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Abstract

This paper is concerned with the existence, smoothness and attractivity of invariant

manifolds for evolutionary processes on general Banach spaces when the nonlinear

perturbation has a small global Lipschitz constant and locally Ck-smooth near the trivial

solution. Such a nonlinear perturbation arises in many applications through the usual cut-off

procedure, but the requirement in the existing literature that the nonlinear perturbation is

globally Ck-smooth and has a globally small Lipschitz constant is hardly met in those systems

for which the phase space does not allow a smooth cut-off function. Our general results are

illustrated by and applied to partial functional differential equations for which the phase space

Cð½�r; 0�;XÞ (where r40 and X being a Banach space) has no smooth inner product structure

and for which the validity of variation-of-constants formula is still an interesting open problem.
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1. Introduction

Consider a partial functional differential equation in the abstract form

’xðtÞ ¼ Ax þ Fxt þ gðxtÞ; ð1:1Þ

where A is the generator of a C0-semigroup of linear operators on a Banach space X;

FALðC;XÞ and gACkðC;XÞ; k is a positive integer, gð0Þ ¼ 0;Dgð0Þ ¼ 0; and
jjgðjÞ � gðcÞjjpLjjj� cjj; 8j;cAC :¼ Cð½�r; 0�;XÞ and L is a positive number.
We will use the standard notations as in [34], some of which will be reviewed in
Section 2. As is well known (see [31,34]), if A generates a compact semigroup, then
the linear equation

’xðtÞ ¼ AxðtÞ þ Fxt ð1:2Þ

generates an eventually compact semigroup, so this semigroup has an exponential
trichotomy. The existence and other properties of invariant manifolds for (1.1) with
‘‘sufficiently small’’ g have been considered in various papers (see [23,25,26,30] and
the references therein), and it is expected that the existence, smoothness and
attractivity of center-unstable, center and stable manifolds for Eq. (1.1) play
important roles in the qualitative theory of (1.1) such as bifurcations (see e.g.
[14,15,26,34,35]). However, all existing results on the existence of center-unstable,
center and stable manifolds for Eq. (1.1) have been using the so-called Lyapunov–
Perron method based on ‘‘variation-of-constants formula’’ in the phase space C of
Memory [25,26], and as noted in our previous papers (see e.g. [19]), the validity of
this formula in general is still open. The smoothness is an even more difficult issue
(even for ordinary functional differential equations) as the phase space involved is
infinite dimensional and does not allow smooth cut-off functions.

Much progress has been recently made for both theory and applications of
invariant manifolds of general semiflows and evolutionary processes (see, for

example, [2–7,10–12,14–17,23,30,32,34]). To our best knowledge, Ck-smoothness
with kX1 of center manifolds has usually been obtained under the assumption that
the nonlinear perturbation is globally Lipschitz with a small Lipschitz constant

AND is Ck-smooth. In many applications, one can use a cut-off function to the
original nonlinearity so that the modified nonlinearity satisfies the above
assumption. But if the underlying space does not allow a globally smooth cut-off
function, as the case for functional differential equations, one cannot get a useful
modified nonlinearity which meets both conditions: globally Lipschitz with a small

Lipschitz constant AND globally Ck-smooth. One already faces this problem for
ordinary functional differential equations, and this motivated the so-called method
of contractions in a scale of Banach spaces by Vanderbauwhed and van Gils [32].
This method, together with the variation-of-constants formula in the light of suns
and stars, allowed Dieckmann and van Gils [13] to provide a rigorous proof for the

Ck-smoothness (kX1) of center manifolds for ordinary functional differential
equations.

ARTICLE IN PRESS
N. Van Minh, J. Wu / J. Differential Equations 198 (2004) 381–421382



The method of Dieckmann and van Gils [13] has then been extended by Kristin

et al. [22] for the C1-smoothness of the center-stable and center-unstable manifolds

for maps defined in general Banach spaces. The C1-smoothness result was later

generalized by Faria et al. [16] to the general Ck-smoothness, and this generalization
enables the authors to obtain a center manifold theory for partial functional
differential equations. Unfortunately, this theory cannot be applied to obtain the
local invariance of center manifolds as the center manifolds obtained in [16] depend
on the time discretization. Moreover, the aforementioned work of Kristin et al. [22]
and Faria et al. [16] is based on a variation-of-constants formula for iterations of
maps and a natural way to extend these results to partial functional differential
equations would require an analogous formula which, as pointed out above, is not
available at this stage.

We also note that in [6], invariant manifolds and foliations for C1 semigroups in
Banach spaces were considered without using the variation-of-constants formula.

This work treats directly C1 semigroups rather than locally smooth equations, so its
applications to Eq. (1.1) require a global Lipschitz condition on the nonlinear

perturbation. The proofs of the main results on the C1-smoothness there are based

on a study of the C1-smoothness of solutions to Lyapunov-Perron discrete equations
(see [6, Section 2]). Moreover, the main idea in [6, Section 2] is to study the existence

and C1-smooth dependence on parameters of ‘‘coordinates’’ of the unique fixed
point of a contraction with ‘‘bad’’ characters (in terminology of [6]), that is, the

contraction may not depend on parameters C1-smoothly. To overcome this the

authors used the dominated convergence theorem in proving the C1-smoothness of
every ‘‘coordinate’’ of the fixed point. This procedure has no extension to the case of

Ck-smoothness with arbitrary kX1; so the method there does not work for Ck-

smoothness case. As will be shown later in this paper, the Ck-smoothness of
invariant manifolds can be proved, actually using the well-known assertion that

contractions with ‘‘good’’ characters (i.e., they depend Ck-smoothly on parameters)

have Ck-smooth fixed points (see e.g. [21,29]). Furthermore, our approach in this
paper is not limited to autonomous equations, as will be shown later, because it
arises from a popular method of studying the asymptotic behavior of nonautono-
mous evolution equations, called ‘‘evolution semigroups’’ (see e.g. [8] for a
systematic presentation of this method for investigating exponential dichotomy of
homogeneous linear evolution equations and [20] for almost periodicity of solutions
of inhomogeneous linear evolution equations).

An important problem of dynamical systems is to investigate conditions for the
existence of invariant foliations. In the finite-dimensional case well-known results in
this direction can be found e.g. in [21]. Extensions to the infinite-dimensional case
were made in [6,10]. In [10] a general situation, namely, evolutionary processes
generated by a semilinear evolution equations (without delay), was considered.

Meanwhile, in [6] a C1-theory of invariant foliations was developed for general C1

semigroups in Banach spaces. We will state a simple extension of a result in [6] on

invariant foliations for C1 semigroups to periodic evolutionary processes. The
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Ck-theory of invariant foliations for general evolutionary processes is still an
interesting question.

In Section 2, we give a proof of the existence and attractivity of center-unstable,
center and stable manifolds for general evolutionary processes using the method of
graph transforms as in [1]. Our general results apply to a large class of equations
generating evolutionary processes that may not be strongly continuous. We then use
some classical results about smoothness of invariant manifolds for maps (described in
[21,28]) and the technique of ‘‘lifting’’ to obtain the smoothness of invariant manifolds.

The smoothness result requires the nonlinear perturbation to be Ck-smooth,
verification of which seems to be relatively simple, in particular, as will be shown
in Section 3, for partial functional differential equations such verification can be
obtained by some estimates based on the Gronwall inequality. In Section 4 we give
several examples to illustrate the applications of the obtained results.

We conclude this introduction by listing some notations. N;R;C denote the set of
natural, real, complex numbers, respectively. X denotes a given (complex) Banach
space with a fixed norm jj � jj: For a given positive r; we denote by C :¼ Cð½�r; 0�;XÞ
the phase space for Eq. (1.1) which is the Banach space of all continuous maps from
½�r; 0� into X; equipped with sup-norm jjjjj ¼ supyA½�r;0� jjjðyÞjj for jAC: If a

continuous function x : ½b� r; bþ d-X is given, then we obtain the mapping
½0; dÞ{t/xtAC; where xtðyÞ :¼ xðt þ yÞ 8yA½�r; 0�; tA½b; bþ d: Note that in the
next section, we also use subscript t for a different purpose. This should be clear from
the context.

The space of all bounded linear operators from a Banach space X to another
Banach space Y is denoted by LðX;YÞ: For a closed operator A acting on a Banach
space X; DðAÞ and RðAÞ denote its domain and range, respectively, and spðAÞ stands
for the point spectrum of A: For a given mapping g from a Banach space X to
another Banach space Y we set

LipðgÞ :¼ inffLX0 : jjgðxÞ � gðyÞjjpLjjx � yjj; 8x; yAXg:

2. Integral manifolds of evolutionary processes

In this section, we consider the existence of stable, unstable, center-unstable and
center manifolds for general evolutionary processes, in particular, for semigroups.
We should emphasize that the process is not required to have the strong continuity in
our discussions below and thus our results can be applied to a wide class of
equations.

2.1. Definitions and preliminary results

In this section, we always fix a Banach space X and use the notation Xt to stand
for a closed subspace of X parameterized by tAR: Obviously, each Xt is also a
Banach space.
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Definition 2.1. Let fXt; tARg be a family of Banach spaces which are uniformly

isomorphic to each other (i.e. there exists a constant a40 so that for each pair t; sAR

with 0pt � sp1 there is a linear invertible operator S :Xt-Xs such that

maxfjjSjj; jjS�1jjgoa). A family of (possibly nonlinear) operators X ðt; sÞ :Xs-Xt;
ðt; sÞAD :¼ fðt; sÞAR� R : tXsg; is said to be an evolutionary process in X if the
following conditions hold:

(i) X ðt; tÞ ¼ It; 8tAR; where It is the identity on Xt;
(ii) X ðt; sÞXðs; rÞ ¼ X ðt; rÞ; 8ðt; rÞ; ðr; sÞAD;
(iii) jjXðt; sÞx � X ðt; sÞyjjpKeoðt�sÞjjx � yjj; 8x; yAXs; where K;o are positive

constants.

An evolutionary process ðXðt; sÞÞtXs is said to be linear if Xðt; sÞALðXs;XtÞ for

ðt; sÞAD: An evolutionary process ðXðt; sÞÞtXs is said to be strongly continuous if for

every fixed xAX the function D{ðt; sÞ/Xðt; sÞðxÞ is continuous. This strong
continuity will not be required in the remaining part of this paper. An evolutionary
process ðX ðt; sÞÞtXs is said to be periodic with period T40 if

Xðt þ T ; s þ TÞ ¼ X ðt; sÞ; 8ðt; sÞAD:

In what follows, for convenience, we will make the standing assumption that all
evolutionary processes under consideration have the property

Xðt; sÞð0Þ ¼ 0; 8ðt; sÞAD: ð2:1Þ

For linear evolutionary processes, we have the following notion of exponential
trichotomy.

Definition 2.2. A given linear evolutionary process ððUðt; sÞÞtXs is said to have an

exponential trichotomy if there are three families of projections ðPjðtÞÞtAR; j ¼ 1; 2; 3;

on Xt; tAR; positive constants N; a;b with aob such that the following conditions
are satisfied:

(i) suptAR jjPjðtÞjjoN; j ¼ 1; 2; 3;
(ii) P1ðtÞ þ P2ðtÞ þ P3ðtÞ ¼ It; 8tAR; PjðtÞPiðtÞ ¼ 0; 8jai;
(iii) PjðtÞUðt; sÞ ¼ Uðt; sÞPjðsÞ; for all tXs; j ¼ 1; 2; 3;
(iv) Uðt; sÞjImP2

;Uðt; sÞjImP3ðsÞ are homeomorphisms from ImP2ðsÞ and ImP3ðsÞ onto
ImP2ðtÞ and ImP3ðtÞ for all tXs; respectively;

(v) The following estimates hold:

jjUðt; sÞP1ðsÞxjjpNe�bðt�sÞjjP1ðsÞxjj; ð8ðt; sÞAD; xAXsÞ;

jjUðs; tÞP2ðtÞxjjpNe�bðt�sÞjjP2ðtÞxjj; ð8ðt; sÞAD;xAXtÞ;

jjUðt; sÞP3ðtÞxjjpNeajt�sjjjP3ðsÞxjj; ð8ðt; sÞAD; xAXsÞ:

ARTICLE IN PRESS
N. Van Minh, J. Wu / J. Differential Equations 198 (2004) 381–421 385



Note that in the above definition, we define y :¼ Uðs; tÞP2ðtÞx with tXs and xAXt as
the inverse of Uðt; sÞy ¼ P2ðtÞx in P2ðsÞX: The process ðUðt; sÞÞtXs is said to have an

exponential dichotomy if the family of projections P3ðtÞ is trivial, i.e., P3ðtÞ ¼
0; 8tAR:

Remark 2.3. Let ðTðtÞÞtX0 be a C0-semigroup of linear operators on a Banach space

X such that there is a t040 for which TðtÞ is compact for all tXt0: As will be shown,
this eventual compactness of the semigroup is satisfied by Eq. (1.1) with g � 0; when
A is the usual elliptic operator. We define a process ðUðt; sÞÞtXs by Uðt; sÞ :¼ Tðt � sÞ
for all ðt; sÞAD: It is easy to see that ðUðt; sÞÞtXs is a linear evolutionary process. We

now claim that the process has an exponential trichotomy with an appropriate choice
of projections. In fact, since the operator Tðt0Þ is compact, its spectrum sðTðt0ÞÞ
consists of at most countably many points with at most one limit point 0AC: This
property yields that sðTðt0ÞÞ consists of three disjoint compact sets s1; s2; s3; where
s1 is contained in fjjzjjo1g; s2 is contained in fjzj41g and s3 is on the unit circle
fjjzjj ¼ 1g: Obviously, s2 and s3 consist of finitely many points. Hence, one can
choose a simple contour g inside the unit disc of C which encloses the origin and s1:
Next, using the Riesz projection

P1 :¼
1

2pi

Z
g
ðlI � Tðt0ÞÞ�1 dl;

we can show easily that P1TðtÞ ¼ TðtÞP1; 8tX0: Obviously, there are positive

constants M; d such that jjP1TðtÞP1jjpMe�dt; 8tX0: Furthermore, if Q :¼ I � P1;
then Im Q is of finite-dimension and QTðtÞ ¼ TðtÞQ for tAR with tX0: Consider
now the strongly continuous semigroup ðTQðtÞÞtX0 on the finite-dimensional space

Im Q; where TQðtÞ :¼ QTðtÞQ: Since s2,s3 ¼ sðTQðt0ÞÞ; TQðtÞ can be extended to a

group on Im Q: As is well known in the theory of ordinary differential equations, in
Im Q there are projections P2;P3 and positive constants K ; a; b such that a can be
chosen as small as required, for instance aod; and the following estimates hold:

P2 þ P3 ¼ Q; P2P3 ¼ 0;

jjP2TQð�tÞP2jjpKe�bt; 8t40;

jjP3TQP3jjpKeajtj; 8tAR:

Summing up the above discussions, we conclude that the evolutionary process
ðUðt; sÞÞtXs defined by Uðt; sÞ ¼ Tðt � sÞ has an exponential trichotomy with

projections Pj; j ¼ 1; 2; 3; and positive constants N; a; b0; where

b0 :¼ minflog sup
lAs1

jlj; bg;

N ¼ maxfK ;Mg:

We now give the definition of integral manifolds for evolutionary processes.
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Definition 2.4. For an evolutionary process ðX ðt; sÞÞtXs in X; a set MC,tAR fftg �
Xtg is said to be an integral manifold if for every tAR the phase space Xt is split into

a direct sum Xt ¼ X1
t "X2

t with projections P1ðtÞ and P2ðtÞ such that

sup
tAR

jjPjðtÞjjoN; j ¼ 1; 2 ð2:2Þ

and there exists a family of Lipschitz continuous mappings gt :X
1
t-X2

t ; tAR; with

Lipschitz coefficients independent of t so that

M ¼ fðt; x; gtðxÞÞAR�X1
t �X2

t g

and

Xðt; sÞðgrðgsÞÞ ¼ grðgtÞ; ðt; sÞAD:

Here and in what follows, grðf Þ denotes the graph of a mapping f ; and we will abuse

the notation and identify X1
1"X2

t with X1
t �X2

t ; namely, we write ðx; yÞ ¼ x þ
y; 8xAX1

t ; yAX2
t : We will also write Mt ¼ fðx; gtðxÞÞAX1

t �X2
t g for tAR:

In the case of nonlinear semigroups, we have the following notion of invariant
manifolds with a slightly restricted meaning.

Definition 2.5. Let ðVðtÞÞtX0 be a semigroup of (possibly nonlinear) operators on the

Banach space X: A set NCX is said to be an invariant manifold for ðVðtÞÞtX0 if the

phase space X is split into a direct sum X ¼ X1"X2 and there exists a Lipschitz

continuous mapping g :X1-X2 so that N ¼ grðgÞ and VðtÞN ¼ N for tAR with
tX0:

Obviously, if N is an invariant manifold of a semigroup ðVðtÞÞtX0; then R� N is an

integral manifold of the evolutionary process ðXðt; sÞÞtXs :¼ ðVðt � sÞÞtXs:

An integral manifold M (invariant manifold N; respectively) is said to be of class

Ck if the mappings gt (the mapping g; respectively) are of class Ck: In this case, we

say that M (N; respectively) is a integral Ck-manifold (invariant Ck-manifold,
respectively).

Definition 2.6. Let ðUðt; sÞÞtXs with Uðt; sÞ :Xs-Xt for ðt; sÞAD be a linear

evolutionary process and let e be a positive constant. A nonlinear evolutionary
process ðXðt; sÞÞtXs with X ðt; sÞ :Xs-Xt for ðt; sÞAD is said to be e-close to

ðUðt; sÞÞtXs (with exponent m) if there are positive constants m; Z such that Zemoe and

jjfðt; sÞx � fðt; sÞyjjpZemðt�sÞjjx � yjj; 8ðt; sÞAD; x; yAXs; ð2:3Þ
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where

fðt; sÞx :¼ Xðt; sÞx � Uðt; sÞx; 8ðt; sÞAD; xAXs:

In the case where ðUðt; sÞÞtXs and ðXðt; sÞÞtXs are determined by semigroups of

operators ðUðtÞÞtX0 and ðXðtÞÞtX0; respectively, we say that the semigroup ðX ðtÞÞtX0

is e-close to the semigroup ðUðtÞÞtX0 if the process ðX ðt; sÞÞtXs is e-close to

ðUðt; sÞÞtXs in the above sense.

In the sequel we will need the Implicit Function Theorem for Lipschitz continuous
mappings (see [24,28]) which we state in the following lemma.

Lemma 2.7. Assume that X is a Banach space and L :X-X is an invertible bounded

linear operator. Let f :X-X be a Lipschitz continuous mapping with

LipðfÞojjL�1jj�1:

Then

(i) ðL þ fÞ is invertible with a Lipschitz continuous inverse, and

Lip½ðL þ fÞ�1�p 1

jjL�1jj�1 �LipðfÞ
;

(ii) if ðL þ fÞ�1 ¼ L�1 þ c; then

cðxÞ ¼ �L�1fðL�1x þ cðxÞÞ ¼ �L�1fððL þ fÞ�1
xÞ; 8xAX

and

jjcðxÞ � cðyÞjjp jjL�1jjLipðfÞ
jjL�1jj�1 �LipðfÞ

jjx � yjj; 8x; yAX: ð2:4Þ

We also need a stable and unstable manifold theorem for a map defined in a
Banach space in our ‘‘lifting’’ procedure. Let A be a bounded linear operator acting
on a Banach space X and let F be a Lipschitz continuous (nonlinear) operator acting
on X such that Fð0Þ ¼ 0:

Definition 2.8. For a given a positive real r; a bounded linear operator A acting on a

Banach space X is said to be r-pseudo-hyperbolic if sðAÞ-fzAC : jzj ¼ rg ¼ |: In
particular, the operator A is said to be hyperbolic if it is 1-pseudo-hyperbolic.
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For a given r-pseudo-hyperbolic operator A on a Banach space X we consider the
Riesz projection P corresponding to the spectral set sðAÞ-fjzjorg: Let X ¼
Im P"Ker P be the canonical splitting of X with respect to the projection P: Then
we define A1 :¼ AjIm P and A2 :¼ AjKer P:

We have

Lemma 2.9. Let A be a r-pseudo-hyperbolic operator acting on X and let F be a

Lipschitz continuous mapping such that Fð0Þ ¼ 0: Then, under the above notations, the

following assertions hold:

(i) Existence of Lipschitz manifolds: For every positive constant d one can find a

positive e0; depending on jjA1jj; jjA�1
2 jj and d such that if

LipðF � AÞoe; 0oeoe0;

then, there exist exactly two Lipshitz continuous mappings g : Im P-Ker P and

h : Ker P-Im P with LipðgÞpd; LipðhÞpd such that their graphs W s;r :¼
grðgÞ;W u;r :¼ grðhÞ have the following properties:
(a) FW u;r ¼ W u;r;
(b) F�1W s;r ¼ W s;r:

(ii) Dynamical characterizations: The following holds:

W s;r ¼ fzAXj lim
n-þN

r�nf nðzÞ ¼ 0g and

W u;r ¼ fzAXj 8nAN (z�nAX : f nðz�nÞ ¼ z; lim
n-þN

rnz�n ¼ 0g:

(iii) Ck-smoothness: If F is of class Ck in X (in a neighborhood of 0AX; respectively),
then,
(a) g and h are of class C1 (in a neighborhood of 0; respectively);
(b) If jjA�1

2 jjjjA1jjjo1 for all 1pjpk; then W s;r is of class Ck; and if

jjA�1
2 jjjjjA1jjo1 for all 1pjpk; then W u;r is of class Ck:

Proof. For the proof of the lemma, we refer the reader to [27 Section 5; 37,
p. 171]. &

2.2. The case of exponential dichotomy

This subsection is a preparatory step for proving the existence and smoothness of
invariant manifolds in a more general case of exponential trichotomy. Our later
general results will be based on the ones here.

2.2.1. Unstable manifolds

We start with the following result:
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Theorem 2.10. Let ðUðt; sÞÞtXs be a given linear process which has an exponential

dichotomy. Then, there exist positive constants e0; d such that for every given nonlinear

process ðXðt; sÞÞtXs which is e-close to ðUðt; sÞtXs with 0oeoe0; there exists a unique

integral manifold MCR�X for the process ðXðt; sÞtXs determined by the graphs of a

family of Lipschitz continuous mappings ðgtÞtAR; gt :X
2
t-X1

t with LipðgtÞpd; 8tAR;

here X1
t ;X

2
t ; tAR are determined from the exponential dichotomy of the process

ðUðt; sÞÞtXs: Moreover, this integral manifold has the following properties:

(i) X ðt; sÞMs ¼ Mt; 8ðt; sÞAD;
(ii) It attracts exponentially all orbits of the process ðXðt; sÞÞtXs in the following sense:

there are positive constants K̃; *Z such that for every xAX

dðX ðt; sÞx;MtÞpK̃e�*Zðt�sÞ dðx;MsÞ; 8ðt; sÞAD; ð2:5Þ

(iii) For any *d40 there exists *e40 so that if 0oeo*e; then

sup
tAR

LipðgtÞp*d: ð2:6Þ

Proof. This result was obtained in [1, Section 3]. For the sake of later reference, we
sketch here the proof, based on several lemmas.

Let X
j
t :¼ PjðtÞXt for j ¼ 1; 2; where projections PjðtÞ; j ¼ 1; 2 are as in Definition

2.2. We define the space Od as follows:

Od :¼ g ¼ ðgtÞtAR j gt :X
2
t-X1

t ; gtð0Þ ¼ 0;LipðgtÞpd
� �

ð2:7Þ

with the metric

dðg; hÞ :¼
XN
k¼1

1

2k
sup

tAR;jjxjjpk

jjgtðxÞ � htðxÞjj; g; hAOd: ð2:8Þ

It is easy to see that ðOd; dÞ is a complete metric space.

First of all, we note that using Lemma 2.7 one can easily prove the following:

Lemma 2.11. Let ðUðt; sÞtXs have an exponential dichotomy with positive constants

N; b and projections P1ðtÞ;P2ðtÞ; tAR as in Definition 2.2. Under the above notations,
for every positive constant h0; if

do
1

2N
; eo

e�mh0

2N
; ð2:9Þ
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then, for every gAOd and ðt; sÞAD such that 0pt � sph0 the mappings

P2ðtÞUðt; sÞðgsð�Þ þ �Þ :X2
s-X2

t ;

P2ðtÞXðt; sÞðgsð�Þ þ �Þ :X2
s-X2

t

are homeomorphisms.

The next lemma allows us to define graph transforms.

Lemma 2.12. Let e and d satisfy (2.9). Then, the mapping Gh with 0phoh0 given by

the formula

Od{g/GhgAOd0 ; ð2:10Þ

grððGhgÞtÞ ¼ Xðt; t � hÞðgrðgt�hÞ; 8tAR ð2:11Þ

is well defined, where

d0ðe; d; hÞ :¼ dNe�bh þ 2eemh

ð1=NÞebh � 2eemh
: ð2:12Þ

The next lemma ensures that the graph transforms defined above have fixed
points.

Lemma 2.13. Let h0 ¼ k be a fixed natural number such that

Ne�bk ¼ qo1
2
; ð2:13Þ

and let e; d satisfy

0odo
1

2N
;

0oeomin
e�2mk

2N
;
dðq�1 � qÞ
2ð1þ dÞ e�2mk

� �
;

0oeo
1

2
� d

� �
sup
tAR

maxfjjP1ðtÞjj; jjP2ðtÞjjg:

Then Gk : Od-Od is a (strict) contraction.

The key step leading to the proof of the contractiveness of Gk is the estimate

jjP1ðtÞXðt; t � kÞx � ðGkgÞtðP2ðtÞXðt; t � kÞxÞjj

pq0jjP1ðt � kÞx � gt�kðP2ðt � kÞxÞjj; 8gAOd; ð2:14Þ
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where q0 is a constant such that 0oq0o1: Next, for sufficiently small e and d we can

apply the above lemmas to prove that the unique fixed point g of Gk in Lemma 2.13

is also a fixed point of Gh provided 0phpk: In fact, for d0ðe; d; hÞ defined by (2.12),
there are positive constants e0; d0 such that

d1 :¼ sup
ðe;d;hÞA½0;e0��½0;d0��½0;2k�

d0ðe; d; hÞo 1

4N
: ð2:15Þ

Now letting

0odominfd0; d1g;

0oeomin e0;
e�2mk

2N
;
dðq�1 � qÞ
2ð1þ dÞ e�2mk

� �
;

0oeo
1

2
� d1

� �
sup
tAR

maxfjjP1ðtÞjj; jjP2ðtÞjjg;

by Lemmas 2.11–2.13, we have that

(i) OdCOd1 ;
(ii) Gx : Od-Od1 ; for all 0pxp2k;
(iii) Gk : Od1-Od1 and GkðOdÞCOd;
(iv) In Od1 the operator Gk has a unique fixed point gAOd:

Thus, for hA½0; k�; by the definition of the operator Gkþh (see (2.11)), we have

Ghþk ¼ GhGk : Od-Od1 and Ghþk ¼ GkGh : Od-Od1 : Next, for hA½0; k�;

Od1{Ghg ¼ GhðGkgÞ ¼ Ghþkg ¼ GkðGhgÞAOd1 :

By the uniqueness of the fixed point g of Gk in Od1 ; we have Ghg ¼ g for all hA½0; k�:
The above result yields immediately

grðgtÞ ¼ Xðt; sÞðgrðgsÞÞ; 8ðt; sÞAD:

This proves the existence of a unstable manifold M and (i). We now prove (2.5). Let

g ¼ ðgtÞtAR be the fixed point of Gk: By (2.14) and the bounded growth

LipðX ðt; sÞÞpKeoðt�sÞ; 8ðt; sÞAD;

we can easily show that there are positive constants K̃ and *Z independent of ðt; sÞAD
and xAX such that

jjP1ðtÞX ðt; sÞðxÞ � gtðP2ðtÞXðt; sÞðxÞÞjjpK̃e�*Zðt�sÞjjP1ðsÞx � gsðP2ðsÞxjj: ð2:16Þ

To see how (2.5) follows from (2.16), we need the following
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Lemma 2.14. Let Y ¼ U"V be a Banach space which is the direct sum of two Banach

subspaces U ;V with projections P : Y-U ; Q : Y-V ; respectively. Assume further

that g : U-V is a Lipschitz continuous mapping with LipðgÞo1: Then, for any yAY ;

dðy; grðgÞÞ :¼ inf
zAU

jjy � ðz þ gðzÞÞjjX 1

jjPjj þ jjQjj jjQy � gðPyÞjj: ð2:17Þ

Proof. For any yAY we have

jjyjj ¼ jjPy þ QyjjpjjPyjj þ jjQyjjpðjjPjj þ jjQjjÞjjyjj;

i.e., the norm jjyjj� :¼ jjPyjj þ jjQyjj is equivalent to the original norm jjyjj: We have

dðy; grðgÞÞ ¼ inf
uAU

jjy � ðu þ gðuÞÞjj

X
1

jjPjj þ jjQjj inf
uAU

fjjPy � ujj þ jjQy � gðuÞÞjjg

X
1

jjPjj þ jjQjj inf
uAU

fjjQy � gðPyÞjj � jjgðPyÞ � gðuÞjj þ jjPy � ujjg

X
1

jjPjj þ jjQjj inf
uAU

fjjQy � gðPyÞjj þ ð1�LipðgÞÞjjPy � ujjg

X
1

jjPjj þ jjQjj inf
uAU

jjQy � gðPyÞjj: & ð2:18Þ

Now we can apply (2.17) to (2.16) to get (2.5).
By the above discussions, for every d040 there exists e040 such that if 0oeoe0;

then the unique fixed point g ¼ ðgtÞtAR of Gk satisfies LipðgtÞpdpd0; 8tAR: Hence,

(2.6) holds. &

Proposition 2.15. Let all the conditions of Theorem 2.10 be satisfied. Moreover,
assume that ðX ðt; sÞÞtXs is T-periodic (generated by a semiflow, respectively). Then,

the family of Lipschitz continuous mappings g ¼ ðgtÞtAR has the property that gt ¼
gtþT ; 8tAR ðgt is independent of tAR; respectively).

Proof. Consider the translation St on Od given by ðStgÞt ¼ gtþt;

8g; AOd; tAR; tAR: By the T-periodicity of the process ðXðt; sÞÞtXs (the

autonomousness of ðXðt; sÞÞtXs; respectively) we can show that if g is a fixed point

of Gk; then so is ST g (so is Stg; 8tAR; respectively). By the uniqueness of the fixed

point in Od; we have ST g ¼ g ðStg ¼ g; 8tAR; respectively), completing the
proof. &

By the above proposition, if ðX ðt; sÞÞtXs is generated by a semiflow, then the

unstable integral manifold obtained in Theorem 2.10 is invariant.
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2.2.2. Stable manifolds

If the process ðXðt; sÞÞtXs is invertible, the existence of a stable integral manifold

can be easily obtained by considering the unstable manifold of its inverse process.
However, in the infinite-dimensional case we frequently encounter non-invertible
evolutionary processes. For this reason we will have to deal with stable integral
manifolds directly. Our method below is based on a similar approach, developed in
[21, Section 5] for mappings.

Theorem 2.16. Let ðXðt; sÞÞtXs be an evolutionary process and let ðUðt; sÞÞtXs be a

linear evolutionary process having an exponential dichotomy. Then, there exists a

positive constant e0 such that if ðXðt; sÞÞtXs is e-close to ðUðt; sÞÞtXs with 0oeoe0;
then, the set

M :¼ fðs; xÞAR�X : lim
t-þN

X ðt; sÞx ¼ 0g ð2:19Þ

is an integral manifold, called the stable integral manifold of ðXðt; sÞÞtXs; represented

by the graphs of a family of Lipschitz continuous mappings g ¼ ðgtÞtAR; where

gt :X
t
1-Xt

2; 8tAR: Moreover, for every *d40 there exists *e40 so that, if 0oeo*e;

sup
tAR

LipðgtÞp*d: ð2:20Þ

Proof. First, for a fixed 0oyo1; we choose kAN such that for all tAR

jjP1ðtÞUðt; t � kÞP1ðt � kÞjjpy; ð2:21Þ

jjP2ðt � kÞUðt � k; tÞP2ðtÞjjpy: ð2:22Þ

Let S be the set of all families g ¼ ðgtÞtAR; gt :X
t
1-Xt

2 such that gtð0Þ ¼ 0; 8tAR;

and

jjgjj� :¼ sup
tAR

sup
ya0

jjgtðyÞjj
jjyjj oþN:

For a positive constant g let

SðgÞ :¼ fgAS :LipðgÞ :¼ sup
tAR

LipðgtÞpgg:

It is not hard to prove that S is a Banach space with the norm jj � jj� defined as above.

Consider the graph transform G defined on SðgÞ by the formula

grððGgÞt�kÞ :¼ ½X ðt; t � kÞ��1fgrðgtÞg; 8tAR; gASðgÞ; ð2:23Þ
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where k is defined by (2.21) and (2.22). Note that ½Xðt; t � kÞ��1 is, in general, set
valued. The next result justifies the use of notations of (2.23) and shows that G is well
defined.

Lemma 2.17. If e040 is sufficiently small, then for every gASðgÞ there is a unique

hASðgÞ such that

grðht�kÞ ¼ ½X ðt; t � kÞ��1fgrðgtÞg; 8tAR:

Proof. The assertion of the lemma is equivalent to the following: for every xAXt�k
1

there is a unique yAXt�k
2 such that ðx; yÞA½X ðt; t � kÞ��1fgrðgtÞg and the mapping

ht�k : x/y is Lipschitz continuous with Lipðht�kÞpg: Recall that, by abusing

notations, we will identify ðx; yÞ with x þ y for xAXt
1; yAXt

2 if this does not cause

any confusion. Now ðx; yÞA½Xðt; t � kÞ��1fgrðgtÞg if and only if

gtðP1ðtÞXðt; t � kÞðx þ yÞÞ � P2ðtÞXðt; t � kÞððx þ yÞÞ ¼ 0:

In the remaining part of this subsection, for the sake of simplicity of notations we
will denote

P :¼ P1ðtÞ; Q :¼ P2ðtÞ; X :¼ Xðt; t � kÞ;

U :¼ Uðt; t � kÞ; U�1
2 :¼ P2ðt � kÞUðt � k; tÞP2ðtÞ:

Hence, we get the equation for y as follows

y ¼ U�1
2 ½gtðPX ðx þ yÞÞ � QðXðx þ yÞ � Uðx þ yÞÞ�: ð2:24Þ

Write the right-hand side of (2.24) by Fðx þ yÞ; and note that

LipðX ðt; sÞ � Uðt; sÞÞoZemðt�sÞ; 8ðt; sÞAD; ð2:25Þ

with Zemoe: Then, by definition, for every xAXt�k
t ; yAXt�k

2 ; Fðx; yÞAXt�k
2 : We now

show that if Yx :¼ fðu; vÞAXt�k
1 �Xt�k

2 : jjujjpgjjxjjg; then jjFðx; �Þjjpgjjxjj; i.e.,

Fðx; �Þ leaves Yx invariant. In fact,

jjFðx; yÞjjpy½gjjPXðx þ yÞjj þ pZemkjjx þ yjj�;

where

p :¼ sup
tAR

maxfjjP1ðtÞjj; jjP2ðtÞjjg: ð2:26Þ
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For jjyjjpgjjxjj we have

jjPX ðx þ yÞjjp jjPðX ðx þ yÞ � Uðx þ yÞÞjj þ jjPUðx þ yÞjj

p pZemkð1þ gÞjjxjj þ yjjxjj

¼ ½yþ ð1þ gÞpZemk�jjxjj: ð2:27Þ

Therefore,

jjFðx; yÞjjp y½gðyþ ð1þ gÞpZemkÞjjxjj þ pZemkjjx þ yjj�

¼ Zy½gðyþ ð1þ gÞpemkÞ þ pemkð1þ gÞ�jjxjj: ð2:28Þ

Hence, for small Z; Fðx; �Þ leaves Yx invariant.
Next, we will show that under the above assumptions and notations, Fðx; �Þ is a

contraction in Yx: In fact, we have

jjFðx; yÞ � Fðx; y0Þjjp y½jjgtðPX ðx þ yÞÞ � gtðPX ðx þ y0ÞÞjj

þ pZemkjjy � y0jj�: ð2:29Þ

On the other hand,

jjgtðPX ðx þ yÞÞ � gtðPX ðx þ y0ÞÞjjp gjjPX ðx þ yÞ � PX ðx þ y0Þjj

p g½jjðPXðx þ yÞ � PUðx þ yÞÞ

� ðPX ðx þ y0Þ � PUðx þ y0ÞÞjj

þ jjPUðy � y0Þjj�:

Using the assumption on the commutativeness of P with Uðt; sÞ we have

PUðy � y0Þ ¼ P1ðtÞUP1ðt � kÞðy � y0Þ ¼ 0:

Hence,

jjgtðPX ðx þ yÞÞ � gtðPX ðx þ y0ÞÞjjpZgpemkjjy � y0jj:

Consequently,

jjFðx; yÞ � Fðx; y0ÞjjpyZpemkð1þ gÞjjy � y0jj: ð2:30Þ

Therefore, for small Z; Fðx; �Þ is a contraction in Yx: By the above claim there exists a

mapping ht�k :Xt�k
1 {x/ht�kðxÞAXt�k

2 ; where ht�kðxÞ is the fixed point of

Fðx; �Þ in Yx:
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We now show that this mapping is Lipschitz continuous with Lipschitz coefficient
Lipðht�kÞpg: In fact, letting ðx; yÞ and ðx0; y0ÞAX ðt � k; tÞðgrðgtÞÞ; we have
Fðx; yÞ � Fðx0; y0Þ ¼ y � y0: Therefore,

jjFðx; yÞ � Fðx0; y0Þjjp yfjjgtðPX ðx þ yÞÞ � gtðPX ðx0 þ y0ÞÞjj

þ pZemkjjðx þ yÞ � ðx0 þ y0Þjjg: ð2:31Þ

On the other hand,

jjgtðPX ðx þ yÞÞ � gtðPX ðx0 þ y0ÞÞjjp gfPðX ðx þ yÞ � Uðx þ yÞÞ

� PðXðx0 þ y0Þ � Uðx0 þ y0ÞÞjj

þ jjPUðx þ y � x0 � y0Þjjg

p gfyjjx � x0jj þ pZemkg½jjx � x0jj þ jjy � y0jj�

¼ gðyþ pZemkÞjjx � x0jj þ gpZemkjjy � y0jj: ð2:32Þ

Therefore,

jjy � y0jj ¼ jjFðx; yÞ � Fðx0 þ y0Þjj

p ygpZemkjjy � y0jj þ ypZemkjjy � y0jj

þ ygðyþ pZemkÞjjx � x0jj þ ypZemkjjx � x0jj:

Finally, we arrive at

jjy � y0jjp ygðyþ pZemkÞ þ ypZemk

1� ygpZemkÞ � ypZemk
jjx � x0jj: ð2:33Þ

Thus, for sufficiently small Z40 we have jjy � y0jjpgjjx � x0jj; i.e.,
Lipðht�kÞpg: &

Hence, by the above lemma, we have shown that if e40 is small, then the graph
transform G is well defined as a mapping acting on SðgÞ: Moreover, we have

Lemma 2.18. Under the above assumptions and notations, for small e; the graph

transform G is a contraction in SðgÞ:
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Proof. Let g; hASðgÞ and let y :¼ ðGgÞt�kðxÞ; y0 :¼ ðGhÞt�kðxÞ: Then, we have

jjy � y0jj
jjxjj p

y
jjxjjjjfjjgtðPXðx þ yÞÞ � QðX ðx þ yÞ � Uðx þ yÞÞg

� fhtðPXðx þ y0Þ þ QðXðx þ y0Þ � Uðx þ y0ÞÞgjj

p
y

jjxjj fjjgtðPX ðx þ yÞÞ � htðPX ðx þ y0Þjj þ pZemkjjy � y0jjg:

On the other hand, we have

jjgtðPX ðx þ yÞ � htðPX ðx þ y0ÞÞjjp jjgtðPX ðx þ yÞ � htðPX ðx þ yÞjj

þ jjhtðPX ðx þ yÞÞ � htðPX ðx þ y0ÞÞjj

p jjPX ðx þ yÞjjjjg � hjj�

þ gjjPX ðx þ yÞ � PXðx þ y0Þjj:

We have, using jjyjjpgjjxjj; that

jjPX ðx þ yÞjjp jjPðX ðx þ yÞ � Uðx þ yÞÞjj þ jjPUðx þ yÞjj

p fpZemkð1þ gÞ þ ygjjxjj:

Thus,

jjgtðPX ðx þ yÞ � htðP1Xðx þ y0ÞÞjj

pfpZemkð1þ gÞ þ ygjjxjj jjg � hjj� þ gpZemkjjy � y0jj:

Therefore,

jjy � y0jj
jjxjj p yfðpZemkð1þ gÞ þ ygjjg � hjj� þ ð1þ gÞpZemk jjy � y0jj

jjxjj : ð2:34Þ

Finally,

jjGg � Ghjj�p
yfyþ Zpð1þ gÞemkg
1� Zypð1þ gÞemk

jjg � hjj�: ð2:35Þ

Since 0oyo1; this yields that for small Z40; the graph transform G is a contrac-
tion in SðgÞ: &

By the above lemma, for small Z40 the graph transform G has a unique fixed point,
say gASðgÞ:

Consider the space B :¼ fv :R-X : suptAR jjvðtÞjjoNg and Bj :¼ fvAB : vðtÞ
AIm PjðtÞ; 8tARg for j ¼ 1; 2: Let the operators f ;A acting on B be defined by
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the formulas

½fv�ðtÞ :¼ Xðt; t � kÞvðt � kÞ; 8tAR; vAB;

½Av�ðtÞ :¼ Uðt; t � kÞvðt � kÞ; 8tAR; vAB:

Therefore, for e :¼ Zemk; A is hyperbolic and Lipðf � AÞpe: We define a mapping
w :B1-B2 by the formula

½wv1�ðtÞ :¼ gtðv1ðtÞÞ; 8tAR; v1AB1: ð2:36Þ

Obviously, LipðwÞpsuptAR LipðgtÞ: We want to show that grðwÞ is the stable

invariant manifold of f : We first show that

f �1ðgrðwÞÞ ¼ grðwÞ: ð2:37Þ

We claim that

f �1ðgrðwÞÞ*grðwÞ: ð2:38Þ

Let ðu; wðuÞÞAgrðwÞ for some uAB1: We have to find vAB1 such that

f ðu; wðuÞÞ ¼ ðv; wðvÞÞ:

By definition, letting ðu; wðuÞÞ :¼ x we have

½f ðxÞ�ðtÞ ¼Xðt; t � kÞðxðt � kÞÞ

¼Xðt; t � kÞðuðt � kÞ; gt�kðuðt � kÞÞ; 8tAR:

By Lemma 2.17, since g is the unique fixed point of G; X ðt; t � kÞðuðt � kÞ;
gt�kðuðt � kÞÞAgrðgtÞ; i.e., for all AR;

P1ðtÞXðt; t � kÞðuðt � kÞ; gt�kðuðt � kÞÞAIm P1ðtÞ

and

P2ðtÞX ðt; t � kÞðuðt � kÞ; gt�kðuðt � kÞÞ ¼ gtðP1ðtÞXðt; t � kÞðuðt � kÞ; gt�kðuðt � kÞÞ:

Hence, if we set

vðtÞ :¼ P1ðtÞXðt; t � kÞðuðt � kÞ; 8tAR;

then, by definition, vAB1 and f ðxÞ ¼ ðv; wðvÞÞAgrðwÞ:
Now we prove

f �1ðgrðwÞCgrðwÞ: ð2:39Þ
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For every yAf �1ðgrðwÞÞ; we have f ðyÞAgrðwÞ; and hence, there is uAB1 such that
f ðyÞ ¼ ðu; wðuÞÞ: By definition, for every tAR;

Xðt; t � kÞðyðt � kÞÞ ¼ ðuðtÞ; gtðuðtÞÞÞ:

Hence, by Lemma 2.17, yðt � kÞAgrðgt�kÞ for all tAR; i.e.,

P2ðt � kÞyðt � kÞ ¼ gt�kðP1ðt � kÞyðt � kÞÞ; 8tAR:

Therefore, yAgrðwÞ: Finally, (2.38) and (2.39) prove (2.37).
By Lemma 2.9, for sufficiently small e40; there is a unique Lipschitz mapping

B1-B2 with Lipschitz coefficient less than g whose graph is the unique stable
invariant manifold of the mapping f with Lipðf � AÞoe: By the above discussion
and since w :B1-B2 is Lipschitz continuous with LipðwÞpg we conclude that grðwÞ
is the stable invariant manifold of f :

Now, for ðx; gsðxÞÞAgrðgsÞ; we define

vxðtÞ ¼
ðx; gsðxÞÞ; t ¼ s;

0; 8tas:

�

Observe that gtð0Þ ¼ 0; 8tAR: Therefore, vxAgrðwÞ: Using the characterization of
the stable invariant manifold of f ; we have

0 ¼ lim
n-þN

jjf nvxjj ¼ lim
n-þN

jjX ðs þ nk; sÞðxÞjj:

This, combined with the bounded growth of ðX ðt; sÞÞtXs; i.e., jjXðt; sÞðxÞjj
pKeoðt�sÞjjxjj; implies that

0p lim
t-þN

jjXðt; sÞxjj

¼ lim
t-þN

jjX t; s þ t � s

k

h i
k

� �
X s þ t � s

k

h i
k; s

� �
ðxÞjj

pKeok lim
n-þN

jjX ðs þ nk; sÞðxÞjj

¼ 0: ð2:40Þ

On the other hand, if xegrðgsÞ; then vxegrðwÞ: By the characterization of the stable
manifold of f ;

lim sup
t-þN

jjXðt; sÞðxÞjjX lim sup
n-þN

jjf nvxjj ¼ N: ð2:41Þ

Hence, Ms :¼ grðgsÞ coincides with fxAXsj limt-þN Xðt; sÞðxÞ ¼ 0g: That is,

M :¼fðs; xÞAR�Xjx ¼ AgrðgsÞg

¼ fðs; xÞAR�Xj lim
t-þN

X ðt; sÞðxÞ ¼ 0g:
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In particular, Xðt; sÞMsCMt; 8ðt; sÞAD: Finally, we note that suptAR LipðgtÞpg;
which can be made as small as possible if e is small. The proof of the theorem is then
complete. &

2.3. The case of exponential trichotomy

2.3.1. Lipschitz continuity, invariance and attractivity

We now apply Theorem 2.10 to prove the existence of center-unstable and center
manifolds for a nonlinear process ðXðt; sÞÞtXs with exponential trichotomy.

Theorem 2.19. Let ðUðt; sÞÞtXs be a linear evolutionary process having an exponential

trichotomy in a Banach space X with positive constants K ; a; b and projections

PjðtÞ; j ¼ 1; 2; 3; respectively, given in Definition 2.2. Then, for every sufficiently small

d40; there exists a positive constant e0 such that every non-linear evolutionary process

ðXðt; sÞÞtXs in X; which is e-close to ðUðt; sÞÞtXs with 0oeoe0; possesses a unique

integral manifold M ¼ fðt;MtÞ; tARg; called a center-unstable manifold, that is

represented by the graphs of a family of Lipschitz continuous mappings g ¼ ðgtÞtAR;

gt : ImðP2ðtÞ þ P3ðtÞÞ-Im P1ðtÞ; with LipðgtÞpd; such that Mt ¼ grðgtÞ; 8tAR;
have the following properties:

(i) X ðt; sÞgrðgsÞ ¼ grðgtÞ; 8ðt; sÞAD:
(ii) There are positive constants K̂; *Z such that, for every xAX;

dðX ðt; sÞðxÞ;MtÞpK̂e�*Zðt�sÞdðx;MsÞ; 8ðt; sÞAD: ð2:42Þ

Proof. Set PðtÞ :¼ P1ðtÞ and QðtÞ :¼ P2ðtÞ þ P3ðtÞ: Consider the following ‘‘change
of variables’’

U�ðt; sÞx :¼ egðt�sÞUðt; sÞx; 8ðt; sÞAD; xAX; ð2:43Þ

X �ðt; sÞx :¼ egtX ðt; sÞðe�gsxÞ; 8ðt; sÞAD; xAX; ð2:44Þ

where a; b are given in Definition 2.2, and g :¼ ðaþ bÞ=2:
We claim that U�ðt; sÞ has an exponential dichotomy with the projections PðtÞ and

QðtÞ; tAR: In fact, it suffices to check the estimates as in Definition 2.2. We have

jjU�ðt; sÞPðsÞxjjpNegðt�sÞe�bðt�sÞjjPðsÞxjj

pNe
a�b
2

ðt�sÞ jjPðsÞxjj; 8ðt; sÞAD; xAX:
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On the other hand, if ðs; tÞAD; xAX; then

jjU�ðt; sÞxðI � PðsÞÞxjjp jjU�ðt; sÞP2ðsÞxjj þ jjU�ðt; sÞP3ðsÞxjj

pNegðt�sÞe�bðt�sÞjjP2ðsÞxjj

þ Negðt�sÞeaðs�tÞjjP3ðsÞxjj

¼Ne�
b�a
2

ðs�tÞðjjP2ðsÞxjj þ jjP3ðsÞxjjÞ:

Taking into account assumption (i) in Definition 2.2 we finally get the estimate

jjU�ðt; sÞQðsÞxjjp2pNe
a�b
2

ðs�tÞjjQðsÞxjj; 8ðs; tÞAD; xAX; ð2:45Þ

where

p :¼ sup
tAR

fjjP1ðtÞjj; jjP2ðtÞjj; jjP3ðtÞjjgoN: ð2:46Þ

This justifies the claim.
Set f�ðt; sÞx :¼ X �ðt; sÞ � U�ðt; sÞx; and assume that ðXðt; sÞÞtXs is e-close to

ðUðt; sÞÞtXs (with exponent m), i.e., there are positive Z; m such that Zemoe and

LipðX ðt; sÞ � Uðt; sÞÞpZemðt�sÞ; 8ðt; sÞAD: ð2:47Þ

Then, Lipðf�ÞpZeðgþmÞðt�sÞ; i.e.,

jjf�ðt; sÞx � f�ðt; sÞyjjpZeðgþmÞðt�sÞjjx � yjj; 8x; yAX; ðt; sÞAD: ð2:48Þ

Therefore, for any *e40 there exists e0 ¼ e0ð*eÞ40 so that if ðXðt; sÞÞtXs is e-close to

ðUðt; sÞÞtXs (with exponent m), then ðX �ðt; sÞÞtXs is *e-close to ðU�ðt; sÞÞtXs (with

exponent gþ m). Hence, by Theorem 2.10 for sufficiently small d40 there exists a
number e040 such that if 0oeoe0; then there exists a unstable integral manifold

NCR�X with Nt ¼ grðdtÞ for tAR ð2:49Þ

for the process ðX �ðt; sÞÞtXs; where dt : Im QðtÞ-Im PðtÞ and LipðdtÞpd: Let us

define

gtðxÞ :¼ e�gtdtðegtxÞ; 8tAR; xAIm QðtÞ: ð2:50Þ
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Then, for all ðt; sÞAD; by using grðdxÞ ¼ egxgrðgxÞ; 8xAR; we have

grðdtÞ ¼X �ðt; sÞðgrðdsÞÞ;

egtgrðgtÞ ¼ egtX ðt; sÞðe�gsegsgrðgsÞÞ;

grðgtÞ ¼Xðt; sÞðgrðgsÞÞ:

Therefore, M :¼ fðt; grðgtÞÞ; tARg is an integral manifold of ðXðt; sÞÞtXs: Now, for

every xAX we define y ¼ e�gsx: By Theorem 2.10, there are positive constants K̃ and
*Z independent of t; s; x such that

dðX �ðt; sÞy;NtÞpK̃e�*Zðt�sÞdðy;NsÞ;

dðegtX ðt; sÞðe�gsyÞ; egtMtÞpK̃e�*Zðt�sÞdðy; egsMsÞ:

Therefore,

dðXðt; sÞðe�gsyÞ;MtÞp K̃e�gte�*Zðt�sÞdðy; egsMsÞ;

dðXðt; sÞðxÞ;MtÞp K̃e�gte�*Zðt�sÞegsdðe�gsy;MsÞ

p K̃e�gte�*Zðt�sÞegsdðx;MsÞ;

p K̃e�ðgþ*ZÞðt�sÞdðx;MsÞ:

This shows the attractivity of the center-unstable manifold M: &

Remark 2.20.

(i) In Theorem 2.19 if P2ðtÞ; tAR; are trivial projections, then the obtained center-
unstable manifold is called a center manifold. Obviously, this center manifold
attracts exponentially every point of the space X:

(ii) By the uniqueness of the (global) center-unstable manifold obtained in
Theorem 2.19 (uniqueness as a fixed point of a contractive map, it is easy to
see that, in case ðX ðt; sÞÞtXs is T-periodic (autonomous, i.e., it is generated

by a semiflow, respectively), the family of mappings g ¼ ðgtÞtAR; whose

graphs represent the center-unstable manifold M of the process ðXðt; sÞÞtXs in

Theorem 2.19 possesses property that gtþT ¼ gt; 8tAR ðgtþt ¼ gt; 8tAR;
respectively).

Definition 2.21. Let ðXðt; sÞÞtXs be an evolutionary process in X: A function

v :R-X is said to be a trajectory of ðXðt; sÞÞtXs if vðtÞ ¼ Xðt; sÞðvðsÞÞ; 8ðt; sÞAD:
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Proposition 2.22. Let ðX ðt; sÞÞtXs and ðUðt; sÞÞtXs satisfy all conditions of Theorem

2.19 and let v be a trajectory of ðX ðt; sÞÞtXs such that

lim
s-�N

egsvðsÞ ¼ 0; ð2:51Þ

where g ¼ ðaþ bÞ=2; with a; b being defined in Definition 2.2. Then, vðtÞAMt; 8tAR;
where M ¼ fðt;MtÞ; tARgCR�X is the center-unstable manifold of ðXðt; sÞÞtXs:

Proof. Consider the change of variables (2.43),(2.44). Let f ;T be the lifting
operators of the processes ðX �ðt; sÞÞtXs; ðU�ðt; sÞÞtXs in B; i.e., the operators defined

by the formula

fuðtÞ ¼ X �ðt; t � kÞðuðt � kÞÞ; TuðtÞ ¼ U�ðt; t � kÞuðt � kÞ; 8tAR; uAB; ð2:52Þ

where kAN: As is shown, f and ðX �ðt; sÞÞtXs have unstable manifolds W u and

N ¼ fðt;NtÞg; respectively, and W u ¼ fvAB : vðtÞANt; 8tARg: For every fixed sAR

we define

wsðtÞ ¼
egsvðsÞ; t ¼ s;

0; 8tas:

�
ð2:53Þ

We have

½fws�ðtÞ ¼X �ðt; t � kÞðwsðt � kÞÞ

¼ egtXðt; t � kÞðe�gðt�kÞwsðt � kÞÞ

¼ egðsþkÞvðs þ kÞ; t ¼ s

0; 8tas

(

¼wsþkðtÞ:

Therefore,

wsAf �1ðwsþkÞ;

and so,

ws�nkAf �nðwsÞ; 8nAN; ð2:54Þ

On the other hand, jjws�nkjj ¼ jjegðs�nkÞvðs � nkÞjj which tends to 0 as n-þN: By
Lemma 2.9, wsAW u: This yields that wsðsÞ ¼ egsvðsÞANs: Hence, as in the proof of
Theorem 2.19, since Ms ¼ e�gsNs; we have vðsÞAMs: &

Theorem 2.23. Let ðUðt; sÞÞtXs be a linear evolutionary process having an exponential

trichotomy in a Banach space X: Then there exists a positive constant e0 such that for

every nonlinear evolutionary process ðX ðt; sÞÞtXs in X which is e-close to ðUðt; sÞÞtXs;
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there exists an integral manifold C ¼ fðt;CtÞ; tARg; called a center manifold, for

ðXðt; sÞÞtXs; that is represented by a family of Lipschitz continuous mappings ðktÞtAR;

and is invariant under ðXðt; sÞÞtXs; i.e., X ðt; sÞCs ¼ Ct; 8ðt; sÞAD: Moreover, if v is a

trajectory of ðXðt; sÞÞtXs such that limt-N e�gjtjvðtÞ ¼ 0; then v is contained in C; i.e.,

vðtÞACt; 8tAR:

Proof. Let us make the change of variables as in the proof of Theorem 2.19. As a
result, we obtain the center-unstable manifold M ¼ fðt;MtÞ; tARg for ðXðt; sÞÞtXs

that is represented by the graphs of a family of Lipschitz continuous mappings
ðgtÞtAR: We then consider the processes ðYðt; sÞÞtXs and ðVðt; sÞÞtXs; defined by

Y ðt; sÞy :¼ QðtÞX ðt; sÞðgsðyÞ þ yÞ; 8ðt; sÞAD; yAIm QðsÞ; ð2:55Þ

Vðt; sÞy :¼ QðtÞUðt; sÞy; 8ðt; sÞAD; yAIm QðsÞ: ð2:56Þ

By the commutativeness of QðtÞ with ðUðt; sÞÞtXs; we can easily show that

ðVðt; sÞÞtXs is a linear evolutionary process. As for ðYðt; sÞÞtXs; note that by the

invariance of the integral manifold M; if z ¼ gsðyÞ þ yAMs; then Xðt; sÞðzÞAMt:
This means that Xðt; sÞðzÞ ¼ gtðQðtÞXðt; sÞðzÞÞ þ QðtÞXðt; sÞðzÞ: Hence, for any
rpspt; xAIm QðrÞ; we have

Yðt; sÞY ðs; rÞðxÞ ¼QðtÞXðt; sÞðgsðYðs; rÞðxÞ þ Y ðs; rÞðxÞÞ

¼QðtÞXðt; sÞðgsðQðsÞXðs; rÞðgrðxÞ þ xÞ þ QðsÞXðs; rÞðgrðxÞ þ xÞÞ

¼QðtÞXðt; sÞðX ðs; rÞðgrðxÞ þ xÞ

¼QðtÞXðt; rÞðgrðxÞ þ xÞ

¼Yðt; rÞðxÞ:

Next, since LipðgtÞpd for some d40; we have

jjYðt; sÞðxÞ � Yðt; sÞðyÞjjp pLipðX ðt; sÞÞjjðgrðxÞ þ xÞ � ðgrðyÞ þ yÞjj

p pð1þ dÞKeoðt�sÞjjx � yjj; 8x; yAIm QðsÞ: ð2:57Þ

This shows that ðYðt; sÞÞtXs is an evolutionary process.

Set cðt; sÞy ¼ Yðt; sÞy � Vðt; sÞy; 8tXs; yAIm QðsÞ: It is easy to see that
ðYðt; sÞÞtXs and ðVðt; sÞÞtXs are evolutionary processes. Moreover, since lime-0
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suptARLipðgtÞ ¼ 0 and since ðXðt; sÞÞ
Xs is e-close to ðUðt; sÞÞtXs; we have

jjcðt; sÞz � cðt; sÞwjj ¼ jj½Yðt; sÞz � Vðt; sÞzÞ� � ½Y ðt; sÞw � Vðt; sÞw�jj

¼ jjQðtÞX ðt; sÞðgsðzÞ þ zÞ � QðtÞUðt; sÞz

� QðtÞXðt; sÞðgsðwÞ þ wÞ þ QðtÞUðt; sÞðwÞjj

p jjQðtÞX ðt; sÞðgsðzÞ þ zÞ � QðtÞUðt; sÞðgsðzÞ þ zÞ

� QðtÞXðt; sÞðgsðwÞ þ wÞ þ QðtÞUðt; sÞðgsðwÞ þ wÞjj

þ jjQðtÞUðt; sÞðgsðzÞÞ � QðtÞUðt; sÞðgsðwÞÞjj

p Zemðt�sÞsuptAR jjQðtÞjj½1þ suptAR LipðgtÞ�jjz � wjj

þ suptAR jjQðtÞjj suptAR LipðgtÞjjz � wjj

p d1ðeÞemðt�sÞjjz � wjj; ð2:58Þ

where limek0 d1ðeÞ ¼ 0: This means that if ðX ðt; sÞÞtXs is sufficiently close to

ðUðt; sÞÞtXs then so is ðYðt; sÞÞtXs to ðVðt; sÞÞtXs:

We now return to the process ðY ðt; sÞÞtXs: By the definition of ðVðt; sÞÞtXs and

Definition 2.2, we have

jjVðs; tÞzjjpNpeaðt�sÞjjzjj; 8ðt; sÞAD; zAIm QðtÞ; ð2:59Þ

where p is defined by (2.46). Now we check the conditions of Lemma 2.7 for the
linear operator L :¼ Vðt; sÞ; and the Lipschitz mapping c :¼ Y ðt; sÞ � Vðt; sÞ with
0pt � sp1: By (2.58), there is a constant e040 such that if 0oeoe0; then

d1ðeÞeoo a�1jjV�1ðt; sÞjj�1

¼ a�1jjVðs; tÞjj�1

p a�1N�1p�1e�a

p a�1N�1p�1e�aðt�sÞ; 80pt � sp1; ð2:60Þ

where a40 is a positive constant defined by a ¼ supt;sARjjSðs; tÞjj; Sðs; tÞ is the

isomorphism from Im QðsÞ to Im QðtÞ for all t; sAR as in Definition 2.1. We now
can apply Lemma 2.7 to the Lipschitz mappings L :¼ Sðs; tÞVðt; sÞ and f :¼
Sðs; tÞYðt; sÞ � L for all 0pt � sp1: As a result, we obtain that there is a positive
e040 such that if ðXðt; sÞÞtXs is e-close to ðUðt; sÞÞtXs with 0oeoe0; then ðYðt; sÞÞtXs

has an inverse for all 0pt � sp1: Moreover, by Lemma 2.7, if Zðt; sÞ is the inverse
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of Y ðt; sÞ for 0pt � sp1; then, for jðt; sÞ :¼ Zðt; sÞ � Vðs; tÞ; we have

Lipðjðt; sÞÞp jjVðs; tÞjjLipðcÞ
jjVðs; tÞjj�1 �LipðcÞ

p
Npeaðt�sÞd1ðeÞemðt�sÞ

N�1p�1e�aðt�sÞ � d1ðeÞeoðt�sÞ: ð2:61Þ

For arbitrary ðt; sÞAD; the invertibility of Y ðt; sÞ follows from that of
Yðt; ½t�Þ;Yð½t�; ½t� � 1Þ;?;Y ð½s� þ 1; sÞ; where ½x� denotes the largest integer n such
that npx: Let ðZðt; sÞÞtXs be the inverse process of ðY ðt; sÞÞtXs: Now using (2.59),

(2.58) and (2.61) we obtain that

(i) ðZðt; sÞÞtXs is an evolutionary process;

(ii) For every Z40 there is a positive constant e140 such that if ðXðt; sÞÞtXs is

e-close to ðUðt; sÞÞtXs with 0oeoe1; then ðZðt; sÞÞtXs is Z-close to ðVðs; tÞÞtXs:

Thus, for sufficiently small e1; by Theorem 2.10 and a change of variables as in the
proof of Theorem 2.19, we can prove that there exists an integral manifold I for
ðZðt; sÞÞtXs; that is represented by a family of Lipschitz continuous mappings ðhtÞtAR;

ht : Im P3ðtÞ-Im P2ðtÞ:
Summing up the above discussions, we obtain the existence of the so-called

‘‘center’’ integral manifold C for the process ðX ðt; sÞÞtXs; defined by

C ¼ fðt; xÞAR�Xjx ¼ gtðhtðzÞ þ zÞ þ htðzÞ þ z; zAIm P3ðtÞg: ð2:62Þ

In fact, C ¼ fðt;CtÞ; tARg; where Ct is represented by the Lipschitz continuous
mapping

kt :; Im P3ðtÞ-Im P1ðtÞ"Im P2ðtÞ;

Im P3ðtÞ{z/ktðzÞ :¼ gtðhtðzÞ þ zÞ þ htðzÞ þ z:

We now claim that C is invariant under ðX ðt; sÞÞtXs; i.e., Xðt; sÞCs ¼ Ct; 8ðt; sÞAD:
Set x :¼ gsðhsðzÞ þ zÞ þ hsðzÞ þ zACs: Then, since CsCMs; there is yAIm P2ðtÞ
"Im P3ðtÞ such that

X ðt; sÞx ¼ gtðyÞ þ y:

On the other hand, since I is an integral manifold of ðYðt; sÞÞ
Xs; there is wAIm P3ðtÞ

such that QðtÞXðt; sÞðhsðzÞ þ zÞ ¼ htðwÞ þ w: Thus, y ¼ QðtÞXðt; sÞQðsÞx ¼ htðwÞ þ
w: This shows that Xðt; sÞx ¼ gtðhtðwÞ þ wÞ þ htðwÞ þ wACt; i.e., X ðt; sÞCsCCt:
Conversely, suppose that x ¼ gtðhtðwÞ þ wÞ þ htðwÞ þ wACt; then there is
yAIm QðsÞ such that Xðt; sÞðgsðyÞ þ yÞ ¼ x; and there exists zAIm P3ðsÞ such that
QðtÞXðt; sÞðhsðzÞ þ zÞ ¼ htðwÞ þ w: From the uniqueness of the decomposition, we
get that hsðzÞ þ z ¼ y: So x ¼ Xðt; sÞðgsðhsðzÞ þ zÞ þ hsðzÞ þ zÞ: This shows that
CtCXðt; sÞCs; 8ðt; sÞAD: Finally, Ct ¼ Xðt; sÞCs; 8ðt; sÞAD:
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Applying repeatedly Proposition 2.22 to ðXðt; sÞÞtXs and ðY ðt; sÞÞtXs respectively,

we obtain that the center manifold C obtained above does contain all trajectory v of

ðXðt; sÞÞtXs such that limt-N e�gjtjvðtÞ ¼ 0: &

By a similar argument as above, we obtain the following result of stable manifolds.

Theorem 2.24. Let ðUðt; sÞÞtXs be a linear evolutionary process having an exponential

trichotomy in a Banach space X: Then there exists a positive constant e0 such that for

every nonlinear evolutionary process ðX ðt; sÞÞtXs in X which is e-close to ðUðt; sÞÞtXs;

there exists an integral manifold N ¼ fðt;NtÞ; tARg; called a stable manifold, for

ðXðt; sÞÞtXs; that is represented by a family of Lipschitz continuous mappings ðhtÞtAR;

and is invariant under ðXðt; sÞÞtXs; i.e., Xðt; sÞNsCNt; 8ðt; sÞAD: Moreover, for every

sAR; the following characterization holds:

Ns ¼ fxAX : lim
t-þN

egtX ðt; sÞðxÞ ¼ 0g: ð2:63Þ

We now turn our attention to the case of semiflows. By abusing terminology, we
will say that a semiflow has some properties if the induced evolutionary process has
the same properties. With this convention, as in Remark 2.20 we have the following:

Theorem 2.25. Let ðSðtÞÞtX0 be a strongly continuous semigroup of linear operators

having an exponential trichotomy. Then there exists a positive constant e0 such that for

every semiflow ðTðtÞÞtX0 in X which is e-close to ðSðtÞÞtX0 and 0oeoe0; there exists a

(center) invariant manifold C for ðTðtÞÞtX0: This invariant manifold contains all

trajectories v satisfying limt-N e�djtjvðtÞ ¼ 0 with sufficiently small d40:

In particular, the center manifold C contains all bounded periodic trajectories.

2.3.2. The smoothness of integral manifolds

We now consider the smoothness of the integral manifolds of evolutionary
processes.

Definition 2.26. Let k be a natural number and ðX ðt; sÞÞtXs be an evolutionary

process. Then,

(i) ðX ðt; sÞÞtXs is said to be Ck-regular if for every ðt; sÞAD the mapping

X ðt; sÞ :Xs-Xt is of class Ck;
(ii) ðX ðt; sÞÞtXs is said to be locally Ck-regular if there is a positive real r such that

for every tXsAR the mapping Xðt; sÞjfjjxojjrg is of class Ck:

In what follows for any r40; let BrðXÞ ¼ fxAXjjjxjjorg:
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Definition 2.27. An integral manifold M; represented by the graph of ðgtÞtAR is said

to be locally of class Ck if there is a positive number r such that for each tAR the

mapping gtjfjjxjjorg is of class Ck:

With this notion we have:

Theorem 2.28. Let ðUðt; sÞÞtXs be a linear T-periodic evolutionary process having

exponential trichotomy in the Banach space X with the exponents a and b such that

kaob for some positive integer k: Then there exist e040 such that if a T-periodic

evolutionary process ðX ðt; sÞÞtXs is e-close to ðUðt; sÞÞtXs with eoe0; and if ðXðt; sÞÞtXs

is locally Ck-regular, then the center-unstable, center and stable integral manifolds of

ðXðt; sÞÞtXs obtained in Theorems 2.19, 2.23, 2.24 are locally of class Ck:

Proof. We consider first the case of stable and center-unstable manifolds. By
Remark 2.20, for sufficiently small d and e a unique stable manifold W s of
ðXðt; sÞÞtXs exists, and is represented by the graphs of a family of Lipschitz mappings

g ¼ ðgtÞtAR; gt : Im P1ðtÞ-Im P2ðtÞ"Im P3ðtÞ such that gt ¼ gtþT : This yields in

particular that for every fixed tAR; Xðt þ T ; tÞðgrðgtÞÞ ¼ grðgtÞ: On the other hand,
by applying Lemma 2.9 for the mappings A :¼ Uðt þ nT ; tÞ and F :¼ X ðt þ nT ; tÞ
with a fixed sufficiently large natural number n and for r ¼ eða�bÞ=2o1; we obtain
that there are positive constants e0 and d independent of tAR such that for every tAR

the graph transform GXðtþnT ;tÞ of the mapping Xðt þ nT ; tÞ has gt as a unique fixed

point. Therefore, for every tAR; the mapping gt is of class Ck by Lemma 2.9.

To obtain the Ck-smoothness of center manifold obtained in (2.62) we first note

that in the proof of Theorem 2.23 the process ðY ðt; sÞÞtXs is Ck-regular (using (2.55)

and Ck-smoothness of gt; tAR) and invertible. This yields that its inverse process

ðZðt; sÞÞtXs is Ck-regular. Consequently, the family of mappings ðhtÞtAR is Ck-

smooth. By using the above conclusion of Ck-smoothness of stable and center-
unstable manifolds this shows that the family of mappings representing the center

manifold C in (2.62) is Ck-smooth. &

2.4. Invariant foliations

Let ðX ðt; sÞÞtXs be a T-periodic evolutionary process on X: If ðXðt; sÞÞtXs is a C1

semiflow sufficiently close to a linear semigroup having an exponential trichotomy

on X; then the C1-theory of invariant foliations in [6] applies. This result can be
easily extended to periodic evolutionary processes as follows. Let ðUðt; sÞÞtXs be a T-

periodic linear evolutionary process having an exponential trichotomy with positive
constants as well as projections as in Definition 2.2. In this subsection we will denote
X1ðtÞ ¼ Im P2ðtÞ; X2ðtÞ ¼ Ker P2ðtÞ: As shown in Theorem 2.19, for ðXðt; sÞÞtXs

sufficiently close to ðUðt; sÞÞtXs; there exists the center unstable integral manifold

M ¼ fðt;MtÞ; tARg to the process ðX ðt; sÞÞtXs:
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The following result is a simple extension of [6, Theorem 1.1 (iii)] to periodic
processes.

Theorem 2.29. Let ðUðt; sÞÞtXs be a linear T-periodic evolutionary process having

exponential trichotomy in the Banach space X with the exponents a and b such that

kaob for some positive integer k: Then there exist e040 such that if a T-periodic

evolutionary process ðXðt; sÞÞtXs is e-close to ðUðt; sÞÞtXs with eoe0; then there exists a

unique center- unstable integral manifold M ¼ fðt;MtÞ; tARg to ðX ðt; sÞÞtXs: More-

over, for every sAR there is a continuous map hs :X� X2ðsÞ-X1ðsÞ such that hsþT ¼
hs; 8sAR and for each xAMs; hsðx;Q2ðsÞxÞ ¼ P2ðsÞx (here Q2ðsÞ :¼ I � P2ðsÞ), the

manifold Ms;x :¼ fhsðx; x2Þ þ x2 : x2AX2g passing through x has the following

properties:

(i) Xðt; sÞMs;xCMt;Xðt;sÞx; 8tXs;

Ms;x ¼ fyAX : lim sup
R{t-þN

1

t
lnjjX ðt; t0Þy � Xðt; t0Þxjjp

1

2
ðaþ bÞg;

(ii) For every fixed sAR; the map hsðx;x2Þ is Lipschitz continuous in x2AX2;
uniformly in x;

(iii) For every fixed sAR; xAX; Ms;x-Ms consists of exactly a single point. In

particular,

Ms;x-Ms;Z ¼ +; ðx; ZAMs; xaZÞ[
xAMs

Ms;x ¼ X;

(iv) If the operators Xðt þ T ; tÞ; tAR are C1-smooth, then the maps hsðx; x2Þ is C1-
smooth in x2AX2:

Proof. Applying [6, Theorem 3.1] to X ðs; s � TÞ for every sAR we get the invariant
foliation in X with respect these maps. The characterization of the foliations in term
of Lyapunov exponents and the e-closeness (i.e. estimate of the form (2.3)) allow us
to show that these foliations are actually for the process. Details are left to the
reader. &

3. Integral manifolds for partial functional differential equations

This section will be devoted to applications of the results obtained in the previous
section to partial functional differential equations (PFDE). We emphasize that the
results so far on the existence of invariant manifolds of (PFDE) are mainly based on
a ‘‘variation-of-constants formula’’ in the phase space C of Memory [25,26], and as
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noted in our previous papers (see e.g. [19]), the validity of this formula in general is
still open. In this section we will give a proof of the existence and smoothness of
invariant manifolds of PFDE in the general case. The case where a compactness
assumption is imposed has been studied in [27] using a new ‘‘variation-of-constants
formula’’ in the phase space C: It may be noted that this method has no extension to
the general case.

3.1. Evolutionary processes associated with partial functional differential equations

In this subsection, we consider the evolutionary processes generated by partial
functional differential equations of the form

’xðtÞ ¼ AxðtÞ þ FðtÞxt þ gðt; xtÞ; ð3:1Þ

where A generates a C0-semigroup, FðtÞALðC;XÞ is strongly continuous, i.e., for
each fAC the function R{t-FðtÞfAX is continuous, sup

tAR

jjFðtÞjjoN; gðt;fÞ is

continuous in ðt;fÞAR� C; gðt; 0Þ ¼ 0; 8tAR and there is a positive constant L

such that jjgðt;fÞ � gðt;cÞjjpLjjf� cjj; 8c;cAC; 8tAR:
In the sequel, we will need some technical lemmas. Consider the Cauchy problem

xðtÞ ¼ TðtÞfð0Þ þ
R t

s
Tðt � xÞFðxÞxx dx; 8tXs;

xs ¼ fAC:

(
ð3:2Þ

Let Uðt; sÞf :¼ xt; where xðtÞ is the solution to the above Cauchy problem. Using a
standard argument (see, for example, [34]), we obtain

Lemma 3.1. Under the above assumptions, the linear equation

’xðtÞ ¼ AxðtÞ þ FðtÞxt ð3:3Þ

generates a strongly continuous linear evolutionary process ðUðt; sÞÞtXs on C:

We can also use a standard method to prove the existence, uniqueness and
continuous dependence on initial data for mild solutions to the Cauchy problem

xðtÞ ¼ TðtÞfð0Þ þ
R t

s
Tðt � xÞ½FðxÞxx þ gðx; xxÞ� dx; 8tXs;

xs ¼ fAC:

(
ð3:4Þ

Now if we set Xðt; sÞðfÞ :¼ xt; where xð�Þ is the mild solution to the Cauchy problem
Eq. (3.4), then we have

(i) X ðt; sÞð0Þ ¼ 0; for all tXs with t; sAR;
(ii) X ðt; tÞ ¼ I ; for all tAR;
(iii) X ðt; rÞXðr; sÞ ¼ X ðt; sÞ; for all tXrXs and t; r; sAR;
(iv) For every fAC; the mapping Xðt; sÞðfÞ is continuous in ðt; sÞ with tXs:
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Moreover, we can prove

Lemma 3.2. Under the above assumptions, Eq. (3.1) generates an evolutionary process

in C

Proof. It remains to show that there are positive constants K ;o such that

jjX ðt; sÞðfÞ � Xðt; sÞðcÞjjpKeoðt�sÞjjf� cjj; 8f;cAC: ð3:5Þ

By definition, Xðt; sÞðfÞðyÞ ¼ xðt þ y;fÞ; yA½�r; 0�; where xðt;fÞ is a solution to the
following integral equation

xðtÞ ¼ TðtÞfð0Þ þ
R t

s
Tðt � xÞ½FðxÞxx þ gðx; xxÞ�dx; 8tXs;

xs ¼ fAC:

(
ð3:6Þ

Let us define xðtÞ :¼ xðt;fÞ; yðtÞ :¼ xðt;cÞ: Then

jjXðt; sÞðfÞ � Xðt; sÞðcÞjj ¼ sup
�rpyp0

jjXðt; sÞðfÞðyÞ � Xðt; sÞðcÞðyÞjj

¼ sup
�rpyp0

jjxðt þ yÞ � yðt þ yÞjj

p sup
�rpyp0

sup
tþyX0

½jjTðt þ yÞjjjjf� cjjC

þ
Z tþy

s

jjTðt þ y� xÞjjðsup
tAR

jjFðtÞjj þ 2LÞjjxx � yxjjdx�;

where L :¼ suptARLipðgðt; �ÞÞ: Set uðxÞ :¼ jjxx � yxjj for spxpt: Let Ñ and *o be

given so that jjTðtÞjjpÑe *ot for all tX0: Then

uðtÞpÑe *otuðsÞ þ
Z t

s

Ñe *oðt�xÞ½sup
tAR

jjFðtÞjj þ 2LipðgÞ�uðxÞdx:

Setting vðtÞ :¼ e�otuðtÞ and noting that vðxÞX0; we have by the Gronwall inequality
that

vðtÞpvðsÞÑe
Ñðsup

tAR

jjF jjþ2LÞðt�sÞ
; 8tXs:

Therefore,

uðtÞpuðsÞÑe
Ñðsup

tAR

jjF jjþ2Lþ *oÞðt�sÞ
; 8tXs: ð3:7Þ

Hence, ðX ðt; sÞÞtXs is an evolutionary process. &

Lemma 3.3. Under the assumptions of Lemma 3.2, for every d40 there exists e040
such that if suptARLipðgðt; �Þoe0; then ðXðt; sÞÞtXs is d-close ðUðt; sÞÞtXs:

ARTICLE IN PRESS
N. Van Minh, J. Wu / J. Differential Equations 198 (2004) 381–421412



Proof. Set Vðt; sÞðfÞ ¼ Xðt; sÞðfÞ � Uðt; sÞf; 8tXs;fAC: Below we will denote
e :¼ 2 suptAR LipðgtÞ which, without loss of generality, is assumed to be positive.
Obviously,

LipðVðt; sÞÞpLipðXðt; sÞÞ þLipðUðt; sÞÞoN:

Let us denote by u; v; a; b the solutions to the following Cauchy problems,
respectively,

uðtÞ ¼ TðtÞfðsÞ þ
R t

s
Tðt � xÞ½FðxÞux þ gðx; uxÞ�dx; 8tXs;

us ¼ fAC;

(

vðtÞ ¼ TðtÞfðsÞ þ
R t

s
Tðt � xÞFðxÞvxdx; 8tXs;

vs ¼ fAC;

(

aðtÞ ¼ TðtÞcðsÞ þ
R t

s
Tðt � xÞ½FðxÞax þ gðx; axÞ�dx; 8tXs;

as ¼ cAC;

(

bðtÞ ¼ TðtÞcðsÞ þ
R t

s
Tðt � xÞFðxÞbxdx; 8tXs;

bs ¼ fAC:

(

We have

uðtÞ � vðtÞ ¼
Z t

s

Tðt � xÞ½FðxÞðux � vxÞ þ gðx; uxÞ�dx; ð3:8Þ

aðtÞ � bðtÞ ¼
Z t

s

Tðt � xÞ½FðxÞðax � bxÞ þ gðx; axÞ�dx: ð3:9Þ

Using (3.7) we can show that there are positive constants K ;O4o independent of
f;c such that

jjux � axjjpKeOxjjf� cjj; 8xXs: ð3:10Þ

Hence,

jj½uðtÞ � vðtÞ� � ½aðtÞ � bðtÞ�jjp
Z t

s

Neoðt�xÞ sup
tAR

jjF jjjjðux � vxÞ � ðax � bxÞjjdx

þ
Z t

s

Neoðt�xÞ eKeOxjjf� cjjdx:

Set wðxÞ :¼ e�oxjjðux � vxÞ � ðax � bxÞjj; 8spxpt: Then, by the Gronwall

inequality and the inequality ex � 1pxex 8xX0; we get

wðxÞpeKN

Z t

s

eðO�oÞZ dZjjf� cjjeNmx ð3:11Þ
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peKNðt � sÞeðO�oÞðt�sÞ eNmxjjf� cjj; ð3:12Þ

where m :¼ sup
tAR

jjFðtÞjj: Thus

jj½uðtÞ � vðtÞ� � ½aðtÞ � bðtÞ�jjp eKNðt � sÞeðO�oÞðt�sÞeðNm�oÞðt�sÞjjf� cjj

p eKNeðOþNmÞðt�sÞjjf� cjj:

By definition, letting sptps þ 1 we have

jjVðt; sÞðfÞ � Vðt; sÞðcÞjj ¼ sup
yA½�r;0�

jj½uðt þ yÞ � vðt þ yÞ� � ½aðt þ yÞ � bðt þ yÞ�jj

p eKNeðOþNmÞðt�sÞ jjf� cjj

¼NðeÞemjjf� cjj; ð3:13Þ

where limek0 NðeÞ ¼ 0 and NðeÞ is independent of m: Now Lemma 3.3 follows

from (3.13). &

As an immediate consequence of the previous lemmas and Theorems 2.19, 2.23,
2.24 we have:

Theorem 3.4. Assume that

(i) A generates a C0-semigroup of linear operators;
(ii) FðtÞALðC;XÞ is strongly continuous such that suptARjjFðtÞjjoN;
(iii) the solution evolutionary process ðUðt; sÞÞtXs in C associated with the equation

’xðtÞ ¼ AxðtÞ þ FðtÞxt; tX0;

has an exponential trichotomy.

Then, for sufficiently small suptAR Lipðgðt; �Þ the evolutionary process ðXðt; sÞÞtXs in

C associated with the perturbed equation

’xðtÞ ¼ AxðtÞ þ FðtÞxt þ gðt; xtÞ; tX0; ð3:14Þ

has center-unstable, center and unstable integral manifolds in C: If (3.14) is time

independent, then these manifolds are invariant under the corresponding semiflows.

We now consider the smoothness of the above integral manifolds. We start with
the study of the smoothness of global integral manifolds. To this end, we consider
the following equation

’xðtÞ ¼ AxðtÞ þ f ðt; xtÞ; ð3:15Þ
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where A is the generator of a C0-semigroup, f ðt;fÞ is continuous in ðt;fÞA½a; b� � C
and is Lipschitz continuous in fAC uniformly in tA½a; b�; i.e., there is a positive
constant K such that

jjf ðt;fÞ � f ðt;cÞjjpKjjf� cjj; 8tA½a; b�;f;cAC:

Next, we recall the well-known procedure of proving the existence and uniqueness of
mild solutions of the Cauchy problem corresponding to Eq. (3.15)

ua ¼ fAC;

uðtÞ ¼ Tðt � aÞfð0Þ þ
R t

a
Tðt � xÞf ðx; uxÞdx; 8tA½a; b�:

�
ð3:16Þ

For every fAC; uACð½a � r; b�;XÞ; let us consider the operator

½Fðf; uÞ�ðtÞ ¼
fðt � aÞ; 8tA½a � r; a�;
Tðt � aÞfð0Þ þ

R t

a
Tðt � xÞf ðx; uxÞdx; 8tA½a; b�:

�
ð3:17Þ

It is easy to see that F :C� Cð½a � r; b�;XÞ{ðf; uÞ/Fðf; uÞACð½a � r; b�;XÞ:
Moreover, for sufficiently small b � a (independent of fAC), Fðf; �Þ is a strict
contraction (see e.g. [31, 45, p. 38]). Obviously, the unique solution to the Cauchy
problem (3.16) is the unique fixed point of Fðf; �Þ: For a given positive r we define
BðrÞ :¼ ffAC : jjfjjorg and Cr :¼ fuACð½�r; b�;XÞ : jjuðtÞjjor; 8tA½�r; b�g: Now

assume that f ðt;fÞ is differentiable with respect to f up to order kAN and D
j
ff ðt;fÞ

is continuous in ðt;fÞA½a; b� � BðrÞ for j ¼ 1;y; k:

Lemma 3.5. With the above notation, the mapping C� Cr{ðf; uÞ/Fðf; uÞACð½a �
r; b�;XÞ is differentiable up to order k:

Proof. By the definition of F; the derivative of Fðf; uÞ with respect to f is the
following bounded linear operator DfFðf; uÞ : Cð½�r; 0�;XÞ{c/DFðf; uÞc
ACð½a � r; b�;XÞ

½DfFðf; uÞc�ðtÞ ¼
cðtÞ; tA½a � r; a�;
TðtÞcðaÞ; tA½a; b�:

�

On the other hand, by Henry [18, Lemma 3.4.3, p. 64] the derivative of the mapping
Cr{u/Fðf; uÞACð½�r; 0�;XÞ is the following operator:

½DuFðf; uÞc�ðtÞ ¼
0; tA½a � r; a�;R t

a
Tðt � xÞDuf ðx; uxÞcxdx:

(
ð3:18Þ

Obviously, DfF is independent of ðf; uÞ; so it is of class CN: On the other hand, by

the assumptions and (3.18), DuF is of class Ck�1: Note that all other nonzero partial

derivatives of F with respect to f and u are Dj
uF; j ¼ 2; :::k: This yields that F is of

class Ck: &
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We need the following result on the smooth dependence of mild solutions of
Eq. (3.15) on the initial data.

Lemma 3.6. Let A be the generator of a C0-semigroup and let f ðt;fÞ be Lipschitz

continuous in fAC uniformly in tA½a; b�; differentiable up to order k in fABðrÞ:
Moreover, assume that f ðt; 0Þ ¼ 0 for tA½a; b�; Dj

uf ðt;fÞ is continuous in

ðt;fÞA½a; b� � BðrÞ for all j ¼ 1;y; k; and

sup
ðt;fÞA½a;b��BðrÞ

jjDj
f f ðt;fÞjjoN j ¼ 1;y; k:

Then, the solution uðt;fÞ of the Cauchy problem (3.16) depends Ck-smoothly on

fABðrÞ uniformly in tA½a � r; b�; i.e., the mapping BðrÞ{f/uð�;fÞACð½a � r; b�;XÞ
is of class Ck:

Proof. Set Gðf; uÞ :¼ Fðf; uÞ � u; for ðf; uÞAC� BðrÞ: Obviously, if ua is the
solution of the Cauchy problem (3.16) with f ¼ fa; then Gðfa; uaÞ ¼ 0: Moreover, G

is differentiable with respect to ðf; uÞAC� BðrÞ up to order k: We have DuGðf; uÞ ¼
DuFðf; uÞ � I : Note that the assertion of the theorem can be proved for b :¼ b0 with
sufficiently small b0 � a because of the continuation principle of mild solutions. For
instance, we can choose

ðb0 � aÞKeoðb
0�aÞ sup

ðt;cÞA½a;b��BðrÞ
jjDc f ðt;cÞjjo1; ð3:19Þ

where K ;o are positive constants such that jjTðtÞjjpKeot; 8tX0: With this
assumption, DuGðf; uÞ is invertible. In view of Lemma 3.5 we are in a position to
apply the Implicit Function Theorem (see e.g. [9, p. 25] or [18, Section 1.2.6,pp. 12–

13])) to conclude that the mapping BðrÞ{f/uðfÞACð½a � r; b0�;XÞ is of class Ck;

i.e, the solution uð�;fÞ to the Cauchy problem (3.16), depends Ck-smoothly on f
uniformly in tA½a � r; b0�; so by the continuation principle, the conclusion holds true
for tA½a � r; b�: &

As a consequence of the above lemma we have the following.

Corollary 3.7. Let A generate a C0-semigroup and let f ð�; �Þ :R� C-X be
continuous and satisfy the following conditions:

(i) f ðt;fÞ is continuously differentiable in fABðrÞ up to order kAN for a given
positive real r;

(ii) For every j ¼ 1;y; k the following holds

sup
ðt;fÞAR�BðrÞ

jjDj
ff ðt;fÞjjoN:

Then, Eq. (3.15) generates an evolutionary process ðXðt; sÞÞtXs in C which is Ck-

regular in BðrÞ:
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Proof. In view of Lemma 3.6, for a fixed positive real T ; letting a :¼ t; b ¼ tþ T we
have

U : BðrÞ{f/uðfÞACð½t� r; tþ T �;XÞ

is of class Ck for any tAR: So is the mapping

BðrÞ{f/uð�;fÞj½tþT�r;tþT �ACð½�r; b�;XÞ:

Hence, by definition,

X ðT þ t; tÞ :C{f/uð�;fÞj½Tþt�r;Tþt�

is of class Ck with respect to fABðrÞ: &

As an immediate consequence of Theorem 2.28 and the above corollary we have:

Theorem 3.8. Assume that

(i) A generates a C0-semigroup of linear operators;
(ii) FðtÞALðC;XÞ is strongly continuous such that suptAR jjFðtÞjjoN; Fðt þ TÞ ¼

f ðtÞ; 8tAR with certain positive T ;
(iii) the solution evolutionary process ðUðt; sÞÞtXs in C associated with the equation

’xðtÞ ¼ AxðtÞ þ FðtÞxt; tAR;

has an exponential trichotomy with the exponents a and b such that kaob for a

positive integer k;
(iv) gðt; xÞ satisfies gðt; 0Þ ¼ 0; gðt þ T ; xÞ ¼ gðt; xÞ; 8xAX; tAR; Dj

ugðt;fÞ is con-

tinuous in ðt;fÞAR� C and for every r40 and j ¼ 1;y; k;

sup
ðt;fÞAR�BðrÞ

jjDj
fgðt;fÞjjoN j ¼ 1;y; k:

Then, for sufficiently small suptAR Lipðgðt; �ÞÞ the evolutionary process ðUðt; sÞÞtXs in

C associated with the perturbed equation (3.14) has center-unstable, center, stable

integral Ck-manifolds in C:

3.2. Local integral manifolds and smoothness

The local version of the above results can be derived by using the cut-off
technique. In fact, we will prove the following:

Theorem 3.9. Assume that

(i) A generates a strongly continuous semigroup, FALðC;XÞ;

ARTICLE IN PRESS
N. Van Minh, J. Wu / J. Differential Equations 198 (2004) 381–421 417



(ii) The solution semigroup associated with the equation ’xðtÞ ¼ AxðtÞ þ Fxt has an

exponential dichotomy with the exponents a and b such that kaob for a positive

integer k;
(iii) gACkðBðr1Þ;XÞ for positive constant r1 and integer k; with gð0Þ ¼ 0;Dgð0Þ ¼ 0:

Then there exists a positive constant ror1 such that the equation

’xðtÞ ¼ AxðtÞ þ Fxt þ gðxtÞ ð3:20Þ

has local center-unstable, center and stable invariant Ck-manifolds contained in BðrÞ:

Proof. For a fixed 0oror1 we define the cut-off mapping

GrðfÞ ¼
gðfÞ; 8fAC with jjfjjpr=2;

g
r

jjfjj f
� �

; 8fAC with jjf4r:

8<
:

Obviously, in BðrÞ we have LipðgjBðrÞÞp sup
fABðrÞ

jjDgðfÞjj: As is shown in [33,

Proposition 3.10, p.95], Gr is globally Lipschitz continuous with

LipðGrÞp2LipðgjBðrÞÞp2 sup
fABðrÞ

jjDgðfÞjj:

Because of the continuous differentiability of g in Bðr1Þ; if we choose r sufficiently
small, then so becomes LipðGrÞ: If the solution semigroup associated with Eq. (3.14)

has an exponential trichotomy, then there exist center-unstable, center and stable
invariant manifolds M;C;NCC for the equation

’xðtÞ ¼ AxðtÞ þ Fxt þ GrðxtÞ: ð3:21Þ

Moreover, by our results in the previous section, this center manifold is Ck-smooth
in BðrÞ: Suppose that Eq. (3.21) generates a nonlinear semigroup ðVðtÞÞtX0 in C: By

the definition of Gr it may be seen that if fABðrÞ and T40 such that VðtÞfABðrÞ
for all tA½0;T �; then VðtÞf is a mild solution of the equation

’xðtÞ ¼ AxðtÞ þ Fxt þ gðxtÞ: ð3:22Þ

Hence, Mr :¼ M-BðrÞ; Cr :¼ C-BðrÞ; Nr :¼ N-BðrÞ; are invariant

Ck-manifolds which we call a local center-unstable, center and stable invariant

manifolds of Eq. (3.22), respectively. &

Remark 3.10.

(i) As in the case of ordinary differential equations, local center-unstable and
center invariant manifolds of Eq. (3.22) may not be unique. They depend on the
cut off functions. However, using the characterization of stable manifolds one
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can show that in a neighborhood of the origin Bðr0Þ; Nr-Bðr0Þ is independent

of the choice of r4r0; i.e., it is unique.
(ii) Although there may be more than one local center manifolds, by Theorems 2.23

and 3.9, any local center manifolds obtained in Theorem 3.9 should contain
small mild solutions xð�Þ of Eq. (3.22) with suptAR jjxðtÞjjor:

(iii) The local center unstable manifold Cr is locally positively invariant in the sense

that if fAC and the solution x
f
t of (3.22) belongs to BðrÞ for all tA½0;T � with a

constant T40; then x
f
t ACr for all tA½0;T �: This is, of course, obvious since C is

positively invariant and hence VðtÞfAC for all tX0 from which x
f
t ¼

VðtÞfAC-BðrÞ ¼ Cr for all tA½0;T �:

4. An example

In this section, as an example we consider the Hutchinson equation with diffusion

@uðt; xÞ
@t

¼ d
@2uðt; xÞ

@x2
� auðt � 1; xÞ½1þ uðt; xÞ�; t40; xAð0; pÞ;

@uðt; xÞ
@t

¼ 0; x ¼ 0; p;

where d40; a40: This equation can be re-written in the following abstract form in
the phase space C :¼ Cð½�1; 0�;X Þ:

d

dt
uðtÞ ¼ dDuðtÞ þ LðaÞðutÞ þ f ðut; aÞ; ð4:1Þ

where X ¼ fvAW 2;2ð0; pÞ : v0 ¼ 0 at x ¼ 0; pg; dDv ¼ dð@2=@x2Þ on X ; LðaÞðvÞ ¼
�avð�1Þ; f ðv; aÞ ¼ �avð0Þvð�1Þ: For further information on this equation and its
applications we refer the reader to [14,25,26,34,36].

It is well-known (see e.g. [30]) that dD generates a compact semigroup in X : By the
well-known facts from the theory of partial functional differential equations (see e.g.
[31,34]) the linear equation

d

dt
uðtÞ ¼ dDuðtÞ þ LðaÞðutÞ ð4:2Þ

generates in C a solution semigroup of linear operators ðTðtÞÞtX0 with TðtÞ compact

for every t41: Obviously, u ¼ 0 is an equilibrium of (4.1). By Remark 2.3, the
solution semigroup ðTðtÞÞtX0 of (4.2) has an exponential trichotomy. Since f ð�; aÞ is

Ck-smooth for any kX1; we can apply our above results to claim that Eq. (4.1) has

Ck-smooth local invariant manifolds around u ¼ 0: Moreover, the dimensions of the
center and unstable manifolds are finite. We refer the reader to [14] for more
information on applications of the center manifold of the above equation to the
Hopf bifurcation as a passes through p=2:
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