PDEs with a small parameter over large
intervals. In particular, we shall apply the matching method to derive the
approximation formula for the minimal period, and an asymptotic expan-
sion of the periodic solution.

Since the function fε(x) is odd, we would like to seek an S-solution
for the original equation (1.1). For ease of computation, we also assume
that fε(x) is a smooth function. Suppose the periodic solution is extended
to the entire interval (−∞,∞) and has the series expansion

x(t)=
∞∑
i=0

φi(t, ε), t ∈ (−Tε,0), (3.1)

where φi(t, ε) vanishes at t = 0 for all i � 0, and Tε is the half period of
the solution to be determined later. By the fact that it is an S-solution,
we deduce that

x(t)=−
∞∑
i=0

φi(t −Tε, ε) (3.2)

for t ∈ [0, Tε]. Using Eqs. (1.1) and (3.1), we can compute x(t) for t ∈ [0,1]
as follows:

x(t) =
∫ t

0
−be−a(t−s)fε

( ∞∑
i=0

φi(s −1, ε)

)
ds

=
∫ t

0
−be−a(t−s)ds −

∫ t

0
−be−a(t−s)(−1+fε(φ0(s −1, ε)))ds

−
∫ t

0
be−a(t−s)

∞∑
n=1

(
fε

(
n∑

i=0

φi(s −1, ε)

)
−fε

(
n−1∑
i=0

φi(s −1, ε)

))
ds

=
∞∑

n=0

ϕn(t, ε),
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where

ϕ0(t, ε)=
∫ t

0
−be−a(t−s)ds = b

a
(e−at −1), (3.3)

ϕ1(t, ε)=
∫ t

0
−be−a(t−s)(−1+fε(φ0(s −1, ε)))ds, (3.4)

and

ϕn(t, ε)=
∫ t

0
−be−a(t−s)

(
fε

( n−1∑
i=0

φi(s −1, ε)
)

−fε

( n−2∑
i=0

φi(s −1, ε)
))

, n�2.

(3.5)

Note that x(Tε)=0. Moreover, by Remark 1, Tε <2 when ε is small.
Integrating Eq. (1.1) gives, for t ∈ (1, Tε] , that

x(t) =
∫ t

T ε

−be−a(t−s)fε

( ∞∑
n=0

ϕn(s −1, ε)
)

ds

=
∞∑

n=0

wn(t, ε),

where

w0(t, ε)=
∫ t

Tε

be−a(t−s)ds = b

a

(
1− ea(Tε−t)

)
, (3.6)

w1(t, ε)=
∫ t

Tε

−be−a(t−s)(1+fε(ϕ0(s −1, ε)+ϕ1(s −1, ε)))ds (3.7)

and

wn(t, ε) =
∫ t

Tε

−be−a(t−s)

(
fε

( n∑
i=0

ϕi(s −1, ε)
)

−fε

( n−1∑
i=0

ϕi(s −1, ε)
))

ds, n�2, (3.8)

for t ∈ (1, Tε).
Now from (3.2), we have

−
∞∑
i=0

φi(t −Tε, ε)=
∞∑

n=0

wn(t, ε) (3.9)
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for t ∈ (1, Tε) and

−
∞∑
i=0

φi(t −Tε, ε)=
∞∑

n=0

ϕn(t, ε) (3.10)

for t ∈ [0,1]. Equating the corresponding terms of (3.9) and (3.10), respec-
tively, yields

φ0(t, ε)=



− b
a
(1− e−at ), t ∈ (1−Tε,0),

− b
a
(e−a(t+Tε) −1), t ∈ [−Tε,1−Tε],

(3.11)

and

φn(t, ε)=
{−wn(t +Tε, ε), t ∈ (1−Tε,0],

−ϕn(t +Tε, ε), t ∈ [−Tε,1−Tε] (3.12)

for n�1.
Next we shall deduce the formula for Tε. Using the continuity of the

solution at t =1, we can match
∑∞

n=0 ϕn(t, ε) and
∑∞

n=0 wn(t, ε) to obtain

∞∑
n=0

wn(1, ε)−
∞∑

n=0

ϕn(1, ε)=0, (3.13)

or

Tε =1+ ln(2− e−a + a
b

∑∞
n=1(wn(1, ε)−ϕn(1, ε)))

a
. (3.14)

Remark 3. From the formulae of ϕ0,w0 and φ0 in (3.3), (3.6) and
(3.11), we find that there exist three positive constants k1(a, b), k2(a, b) and
k3(a, b), independent of ε, such that

ϕ0(t, ε)�−k1(a, b)t, t ∈ [0,1],

w1(t, ε)�k2(a, b)(t −Tε), t ∈ (1, Tε]

and

φ0(t, ε)�−k3(a, b)t, t ∈ [−1,0].

We now discuss the convergence of the series
∑∞

n=0 ϕn(t, ε) and∑∞
n=0 wn(t, ε) in (3.9), (3.10) and (3.14). Under minor technical conditions,

similar to those required in Theorem 1, on the nonlinear function fε(x),
we not only establish uniform convergence of these series, but also prove
that these series can be viewed as uniform asymptotic expansions in terms
of the variable ε with respect the parameter t . Specifically, we have the fol-
lowing result:
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Theorem 2. Assume that fε(x) in Nε is a Lipschitz-continous function
in R such that

Lc1(f )→0, Lc2β(ε)(f )→0, Lc1L(f )β2(ε)→0 as ε →0 (3.15)

for any fixed positive constants c1 and c2 independent of ε, where Lβ(x),Lci
,

L(f ) and β(ε) are defined in Section 2. Then the series
∑∞

n=0 ϕn(t, ε) is uni-
formly convergent for t ∈ [0,1], and so is the series

∑∞
n=0 wn(t, ε) for t ∈

(1, Tε]. Moreover, for the series
∑∞

n=0 φn(t, ε), we have for t ∈ [−Tε,0]

|φn+1(t, ε)|=o

(
sup

t∈[−Tε,0]
|φn(t, ε)|

)
, n�2, as ε →0. (3.16)

Proof. For any function φ̄ defined in the interval [−Tε,0], when t �0
we define the returning map Rφ̄(t) with t ∈ [0, Tε] as follows:

Rφ̄(t)=



u(t)= ∫ t

0 −be−a(t−s)fε(φ̄(s −1, ε))ds, t ∈ [0,1],

∫ t

Tε
−be−a(t−s)fε(u(s −1, ε))ds, t ∈ (1, Tε].

(3.17)

Then in terms of the returning map Rφ̄(t), we can establish the following
relations:

Rφ0(t)=



ϕ0(t, ε)+ϕ1(t, ε), 0� t �1,

w0(t, ε)+w1(t, ε), 1<t �Tε,

R(∑n−1
i=0 φi

)=




n∑
i=0

ϕi, 0� t �1,

n∑
i=0

wi, 1<t �Tε,

(3.18)

and

R(∑n−1
i=0 φi

)−R(∑n−2
i=0 φi

)=
{

ϕn, 0� t �1,

wn, 1<t �Tε.

For the function φ, the notation

‖φi‖= sup
t∈[−Tε,0]

|φi(t)| (3.19)

is well defined, although φi is not continuous at the point t∗ =1−Tε. This
is because both lim

t→t∗−0
φi and lim

t→t∗+0
φi exist.
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Next, we show that under condition (3.15), the returning map Rφ(t)

satisfies

|R(
∑n

i=0 φi) −R(∑n−1
i=0 φi

)|=o(‖φn‖), ε →0, n�2,

or, by (3.12) and (3.18), equivalently

|φn+1(t)|=o(‖φn‖), ε →0, n�2. (3.20)

We shall only prove (3.20) in the case when n=2. When n>2, (3.20)
can be obtained by induction and the proof is omitted.

We can easily show that for the functions φ0, ϕ0 and w0, there exist
three points η0

1, η
0
2 and η0

3 such that

η0
1 ∈ (1−Tε,0], η0

2 ∈ [0,1], η0
3 ∈ (1, Tε]

and

φ0(η
0
1, ε)=β(ε), ϕ0(η

0
2, ε)=−β(ε), w0(η

0
3, ε)=−β(ε). (3.21)

After some straightforward computations, we obtain

η0
1 ∼−β(ε)

b
, η0

2 ∼ β(ε)

b
, η0

3 −Tε =η0
1 ∼ −β(ε)

b
(3.22)

as ε→0. Note that φ0 �β(ε) for t ∈ [−1, η0
1], ϕ0(t, ε)�−β(ε) for t ∈ [η0

2,1]
and w0(t, ε)�−β(ε) for t ∈ (1, η0

3].
Using the above information, we can now estimate φ1(t, ε), ϕ1(t, ε)

and w1(t, ε).
For t ∈ [0, η0

2

]
, |1−fε(φ0(t −1))|� δ(ε). By (3.4), we have

|ϕ1(t, ε)| �
∫ t

0
be−a(t−s)|−1+fε (φ0(s −1, ε))|ds

�
∫ t

0
bδ(ε)ds =bδ(ε)t �bδ(ε)η0

2

= O(δ(ε)β(ε)) (3.23)

for t ∈ [0, η0
2

]
. For t ∈ [η0

2,1], we have that

|ϕ1(t, ε)| �
∫ t

0
be−a(t−s)|−1+fε (φ(s −1, ε))|ds

� btδ(ε), t ∈
[
η0

2,1+η0
1

]
, (3.24)

and, by using |fε|�M, that

|ϕ1(t, ε)|=O(δ(ε), β(ε)), t ∈
[
1+η0

1,1
]
. (3.25)
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Therefore, in the whole interval [0, 1], we have

max
t∈[0,1]

|ϕ1(t, ε)|=O(δ(ε), β(ε)). (3.26)

A combination of (3.23)–(3.26) gives

|ϕ1(t, ε)|�kϕ1 t (3.27)

for t ∈ [0, 1], where

kϕ1 =bδ(ε)+2 max
t∈[0,1]

|ϕ1(t, ε)|.

Indeed, (3.27) is obviously true for t ∈ [0,1+η0
1

]
. For t ∈ [1+η0

1,1
]
, we

can show (3.27) holds by the fact that 2t �2
(
1+η0

1

)
�1 as ε is sufficiently

small. In a manner similar to that in the argument of (3.27), we can read-
ily deduce

|w1(t, ε)|�kw1(Tε − t) (3.28)

for all t ∈ (1, Tε], where kw1 = O(β(ε), δ(ε)). Returning to φ1, we obtain
that

|φ1(t, ε)|�−kφ1 t (3.29)

for t ∈ [−1,0], where kφ1 >0 and satisfies

kφ1 =O(β(ε), δ(ε)).

Next, we shall establish the estimates for φ2(t, ε), ϕ2(t, ε) and w2(t, ε).

For t ∈ [0, η0
2

]
, we can show by Remark 3 and (3.29) that

φ0(t −1, ε)>
k3(a, b)

2
, φ0(t −1, ε)+φ1(t −1, ε)>

k3(a, b)

2
, (3.30)

which leads to the following estimate of ϕ2(t, ε) on
[
0, η0

2

]
:

|ϕ2(t, ε)| �
∫ t

0
be−a(t−s)|fε(φ0(s −1, ε)+φ1(s −1, ε))−fε(φ0(s −1, ε))|ds

� bLk3/2|η0
2|‖φ1‖. (3.31)

For t ∈ [0,1+η0
1

]
, it follows again from Remark 3 and (3.29) that

φ0(t −1, ε)�−k3(t −1)�k3
∣∣η0

1

∣∣ (3.32)
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and

φ0(t −1, ε)+φ1(t, ε) �−k3(t −1)+kφ1(t −1)

� (k3 −kφ1)
∣∣η0

1

∣∣ (3.33)

� k3

2

∣∣η0
1

∣∣.
Recall that η0

1 ∼−β(ε)/b as ε→0. Then
∣∣η0

1

∣∣�β(ε)/2b as long as ε is suffi-
ciently small. Inserting this into (3.32) and (3.33) yields

φ0(t −1, ε)� k3β(ε)

4b
, φ0(t −1, ε)+φ1(t, ε)� k3β(ε)

4b
, t ∈

[
0,1+η0

1

]
.

(3.34)

Using the above estimate and (3.5), we have

|ϕ2(t, ε)| �
∫ t

0
be−a(t−s)|fε(φ0 +φ1)−fε(φ0(s −1, ε))|ds (3.35)

� bLk3β/4b‖φ1‖, t ∈
[
0,1+η0

1

]
.

Finally, for t ∈ [1+η0
1,1

]
, by (3.35) and the fact that |fε|�M, we have

|ϕ2(t, ε)| �
∫ t

0
be−a(t−s)|fε(φ0 +φ1)−fε(φ0(s −1, ε))|ds

�
∫ 1+η0

1

0
be−a(t−s)|fε(φ0 +φ1)−fε(φ0(s −1, ε))|ds

+
∫ t

1+η0
1

be−a(t−s)|fε(φ0 +φ1)−fε(φ0(s −1, ε))|ds (3.36)

� bLk3β/4b‖φ1‖+2bM|η0
1|.

Also inserting |φ1(t − 1, ε)| � kφ1

∣∣η0
1

∣∣ into the second term of (3.36), we
obtain

|ϕ2(t, ε)|� bLk3β/4b‖φ1‖+bL(f )kφ1

∣∣η0
1

∣∣2.
Coupling these two facts gives

|ϕ2(t, ε)|�bLk3β/4b‖φ1‖+min{2bM
∣∣η0

1

∣∣, bL(f )kφ1

∣∣η0
1

∣∣2}. (3.37)

Then as before, we can show by (3.29) and (3.37) that there exists a pos-
itive constant kϕ2 =O(β(ε), δ(ε)) such that

|ϕ2(t, ε)|�kϕ2 t, t ∈ [0,1]. (3.38)
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Similar argument yields the following estimate of w2(t, ε):

|w2(t, ε)|�kw2(Tε − t), t ∈ (1, Tε], (3.39)

where kw2 =O(β(ε), δ(ε)).
By Lemma 2, we have 1<Tε =1+ (1/a) In(2− e−a)+O(β(ε), δ(ε))<2.

It then follows from (3.27), (3.38) and Remark 3 that there exists a con-
stant c>0, independent of ε, such that for t ∈ [η0

1 +Tε −1, Tε −1
]
, we have

ϕ0(t, ε)+ϕ1(t, ε)<−c, ϕ0(t, ε)+ϕ1(t, ε)+ϕ2(t, ε)<−c. (3.40)

In view of (3.8), (3.40) and the fact Tε < 2, we can obtain, for t ∈[
η0

1 +Tε, Tε

]
, that

|w2(t, ε)| �
∣∣∣∣
∫ t

Tε

−be−a(t−s)

(
fε

( 2∑
i=0

ϕ(s −1)
)

−fε

( 1∑
i=0

ϕ(s −1)
))

ds

∣∣∣∣
� be2a

∣∣η0
1

∣∣Lc(fε) max
t∈[0,1]

∣∣ϕ2(t, ε)
∣∣.

Returning to φ2 and using (3.12), we have

|φ2(t, ε)|�be2a
∣∣η0

1

∣∣Lc(fε)‖φ2‖, t ∈
[
η0

1,0
]
. (3.41)

By virtue of (3.38) and (3.39), we can use an argument similar to that
used for (3.30) and (3.34) to obtain

φ0(s, ε)+φ1(s, ε)+φ2(s, ε)>
k3(a, b)

2
, t ∈

(
−1,−1+η0

2

]
(3.42)

and

φ0(s, ε)+φ1(s, ε)+φ2(s, ε)� k3(a, b)β(ε)

4b
, t ∈

(
−1, η0

1

]
. (3.43)

Now we are ready to prove (3.20). By the definition of Rφ̄(t) in (3.17),
we can obtain from (3.30) and (3.42) that

|R(φ0+φ1+φ2)(t)−R(φ0+φ1)(t)|�bLk3
2

∣∣η0
2

∣∣ · ‖φ2‖, t ∈
[
0, η0

2

]
. (3.44)

Making use of (3.34) and (3.43), we have

|R(φ0+φ1+φ2)(t)−R(φ0+φ1)(t)|�bLk3β(ε)/4b‖φ2‖, t ∈
[
0,1+η0

1

]
. (3.45)
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For t ∈ [1+η0
1,1

]
, we derive by (3.40), (3.41) and (3.45) that

|R(φ0+φ1+φ2)(t)−R(φ0+φ1)(t)|

�
∫ 1+η0

1

0
be−a(t−s)|fε(φ0 +φ1 +φ2)−fε(φ0 +φ1(s −1))|ds

+
∫ t

1+η0
1

be−a(t−s)|fε(φ0 +φ1 +φ2)−fε(φ0 +φ1(s −1))|ds

� bLk3β(ε)/4b||φ2||+b2e2a
∣∣η0

1

∣∣2L(fε)Lc(fε)‖φ2‖. (3.46)

Coupling (3.44)–(3.46) yields for t ∈ [0,1], that

|ϕ3|= |R(φ0+φ1+φ2)(t)−R(φ0+φ1)(t)|�L1‖φ2‖, (3.47)

where

L1 =max
{
bLk3/2

∣∣η0
2

∣∣, bLk3β(ε)/4b +b2e2aL(fε)Lc(fε)
∣∣η0

1

∣∣2} .

Using (3.15) and (3.22), we have

L1 →0 as ε →0.

Using a similar argument, and using (3.44)–(3.46), we can deduce that
for t ∈ (1, Tε] there is a constant L2(ε) so that

L2 →0 as ε →0

and

|w3(t, ε)| = |R(φ0+φ1+φ2)(t)−R(φ0+φ1)(t)|
�
∫ t

Tε

be−a(t−s)|fε(ϕ0 +ϕ1 +ϕ2 +ϕ3)−fε(ϕ0 +ϕ1 +ϕ2(s −1)|ds

�L2(ε)‖φ2‖.
Returning to φ3 and using (3.12) again, we conclude by the above formula
and (3.47) that for t ∈ [−Tε,0]

|φ3(t)|=o(‖φ2‖) as ε →0.

Moreover, by induction, we can derive that for any n�2

|φn+1|=o(‖φn‖) as ε →0,

and hence that the series
∑∞ ‖φ‖n is convergent. By the M-test of the

uniform convergence, we know that
∑∞

n=0 φn(t, ε) is uniformly conver-
gent for t in [−Tε,1 − Tε] or in (1 − Tε,0], which means by (3.12) that
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∑∞
n=0 wn(t, ε) is uniformly convergent for t ∈ (1, Tε] and so is

∑∞
n=0 ϕn(t, ε)

for t ∈ [0,1]. This completes the proof of Theorem 2.

For illustration, we now give an example to show to deduce the term
φn(t, ε) and Tε in (3.13) and (3.14). We take fε(x)= tanh(x/ε) and β(ε)=
Nε log(1/ε), where N �10 so that when x �β(ε)

|fε(x)−1|� e−x/ε � εN � ε10. (3.48)

Then we can see that all of the conditions in Theorem 2 are satisfied.
By (3.4), we get

ϕ1 =
∫ t

0
−be−a(t−s)

(
−1+ tanh

(φ0(s −1)

ε

))
ds. (3.49)

To compute the integral for ϕ1(t, ε) more explicitly, we need to split the
interval [0, 1] into outer and inner regions. Recall that

η0
1 ∼−β(ε)

b
, η0

2 ∼ β(ε)

b
.

We have from (3.49) and (3.48) that

ϕ1(t, ε)=O(εN), t ∈
[
0,1+η0

1

]
, (3.50)

and

ϕ1(1, ε) =
∫ 1

0
−be−a(1−s)

(
−1+ tanh

(φ0(s −1)

ε

))
ds

=
∫ 1+η0

1

0
−be−a(1−s)

(
−1+ tanh

(φ0(s −1)

ε

))
ds

+
∫ 1

1+η0
1

−be−a(1−s)

(
−1+ tanh

(φ0(s −1)

ε

))
ds

= O(εN)+ I,

Where

I =
∫ 1

1+η0
1

−be−a(1−s)

(
−1+ tanh

(φ0(s −1)

ε

))
ds

=
∫ 1

1+η0
1

2be−a(1−s) e−φ0(s−1)/ε

eφ0(s−1)/ε + e−φ0(s−1)/ε
ds

=
∫ 0

η0
1

2beat e−φ0(t)/ε

eφ0(t)/ε + e−φ0(t)/ε
dt.
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Using the facts that φ′
0(t)=−be−at , e2at ∼1+2at as t →0,∫ 0

η0
1

−2φ′
0(t)

e−φ0(t)/ε

eφ0(t)/ε + e−φ0(t)/ε
dt = ε ln 2+O(εN)

and ∫ 0

η0
1

−2tφ′
0(t)

e−φ0(t)/ε

eφ0(t)/ε + e−φ0(t)/ε
dt �

∫ 0

η0
1

−tφ′
0(t)e

−φ0(t)/εdt =O(ε2),

we can evaluate the integral I as

I = ε ln 2+O(ε2),

and hence

ϕ1(1, ε)= ε ln 2+O(ε2).

Similarly, we can estimate w1(t, ε) as

w1(t, ε)= ε ln 2+O(ε2).

Therefore,

w1(1, ε)−ϕ1(1, ε)=O(ε2). (3.51)

We can continue the above analysis for ϕ2 and w2 to obtain

ϕ2(1, ε) =
∫ 1

0
−be−a(1−s)(fε(φ0 +φ1)−fε(φ0))ds

=
∫ 1

0
−be−a(1−s)(−1+ tanh

(
φ0(s −1)+φ1(s −1)

ε

)
ds

−
∫ 1

0
−be−a(1−s)(−1+ tanh

(
φ0(s −1)

ε

)
ds

= ε ln 2+O(ε2)− [ε ln 2+O(ε2)]

= O(ε2) (3.52)

and

w2 =O(ε2). (3.53)

Since fε(x)= tanh(x/ε) satisfies all of the conditions in Theorem 2, we can
use (3.51)–(3.53) and Theorem 2 to obtain

∞∑
n=1

(wn(1, ε)−ϕn(1, ε))=O(ε2),
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hence

Tε = 1+
ln
(

2− e−a + a
b

∞∑
n=1

(wn(1, ε)−ϕn(1, ε))

)
a

= 1+ 1
a

ln(2− e−a)+O(ε2).

Therefore, we conclude that for fε(x)= tanh(x/ε), the minimal period 2Tε

of the periodic solution is approximated by

2T0 +O(ε2)

and the periodic solution x(t) has the following uniform asymptotic
expansion

x(t)=
N−1∑
n=0

φn(t, ε)+O(‖φN‖) as ε →0

with respect to t ∈ [−Tε,0].
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