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Abstract
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1. Introduction

Consider a partial functional differential equation in the abstract form
x(t) = Ax + Fx,; + g(x;), (1.1)

where A is the generator of a Cy-semigroup of linear operators on a Banach space X,
FeL(%;X) and geC*(%,X), k is a positive integer, g(0) =0,Dg(0) =0, and
llg(o) — g(WI<L||lp — Y|, Yo,ye® = C(]—r,0],X) and L is a positive number.
We will use the standard notations as in [34], some of which will be reviewed in
Section 2. As is well known (see [31,34]), if A generates a compact semigroup, then
the linear equation

x(t) = Ax(¢) + Fx, (1.2)

generates an eventually compact semigroup, so this semigroup has an exponential
trichotomy. The existence and other properties of invariant manifolds for (1.1) with
“sufficiently small” g have been considered in various papers (see [23,25,26,30] and
the references therein), and it is expected that the existence, smoothness and
attractivity of center-unstable, center and stable manifolds for Eq.(1.1) play
important roles in the qualitative theory of (1.1) such as bifurcations (see e.g.
[14,15,26,34,35]). However, all existing results on the existence of center-unstable,
center and stable manifolds for Eq. (1.1) have been using the so-called Lyapunov—
Perron method based on ““variation-of-constants formula™ in the phase space @ of
Memory [25,26], and as noted in our previous papers (see e.g. [19]), the validity of
this formula in general is still open. The smoothness is an even more difficult issue
(even for ordinary functional differential equations) as the phase space involved is
infinite dimensional and does not allow smooth cut-off functions.

Much progress has been recently made for both theory and applications of
invariant manifolds of general semiflows and evolutionary processes (see, for
example, [2-7,10-12,14-17,23,30,32,34]). To our best knowledge, C*-smoothness
with k=1 of center manifolds has usually been obtained under the assumption that
the nonlinear perturbation is globally Lipschitz with a small Lipschitz constant
AND is C¥-smooth. In many applications, one can use a cut-off function to the
original nonlinearity so that the modified nonlinearity satisfies the above
assumption. But if the underlying space does not allow a globally smooth cut-off
function, as the case for functional differential equations, one cannot get a useful
modified nonlinearity which meets both conditions: globally Lipschitz with a small
Lipschitz constant AND globally C*-smooth. One already faces this problem for
ordinary functional differential equations, and this motivated the so-called method
of contractions in a scale of Banach spaces by Vanderbauwhed and van Gils [32].
This method, together with the variation-of-constants formula in the light of suns
and stars, allowed Dieckmann and van Gils [13] to provide a rigorous proof for the
Ck-smoothness (k>1) of center manifolds for ordinary functional differential
equations.
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The method of Dieckmann and van Gils [13] has then been extended by Kristin
et al. [22] for the C'-smoothness of the center-stable and center-unstable manifolds
for maps defined in general Banach spaces. The C'-smoothness result was later
generalized by Faria et al. [16] to the general C*-smoothness, and this generalization
enables the authors to obtain a center manifold theory for partial functional
differential equations. Unfortunately, this theory cannot be applied to obtain the
local invariance of center manifolds as the center manifolds obtained in [16] depend
on the time discretization. Moreover, the aforementioned work of Kristin et al. [22]
and Faria et al. [16] is based on a variation-of-constants formula for iterations of
maps and a natural way to extend these results to partial functional differential
equations would require an analogous formula which, as pointed out above, is not
available at this stage.

We also note that in [6], invariant manifolds and foliations for C' semigroups in
Banach spaces were considered without using the variation-of-constants formula.
This work treats directly C! semigroups rather than locally smooth equations, so its
applications to Eq. (1.1) require a global Lipschitz condition on the nonlinear
perturbation. The proofs of the main results on the C'-smoothness there are based
on a study of the C!-smoothness of solutions to Lyapunov-Perron discrete equations
(see [6, Section 2]). Moreover, the main idea in [6, Section 2] is to study the existence
and C'-smooth dependence on parameters of “coordinates” of the unique fixed
point of a contraction with “bad” characters (in terminology of [6]), that is, the
contraction may not depend on parameters C'-smoothly. To overcome this the
authors used the dominated convergence theorem in proving the C'-smoothness of
every “‘coordinate” of the fixed point. This procedure has no extension to the case of
Ck-smoothness with arbitrary k>1, so the method there does not work for Ck-
smoothness case. As will be shown later in this paper, the C*-smoothness of
invariant manifolds can be proved, actually using the well-known assertion that
contractions with “good” characters (i.e., they depend C*-smoothly on parameters)
have CK-smooth fixed points (see e.g. [21,29]). Furthermore, our approach in this
paper is not limited to autonomous equations, as will be shown later, because it
arises from a popular method of studying the asymptotic behavior of nonautono-
mous evolution equations, called “evolution semigroups” (see e.g. [8] for a
systematic presentation of this method for investigating exponential dichotomy of
homogeneous linear evolution equations and [20] for almost periodicity of solutions
of inhomogeneous linear evolution equations).

An important problem of dynamical systems is to investigate conditions for the
existence of invariant foliations. In the finite-dimensional case well-known results in
this direction can be found e.g. in [21]. Extensions to the infinite-dimensional case
were made in [6,10]. In [10] a general situation, namely, evolutionary processes
generated by a semilinear evolution equations (without delay), was considered.
Meanwhile, in [6] a C'-theory of invariant foliations was developed for general C'
semigroups in Banach spaces. We will state a simple extension of a result in [6] on
invariant foliations for C! semigroups to periodic evolutionary processes. The
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CK-theory of invariant foliations for general evolutionary processes is still an
interesting question.

In Section 2, we give a proof of the existence and attractivity of center-unstable,
center and stable manifolds for general evolutionary processes using the method of
graph transforms as in [1]. Our general results apply to a large class of equations
generating evolutionary processes that may not be strongly continuous. We then use
some classical results about smoothness of invariant manifolds for maps (described in
[21,28]) and the technique of ““lifting” to obtain the smoothness of invariant manifolds.
The smoothness result requires the nonlinear perturbation to be CK-smooth,
verification of which seems to be relatively simple, in particular, as will be shown
in Section 3, for partial functional differential equations such verification can be
obtained by some estimates based on the Gronwall inequality. In Section 4 we give
several examples to illustrate the applications of the obtained results.

We conclude this introduction by listing some notations. N, R, C denote the set of
natural, real, complex numbers, respectively. X denotes a given (complex) Banach
space with a fixed norm || - ||. For a given positive r, we denote by ¢ = C([—r, 0], X)
the phase space for Eq. (1.1) which is the Banach space of all continuous maps from
[~7,0] into X, equipped with sup-norm ||o|| = supyc(_, g [[@(0)]| for pe%. If a
continuous function x: [ —r,f+J—X is given, then we obtain the mapping
[0,0)st—x,€%, where x,(0) = x(t+0) YOe[-r,0],¢€[f, f + 0. Note that in the
next section, we also use subscript 7 for a different purpose. This should be clear from
the context.

The space of all bounded linear operators from a Banach space X to another
Banach space Y is denoted by L(X, Y). For a closed operator 4 acting on a Banach
space X, D(A4) and R(A) denote its domain and range, respectively, and o,(A4) stands
for the point spectrum of A. For a given mapping g from a Banach space X to
another Banach space Y we set

Zip(g) =inf{L>0: |lg(x) = gW)|I<L|[x = y||, Vx,yeX}.

2. Integral manifolds of evolutionary processes

In this section, we consider the existence of stable, unstable, center-unstable and
center manifolds for general evolutionary processes, in particular, for semigroups.
We should emphasize that the process is not required to have the strong continuity in
our discussions below and thus our results can be applied to a wide class of
equations.

2.1. Definitions and preliminary results
In this section, we always fix a Banach space X and use the notation X, to stand

for a closed subspace of X parameterized by t€R. Obviously, each X, is also a
Banach space.
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Definition 2.1. Let {X,,teR} be a family of Banach spaces which are uniformly
isomorphic to each other (i.e. there exists a constant a> 0 so that for each pair ¢, se R
with 0<t—s<1 there is a linear invertible operator S:X,—X; such that
max{||S||,||S7!||}<a). A family of (possibly nonlinear) operators X (z,s) : X;— X,
(t,5)ed ={(t,5)eR x R : t=s}, is said to be an evolutionary process in X if the
following conditions hold:

(1) X(t,1) = I,,VteR, where I, is the identity on X;

(i) X(1,9)X(s,r) = X(t,r), Y(t,r),(r,s)€;

(iii) || X (¢,5)x — X (t,5)y]| <Ke®9)||x — y||, Vx,yeX;, where K,w are positive
constants.

An evolutionary process (X (z,5)),>, is said to be linear if X(t,5)e L(Xy,X;) for
(t,s)e 4. An evolutionary process (X(t,5)), is said to be strongly continuous if for
every fixed xeX the function As(¢,s)+— X(¢,5)(x) is continuous. This strong
continuity will not be required in the remaining part of this paper. An evolutionary
process (X (t,5)),s, is said to be periodic with period T >0 if

X(t+T,s+T)=X(1,5), V(,s)eA.

In what follows, for convenience, we will make the standing assumption that all
evolutionary processes under consideration have the property

X(1,5)(0) =0, Y(1,5)eA. (2.1)

For linear evolutionary processes, we have the following notion of exponential
trichotomy.

Definition 2.2. A given linear evolutionary process ((U(t,s)),s, is said to have an
exponential trichotomy if there are three families of projections (P;(t)), g,/ = 1,2, 3,
on X;, teR, positive constants N, o, § with a<f§ such that the following conditions
are satisfied:

(i) sup,eg ||P;(1)][ <0, j=1,2,3;
(i) Pi(2) + P2(t) + P3(t) = I, VteR, Pj(t)P;(t) =0, Vj#i;
(i) Pi()U(t,s) = U(t,s)P;(s), for all t=s,j=1,2,3;
(iv) U(t,9)|mp,» U(2,5)|py(s) are homeomorphisms from ImP»(s) and ImP3(s) onto

ImP;,(t) and ImP5(t) for all 1=, respectively;
(v) The following estimates hold:

1U(1,9) P (s)x]| S Ne PPy (s)x]|,  (V(1,5)€d,x€X,),
U (s, ) P> (£)x]| < Ne P || Py (1)x]],  (V(t,5) e 4, xEX,),

U (2, 5)P5(£)x]| < Ne* || P3(s)x]|l,  (V(t,5)e 4, xEX,).
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Note that in the above definition, we define y := U(s, t) P,(¢)x with t>s and xe X, as
the inverse of U(t,s)y = Pa(t)x in Py(s)X. The process (U(t,s)),, is said to have an
exponential dichotomy if the family of projections Ps(z) is trivial, i.e., P3(f) =
0, VieR.

Remark 2.3. Let (7'(7)),>, be a Co-semigroup of linear operators on a Banach space
X such that there is a #p > 0 for which 7'(¢) is compact for all 7> fy. As will be shown,
this eventual compactness of the semigroup is satisfied by Eq. (1.1) with g = 0, when
A is the usual elliptic operator. We define a process (U(t,s)),-, by U(t,s) = T(t — s)
for all (z,5)eA. It is easy to see that (U(t,s)), 1s a linear evolutionary process. We
now claim that the process has an exponential trichotomy with an appropriate choice
of projections. In fact, since the operator T'(zy) is compact, its spectrum o(7'(¢))
consists of at most countably many points with at most one limit point 0e C. This
property yields that a(7(#9)) consists of three disjoint compact sets o1, 02, 03, where
o is contained in {||z||< 1}, g2 is contained in {|z|>1} and o3 is on the unit circle
{||z]| = 1}. Obviously, o, and o3 consist of finitely many points. Hence, one can
choose a simple contour y inside the unit disc of C which encloses the origin and o;.
Next, using the Riesz projection
1

- _ -1
Pri=o— | (1= T(w) ™ 4z,

y

we can show easily that P;T(¢) = T(t)Py, Vt=0. Obviously, there are positive
constants M, such that ||P,T(¢)Py||<Me™%, Vt=0. Furthermore, if Q =1 — Py,
then Im Q is of finite-dimension and QT (¢) = T(¢)Q for teR with r>0. Consider
now the strongly continuous semigroup (7o(?)),~, on the finite-dimensional space
Im Q, where Ty(t) = QT (¢)Q. Since 6, U3 = 0(To(t)), To(t) can be extended to a
group on Im Q. As is well known in the theory of ordinary differential equations, in
Im Q there are projections P,, P; and positive constants K, o, f§ such that « can be
chosen as small as required, for instance « <, and the following estimates hold:

Py +P3;=0Q, PP3;=0,
|PaTo(—1)Pa||<Ke P!, V>0,
|PsToPs||<Ke''l, VieR.

Summing up the above discussions, we conclude that the evolutionary process
(U(t,5)),5, defined by U(t,s) = T(t—s) has an exponential trichotomy with
projections P;,j = 1,2,3, and positive constants N,x, 8/, where

B’ = min{log sup |4, 8},

),E(Fl

N =max{K, M}.

We now give the definition of integral manifolds for evolutionary processes.
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Definition 2.4. For an evolutionary process (X (t,5)),, in X, aset M < U,er {{t} x
X} is said to be an integral manifold if for every te R the phase space X; is split into
a direct sum X, = X} @ X? with projections P;(¢) and P»(¢) such that

sup [|P;(1)[| <00, j=1,2 (2.2)
teR

and there exists a family of Lipschitz continuous mappings g, : X} - Xf, te R, with
Lipschitz coefficients independent of ¢ so that

M = {(t,x,9,(x))eR x X] x X?}
and
X(1,5)(gr(gs)) = gr(g:), (1,5)€A.

Here and in what follows, gr(f) denotes the graph of a mapping f', and we will abuse
the notation and identify X{@®X? with X} x X?, namely, we write (x,y) = x +
y, VxeX! yeX?. We will also write M, = {(x, g,(x)) e X! x X?} for teR.

In the case of nonlinear semigroups, we have the following notion of invariant
manifolds with a slightly restricted meaning.

Definition 2.5. Let (V(¢)),-, be a semigroup of (possibly nonlinear) operators on the
Banach space X. A set N = X is said to be an invariant manifold for (V (1)), if the
phase space X is split into a direct sum X = X' @ X? and there exists a Lipschitz
continuous mapping g: X' —»X? so that N = gr(g) and V()N = N for teR with
t=0.

Obviously, if N is an invariant manifold of a semigroup (¥(¢)),-,, then R x N is an
integral manifold of the evolutionary process (X (t,5)),5, = (V(t = 5)) 5,

An integral manifold M (invariant manifold N, respectively) is said to be of class
C¥ if the mappings g, (the mapping g, respectively) are of class C*. In this case, we
say that M (N, respectively) is a integral CX-manifold (invariant C*-manifold,
respectively).

Definition 2.6. Let (U(t,s)),., with U(t,s):X;—X; for (t,s)ed be a linear
evolutionary process and let ¢ be a positive constant. A nonlinear evolutionary
process (X(z,5)),5, with X(z,5): X=X, for (t,s)ed is said to be e-close to
(U(1,5)),s, (with exponent y) if there are positive constants u,n such that ne <e¢ and

‘|¢(las)x_qs(las)y”SneH(tiS)Hx_y”a V(I7S)EA;X7)}EXS’ (23)
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where
d(t,5)x = X(t,5)x — U(t,8)x, VY(t,5)ed, xeX,.

In the case where (U(t,5)),5, and (X(t,5)),5, are determined by semigroups of
operators (U(t)),> and (X (z)),,, respectively, we say that the semigroup (X (7)),
is e-close to the semigroup (U(?)),., if the process (X(t,5)),~, is ée-close to
(U(t,5)),, in the above sense.

In the sequel we will need the Implicit Function Theorem for Lipschitz continuous
mappings (see [24,28]) which we state in the following lemma.

Lemma 2.7. Assume that X is a Banach space and L : X — X is an invertible bounded
linear operator. Let ¢ : X — X be a Lipschitz continuous mapping with

Zip(g) <L)
Then

(1) (L + ¢) is invertible with a Lipschitz continuous inverse, and

1

Lipl(L+ ¢)' < :
L N T R

() if (L+¢) "' =L "+, then
Y(x) = —L7'¢(L7'x+ 9 (x)) = —L7'¢((L+ ) '), VxeX
and

1LY Zip(4)

Wt -yl <o S =g

[Ix = yll, Vx,yeX. (2.4)

We also need a stable and unstable manifold theorem for a map defined in a
Banach space in our “lifting”” procedure. Let 4 be a bounded linear operator acting
on a Banach space X and let F be a Lipschitz continuous (nonlinear) operator acting
on X such that F(0) = 0.

Definition 2.8. For a given a positive real p, a bounded linear operator 4 acting on a
Banach space X is said to be p-pseudo-hyperbolic if 6(A)n{zeC:|z| =p} =0. In
particular, the operator A is said to be hyperbolic if it is 1-pseudo-hyperbolic.
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For a given p-pseudo-hyperbolic operator 4 on a Banach space X we consider the
Riesz projection P corresponding to the spectral set a(A4)n{|z|<p}. Let X =
Im P@® Ker P be the canonical splitting of X with respect to the projection P. Then
we define 4, = A|;,, p and 4> = A|g,, p.

We have

Lemma 2.9. Let A be a p-pseudo-hyperbolic operator acting on X and let F be a
Lipschitz continuous mapping such that F(0) = 0. Then, under the above notations, the
following assertions hold:

(i) Existence of Lipschitz manifolds: For every positive constant 6 one can find a
positive &y, depending on ||A4,||, ||A5"]| and & such that if

Zip(F — A)<e, 0<e<e,

then, there exist exactly two Lipshitz continuous mappings g : Im P— Ker P and
h:Ker P—Im P with Lip(g)<0, Lip(h)<o such that their graphs W** =
gr(g), Wr .= gr(h) have the following properties:
(a) FW"P = WHr;
(b) F~'wor = W,

(i) Dynamical characterizations: The following holds:

WP = {zeX| liIJP p "f"(z) =0} and
n—+ow
WP ={zeX| VneN Iz_,eX:f"(z_,) =z, lirp p"z_y =0}.
n——+ 00

(iii) C*-smoothness: If F is of class C* in X (in a neighborhood of 0 € X, respectively),
then,
(@) g and h are of class C' (in a neighborhood of 0, respectively);
®) If |4 ||AF <1 for all 1<j<k, then W** is of class C*, and if
|45 V]| 41]| < 1 for all 1<j<k, then W"P is of class C¥.

Proof. For the proof of the lemma, we refer the reader to [27 Section 5; 37,
p. 171]. O

2.2. The case of exponential dichotomy

This subsection is a preparatory step for proving the existence and smoothness of
invariant manifolds in a more general case of exponential trichotomy. Our later
general results will be based on the ones here.

2.2.1. Unstable manifolds
We start with the following result:
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Theorem 2.10. Let (U(t,s)),, be a given linear process which has an exponential
dichotomy. Then, there exist positive constants &y, 0 such that for every given nonlinear
process (X(t,5)),s, which is e-close to (U(t,s),5, with 0<e<eo, there exists a unique
integral manifold M =R x X for the process (X (t,s), , determined by the graphs of a
family of Lipschitz continuous mappings (g,),.p; g: - X>— X} with Lip(g,) <9, VteR;
here X,l, Xf ,teR are determined from the exponential dichotomy of the process
(U(1,5)),5, Moreover, this integral manifold has the following properties:

(1) X(tv S)Ms‘ = M, V(Z,S) EA;
(ii) It attracts exponentially all orbits of the process (X (t,s)),  in the following sense:
there are positive constants K, ij such that for every xe X

d(X (1,5)x, M;)<Re =9 d(x, My), V(t,5)€4, (2.5)

(iil) For any >0 there exists >0 so that if 0<e<E, then
sup ZLip(g;) <. (2.6)

teR

Proof. This result was obtained in [1, Section 3]. For the sake of later reference, we
sketch here the proof, based on several lemmas.

Let X/ = P;(t)X; for j = 1,2, where projections P;(¢), j = 1,2 are as in Definition
2.2. We define the space Os as follows:

05 = {g = (gl)te[R | gi X?_)levgl(o) = 07=-(£lp(gl)<5} (27)

with the metric

EN
d(gvh):zsz sup |lgi(x) = h(x)[l,  g,h€Os. (2.8)
k=1

reR,||x|| <k

It is easy to see that (Os,d) is a complete metric space.
First of all, we note that using Lemma 2.7 one can easily prove the following:

Lemma 2.11. Let (U(t,5),5, have an exponential dichotomy with positive constants
N, B and projections P(t), Py(t),teR as in Definition 2.2. Under the above notations,
for every positive constant hy, if

1 e Hho
5<f\7’ 8<W, (29)
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then, for every ge Os and (t,s)€ A such that 0<t — s<hy the mappings
Py(0)U(t,5)(gs() + ) 1 X3 = X7,
Po(0) X (1,5)(gs(-) + ) 1 X§ > X]
are homeomorphisms.

The next lemma allows us to define graph transforms.

Lemma 2.12. Let ¢ and 6 satisfy (2.9). Then, the mapping I'" with 0<h<hy given by
the formula

Os2g—T"ge 0y, (2.10)
gr((I'"g),) = X (t,t = h)(gr(gi-n), VieR (2.11)

is well defined, where
SNe Ph 4 2geth

0(2,0,h) = (1/N)ebh — 2gerh’

(2.12)

The next lemma ensures that the graph transforms defined above have fixed
points.

Lemma 2.13. Let hy = k be a fixed natural number such that
Ne Pk = g <1, (2.13)

and let €,0 satisfy

1
0<5<ﬁ’
e og ! —q)
; o2k
O<8<m1n{ AN 2(159) e },

0<e< G - 5) sup max{||Pi(1)]],||P2(2)[[}-

Then I'*: Os— Oy is a (strict) contraction.
The key step leading to the proof of the contractiveness of I'* is the estimate
I1PU(0)X (1,1 — k)x — (T*g) (P2(0) X (1, 1 — k)x)]|

<q[|Pi(t = k)x = g1k (P2t = K)x)|l, Vg€ Os, (2.14)
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where ¢’ is a constant such that 0<¢’ < 1. Next, for sufficiently small ¢ and  we can
apply the above lemmas to prove that the unique fixed point g of I'* in Lemma 2.13
is also a fixed point of I'" provided 0<h<k. In fact, for (&, 0, h) defined by (2.12),
there are positive constants ¢y, o such that

1
o) = sup 8 (8,6,h)<—. (2.15)
(6,0.1) €[0,¢0] x [0,60] % [0,24] 4N

Now letting

O<5<min{5o, 51},

£ e—Zuk 5((1_1 _q)n72,uk
“ONT 2(146) ’

0<£<min{
1
<< (501 ) sup max{liP (0L 1P(0)]),
teR

by Lemmas 2.11-2.13, we have that

(1) 0? < 0y,;
(i) I'¢: 05— 0y, for all 0<E<2k;
(iii) I'*: 05, — 05, and I'*(05) = Os;
(iv) In Oy, the operator I'* has a unique fixed point g€ O;.

Thus, for he[0,k], by the definition of the operator I'**" (see (2.11)), we have
"% =rhrx: 05— 0s, and I'"** = r*r": 05— 0;,. Next, for he|0, k|,

05 5I"g = I"(I'*g) = g = r*(I''g) € 05,.

By the uniqueness of the fixed point g of I'* in O;,, we have I'"g = ¢ for all e |0, k].
The above result yields immediately

gr(g:) = X(t,5)(gr(gs)), V(t,5)e4.

This proves the existence of a unstable manifold M and (i). We now prove (2.5). Let
g = (9:),.g be the fixed point of I'*. By (2.14) and the bounded growth

Lip(X(t,5)) <Ke®™) Y(t,5) €4,

we can easily show that there are positive constants K and 7 independent of (¢, s) € 4
and xe X such that

[P (1) X (2,5)(x) = g (Pa(1) X (2,5)())[| < Ke M| Py(s)x — gs(Pa(s)x[|.  (2.16)

To see how (2.5) follows from (2.16), we need the following
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Lemma 2.14. Let Y = U@ V be a Banach space which is the direct sum of two Banach

subspaces U,V with projections P:Y > U, Q: Y-V, respectively. Assume further
that g: U—V is a Lipschitz continuous mapping with Lip(g)<1. Then, for any ye Y,

d(y.9r(g)) = inf |ly — (z + gEII> o 10y — gPY (217)

12 o
1Pl + 112l
Proof. For any ye Y we have

Il =112y + oyl |IPyll + [[oxl| < (1Pl + [[2IDIIy]],

i.e., the norm ||y||, = ||Py|| + || Q|| is equivalent to the original norm ||y||. We have
d(y,gr(g)) = inf [ly — (u+g())||

inf {[[Py —ul| +[|Qy — g(u))I[}

w

IIPH+HQII inf {[|Qy — g(Py)l|  llg(Py) = g(u)|| + || Py — ull}
||PH+HQ|| inf {[|Qy — g(Py)l| + (1 = Zip(9))||Py — ull}
mmf 10y —g(Py)ll. - O (2.18)

Now we can apply (2.17) to (2.16) to get (2.5).

By the above discussions, for every dy >0 there exists &> 0 such that if 0 <g<g,
then the unique fixed point g = (g,),.g of I'* satisfies Zip(g,) <I<dp, VteR. Hence,
(2.6) holds. O

Proposition 2.15. Let all the conditions of Theorem 2.10 be satisfied. Moreover,
assume that (X(¢,s)),5 is T-periodic (generated by a semiflow, respectively). Then,
the family of Lipschitz continuous mappings g = (g:),.g has the property that g, =
giir, VIR (g, is independent of 7€ R, respectively).

Proof. Consider the translation S* on Os; given by (S'9), = grir,
Vg, €0s, 1eR,teR. By the T-periodicity of the process (X(z,5)),>, (the
autonomousness of (X (z,s)),, respectively) we can show that if g is a fixed point
of I'*, then so is STg (so is S7g, VteR, respectively). By the uniqueness of the fixed
point in Os, we have STy =g (S°¢ =g, VreR, respectively), completing the
proof. [

By the above proposition, if (X(z,5)),5, is generated by a semiflow, then the
unstable integral manifold obtained in Theorem 2.10 is invariant.
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2.2.2. Stable manifolds

If the process (X(¢,5)),s, is invertible, the existence of a stable integral manifold
can be easily obtained by considering the unstable manifold of its inverse process.
However, in the infinite-dimensional case we frequently encounter non-invertible
evolutionary processes. For this reason we will have to deal with stable integral
manifolds directly. Our method below is based on a similar approach, developed in
[21, Section 5] for mappings.

Theorem 2.16. Let (X(t,5)),5, be an evolutionary process and let (U(t,s)),~, be a
linear evolutionary process having an exponential dichotomy. Then, there exists a
positive constant & such that if (X (t,5)),s, is e-close to (U(t,s)),5, with 0<e<e,
then, the set

M = {(s,x)eR x X: liin X(1,5)x =0} (2.19)

>+

is an integral manifold, called the stable integral manifold of (X (t,5)),,, represented
by the graphs of a family of Lipschitz continuous mappings g = (g;),cp, Where
gi: X > X}, VieR. Moreover, for every 6>0 there exists >0 so that, if 0<e<GE,

sup ZLip(g,) <9. (2.20)
teR

Proof. First, for a fixed 0 <0< 1, we choose k€N such that for all re R

|1P1()U(t,t — k)P (¢t — k)|| <0, (2.21)

[|P2(t —k)U(t — k,t)P2(2)]| <0. (2.22)

Let 2 be the set of all families g = (g;),.p, 9:: X| =X} such that ¢,(0) =0, VreR,
and

lol. = sup sup 15530 <+ oo

teR y#0

For a positive constant v let
2() = {geX: Liplg) = sup Lip(g,) <7}
te

It is not hard to prove that X is a Banach space with the norm || - ||, defined as above.
Consider the graph transform G defined on Z(y) by the formula

gr((Gy)_y) = [X (1,1 = k)] {gr(90)}, VieR,geX(y), (2.23)
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where k is defined by (2.21) and (2.22). Note that [X (¢, —k)]"' is, in general, set
valued. The next result justifies the use of notations of (2.23) and shows that G is well
defined.

Lemma 2.17. If ¢y >0 is sufficiently small, then for every geX(y) there is a unique
heX(y) such that

gr(hii) = X (1,1 = k)] {gr(g)}, VieR.

Proof. The assertion of the lemma is equivalent to the following: for every xe X’l‘k
there is a unique ye X5 such that (x,y)e[X (¢ — k)] "{gr(g:)} and the mapping
hi_i: x>y is Lipschitz continuous with Zip(h,_;)<y. Recall that, by abusing
notations, we will identify (x,y) with x + y for xeX|, ye X} if this does not cause

any confusion. Now (x,y)e[X (¢, — k)] {gr(g,)} if and only if
9:(PL ()X (1,1 = k)(x +p)) = P2() X (1,1 = k)((x +»)) = 0.

In the remaining part of this subsection, for the sake of simplicity of notations we
will denote

P=Pi(), Q= Pr(t), X = X(t,1— k),
U=U(t,t—k), Uy =Pyt —k)U(t — k, 1) Ps(1).
Hence, we get the equation for y as follows
y=U;"[g:(PX(x +)) = Q(X(x +y) = U(x +))]- (2.24)
Write the right-hand side of (2.24) by F(x + y), and note that
Lip(X(t,5) — U(t,s)) <ne™), Y(t,5)e 4, (2.25)
with ne* <e. Then, by definition, for every xe X!™% ye X4™* F(x,y)e X5*. We now

show that if Yy = {(u,v) e X% x X5& - [|u]|<y||x||}, then [|F(x,-)||<y]x|], ie.,
F(x,-) leaves Y, invariant. In fact,

[1F e, ) [ <O PX (x4 p)|| + pre[x + ],

where

p = sup max{[[Py()I], [[P2(0)][} (2.26)
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For [[y[|<y[|x|| we have
IPX(x + P)I< [P(X(x+y) = Ulx+p)[| + [[PU(x +p)l|

< pne (1 +y)||x]] + 0]|x]]

=[0+ (1 +7)pne]l|xl|. (2.27)
Therefore,

[1F(x, )< 01 (0 + (1 +7)pne™)||x]] + pre™[1x + yl]

=n0[(0 + (1 +)pe™) + pe* (1 +)]||x]|- (2.28)

Hence, for small 5, F(x,-) leaves Y, invariant.

Next, we will show that under the above assumptions and notations, F(x,-) is a
contraction in Y. In fact, we have

|1F(x,9) = F(x, )< 0[l19:(PX (x + »)) = g:(PX (x + "))
+pre|ly =[] (2:29)
On the other hand,
lg:(PX (x +¥)) = g/(PX (x + Y DI < 7IIPX (x + y) = PX (x + )|
<7IPX (x +y) = PU(x +))
= (PX(x+)) = PU(x +)"))|
+IPU(y = )]
Using the assumption on the commutativeness of P with U(z,s) we have
PU(y—)y)=Pi(t)UP,(t —k)(y —)') = 0.
Hence,
l9:(PX (x + 7)) = g:(PX (x + "))l <mwpe“| |y — ¥/|I.
Consequently,
1F(x,2) = Fx, ) | <Onpe™ (1 + )]y ¥ (2.30)

Therefore, for small 7, F(x, -) is a contraction in Y. By the above claim there exists a
mapping A,y : XK sxish i (x)eXS*, where /i, i(x) is the fixed point of
F(x,-)in Y,.
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We now show that this mapping is Lipschitz continuous with Lipschitz coefficient

Lip(hi—x)<y. In fact, letting (x,y) and (x',)")eX(t—k,1)(g9r(g;)), we have
F(x,y) — F(x',y') =y —y/. Therefore,

I[F(x,y) — F(x",»)[|< 0{|lg:(PX (x + y)) — 9:(PX (x' +)))||
+ pne™||(x +y) = (x' + )|} (2.31)
On the other hand,
llg:(PX (x+y)) —g/(PX(X' + YIS {P(X(x +y) — U(x+))
—P(X(x' +)) = U + )|
+[PU(x+y — X =)}
<y{0llx = X'[| + pne* H|lx — ¥|[ + |ly = »|l]
=9(0 + pne)||x = X'|| + ypne*|ly — y'|]. (2.32)
Therefore,
Iy =Yl =F(x,y) = F(xX'+ )
< Oypne™ ||y — /|| + Opne*(ly — »'||
+ 07(0 + pne™)[|x — X'|| + Opne™||x — ¥'||.

Finally, we arrive at

0y(0 + pnet*) + Opne*
1 — Oypner*) — Opnerk

[ESIES [l = X]l. (2.33)

Thus, for sufficiently small x>0 we have |jy—)||<yl|lx—X], ie,
ZLip(hr)<y. O

Hence, by the above lemma, we have shown that if ¢>0 is small, then the graph
transform G is well defined as a mapping acting on X(7y). Moreover, we have

Lemma 2.18. Under the above assumptions and notations, for small ¢, the graph
transform G is a contraction in X(y).
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Proof. Let g, he2(y) and let y = (Gy),_,(x),y" = (Gh),_,(x). Then, we have

"y”;'f'” HiHII{Igz(PX(xw)) O(X(x +7) — Ulx + )}

—{m(PX(x+)) + QX (x+ ) = Ulx + ) H

|| || {llg:(PX (x + y)) = h(PX (x + y)|| + pne" ||y — ¥'||}-

On the other hand, we have
19:(PX (x + ) = h(PX (x + Y)II< [19:(PX (x + y) — h(PX (x + y)]]
+ |1 (PX (x +p)) = h(PX (x + )]
<|[|PX(x+y)llllg — All.
+lPX (x +y) = PX(x +))|l.
We have, using ||y||<y||x||, that
1PX (x + )< [P(X(x +y) = Ulx +p)[| +[[PU(x + p)l|

< {pne™ (1 +7) + 0}

Thus,
lg:(PX (x +y) = h(P1 X (x +)))|
<{pne (1 +y) + 0}|x|| [lg = All. +ypne|ly = V'II-
Therefore,
Ll < otme 140 + 0llg =il + (e L 230
Finally,

0{0 + np(1 + y)e"} g — Al

Gg — Ghl|, <

(2.35)

Since 0 <0< 1, this yields that for small #>0, the graph transform G is a contrac-
tion in X(y). O

By the above lemma, for small #> 0 the graph transform G has a unique fixed point,
say geX(y).

Consider the space # = {v:R—X: sup,.g||v(?)|]| <0} and %; = {veB :v(t)
elm Pi(t), YteR} for j=1,2. Let the operators f, 4 acting on % be defined by
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the formulas

[fol(r) = X(t,t — k)v(t — k), VieR, ve4A,

[4v](t) = U(t,t — k)o(t — k), VteR, ve .

Therefore, for & = ne*®, A is hyperbolic and Zip(f — A)<e. We define a mapping
¥ B — B, by the formula

[ro1](1) = g:(v1(2)), VieR, vieZ. (2.36)

Obviously, Zip(y)<sup,cr Lip(g;). We want to show that gr(y) is the stable
invariant manifold of f. We first show that

I gr(0) = gr(x). (2.37)
We claim that

S gr(0) 2 9r(x)- (2.38)
Let (u, 7(u)) egr(x) for some ue ;. We have to find ve %, such that

S, 7 () = (v, 1(v)).
By definition, letting (i, 7()) = x we have
[F(0)](t) =X (1,1 = k) (x(1 — k))
= X(t,t — k) (u(t — k), gri(u(t — k), VieR.

By Lemma 2.17, since g is the unique fixed point of G, X(¢,¢— k)(u(t —k),
gi—i(u(t — k))egr(gy), i.e., for all eR,

Pi(OX(t,t —Fk)(u(t —k), g (u(t —k))elIm P (1)
and
Pa(t)X (1, — k) (ult = K), i (u(t — K)) = gi(PL (D)X (1,1 = k) (u(t = k), goi (u(t — ).
Hence, if we set
o(t) = Pi()X(t,t — k)(u(t — k), VteR,

then, by definition, ve %, and f(x) = (v, x(v)) egr(y)-
Now we prove

F N gr(z) =gr(). (2.39)
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For every yef~!(gr(x)), we have f(y)egr(y), and hence, there is ue %, such that
S () = (u, x(u)). By definition, for every e R,

X (6,0 = k) (e = k) = (u(1), g:(u(2)))-
Hence, by Lemma 2.17, y(t — k) egr(g,—i) for all teR, i.e.,
Pat = K)p(t — K) = go 4 (Py(t — K)y(z — k), VeeR.

Therefore, yegr(y). Finally, (2.38) and (2.39) prove (2.37).

By Lemma 2.9, for sufficiently small >0, there is a unique Lipschitz mapping
A1 — %, with Lipschitz coefficient less than y whose graph is the unique stable
invariant manifold of the mapping f with Zip(f — A) <e. By the above discussion
and since y : B — %, is Lipschitz continuous with Zip(y) <y we conclude that gr(y)
is the stable invariant manifold of 1.

Now, for (x,gs(x))egr(gs), we define

_ (X7 gs(x)), L=y,
oall) = {o, Vidts.

Observe that ¢g,(0) = 0, VieR. Therefore, v, egr(y). Using the characterization of
the stable invariant manifold of /', we have

0= lim ||f"v,||= lim ||X(s+ nk,s)(x)||
n—+o n—+oo

This, combined with the bounded growth of (X(z,5)),, ie. [[X(#5)(x)]]
< Ke®||x||, implies that

0< lim |[X(z,5)q]
. t—s t—s
= Jim (X (6s+ [ ]) X (s [ e s) 0l
<Ke™ lim X (s + nk, ) ()
=0. (2.40)

On the other hand, if x¢ gr(g;), then vy ¢ gr(x). By the characterization of the stable
manifold of f

lim sup || X(,5)(x)||> limsup |[/"vy]| = o0. (2.41)
n—+o

t—+o
Hence, M; := gr(y;) coincides with {xeX;|lim,_ ;, X(z,5)(x) = 0}. That is,
M ={(s,x)eR x X|x = egr(gs)}

={(s,x)eR x X| [_lj+m% X(t,5)(x) =0}.
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In particular, X(¢,s)M,<M,, V(t,5)€ 4. Finally, we note that sup,.p ZLip(g:) <7,
which can be made as small as possible if ¢ is small. The proof of the theorem is then
complete. [

2.3. The case of exponential trichotomy

2.3.1. Lipschitz continuity, invariance and attractivity
We now apply Theorem 2.10 to prove the existence of center-unstable and center
manifolds for a nonlinear process (X (z,s)),-, with exponential trichotomy.

Theorem 2.19. Let (U(t,5)),s, be a linear evolutionary process having an exponential
trichotomy in a Banach space X with positive constants K,o, [} and projections
Pi(1),j = 1,2,3, respectively, given in Definition 2.2. Then, for every sufficiently small
0>0, there exists a positive constant &y such that every non-linear evolutionary process
(X(1,5)),5s in X, which is e-close to (U(t,s)),s, with 0<e<eg, possesses a unique
integral manifold M = {(t,M,), teR}, called a center-unstable manifold, that is
represented by the graphs of a family of Lipschitz continuous mappings § = (g:),cg>
gr - Im(Py(t) + P3(2)) > Im P(1), with Lip(g;) <0, such that M, = gr(g,), VieR,
have the following properties:

(1) X(t7 S)Qr(gs) = gr(gt)v V(l, S)?A
(i) There are positive constants K, ij such that, for every xeX,
d(X(t,)(x), M) <Ke =9 d(x, M), V(1,5)€A. (2.42)

Proof. Set P(¢) = P(¢) and Q(¢) := P»(t) + P;3(¢). Consider the following “change
of variables”

Ut(t,s)x = " U(t,5)x, V(t,5)ed, xeX, (2.43)

X*(t,5)x =" X(1,5)(e7"x), V(t,5)ed, xeX, (2.44)

where «, § are given in Definition 2.2, and y = (o + f8)/2.
We claim that U*(¢, s) has an exponential dichotomy with the projections P(¢) and
QO(1),teR. In fact, it suffices to check the estimates as in Definition 2.2. We have

[|U* (2, 5)P(s)x]| < Nel ") e =] | P(s)x]|

a—p
< Ne 2 U9 |P(s)x||, V(1,5)ed, xeX.
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On the other hand, if (s,#)e4, xeX, then
U (2,5)x(1 = P(s))x||< [[U"(2,8) P2 (s)x][ + [[U" (2, 5)P3(s)x]]
< Ne'9e P Py (5)x]|
+ Ne'=9e*570 || P (s5)x]|

p—u
2

=Ne 2 C0(||Pa(s)x]| + || P3(s)x]])-

Taking into account assumption (i) in Definition 2.2 we finally get the estimate

—p
[|U*(2,5)O(s)x]| <2pNeaT(“'7')IIQ(S)XH» V(s,t)ed, xeX, (2.45)
where

pi=sup {1V O P20 [[P3 ()]} < 0. (2.46)

This justifies the claim.
Set ¢*(t,5)x = X*(t,5) — U*(t,s)x, and assume that (X(¢,s)),, is e-close to
(U(1,5)),, (with exponent ), i.e., there are positive 7, u such that ne <¢ and

Lip(X(t,s) — U(t,s)) <ne' ™), Y(1,5) e A. (2.47)
Then, Lip(¢p*) <nel =9 je.,

167 (1,8)x = & (¢, )y[| <ne | x —y||, Vx,peX, (1,5)ed.  (248)
Therefore, for any £>0 there exists gy = & (&) >0 so that if (X(z,s)),, is e-close to
(U(1,5)),5, (with exponent y), then (X*(z,s)),, is &close to (U*(t,s)),s, (with
exponent y + u). Hence, by Theorem 2.10 for sufficiently small >0 there exists a
number &, >0 such that if 0 <e<g, then there exists a unstable integral manifold

NcR x X with N, = gr(d,) for teR (2.49)

for the process (X*(¢,s))
define

where d,: Im Q(t)—Im P(t) and Zip(d,)<J. Let us

(>

g:/(x) = e "d,(e"x), VieR, xelm Q(1). (2.50)
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Then, for all (¢,5)e 4, by using gr(d;) = e“gr(g:), VE€R, we have

gr(d:) = X"(1,5)(gr(ds)),
e'gr(g.) =" X (1,5)(e 7 e"gr(gy)),

gr(g:) = X (t,5)(gr(gs))-

Therefore, M = {(t,gr(g;)), teR} is an integral manifold of (X (z,s)),>,. Now, for

every xe X we define y = ¢ 7*x. By Theorem 2.10, there are positive constants K and
ij independent of ¢, s, x such that

d(X*(t,8)y, N))<Ke ""d(y, Ny),

A X (t,5)( 7). €M) < Re (v, M)
Therefore,

d(X(1,5)(e7y), M;)< Ke "e”M=9d(y, &' M),
d(X(t,5)(x), M,)< Re 7 109 e d(e775y, M)
< Re e 1091 d(x, M),

< Ife*("”ﬁ)(”)d(x,Mv).

This shows the attractivity of the center-unstable manifold M. O
Remark 2.20.

(i) In Theorem 2.19 if P,(1), 1€ R, are trivial projections, then the obtained center-
unstable manifold is called a center manifold. Obviously, this center manifold
attracts exponentially every point of the space X.

(i) By the uniqueness of the (global) center-unstable manifold obtained in
Theorem 2.19 (uniqueness as a fixed point of a contractive map, it is easy to
see that, in case (X(t,s)),5, is T-periodic (autonomous, i.e., it is generated
by a semiflow, respectively), the family of mappings ¢ = (¢),.g, Whose
graphs represent the center-unstable manifold M of the process (X (z,s)),, in
Theorem 2.19 possesses property that g7 =g;, VIER (g1 = g1, VIER,
respectively).

Definition 2.21. Let (X(#,5)),., be an evolutionary process in X. A function
v:R—Xis said to be a trajectory of (X (t,s)),, if v(t) = X(¢,5)(v(s)), V(t,5)e4.
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Proposition 2.22. Let (X(1,5)),5, and (U(t,s)),>, satisfy all conditions of Theorem
2.19 and let v be a trajectory of (X (t,5)),s such that
lim e”v(s) =0, (2.51)
§—>—00

where y = (o + f)/2, with o, p being defined in Definition 2.2. Then, v(t)e M,, VteR,
where M = {(t, M,), teR} =R x X is the center-unstable manifold of (X (t,5)), -

Proof. Consider the change of variables (2.43),(2.44). Let f,T be the lifting
operators of the processes (X*(z,5)),~, (U*(t,5)),~, in %, i.e., the operators defined
by the formula

t=s)

SJu(t) = X*(t,t —k)(u(t —k)), Tu(t) = U"(t,t —k)u(t—k), VieR,uec%, (2.52)

where keN. As is shown, f and (X*(¢,s)),5, have unstable manifolds W* and
N = {(¢, N,)}, respectively, and W* = {ve % :v(t)e N,, VteR}. For every fixed se R
we define

o= {50 12
We have
fins)(0) = X (1,1 — k) (w1 — &)
=" X (1,1 — k) (e w1 — k)
B { URy(s+ k), t=s
0, Vi#s
=Wy k(1)
Therefore,
Wy f ™ (W),
and so,
we_nk €f "(wy), VneN, (2.54)
On the other hand, ||w,_.|| = ||¢’®)v(s — nk)|| which tends to 0 as n— + co. By

Lemma 2.9, wye W". This yields that wy(s) = e”v(s) e N;. Hence, as in the proof of
Theorem 2.19, since M = e "*N;, we have v(s)e M,. O

Theorem 2.23. Let (U(t,5)),s, be a linear evolutionary process having an exponential
trichotomy in a Banach space X. Then there exists a positive constant &y such that for
every nonlinear evolutionary process (X (t,5)), in X which is e-close to (U(t,s)) s,



N. Van Minh, J. Wu | J. Differential Equations 198 (2004) 381-421 405

there exists an integral manifold C = {(t, C,),teR}, called a center manifold, for
(X(1,5)),54, that is represented by a family of Lipschitz continuous mappings (k;), g,
and is invariant under (X (t,s)) s, i.e., X(t,5)Cs = Cy, V(t,5)€A. Moreover, if v is a
trajectory of (X (t,5)),s such that lim,_, o, e Muy(t) = 0, then v is contained in C, i.e.,
v()eCy, VieR.

Proof. Let us make the change of variables as in the proof of Theorem 2.19. As a
result, we obtain the center-unstable manifold M = {(¢, M;),teR} for (X(¢,5)),5,
that is represented by the graphs of a family of Lipschitz continuous mappings
(91);er- We then consider the processes (Y (z,s)),-, and (V(¢,5)),, defined by

Y(t,9)y = Q)X (1,5)(9s(v) + ), V(t,5)ed,yelm Q(s), (2.55)

Vt,s)y=0()U(t,s)y, V(t,s)ed,yelm Q(s). (2.56)

By the commutativeness of Q(z) with (U(t,s)),,, we can easily show that
(V(,5)),5, is a linear evolutionary process. As for (Y (z,s)),>,, note that by the
invariance of the integral manifold M, if z = g,(y) + ye M,, then X (z,5)(z) € M,.
This means that X(z,5)(z) = g,(Q()X(2,5)(z)) + O(t) X (¢,5)(z). Hence, for any
r<s<t, xelm Q(r), we have
Y(1,9) Y (s,r)(x) = Q() X (1,5)(gs (Y (5,7)(x) + Y (s,7)(x))
= 0(0) X (1,5)(95(Q(5) X (5,1)(gr(x) + x) + Q(s) X (5, 7)(¢:(x) + x))
= Q)X (1,9)(X (s, r)(9r(x) + x)
=0()X(1,1)(g-(x) + x)

=Y(t,r)(x).
Next, since Zip(g,) <0 for some >0, we have

1Y (2,5)(x) = Y(1,5) W)l < pLip(X (2,9))[1(9-(x) + X) = (9:(») + ¥

< p(1 4 0)Ke”™||x — y||, Vx,yelm O(s). (2.57)

This shows that (Y(z,5)),5, is an evolutionary process.

t=s

Set y(t,s)y=Y(t,s)y—V(t,s)y, Vi=s,yelm Q(s). It is easy to see that
(Y(t,5)),5, and (V(t,s)),5, are evolutionary processes. Moreover, since lim,_
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sup,cgZip(g;) = 0 and since (X(z,s)), is e-close to (U(t,s)),,, we have

W (2, 5)z = (@, s)wl| =[|[Y(2,8)z = V(1,5)2)] = [Y(2,5)w = V(£ 5)w][|
=10(0) X (z,5)(9s(2) +2) — Q) U(1,5)z
— Q)X (2,5)(g5(w) +w) + Q) U(£,5)(w)l|
< 190X (1,5)(95(2) +2) = Q) U(t,5)(9s(2) + 2)
— Q)X (1,5)(gs(w) +w) + Q) U(1,5)(gs(w) + w)]|
+10(0) U(1,5)(g5(2)) = Q) U(2,5)(g5(w)) ]
< ne"Isup,g ||Q(NI[1 + sup,p Lip(g0)]llz — wl]
+ super [| Q)| sup,cr Lip(g:)|z — wl|
< 01(e)e! ™|z — w|, (2.58)

where lim, o 0;(¢) =0. This means that if (X(z,s))
(U(t,5)),5, then so is (Y (¢,5)),5, to (V(t,5)),5,-

We now return to the process (Y (t,s)),,. By the definition of (V(t,s)),., and
Definition 2.2, we have

>s 1s sufficiently close to

1V (s, )zl < Npe'™|[z]], - V(t,5)€4,zedm Q1) (2.59)

where p is defined by (2.46). Now we check the conditions of Lemma 2.7 for the
linear operator L := V(t,s), and the Lipschitz mapping y == Y(¢,s) — V(t,s) with
0<t—s<1. By (2.58), there is a constant g, >0 such that if 0 <e<g, then

Sie)e” <a ||V (e, s)]”
—a Y |V(s, 1)
<a 'N'ple
<a'Nple ) Vo< — s<1, (2.60)

where a>0 is a positive constant defined by a = sup, . p||S(s,?)||, S(s,) is the
isomorphism from Im Q(s) to Im Q(¢) for all ¢,seR as in Definition 2.1. We now
can apply Lemma 2.7 to the Lipschitz mappings L := S(s,7)V(t,s) and ¢ =
S(s, )Y (¢,s) — L for all 0<t — s<1. As a result, we obtain that there is a positive
g0 >0 such that if (X(¢,s)),- is e-close to (U(t,s)),>, with 0<e<eo, then (Y (2,5)),
has an inverse for all 0<z — s<1. Moreover, by Lemma 2.7, if Z(¢,s) is the inverse
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of Y(t,s) for 0<t — s<1, then, for ¢(t,s) = Z(¢,5) — V (s, 1), we have

[V (s, D)l Zip(h)
1V (s, Ol = Zip(y)
Npe t—S)5 ) :u([ Y)
N lp efat $) 751(8)6@[ $)

ZLip(o(t,5)) <

(2.61)

For arbitrary (¢,s)eA, the invertibility of Y(¢,s) follows from that of
Y(4,[1), Y([t],[t] = 1), -+, Y([s] + 1,5), where [£] denotes the largest integer n such
that n<¢. Let (Z(t,5)),-, be the inverse process of (Y(¢,5)),5,. Now using (2.59),
(2.58) and (2.61) we obtain that

(i) (Z(t,s)),s, is an evolutionary process;
(i) For every n>0 there is a positive constant ¢ >0 such that if (X(z,s)
e-close to (U(t,5)),5, with 0<e<ey, then (Z(1,5)),5, is n-close to (V (s, ¢

)f
Dis
Thus, for sufficiently small ¢, by Theorem 2.10 and a change of variables as in the
proof of Theorem 2.19, we can prove that there exists an integral manifold I for
(Z(t,5)),s,, that is represented by a family of Lipschitz continuous mappings (%), g,
hy o Im P53(t) - Im Py(1).

Summing up the above discussions, we obtain the existence of the so-called
“center” integral manifold C for the process (X(¢,5)),,, defined by

C={(t,x)eR x X|x = g,(h:(z) + 2z) + h,(2) + z,zeIm P(1)}. (2.62)

In fact, C ={(z,C,),te R}, where C, is represented by the Lipschitz continuous
mapping

ki Im P3(t)—>Im Pi(t)®Im P(1),
Im P3(t)sz—ki(z) = g,(h(2) +z) + h(z) + 2

We now claim that C is invariant under (X (z,5)),,, i.e., X(¢,5)Cs = C;, V(t,5)€4.
Set x = g,(hs(z) + z) + hy(z) + ze Cs. Then, since Cy< M, there is yelm P(f)
@ Im P;(t) such that

X(t,5)x = g:i(y) + y.

On the other hand, since / is an integral manifold of (Y (z,s)),, there is we Im P3(t)
such that Q(#)X (t,s)(hy(z) + z) = h(w) +w. Thus, y = Q(¢) X (¢,5)O(s)x = h;(w) +
w. This shows that X(¢,s)x = g,(h,(w) +w) + h(w) + weC,, ie., X(t,5)Ci=C.
Conversely, suppose that x=g,(h(w)+w)+h(w)+weC,, then there is
yelm Q(s) such that X(¢,s)(gs(y) + y) = x, and there exists ze Im P;(s) such that
O()X(t,5)(hs(z) + z) = hy(w) + w. From the uniqueness of the decomposition, we
get that hy(z) +z=y. So x = X(t,5)(gs(hs(z) +2) + hy(z) + z). This shows that
C,cX(1,5)Cs, V(t,s)eA. Finally, C, = X(t,5)Cy, Y(t,5)eA.
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Applying repeatedly Proposition 2.22 to (X (¢,s)),>, and (Y(t,s)),s, respectively,
we obtain that the center manifold C obtained above does contain all trajectory v of
(X(1,5)),», such that lim,_, .. elp(z) =0. O

By a similar argument as above, we obtain the following result of stable manifolds.

Theorem 2.24. Let (U(t,5)),- be a linear evolutionary process having an exponential
trichotomy in a Banach space X. Then there exists a positive constant €y such that for
every nonlinear evolutionary process (X (t,5)), in X which is e-close to (U(t,s)) s,
there exists an integral manifold N = {(t,N,),teR}, called a stable manifold, for
(X(1,5)),54, that is represented by a family of Lipschitz continuous mappings (h;), g,
and is invariant under (X (t,5)),s, i.e., X (t,5)Ny= Ny, ¥(t,5)€ 4. Moreover, for every
seR, the following characterization holds:

Ny ={xeX: lim &"X(¢,5)(x)=0}. (2.63)

t—>+4ow

We now turn our attention to the case of semiflows. By abusing terminology, we
will say that a semiflow has some properties if the induced evolutionary process has
the same properties. With this convention, as in Remark 2.20 we have the following:

Theorem 2.25. Let (S(t)),, be a strongly continuous semigroup of linear operators
having an exponential trichotomy. Then there exists a positive constant & such that for
every semiflow (T (1)), in X which is e-close to (S(t)),=, and 0 <e<ey, there exists a
(center) invariant manifold C for (T(t)),s,. This invariant manifold contains all

trajectories v satisfying lim,_, ., e=1"lo(¢) = 0 with sufficiently small 5> 0.
In particular, the center manifold C contains all bounded periodic trajectories.

2.3.2. The smoothness of integral manifolds
We now consider the smoothness of the integral manifolds of evolutionary
processes.

Definition 2.26. Let k be a natural number and (X (z,5)),., be an evolutionary
process. Then,

() (X(1,5)),5, is said to be Ck-regular if for every (f,s)eA the mapping
X(t,5): X;— X, is of class CF;

(il) (X (1,5)),, is said to be locally C*-regular if there is a positive real p such that
for every 1>seR the mapping X (2,5)[( <, is of class ck.

In what follows for any r>0, let B.(X) = {xeX]|||x||<r}.
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Definition 2.27. An integral manifold M, represented by the graph of (g;), g is said
to be locally of class C* if there is a positive number r such that for each teR the
mapping gy <, is of class C*.

With this notion we have:

Theorem 2.28. Let (U(t,s)),s, be a linear T-periodic evolutionary process having
exponential trichotomy in the Banach space X with the exponents o, and f§ such that
ka<p for some positive integer k. Then there exist ¢y>0 such that if a T-periodic
evolutionary process (X (t,5)), , is e-close to (U(t,s)) s, with e<ey, and if (X (2,5)),5
is locally C*-regular, then the center-unstable, center and stable integral manifolds of
(X(t,5)),, obtained in Theorems 2.19, 2.23, 2.24 are locally of class C*.

Proof. We consider first the case of stable and center-unstable manifolds. By
Remark 2.20, for sufficiently small 6 and ¢ a unique stable manifold W* of
(X(t,5)),5, exists, and is represented by the graphs of a family of Lipschitz mappings
9 =1(91),eps 9::Im Py(t)>Im P»(t)@Im P3(t) such that g, = g, 7. This yields in
particular that for every fixed teR, X (¢ + T,1)(gr(g:)) = gr(g;). On the other hand,
by applying Lemma 2.9 for the mappings A .= U(t+ nT,t) and F = X (¢ + nT,1)
with a fixed sufficiently large natural number n and for p = e* /2 <1, we obtain
that there are positive constants g and ¢ independent of 7€ R such that for every te R
the graph transform I"y (7, of the mapping X (¢ +nT,t) has g, as a unique fixed
point. Therefore, for every € R, the mapping ¢, is of class C* by Lemma 2.9.

To obtain the C*-smoothness of center manifold obtained in (2.62) we first note
that in the proof of Theorem 2.23 the process (Y (t,5)),, is C*-regular (using (2.55)
and C*-smoothness of g;, t€R) and invertible. This yields that its inverse process
(Z(1,5)),5, is Ck-regular. Consequently, the family of mappings (h),. is C*-
smooth. By using the above conclusion of CK-smoothness of stable and center-
unstable manifolds this shows that the family of mappings representing the center
manifold C in (2.62) is CF-smooth. [

2.4. Invariant foliations

Let (X(1,5)),5, be a T-periodic evolutionary process on X. If (X (1,5)),5, is a C'
semiflow sufficiently close to a linear semigroup having an exponential trichotomy
on X, then the C'-theory of invariant foliations in [6] applies. This result can be
casily extended to periodic evolutionary processes as follows. Let (U(t,s)),., bea T-
periodic linear evolutionary process having an exponential trichotomy with positive
constants as well as projections as in Definition 2.2. In this subsection we will denote
X1(2) = Im Py(t), X»(t) = Ker Py(t). As shown in Theorem 2.19, for (X(¢,5)),5,
sufficiently close to (U(t,s)),s,, there exists the center unstable integral manifold
M = {(t, M,),teR} to the process (X(t,5)),s,-
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The following result is a simple extension of [6, Theorem 1.1 (iii)] to periodic
processes.

Theorem 2.29. Let (U(t,s)),s, be a linear T-periodic evolutionary process having
exponential trichotomy in the Banach space X with the exponents o. and [ such that
ka<p for some positive integer k. Then there exist ¢y>0 such that if a T-periodic
evolutionary process (X (t,5)),s is e-close to (U(t,5)),s, with e <o, then there exists a
unique center- unstable integral manifold M = {(t, M,),teR} to (X (t,5)),s,. More-
over, for every s€R there is a continuous map hy: X x X(s) = X\ (s) such that hy, 7 =
hs, ¥seR and for each & M, hy(&, Qa(s)E) = Pa(s)E (here Qa(s) =1 — Pa(s)), the
manifold M,z = {hy(&,x2) + x2:x2€ X2} passing through & has the following
properties:

(1) X(I,S)Ms’g“CMt_’X(m)é, Vt=s;

. 1 1
M, ={yeX: limsup ;1n||X(t, to)y — X(¢, to)x||<§(oc +p)}

Rst—>+ o

(it) For every fixed seR, the map hy(¢,x) is Lipschitz continuous in x,€ Xa,
uniformly in &;

(iii) For every fixed seR, xeX, M;,n M, consists of exactly a single point. In
particular,

Ms,éva,n = gv (é;’/lthé#n)

U Ms.,é =X;
Ee M

(iv) If the operators X (t + T,t), teR are C'-smooth, then the maps hy(&, x>) is C'-
smooth in x; € X>.

Proof. Applying [6, Theorem 3.1] to X (s,s — T') for every se R we get the invariant
foliation in X with respect these maps. The characterization of the foliations in term
of Lyapunov exponents and the ¢-closeness (i.e. estimate of the form (2.3)) allow us
to show that these foliations are actually for the process. Details are left to the
reader. [

3. Integral manifolds for partial functional differential equations

This section will be devoted to applications of the results obtained in the previous
section to partial functional differential equations (PFDE). We emphasize that the
results so far on the existence of invariant manifolds of (PFDE) are mainly based on
a “‘variation-of-constants formula” in the phase space € of Memory [25,26], and as
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noted in our previous papers (see e.g. [19]), the validity of this formula in general is
still open. In this section we will give a proof of the existence and smoothness of
invariant manifolds of PFDE in the general case. The case where a compactness
assumption is imposed has been studied in [27] using a new ‘““variation-of-constants
formula” in the phase space 4. It may be noted that this method has no extension to
the general case.

3.1. Evolutionary processes associated with partial functional differential equations

In this subsection, we consider the evolutionary processes generated by partial
functional differential equations of the form

(1) = Ax(1) + F(0)x, + g(t,x,), (3.1)

where A generates a Cy-semigroup, F(t)e L(%,X) is strongly continuous, i.e., for
each ¢e% the function Rar— F(1)¢p e X is continuous, sup ||F(7)||< o0, g(t,¢) is
teR

continuous in (7,¢)eR x ¥, g(¢,0) =0, VieR and there is a positive constant L

such that ||g(ta (/)) - g(lv W)HSLH(b - l//”? ley lpe(ga VieR.
In the sequel, we will need some technical lemmas. Consider the Cauchy problem

{x(t) = T()p(0) + [ T(t — E)F(E)x: dE, Vizs, 52)

X; = ¢peb.

Let U(t,s)¢ = x;, where x(7) is the solution to the above Cauchy problem. Using a
standard argument (see, for example, [34]), we obtain

Lemma 3.1. Under the above assumptions, the linear equation
X(t) = Ax(t) + F(t)x, (3.3)

generates a strongly continuous linear evolutionary process (U(t,s)),5, on €.

We can also use a standard method to prove the existence, uniqueness and
continuous dependence on initial data for mild solutions to the Cauchy problem
X0 = TWOP0) + [} Tt = OF@xe +g(Exlde, Vizs,

X, =¢eC.

Now if we set X (¢,5)(¢p) := x,, where x(-) is the mild solution to the Cauchy problem
Eq. (3.4), then we have

(i) X(¢,5)(0) =0, for all r=s with #,seR;
(i) X(z,¢) =1, for all teR;
(i) X(¢,r)X(r,s) = X(t,s), for all t=r>s and t,r,seR;
(iv) For every ¢ €%, the mapping X(¢,5)(¢) is continuous in (¢,s) with 7>s.
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MOI‘COVCI‘, W€ can prove

Lemma 3.2. Under the above assumptions, Eq. (3.1) generates an evolutionary process
in €

Proof. It remains to show that there are positive constants K, w such that

1X (2, 5)(¢) = X (1, ) (DI <Ke” ¢ — |, Ve, ye%. (3-5)

By definition, X (z,5)(¢)(0) = x(t + 0, ¢),0€[—r, 0], where x(¢, ¢) is a solution to the
following integral equation

(3.6)

x(t) = T()$(0) + [} T(t = OF(&)xe + g(é, x))dE,  Vizs,
Xy =¢eb.

Let us define x(z) == x(¢,$), y(t) == x(¢,). Then
[1X(5,9)(¢) = X(6,5)W)ll = _sup [|X(25)()(0) = X ()W) (O)]

= sup ||x(t+0)—y(t+0)]|

—r<0<0

< sup sup [[|T(r+0)[[[¢ —vlly

—r<0<0 t+0=0

t+0
+/ (|T(t+0— f)ll(sumg 1F ()] + 2L)||xe — yelld<],
s te

where L = sup,.zxZip(g(t,-)). Set u(&) = ||x; — y¢|| for s<E<t. Let N and & be
given so that ||T(¢)|| < Ne® for all £>0. Then

t
u(t) S Ne“'u(s) + / Ne®=I[sup ||F(0)|| +2Lip(g)]u(&)dE.
s teR
Setting v(¢) := e~“"u(t) and noting that v(&) >0, we have by the Gronwall inequality
that

~ NI Fll+2L)(1—
v(t)<v(s)Ne Gep Il S), Vitz=s.

Therefore,

~ N(sup [|F|[+2L+®)(t—s)
teR

u(t)<u(s)Ne , Vizs. (3.7)

Hence, (X(t,5)),s, is an evolutionary process. [

Lemma 3.3. Under the assumptions of Lemma 3.2, for every 6>0 there exists &y>0
such that if sup, g Lip(g(t,-) <eo, then (X(t,5)), is o-close (U(t,s)),s-
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Proof. Set V' (¢,5)(¢p) = X(¢,5)(¢p) — U(t,s)p, Vt=s,pe%. Below we will denote
& = 2sup,.g ZLip(g;) which, without loss of generality, is assumed to be positive.
Obviously,

ZLip(V(t,5)<ZLip(X(t,s)) + Lip(U(t,s)) < 0.

Let us denote by u,v,a,b the solutions to the following Cauchy problems,
respectively,

u(l) = T(0)$(s) + J; Tt = OIF(Eue +g(&,ue)ldé,  Vizs,
= qﬁefﬁ

b(s) + [ T(t — E)F(E)vedE, Vizs,
d)e(g
Ws)+ [ T(t - OF(©as +g(Ea)de, Vs,
xpe(g
b(t W(s)+ [ T(t = E)F(E)bede, Vi=s,
by = qﬁe(é
We have
u(t) — v(t) = / Tt — &)[F(E)(us — vs) + (&, us)ldE, (3.8)
alt) — b(1) = / T(t — &)[F(&)(a — bs) + g(& az)|de. (3.9)

Using (3.7) we can show that there are positive constants K, 2> independent of
¢, such that

luz — acl|<Ke™|l¢p —yll, VE=s. (3.10)
Hence,
u(2) = v(0)] = la(z) — b(D)]|| < / Ne®'=9) sup E(ue = ve) = (az — be)||dE
+ / " Nes=9 eKe™ || — y||dé.

Set  w(&) = e “||(us —ve) — (az — be)||, Vs<Eé<t. Then, by the Gronwall
inequality and the inequality e* — 1 <xe* Vx>0, we get

t
w(§)<8KN/ M || — eV (3.11)
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<eRN(1 — $)el® ) || — |, (3.12)

where m == sup ||F(¢)||. Thus
teR

1[u(t) = v(0)] = [a(r) = b(1)]]| < KN (1 — 5)el )Nty — |
< eKNel @M — .
By definition, letting s<t<s+ 1 we have

[V (25)(¢) = V(&) () = S [t + 0) = o(z + 0)] — [a(z + 0) — b(z + 0)]]|

< 8KN€<Q+Nm>(FS) ||¢ _ l,b”
=N(e)e"[|¢ — I, (3.13)

where lim, o N(¢) =0 and N(e) is independent of u. Now Lemma 3.3 follows
from (3.13). O

As an immediate consequence of the previous lemmas and Theorems 2.19, 2.23,
2.24 we have:

Theorem 3.4. Assume that

(1) A generates a Cy-semigroup of linear operators;
(it) F(t)eL(¥,X) is strongly continuous such that sup,.g||F(1)||< 0;
(iii) the solution evolutionary process (U(t,s)), in € associated with the equation

x(t) = Ax(t) + F(t)x,, =0,
has an exponential trichotomy.

Then, for sufficiently small sup,.p Lip(g(t,-) the evolutionary process (X (t,s)), in
% associated with the perturbed equation

x(t) = Ax(t) + F(t)x, + g(t,x,), =0, (3.14)

has center-unstable, center and unstable integral manifolds in €. If (3.14) is time
independent, then these manifolds are invariant under the corresponding semiflows.

We now consider the smoothness of the above integral manifolds. We start with
the study of the smoothness of global integral manifolds. To this end, we consider
the following equation

x(t) = Ax(t) + f (2, x1), (3.15)
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where A4 is the generator of a Cy-semigroup, f(¢, ¢) is continuous in (¢, ¢) € [a, b] X €
and is Lipschitz continuous in ¢ €% uniformly in t€(a,b], i.e., there is a positive
constant K such that

(2, ¢) =G W)II<Kll¢ = ll, Viela,b],dp,pe?.

Next, we recall the well-known procedure of proving the existence and uniqueness of
mild solutions of the Cauchy problem corresponding to Eq. (3.15)

ta = P, 3.16
{mo=nwww@+ﬁ7v—®ﬂ@@ﬂ,mem. (3.16)
For every ¢p €%, ue C([a — r,b], X), let us consider the operator
_ [t —a), Vtela —r,a],
#60={ 70 a0+ 70— e e, e, OV

It is easy to see that & :% x C(la —r,b],X)> (¢, u)—F (p,u)eC([a —r,b], X).
Moreover, for sufficiently small » — a (independent of ¢e%), F(¢,-) is a strict
contraction (see e.g. [31, 45, p. 38]). Obviously, the unique solution to the Cauchy
problem (3.16) is the unique fixed point of Z (¢, -). For a given positive p we define
B(p) = {pe%:||¢p||<p} and C, = {ue C([-r,b],X) : ||lu(t)||<p, Vte[-r,b]}. Now
assume that f'(¢, ¢) is differentiable with respect to ¢ up to order ke N and D{bf(t, o)
is continuous in (¢, ¢)€[a,b] x B(p) forj =1, ... k.

Lemma 3.5. With the above notation, the mapping € x C,> (¢p,u)—F (¢p,u)e C([a —
r, b, X) is differentiable up to order k.

Proof. By the definition of &, the derivative of Z (¢, u) with respect to ¢ is the
following bounded linear operator DyF (¢p,u): C([—r,0],X)sy+—>DF (¢, u)y
eC([a—r,b],X)

W(1), tela —r,al,
T(t)Y(a), tela,b).

On the other hand, by Henry [18, Lemma 3.4.3, p. 64] the derivative of the mapping
Coour— 7 (¢p,u)e C([—r,0],X) is the following operator:

[mﬁwwmm:{

0, tela—r,a,

[Tt = DS (E ue ) de. (3.18)

[DuF (§,u)p)(1) = {

Obviously, Dy Z is independent of (¢, u), so it is of class C*. On the other hand, by
the assumptions and (3.18), D,.Z is of class C~!. Note that all other nonzero partial
derivatives of # with respect to ¢ and u are D/, #,j = 2, ...k. This yields that Z is of
class Ck. O
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We need the following result on the smooth dependence of mild solutions of
Eq. (3.15) on the initial data.

Lemma 3.6. Let A be the generator of a Cy-semigroup and let f(t,¢) be Lipschitz
continuous in ¢p€€ uniformly in te€(a,b), differentiable up to order k in ¢eB(p).
Moreover, assume that f(1,0)=0 for tela,b], Dif(t,¢) is continuous in
(t,¢)ela,b] x B(p) for all j=1, ..., k, and

sup [, f(td)l|<o j=1,...k
(t,¢) €la,b]x B(p)

Then, the solution u(t,$) of the Cauchy problem (3.16) depends CF-smoothly on
¢ € B(p) uniformly in te[a — r,b], i.e., the mapping B(p)> ¢p—u(-,¢)e C(la —r,b],X)
is of class C*.

Proof. Set G(¢,u) = F(¢p,u) —u, for (¢,u)e% x B(p). Obviously, if u* is the
solution of the Cauchy problem (3.16) with ¢ = ¢, then G(¢,,u*) = 0. Moreover, G
is differentiable with respect to (¢, u) e € x B(p) up to order k. We have D,G(p,u) =
D, 7 (¢,u) — I. Note that the assertion of the theorem can be proved for b := b’ with
sufficiently small »' — a because of the continuation principle of mild solutions. For
instance, we can choose

(b —a)Ke” "0 sup |[Dy f(t,¥)|<]1, (3.19)
(1) <] <B(p)

where K,w are positive constants such that ||7(7)||<Ke”, Vi=0. With this
assumption, D, G(¢,u) is invertible. In view of Lemma 3.5 we are in a position to
apply the Implicit Function Theorem (see e.g. [9, p. 25] or [18, Section 1.2.6,pp. 12—
13])) to conclude that the mapping B(p)s ¢ —u(¢)e C([a — r,b'],X) is of class C¥,
i.e, the solution u(-,¢) to the Cauchy problem (3.16), depends C*-smoothly on ¢
uniformly in 7€ [a — r, b'], so by the continuation principle, the conclusion holds true
forteja—r,bl. O

As a consequence of the above lemma we have the following.
Corollary 3.7. Let A generate a Cp-semigroup and let f(-,-):Rx ¥—>X be

continuous and satisfy the following conditions:

() f(¢,¢) is continuously differentiable in ¢ € B(p) up to order keN for a given
positive real p;
(i) For every j =1, ..., k the following holds

s 1D (2, )| < 0.
P

(1,9) e RxB(

Then, Eq. (3.15) generates an evolutionary process (X(7,s)),s, in € which is C*-
regular in B(p).
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Proof. In view of Lemma 3.6, for a fixed positive real T, letting a .= 1;6 =1+ T we
have

U:B(p)sp—u(p)eC(ft —r,1+ T),X)
is of class C* for any e R. So is the mapping
B(p)aprul, )7 perr€ C[=r, 5], X).
Hence, by definition,
X(T+r7,71):C2¢>u(, )irper 1
is of class C* with respect to ¢peB(p). O
As an immediate consequence of Theorem 2.28 and the above corollary we have:

Theorem 3.8. Assume that

(1) A4 generates a Cy-semigroup of linear operators;
(i) F(t)eL(%,X) is strongly continuous such that sup,.g ||F(t)||< o0, F(t+T) =
f(t), VteR with certain positive T;
(iii) the solution evolutionary process (U(t,s)), in € associated with the equation

x(t) = Ax(t) + F(t)x,, teR,

has an exponential trichotomy with the exponents o, and f such that ka<p for a
positive integer k;

(v) g(t,x) satisfies g(1,0) =0, g(t+ T,x) = g(t,x), VxeX,1eR, D g(t,¢) is con-
tinuous in (t,$)€R x € and for every p>0andj=1, ... k,

sup  |[Dyg(t,)l|<oo j=1,...k
(1.6) € Rx B(p)

Then, for sufficiently small sup,.p Lip(g(t,-)) the evolutionary process (U(t,s)), in
% associated with the perturbed equation (3.14) has center-unstable, center, stable
integral C*-manifolds in €.

3.2. Local integral manifolds and smoothness

The local version of the above results can be derived by using the cut-off
technique. In fact, we will prove the following:

Theorem 3.9. Assume that

(i) A generates a strongly continuous semigroup, F e L(%,X);
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(if) The solution semigroup associated with the equation x(t) = Ax(t) + Fx, has an
exponential dichotomy with the exponents o« and f such that ka<f for a positive
integer k;

(iii) ge CK(B(p,),X) for positive constant p, and integer k, with g(0) = 0, Dg(0) = 0.

Then there exists a positive constant p<p, such that the equation
has local center-unstable, center and stable invariant C*-manifolds contained in B(p).

Proof. For a fixed 0<p<p, we define the cut-off mapping

g(¢), Ve e® with ||¢]|<p/2,
Gpl9) = g<”%”¢), Vo e% with ||¢>p.

Obviously, in B(p) we have Zip(glp,))< sup [[Dg(¢)||. As is shown in [33,
$eB(p)

Proposition 3.10, p.95], G, is globally Lipschitz continuous with

Zip(G,) <2Zip(glp)) <2 sup |[Dg(d)]|.
$eB(p)

Because of the continuous differentiability of g in B(p,), if we choose p sufficiently
small, then so becomes Zip(G,). If the solution semigroup associated with Eq. (3.14)
has an exponential trichotomy, then there exist center-unstable, center and stable
invariant manifolds M, C, N =% for the equation

(1) = Ax(1) + Fx, + G, (x,). (3.21)

Moreover, by our results in the previous section, this center manifold is C*-smooth
in B(p). Suppose that Eq. (3.21) generates a nonlinear semigroup (¥(?)),, in %. By
the definition of G, it may be seen that if ¢ € B(p) and 7 >0 such that V(¢)¢ € B(p)
for all te[0, T, then V' (¢)¢ is a mild solution of the equation

x(t) = Ax(t) + Fx, + g(x;). (3.22)

Hence, M, =MnB(p), C,=CnB(p), N,=NnB(p), are invariant
Ck-manifolds which we call a local center-unstable, center and stable invariant
manifolds of Eq. (3.22), respectively. [

Remark 3.10.

(1) As in the case of ordinary differential equations, local center-unstable and
center invariant manifolds of Eq. (3.22) may not be unique. They depend on the
cut off functions. However, using the characterization of stable manifolds one
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can show that in a neighborhood of the origin B(p'), N, B(p') is independent
of the choice of p>p’, i.e., it is unique.

(i1) Although there may be more than one local center manifolds, by Theorems 2.23
and 3.9, any local center manifolds obtained in Theorem 3.9 should contain
small mild solutions x(-) of Eq. (3.22) with sup, g ||x(¢)||<p.

(iii) The local center unstable manifold C, is locally positively invariant in the sense

that if ¢ €% and the solution x? of (3.22) belongs to B(p) for all 1€]0, T with a
constant >0, then x¥ e C, forall 1€ [0, T']. This is, of course, obvious since C is

positively invariant and hence V(¢f)¢pe% for all =0 from which X =

V(t)pe€nB(p) = C, for all te[0, T].
4. An example

In this section, as an example we consider the Hutchinson equation with diffusion

ou(t,x)  0u(t,x)

B =d 2 —au(t—1,x)[1 +u(t,x)], t>0,xe(0,n),
u(t,x) _
ER =0, x=0,xm,

where d >0,a>0. This equation can be re-written in the following abstract form in
the phase space ¥ .= C([—1,0], X):

% u(t) = du(t) + L(@)u) + (), (@)

where X = {ve W*?(0,7):v' =0 at x = 0,7}, dAv = d(9*/0x*) on X, L(a)(v) =
—av(—1), f(v,a) = —av(0)v(—1). For further information on this equation and its
applications we refer the reader to [14,25,26,34,36].

It is well-known (see e.g. [30]) that dA generates a compact semigroup in X . By the
well-known facts from the theory of partial functional differential equations (see e.g.
[31,34]) the linear equation

d

Eu(l) = dAu(t) + L(a)(u;) (4.2)
generates in % a solution semigroup of linear operators (7'(¢)),, with 7(#) compact
for every ¢>1. Obviously, u =0 is an equilibrium of (4.1). By Remark 2.3, the
solution semigroup (7'()),-, of (4.2) has an exponential trichotomy. Since f(-,a) is
C*-smooth for any k> 1, we can apply our above results to claim that Eq. (4.1) has
C*-smooth local invariant manifolds around u = 0. Moreover, the dimensions of the
center and unstable manifolds are finite. We refer the reader to [14] for more
information on applications of the center manifold of the above equation to the
Hopf bifurcation as a passes through /2.
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