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We show that a discrete dynamical system with delayed arguments that describe the compu-
tational performance of a neural network with a loop structure can exhibit the coexistence of
huge number of periodic solutions, and we describe the domains of attraction for the stable
periodic orbits. This demonstrates a great potential of discrete time delayed neural nets with a
loop structure for the purpose of storage and retrieval of periodic patterns.
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1. Introduction

One of the many important tasks that artificial neu-
ral networks can fulfil is associative memory stor-
age. In this context, a network is required to possess
as large capacity as possible for retrievable mem-
ories. Translating into the language of dynamical
systems, this demands the coexistence of as many
as possible either stable equilibria or stable peri-
odic orbits (depending on the pattern to be stored)
for the system describing the computational perfor-
mance of the network. This is exactly the so-called
multistability problem in dynamical systems theory.

It has been shown that time delay provides an
efficient mechanism for a network to store and re-
trieve periodic patterns, and biologically these de-
lays arise due to axonal conduction time, distances
of inter-neurons and the finite switching speeds of
amplifiers. We refer to the monographs by Milton
[1996] and Wu [2001], and Wu and Zhang [2002] and
the references therein for extensive literatures in the
area. It turns out, however, that the coexistence of
multiple periodic solutions must be accompanied by
a huge number of discrete delays or a complicated
distributed delay. In particular, for a network of two
coupled neurons with delayed monotone feedbacks
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and with a single delay, although the series of pa-
pers by Chen and Wu [1999, 2000, 2001a–2001c],
and Chen et al. [2000] established the coexistence of
multiple periodic orbits and gave a detailed descrip-
tion of their domains of attraction and the structure
of the global attractors, all these periodic orbits, ex-
cept one, are unfortunately unstable.

In the case when the state of a network is
updated discretely, the situation seems to be plea-

santly different. Zhou and Wu [2002a, 2002b] con-
sidered the following network of two identical
neurons with excitatory interactions

{

x(n) = βx(n − 1) + αf(y(n − k)) ,

y(n) = βy(n − 1) + αf(x(n − k)) ,
(1)

where n ∈ N (the set of all nonnegative integers),
α > 0 and k ≥ 1 is a fixed integer, f : R → R
satisfies the following conditions

(H1)

{

|f(x) − 1| ≤ ε if x ∈ (r, R],

|f(x) + 1| ≤ ε if x ∈ [−R, −r),
for some constants ε > 0 and R > r > 0 .

(H2) |f(x) − f(y)| ≤ L|x − y| if x, y ∈ [−R, −r) or x, y ∈ (r, R], where L > 0 is a constant .

They obtained some results on the existence of
k-periodic and 2k-periodic orbits. In a more re-
cent work, Wu and Zhang [2002] explored the exis-
tence of periodic orbits with all possible periods and
found that (1) indeed allows coexistence of a very
large number of stable periodic orbits. More pre-
cisely, under (H1)–(H2) and some other conditions
on the parameters involved, Wu and Zhang [2002]
developed an elementary way to compute the total
number of stable p-periodic orbits of (1) for each
p|2k, and they were also able to describe the do-
mains of attraction for these p-periodic solutions.

This seems to be surprising in the sense that
if f is monotonically increasing then the continu-
ous analogue of (1) in terms of a delay differen-
tial system does not have any stable periodic or-
bits. The potential for applications to associative
memory storage of the aforementioned surprising
results is, however, very limited. This is because
model (1) involves a very small amount of neurons
and small number of parameters, and hence it is
difficult, if not impossible, to train such a network
via any learning scheme to store a large number
of independent periodic patterns, despite the fact
that such a small network does have a large num-
ber of periodic orbits. It is therefore very natural to
ask whether the surprising results of Wu and Zhang
[2002] can be extended to large networks with com-
plicated connection topology. For a large network
with arbitrary connections, this seems to be an ex-
tremely challenging question. We are thus forced to
work on networks with special and biologically mo-
tivated connection topology. As the work by Foss
et al. [1996, 1997, 2000] showed that time delayed
recurrent loops have potentially huge capacity for
encoding information in the form of temporally

patterned spike trains, we shall consider a network
of m neurons arrayed in a ring with possiblly bidi-
rectional nearest neighbor connections.

The rest of the paper is organized as follows.
Section 2 is dedicated to the basic setting up and
preparation, and Sec. 3 contains the main results
and proofs.

2. Preliminaries

Consider a discrete-time network of m neurons ar-
ranged in a ring and connected by excitatory feed-
back with delay. Let βi ∈ (0, 1) denote the inter-
nal decay rate, (ai, bi) be the excitatory synaptic
weights of the ith neuron to its nearest neurons in
the ring and let f : R → R be the signal transmis-
sion function. Then we have

xi(n) = βixi(n − 1) + aif(xi+1(n − ki+1))

+ bif(xi−1(n − ki−1) , (2)

where i ≡ 1, . . . , m(mod m), ai, bi ≥ 0, n ∈ N+ =
{n; n is a positive integer}. We shall assume the
following

(A1)



















either min
1≤i,j,≤m

{

ai − bi

βi
−

aj + bj

1 − βj

}

> 0,

or min
1≤i,j,≤m

{

bi − ai

βi
−

aj + bj

1 − βj

}

> 0.

This is true if ai > bi (or bi > ai) for all i(mod m)
corresponding to the forward (or backward) dom-
inant connection, and if βi, 1 ≤ i ≤ m, are all
sufficiently small. We also assume that the signal
transmission function f : R → R satisfies the
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following conditions:

(A2)

{

|f(x) − 1| ≤ ε if x ∈ (r, R],

|f(x) + 1| ≤ ε if x ∈ [−R, −r),

where, 0 < ε < ε, 0 ≤ r < a∗, R ≥ b∗, and

ε =

min1≤i,j,≤m

{

|ai − bi|

βi
−

aj + bj

1 − βj

}

max1≤i≤m

{

ai + bi

βi(1 − βi)

}

b∗ = max1≤i≤m

(

ai + bi

1 − βi

)

(1 + ε) ,

a∗ = min1≤i≤m{[|ai − bi| − (ai + bi)ε] − βib
∗} .

In addition, we need the following Lipschitz conti-
nuity of f :

(A3) There exists L ∈ (0, max1≤i≤m{(1 − βi/ai +
bi)}) such that

|f(x) − f(y)| ≤ L|x − y| if x, y ∈ [−R, −r)

or x, y ∈ (r, R] .

Note that if ε = 0, r = 0, and R = ∞,
then f becomes the widely used McCulloch–Pitts

nonlinearity given by

f(x) =

{

1, x ≥ 0,

−1, x < 0,
(3)

and in this case, L = 0. We also note that, the fre-
quently used sigmoid functions with high gains also
satisfy (A2) and (A3).

By a solution of (2), we mean a sequence
{(x1(n), . . . , xm(n))} of points in Rm that is de-
fined for every integer n ≥ min{−kj , j = 1, . . . , m}
and satisfies (2) for n ∈ N = N+ ∪ {0}. It is evi-
dent that system (2) can be written as a difference
system without delay but in a higher dimensional
space. Indeed, there are many ways to do this, and
in what follows, we will choose one that is conve-
nient to our problem. To this end, we proceed as
below.

Let k′
0 = 0, k′

l =
∑l

j=1 kj , for l = 1, . . . , m − 1

and k := k′
m =

∑m
j=1 kj . For i = k′

l + j, with

l = 0, . . . , m − 1, and j = 1, . . . , kl+1, let wi(n) =
xl+1(n+ j − k − 1). Then, in terms of the new vari-
ables wi(n), i = 1, . . . , k, (2) can be written as

w(n + 1) = F (w(n)) , (4)

where F : Rk → Rk is given, for w =
w(w1, . . . , wk) ∈ Rk, by the following

Fj(w) =











βjwk′

l
+ ajf(wk′

l
+1) + bjf(wk′

l−1
+1) for j = k′

l, l = 1, . . . , m − 1;

βmwk + amf(w1) + bmf(wk′

m−1
+1) for j = k = k′

m;

wj+1 for other j.

(5)

We denote by {w(n, w0)}n∈N the solution of (5)
with initial value w(0) = w0 ∈ Rk. For w =
{w1, . . . , wk} ∈ Rk, let |w| = max{|wj |, j =
1, . . . , k}.

Let

Σ = {σ = (σ1, . . . , σk) ∈ Rk : σj ∈ {−1, 1},

j = 1, . . . , k} . (6)

For any n ∈ N, let [n] ∈ {1, . . . , k} be uniquely
given so that n ≡ [n] (mod k). Define a mapping
π : Σ → Σ by

(πσ)j = σ[j+1] for j ∈ {j = 1, . . . , k} (7)

for any σ ∈ Σ. As usual, the mapping πp : Σ → Σ
with p ≥ 2 is given by πpσ = π(πp−1σ) for σ ∈ Σ
inductively. Clearly,

πkσ = σ for every σ ∈ Σ . (8)

Moreover, for any p ∈ {1, 2, . . . , k − 1} and for any

σ ∈ Σ, we have

(πpσ)j = σ[j+p] for j ∈ {j = 1, . . . , k} . (9)

Denote the set of all fixed points of π by

Σ1 = {σ ∈ Σ : πσ = σ} .

Similarly, for any p ∈ {2, . . . , k}, denote the set of
all p-periodic points of π by

Σp = {σ ∈ Σ : πpσ = σ and πqσ 6= σ

for any q ∈ {1, . . . , p − 1}} . (10)

We will need the following technical lemma.

Lemma 2.1. The following statements hold :

(i) Let p ∈ {1, . . . , k}. If p|k, then Σp 6= ∅, and
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the number of elements in Σp is given by

N(p)=



















2 if p=1,

2p−2 if p is a prime integer,

2p−
∑

q|p,q<p

N(q) otherwise.

(11)

(ii) If Σp 6= ∅, then p|k.
(iii) Σ = ∪p|kΣp.

Proof. (iii) is a direct consequence of (i) and (ii) as
well as the fact that Σ = ∪k

p=1Σp The result in (i)
can be obtained by simple counting. Indeed, let S(p)
be the number of points fixed by σp in Σ. Clearly,
S(p) = 2p. On the other hand,

S(p) =
∑

q|p

N(q) = N(p) +
∑

q|p,q<p

N(q) , (12)

which gives (11). We now prove (ii). Assume Σp 6= ∅.
Obviously, we only need to consider the case when
p ∈ {2, . . . , k − 1} and Σp 6= ∅. Fix a σ ∈ Σp, and
define a sequence {sn}n∈N by

sn = σ[n] . (13)

Then, sn+k = sn for n ∈ N, implying that k is a
period of {sn}n∈N. By (9) and πpσ = σ, we have
{

σj = σj+p for j = 1, . . . , k − p,

σj = σp−s for j = k − s with s = 0, . . . , p − 1.

(14)

Note that for j = k − s with s ∈ {0, . . . , p − 1}, we
have j + p = k +(p− s) with p− s ∈ {1, . . . , p}. So,
[j + p] = p − s. This, together with (13) and (14),
yields

sn = sn+p for n = 1, . . . , k − p ,

and

sn = σ[n+p] = sn+p for n = k − (p − 1), . . . , k .

For n ≥ k + 1, we have n = lk + q with some l ≥ 1
and q ∈ {1, . . . , k − 1}. Therefore

sn+p = slk+q+p = sq+p = sq = sn .

Thus, p is the minimum period of {sn}n∈N. As
p < k and as k is a period of {sn}n∈N, we con-
clude that p|k. This proves (ii) and completes the
proof of the lemma. �

Remark 2.2. The formula (11) for N(p) is given in
a recursive way. As we shall see N(p) is precisely

the number of stable p-periodic solutions of (4).
We should remark that the well-known Möbius in-
version formula gives an explicit formula for N(p).
To this end, let us write p =

∏l
1 pmi

i , where pi,
i = 1, 2, . . . , l, are primes. For every subset I of
{1, . . . , l}, let pI =

∏

i∈I pi. Then by (12) and the
Möbius inversion theorem (see [Hardy & Wright,
1979, pp. 234–236]), we obtain

N(p) =
∑

I⊂{1,...,l}

(−1)|I|2p/pI . (15)

3. Multistability of Periodic Orbits

In what follows, we only consider the case ai > bi

for i (mod m) in (A1). The backword dominant case
can be similarly dealt with. In the sequel, when we
talk about a p-periodic solution of (4), we always
means that p is the minimum period of the solution.
We first establish the following existence result.

Theorem 3.1. Assume that (A1) and (A2) hold.
Then, for any positive integer p with p|k and for
every σ ∈ Σp, (4) has a p-periodic solution.

In order to prove this theorem, we need some
preparation. First of all, by (A1), it is easy to see
that for any fixed ε ∈ (0, ε), we have

b∗ < min
1≤i≤m

(

ai − bi

βi

)

− max
1≤i≤m

(

ai + bi

βi

)

ε

Therefore,

b∗ < min
1≤i≤m

{

(ai − bi) − (ai + bi)ε

βi

}

Thus, a∗ > 0. Let c∗ = min{a∗ − r, R − b∗}. Fix
c ∈ [0, c∗), define ac = a∗ − c and bc = b∗ + c.
Denote

Ω(σ, c) = {w ∈ Rk : ac ≤ |wj | ≤ bc,

sign{wj} = σj, j = 1, . . . , k} (16)

and

Ω3(c) = {(u1, u2, u3) ∈ R3 : ac ≤ |uj | ≤ bc,

j = 1, 2, 3} . (17)

Let gi : R3 → R, i = 1, . . . , m, be given by
gi(u1, u2, u3) = βiu1 + aif(u2) + bif(u3). Then, we
can have the following

Lemma 3.2. Assume that (A1) and (A2) hold.
Then, for every c ∈ (0, c∗) and (u1, u2, u3) ∈ Ω3(c)
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and i ∈ {1, . . . , m}, we have

sign gi(u1, u2, u3) = sign u2

and ac ≤ |gi(u1, u2, u3)| ≤ bc . (18)

Proof. It is clear that

gi(−|u1|, u2, −|u3|) ≤ gi(u1, u2, u3)

≤ gi(|u1|, u2, |u3|) . (19)

In the case where u2 > 0, we note from (A1) and
(A2) that

gi(|u1|, u2, |u3|) ≤ βib
∗ + ai(1 + ε) + bi(1 + ε) + βic

≤ b∗ + c = bc (20)

and

gi(−|u1|, u2,−|u3|)

≥ −βib
∗ + ai(1 − ε) − bi(1 + ε) − βic

≥ a∗ − c = ac . (21)

This, together with (20) and (21), gives (18).
In the case where u2 < 0, we note from (A1),

(A2) and (19) that

gi(|u1|, u2, |u3|) ≤ βib
∗−ai(1−ε)+bi(1+ε)+βic

≤ −[(ai−bi)−(ai+bi)ε−βib
∗]+c

≤ −a∗+c=−ac (22)

and

gi(−|u1|, u2, −|u3|)

≥ −βib
∗ − ai(1 + ε) − bi(1 + ε) − βic

≥ −(b∗ + c) + [(1 − βi)b
∗ − (ai + bi)(1 + ε)]

≥ −(b∗ + c) = −bc . (23)

This together with (22) and (23), gives (18). This
completes the proof. �

Proof of Theorem 3.1. We first prove that for any
σ ∈ Σ and c ∈ [0, c∗), F (Ω(σ, c)) ⊂ Ω(π(σ), c).
Let σ = (σ1, . . . , σk) ∈ Σ and w = (w1, . . . , wk) ∈
Ω(σ, c). Then, πσ = (σ2, . . . , σk, σ1), ac ≤ |wj | ≤
bc and sign(wj) = σj for j = 1, 2, . . . , k. If j 6= k′

l,
l = 1, . . . , m, by (5), we know that Fj(w) = wj+1

for j 6= k′
l, l = 1, . . . , m, and hence,

ac ≤ |Fj(w)| =≤ bc and sign(Fj(w)) = σj+1 .

(24)

For j = k′
l, l = 1, . . . , m, by (5) and

Lemma 3.2, we see that (24) is also true. This

shows that F (w) ∈ Ω(πσ, c). Now, if p|k and
σ ∈ Σp (Σp 6= ∅ by Lemma 2.1), then we have
F p(Ω(σ, c)) ⊂ Ω(πp(σ), c) = Ω(σ, c). Note that
Ω(σ, c) is bounded, closed, convex and nonempty.
By Schauder’s fixed point theorem, the continu-
ous mapping F p has a fixed point which gives a p-
periodic solution of (4), in the form {w(n, wσ)}n∈N

with wσ ∈ Ω(σ, c). This completes the proof of
Theorem 3.1. �

Next, we address the stability of the multiplic-
ity periodic solutions obtained above.

Theorem 3.3. Assume (A1), (A2) and (A3)
hold.

(i) For any integer p with p|k and each σ ∈ Σp,
(4) has a unique p-periodic w(n, wσ) (denote
by wσ(n)) with wσ ∈ Ω(σ, 0), and this solu-
tion is uniformly asymptotically stable. More
precisely, let

r(σ) = min{|wσ
j | − (a∗ − c∗), (b∗ + c∗)

− |wσ
j |; j = 1, . . . , k} .

Then for any w0 with |w0 − wσ| < r(σ), we
have

|w(n, w0) − w(n, wσ)| ≤ Cξn|w0 − wσ|

for n = 0, 1, . . . ,

where ξ = max1≤i≤m[βi + (ai + bi)L]1/k and
C = ξ1−k.

(ii) Let

Ω = {w ∈ Rk : r < |wj | < R, j = 1, . . . , k} .

(25)

If {w(n)}n∈N is a p-periodic solution of (4)
with w(n) ∈ Ω for n = 1, . . . , p, then p|k
and there exists a unique σ ∈ Σp such that
w(n) = wσ(n) for n = 1, 2, . . . .

(iii) For any solution {w(n, w0)}n∈N of (4) with
a∗ − c∗ < |w0

j | < b∗ + c∗ for 1 ≤ j ≤ k, there
exists a unique integer p ∈ N with p|k and a
unique σ ∈ Σp such that

|w(n, w0) − wσ(n)| ≤ Cξn|w0 − wσ(0)|

for n = 0, 1, . . . .

(iv) For each integer p ∈ N with p|k, (4) has N(p)
p-periodic solutions in Ω, and these solutions
are uniformly asymptotically stable. For any
integer p ∈ N with p 6 | k, (4) has no p-periodic
solution in Ω.
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To prove this theorem, we need some lemmas.

Lemma 3.4. If c ∈ [0, c∗), σ ∈ Σp and p|k, then

|F k(w′) − F k(w′′)|

≤ ξk|w′ − w′′| for w′w′′ ∈ Ω(σ, c) . (26)

Proof. By the definition of Ω(σ, c) and using
Lemma 3.2, we have

w′
jw

′′
j > 0 , F k

j (w′)F k
j (w′′) > 0 for j = 1, . . . , k .

Therefore, (00) follows from the definition of | · | in
Rk, Eq. (5) and (A3). �

Lemma 3.5. If {w(n, w0)}n∈N is a p-periodic so-
lution of (4) with w(j, w0) ∈ Ω for j = 1, . . . , p.
Then |w(j, w0)| ≤ b∗ for j = 1, . . . , p.

Proof. By way of contradiction, assume that the
conclusion is not true. Then, we can obtain a p-
periodic solution x(n) = {x1(n), . . . , xm(n)} of
(2) from {w(n, w0)}n∈N, with |xi(n0)| > b∗ for
some i ∈ {1, . . . , m}. We first consider the case
xi(n0) > b∗. Then b∗ < xi(n0) < R, and we can
write x(n0) = b∗ + δ0, with some δ0 > 0. It follows
from (2) and (A1)–(A2) that

x1(n0 − 1) =
1

β1
[x1(n0) − a1f(x2(n0 − k2))

− b1f(xm(n − km))]

≥
1

β1
[δ0 + b∗ − (a1 + b1)(1 + ε)]

=
1

β1
δ0 + b∗ .

Let β = min1≤i≤m{βi}, repeating the above argu-
ment, we get

x1(n0 − m) ≥
1

β
[x1(n0 − m + 1) − b∗] + b∗ ,

m = 1, 2, . . . , k .

In particular,

x1(n0 − p) ≥
1

βp
δ0 + b∗ > b∗ + δ0 = x1(n0) ,

a contradiction to the p-periodicity. Similarly, we
can exclude x(n0) < −b∗. This completes the proof.

�

Lemma 3.6. Let

Ω∗ = {w ∈ Rk : r < |wj | ≤ b∗ and

sign(wj) = σj, j = 1, . . . , k} .

Then,

|F k(w′) − F k(w′′)| ≤ ξk|w′ − w′′|

for w′, w′′ ∈ Ω∗(σ) . (27)

Proof. Using the same argument as that in the
proof for Lemma 3.2, we see that for any fixed
i ∈ {1, . . . , m},

sign gi(u1, u2, u3) = sign u2

and

r < |gi(u1, u2, u3)| < b∗

for (u1, u2, u3) ∈ Ω∗
3, where

Ω∗
3 :={(u1, u2, u3)∈R3 : r< |uj|≤b∗, j =1, 2, 3} .

Therefore, F k(Ω∗(σ)) ⊂ Ω∗(πkσ). Furthermore,

F l
k(w

′)F l
k(w

′′) > 0 for j = 1, 2, . . . , k

and w′, w′′ ∈ Ω∗(σ) .

Combining this with (5) and (A1)–(A2), we obtain
(27). �

Lemma 3.7. If {w(n, w0)}n∈N is a p-periodic so-
lution of (4) with w(j, w0) ∈ Ω for j = 1, . . . , p,
then p|k and w(n, w0) = w(n, wσ) for some σ ∈ Σp

and {w(n, w0)} is one of the p-periodic solutions
obtained in Theorem 3.1.

Proof. By Lemma 2.1, we have Ω = ∪p|k ∪σ∈Σp

Ω(σ). Therefore, there exist q|k and σ ∈ Σq such
that w0 ∈ Ω(σ). Moreover, Lemma 3.5 implies
w(j, w0) ∈ Ω∗(σ) for j = 1, . . . , p. On the other
hand, by Theorem 3.1, there exists wσ ∈ Ω(σ, c)
such that {w(n, wσ)}n∈N is a p-periodic solution
of (4). Now by Lemma 3.4, we also know that
w(j, wσ) ∈ Ω∗(σ) for j = 1, 2, . . . . Thus, for any
j ∈ N, we have

|w(j, w0) − w(j, wσ)|

= |w(pqk + j, w0) − w(pqk + j, wσ)|

= |(F k)
pq

(w(j, w0)) − (F k)
pq

(w(j, wσ))|

≤ ξpqk|w(j, w0) − w(j, wσ)| .

Therefore, we must have w(j, w0) = w(j, wσ) for
j ∈ N and p = q. �
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Proof of Theorem 3.3. (i) We can obtain the
existence and uniqueness of p-periodic solution
{w(n, wσ)}n∈N with wσ ∈ Ω(σ, 0) by using The-
orem 3.1 and Lemma 3.7. For any w0 with |w0 −
wσ | < r(σ), by the definition of r(σ), we can find
c ∈ [0, c∗) such that w0 ∈ Ω(σ, c). Note from (5)
that for any l ∈ {1, . . . , k − 1}, we have

|F l(w′) − F l(w′′)| ≤ |w′ − w′′|

for w′, w′′ ∈ Ω(σ, c) .

Let n = sk + q with some q ∈ {1, . . . , k − 1}, then

|w(n, w0) − w(n, wσ)|

= |F (sk+q)(w0) − F (sk+q)(wσ)|

≤ |F sk(w0) − F sk(wσ)| .

By Lemma 3.6, we have

|F sk(w0) − F sk(wσ)| ≤ ξks|w0 − wσ|

= Cξsk+k−1|w0 − wσ|

≤ Cξn|w0 − wσ| ,

completing the proof of (i).
(ii) follows easily from Lemma 3.7. For (iii), we

can find c ∈ [0, c∗) such that a∗− c ≤ |w0
j | ≤ b∗ + c.

Let σ ∈ Σ so that σj = sign(w0
j ), then w0 ∈ Ω(σ, c).

Now, (i) and the result in Lemma 3.4 give the rest
of proof. For (iv), we first notice from Lemma 3.7
that the period p of any given periodic solution of
(4) must divide k, i.e. p|k. This, together with (i)
and the definition of N(p), proves (iv). The proof is
complete. �

The above theorem gives a very clear descrip-
tion about the number of periodic solutions of (4),
as well as some estimates about the domains of the
attraction of these periodic solutions. Note that dif-
ferent periodic solutions may give the same orbit,
and therefore, it would also be desirable to consider
the number of the periodic orbits of (4).

Definition 3.8. Two periodic solutions w(n, w′)
and w(n, w′′) of (4) are said to be equivalent to
each other, if there exists q ∈ N such that

w(n, w′) = w(n + q, w′′) for n = 0, 1, . . . . (28)

Clearly, two equivalent periodic solutions w(·, w ′)
and w(·, w′′) of (3) give the same orbit

O(w′) := {w(n, w′); n = 0, 1, . . .}

= {w(n, w′′); n = 0, 1, . . .}

=: O(w′′) .

Lemma 3.9. For any fixed p ∈ N with p|k, and
any given σ, σ ∈ Σp with σ 6= σ, wσ and wσ are
equivalent to each other if and only if there exists
q ∈ {1, . . . , p − 1} such that σ = πqσ.

Proof. Let w0 = w(0, σ) and w0 = w(0, σ). Define

{σ(n)}n≥0 and {σ(n)}n≥0 by σ(n) = (σ
(n)
1 , . . . , σ

(n)
k )

and σ(n) = (σ
(n)
1 , . . . , σ(n)

k), where

σ(0) = σ , σ
(n)
j = signF n

j (w0) for n ≥ 1

and j = 1, . . . , k ,

σ(0) = σ , σ
(n)
j = signF n

j (w0) for n ≥ 1

and j = 1, . . . , k .

From the result in the proof for Theorem 3.1, it
follows that for any p ∈ N with p|k and for any
σ ∈ Σp, we have

σ(n+l) = πlσ(n) and σ(n+p) = σ(n)

for n = 0, 1, . . . , l = 1, . . . , p − 1 .

Since wσ and wσ are equivalent to each other, we
can find q ∈ {1, . . . , p − 1} such that wσ(n) =
wσ(n+q) for n ≥ 0. Note that wσ(n) = F n(w0) and
wσ(n) = F n(w0). Therefore, for any j ∈ {1, . . . , k}
and n ≥ 0, we have

σ
(n)
j = sign wj(n, w0)

= sign wj(n + q, σ)

= σj(n + q)

= πqσ
(n)
j .

So, we get σ = σ(0) = πqσ(0) = πqσ.
Conversely, assume σ, σ ∈ Σp are given so that

σ = πqσ for some q ∈ {1, . . . , p − 1} . (29)

Let wσ and wσ with wσ(0) = w0 and
wσ(0) = w0 be p-periodic solutions of (4). Since
F q : Ω(σ, 0) → Ω(πqσ, 0), we have that w(n +
q, w0) = w(n, F q(w0)) is a p-periodic solution of
(3) with F q(w0) ∈ Ω(πqσ, 0). Note that (29) gives

signw0
j = σj = (πqσ)j = signF q

j (w0) .

This, together with a∗ ≤ |w0
j | ≤ b∗ for j = 1, . . . , k,

yields w0 ∈ Ω(πqσ, 0). From the uniqueness of a
p-periodic solution of (3), we then have

wσ(n + q) = w(n + q, w0)

= w(n, F q(w0))

= wπqσ(n)

= wσ(n) for n = 0, 1, . . . .
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Therefore, wσ and wσ are equivalent to each other.
�

Theorem 3.10. Let N ∗(p) be the number of p-
periodic solutions of (2) which are not equivalent
to each other as p-periodic solutions of (4). Then
for each p ∈ N with p|k, we have N ∗(p) = N(p)/p.

Proof. We have shown that N(p) is exactly the
number of elements of Σp. For each p ∈ Σp, the
p-periodic solution wσ is equivalent to each of the
following p-periodic solutions wπσ, . . . , wπp−1σ. As
πqσ 6= σ for any q ∈ {1, . . . , p − 1}, we conclude

that wπiσ and wπjσ are not equivalent to each other
when i 6= j and i, j ∈ {1, . . . , p − 1}. Therefore,
for each wσ , there are exactly (p − 1) equivalent
p-periodic solutions. This completes the proof. �

Remark 3.1. In (2), if bi = 0, i = 1, . . . , m, then
(2) becomes a system of m neural networks with
uni-directed connections.

4. Conclusions and Remarks

We conclude that the network (2) allows the coex-
istence of N ∗(p) stable p-periodic orbits for every
p|k =

∑m
j=1 kj . This is in sharp contrast to the cor-

responding continuous model. For instance, it was
shown in [Wu, 1998] that for all excitatory contin-
uous networks with ring structure, the dominant
dynamic is the convergence to equilibria, and in the
case of delayed excitatory ring connections which
corresponds to the continuous version of (2), syn-
chronous/phase locked oscillations may exist but
cannot be stable. This seems to suggest that using
discrete networks are more efficient than continu-
ous ones, as far as the storage of periodic patterns
is concerned. Also formula (11), Theorem 3.10 and
the fact that k =

∑m
j=1 kj give useful information

on how the number of neurons and the delays would
contribute to the capacity of stable periodic orbits
in a discrete network with loop delayed feedback.
For more general connection structures, we expect
that similar results will hold. We note that the case
where m = 2 was addressed in [Wu & Zhang, 2002].
By allowing the arbitrary number of neurons and al-
lowing different synaptic coefficients in the bidirec-
tional loop structure, we have 4m-parameters (pi,
ai, bi, ki for 1 ≤ i ≤ m). This is extremely im-
portant in potential applications of neural networks
with delayed feedback to storing and retrieval of
large amount of prescribed periodic patterns. How

to train such a network with periodic patterns re-
mains an open and important work. We complete
this section with a list of numbers N ∗(p) for p be-
tween 1 and 20 to illustrate how large a network’s
capacity can be in terms of stable p-periodic orbits:
2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161,
2182, 4080, 7710, 14532, 27594, 52377. .
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