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Abstract

We consider an age-structured single-species population model in a patch environment consisting
of infinitely many patches. Previous work shows that if the nonlinear birth rate is sufficiently large
and the maturation time is small, then the model exhibits the usual transition from the trivial equilib-
rium to the positive (spatially homogeneous) equilibrium represented by a traveling wavefront. Here
we show that (i) if the birth rate is so small that a patch alone cannot sustain a positive equilibrium
then the whole population in the patchy environment will become extinct, and (ii) if the birth rate is
large enough that each patch can sustain a positive equilibrium and if the maturation time is moderate
then the model exhibits nonlinear oscillations characterized by the occurrence of multiple periodic
traveling waves.
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1. Introduction

Recently, Weng et al. [3] derived the following system of delay differential equations
for a single species population with two age classes distributed over a patchy environment
consisting of the integer nodgss Z := {0, £1, £2, ...} of a one-dimensional lattice:

dw;(t)

dt % Y Bali = R)b(wi(t = 1)) + D [wj2(1) + wj-1(t) — 2w; ()]
k=—00

—duyw;t), t>0, jeZ. (1.2)

In this equationw(r) denotes the total number of adults (i.e., the total number of age at
leastr) in the jth patch, and- > 0 is the length of the juvenile phase (maturation time).
The functionb denotes the birth function and satisfig®) = 0. The constant®,, andd,,

are, respectively, the diffusion coefficient and death rate for the mature population, and the
r-dependent parametexsanda are given by

r r

u:exp(—/d(a)da), a:/D(a)da, (1.2)

0 0

whereD(a) andd(a) in (1.2) above, and in (1.3) below, are the diffusion coefficient and
death rate for the population at age(thus © and« above are defined in terms of the
diffusion and death rates for thenmaturepopulation while, fora > r, D(a) = D,, and
d(a) =dy,). The derivation of (1.1) (given in [3]) allows the diffusion coefficient and death
rate for the immatures to be age-dependent as the notation in (1.2) suggests, but, for the
mature population, these parameters must be age-independent. This is because the deriva-
tion of (1.1) utilizes the technique of integration along characteristics for the following
well-known simple model for an age-structured population:
814]- 8uj
at da
inwhichu;(z, a) is the density of age at timer in the jth patch. Of course,

= D(a)[u.H_l(t, a)+uj_1(t,a) —2u;(t, a)] —d(a)u;(t,a) (1.3)

e¢]

w;(t) :/uj(t,a)da.

r

The coefficient, (1) in (1.1) are given by
Bo(l) =2¢=% / colw)e?* % do, (1.4)
0

and it was shown in [3] that these coefficients enjoy the following properties which will be
important for the present paper:

(i) Ba(l) =Bu(I])) foralll ez, i.e., By () is isotropic;
(i) 272 oo Bull) =2r;
(i) Bu(l)=0ifa=0andl €Z\ {0}, andB,() >0if « >0 andl € Z.
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Spatially uniform equilibria (i.e., equilibria independent gf of (1.1) satisfyub(w) =

dnw. Of course, zero is an equilibrium. Weng et al. [3] were concerned with the situation
when there is one other equilibrium* > 0, and with the possibility of traveling wave-
front solutions connecting O to the other equilibriur. In this discrete-space setting such

a solution is a solution of the single variable- ct, wherec > 0 is the wave speed. They
showed that such a wave-front exists foreatixceeding some minimum valug, and they

also proved that, is the asymptotic speed of wave propagation i$ not too large and

the initial data satisfies certain biologically realistic conditions.

The present paper continues the study in [3] by investigating two further aspects of (1.1).
The first of these is the situation when there is no nonzero spatially uniform equilibrium. In
this case, by estimating a certain energy norm, we prove that the population will become
extinct for any initial data that tends to zero jg$ — oo sufficiently fast thatw(z) :=
{w; (t)}‘,?oz_Oo lies in the sequence spaéé for eacht € [—r, 0]. The second aspect we
shall investigate is the occurrence of a Hopf bifurcation, whémmoderate, to periodic
traveling waves from the positive equilibrium, when it exists. In fact, we shall establish the
existence of multiple periodic waves by using the result of Rustichini [2].

In Section 2 we shall first prove that solutions of (1.1) enjoy a positivity preserving
property, and then we shall consider the issue of extinction. In Section 3 periodic traveling
waves will be investigated.

2. Positivity and extinction criterion

Throughout the paper, denote
w(t)={w;0}% (2.1)

Jj=—o0"

We shall need a classical result from [1] which states that:
Lemma 2.1. Let X be a Banach space ov& or C. Assume thaf :[0,00) x X — X is
continuous and that there exists a constant 0 such that

| f(t, %) = f(t,9)| < Llx = yl.

Then for any givem® e X there exists a unique continuously differentiable function
x:[0, 00) — X such thati(r) = f (¢, x(1)) for t € [0, o0) andx(0) = x°.

Applying this result to
0 (1) = D[j41() + vj—1(t) = 20, ()] = dv;() + h; 1), jEZ,
vj(O)=cjeR, jezZ, (2.2)

with ¢ = (cj) jez € £*°, whereD andd are positive constants, arig is the Banach space
@ ={c=(cp)jez; llele =suple;| < oo}
jeZ
(hj)jez :[0,00) — £°° is continuous, we conclude that (2.2) has a unique solution
v:[0, 00) — £°°.
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Using the definition o3, (1), it is easy to verify that

o]

t
1 _ , 1 & d(i—s .
Uj(t)zge dtk_zooﬁm(k—])ck‘i‘gk_zoo/e e ‘S),BD(t—s)(k—J)hk(S)dS

- - 0

(2.3)

gives the explicit solution to the initial value problem (2.2). In particular, property (iii) of
Ba(l) ensures that;(r) > 0 for all j € Z andr > 0 as long ag;; > 0, 1;(t) > 0O for all

t >0 andj € Z. We can now prove that solutions of (1.1) enjoy a positivity preserving
property.

Theorem 2.2. Letb :R — R be aC1-smooth bounded function. Then

(i) Forany continuoug :[—r, 0] — £°°, Eq.(1.1) has a unique solutiom? : [—r, co) —
£ with w?(s) = ¢ (s) on[—r, 0];

(i) If ¢;(s) >0forall j € Z ands e [, 0], thenw’ (1) > Ofor all j € Z andz > 0 ifin
additione # 0 € ¢, thenw’ (1) > Ofor all j € Z andr > r.

Proof. (i) follows from Lemma 2.1 by solving Eq. (1.1) on consecutive interjals
(n+Drl,n=0,1,2,.... By a standard comparison technique, we knowr) > w; ()
forall j € Z andr > 0, wherew; is the solution of the initial value problem

% =D, [zI)jJrl(t) +w;j_1(t) — 212).1'([)] —duwi(t), t>0, jeZ,
Wj(0)=w;(0), jeZ (2.4)

Using the explicit expression (2.3), we then conclude that
w;(t) >w;() >0 forjeZandr>0.

Using the analytic formula (2.3) for (1.1) with
M 0
hi(h) =5 k;oo Bu(j = k)b (wi(t = 1)),

we get, forr € [0, r], that

1 o0
wj(t) = Ee—dm’ k;oo Bt (j — k) wi (0)

1 &
oo D / eI, -5y (k= )

k=—00 0

X % Z ﬁa(k—l)b(wl(s—r))ds

|=—00
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from which it follows that ifw # 0 then
w;(r)>0 foralljeZ.

Therefore, for > r, we get

(e.¢]
Wi > 5o S By (- Buk) > 0
k=—o00

forall j € Z.

Next, we shall consider the issue of extinction. Recall that the condittgw) < d,,, w
for all w > 0 ensures that there is no spatially homogeneous equilibrium other than 0 and
is the weakest possible condition that ensures extinction for biologically sensible birth
functionsb(w). The theorem below confirms that this is also a sufficient condition for
extinction. More precisely the theorem essentially states that extinction will occur if there
is no positive equilibrium and if the initial data decays to zero sufficiently fast|as co.

We shall let¢* denote the Hilbert space of sequenggg5e ., such thaty 72 _ &7
< 00, with the norm

00 1/2
||s||gz=( > s,?) -

j=—c0

Theorem 2.3. Let the initial datag : [—r, 0] — ¢2 be continuous ang;(s) > 0 for each
s € [-r,0]. Assume also thath(w) < dy,w for all w > 0 and thatsup,~q |6’ (w)| < co.
Then

supw‘j’.’(t) — 0 ast— oo. (2.5)
jez

Proof. Applying Lemma 2.1 to Eq. (1.1) on consecutive intervals, (n + 1)r], n =
0,1,2,..., we conclude thatv(r) = w?(r) € £2 for all r > 0. Multiplying Eq. (1.1) by
w;(¢), summing overj € Z and some rearranging gives

oo

1d
2ar 2 Vi
j=—00
= % Z Z Bo(j — )w;j()b(wi(t —r)) — D, (@) — wj_l(t))z
j=—00k=—00 j=—00

(@]
+ Dy Y [wi @ (wjza(®) —wj(©) — w1 () (wj () —wj_1(5))]
j=—00
o
—dw Y wH).
j=—00
The penultimate term on the right-hand side is a telescoping series which sums to zero,
sincew;(t) — 0 as|j| — co. Thus
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%% | > wi(t) + D % (wj () = wj-1())* + dy i wi ()
Pl Pl Pl
=§é§2ﬁ§;mo—mwmwww—n)
< %jio kioﬁa(j — yw; (wi( — )
<%gQéiﬁﬁaﬁﬁlfdj_“+Q§2m§1f“j_mwﬁﬁ_”>

On interchanging the order of summation in the second double sum, and then using prop-
erties (i) and (ii) ofB, (1), we find

1d & 0 , d, &
2 m 2
2ar w5 (#) + D Z (wj(t)—wjfl(t)) —i—? Z wi(1)
Jj=—o0 j=—00 =
dm > 2
< > wj(t —r).
Jj=—00

Integrating with respect to time from O ta@jives

t

! o0
w2~ [0 @ +205 [ 32 (w)6) = wj-26)ds + o [ o) [Fads
.

J=—00 0

1 t—r
< [t =nlfads=d [ o[
0 —r

0 t
<dn / Jwis)|%ds +d / Jwis)| %ds.
—r 0

Hence

I oo

0
w4200 [ 3 @361ds < [0+ d [ )| ds (2.6)

0 J=— —r

wherew; is defined in (2.8) below.
Let us now rewrite the original equation (1.1) as

dw;j % >
d—tj =5 Z Ba (k)b (wj—k(t — 1)) + Dm[wj41(1) + wj—1(t) — 2w;(1)]

k=—00

—dpw;(1). (2.7)
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Define
D () =w;(0) —wj-1(),  wO= {00} (2.8)
Then from (2.7) we obtain
du
w] = Z ,Boc(k) wj—k(t - V)) - b(wj_l_k(t — r))}

+ Dm [wj+1(t) +w;_1(1) — 2w; ()] — dmw; (1)

=% _Z Ba ki j i (t — )b (1) (¢ — 1))

k=—o00
+ Dy [0j11(1) + wj-1(1) — 2w (1) ] — dy j (1)

by the mean value theorem, whebg(r) is betweerw;(r) andw;_1(z). Multiplying by
dw;/dt and summing oveyf gives, after some rearranging on thg terms, we get

_ %Dm% i (@ (1) — j-1())?
j=—o0
+ Dy, i {dﬁ:ljt(t) (wjr1(r) —w;(1))
fd
_ W(wj(r) - U_)jl(t))}
flardt

which again contains a telescoping series that sums to zero. Integrating frongés

00 s=t
1 _ _
$+5Dm [ > (wj(s)_wjl(s))2j|

Jj=—00 s=0

145

1 00 s=t
+§dm|: Z u‘)]?(s)]
j=—00 s=0

oo o0

d
Z Z lga(k)/ ;i (5 )w/ k(s —r)b’ (wl k(S—”))

j—foo k=—o00

oo oo

B duw
<Y X ﬁa(k)/‘ W iy g5 s

j=—00 k=—00
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00 t 13
Z Z ﬂa(k){/ (dw’(s)) ds+f%®?k(s—r)ds}
- 0

Z 3 ﬁa(k)/ B2 (s —r)ds,

00 k=—o00

8/LB /’H dw(s)

£2

where we have usedy < (1/2)(ex2 + (1/8)y2) with ¢ > 0 to be chosen, and wheB=
SUR, >0 b’ (w)]. In fact, we shall choose= (xB)~*, giving

00 s=t
d 1
f H 26 [* 4y L Dm[ > (w,;(s)—w,;_l(s))z]
Z o

j=— s=0
1 00 s=t
+ Edm|: Z wf.(s)}

j=—00 s=0

9]

N ﬁa(k)/ B2 (s — r)ds

j=—00k=—00

232 o0 2p2
/ Z Bu (k) ; G k(s—r)ds—MT/”u_)(s—r)H?zds

0

ZBZ

2p2
< wmwﬂw+———/WMwﬂm

—r

2p2
L umwﬁw+——QW@M+d/wmmmﬁ

—r

using (2 6). Hence

ds + Dy Z B () — j-1(0)° + du |0 |2

j_—OO

145

22

< Dy (w J(0) = 9;-1(0) + du | 5(0)| %
j——oo
0
_i_’u’2)}32/||w(S)HI32 ds + 2—(||w(0) ng +d, /Hw(s)”/zz ds) (2.9)

Now let

F0 =o)L= w?w.

j==00
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Then
/If(t)|dt=/ Z W4 (1) dt < oo
0 0 J=—

by (2.6), witht — oo. Also,

' 5O S > (dibj(t)\>
|f(t)|=2jzzoow,~(t) M gj;oowjz,(t)+j;w<d_jt)
and therefore

[o/0] o0 00 ) o - 5
/‘f/(t)|dt</ Z U_)f(f)dt—i—/ Z <d11:l]t(t)> di
0 0 j=—00 0 j=—00

o0 00 ) ~ )

Z/ > “_)?(t)df"'/Hw dt < oo
i dt 22
0 J=— 0

by (2.6) and (2.9) with — oc.
It is known that if a differentiable functiory (z) satisfies[0°°|f(t)|dt < o0 and
I If (D)ldt < oo then lim_. f (1) = 0. Therefore,

i [50)],2 =0,

It can be shown (see Appendix A) that, for sequer{eg}éj?ifoo e ?,

00 1/4 00 1/4
suzr3|sj|<ﬁ( > ;,.2) ( > (5,/—5./_1>2> . (2.10)
J€E j=—00 j=—00

With &; = w; (), and knowing thatv; (¢) is positive, tells us that

supu, ) < V2 w0 | |00 £
JE

which tends to zero as— oo (note that (2.6) assures us thait(z)|,2 is bounded inde-
pendently of). The proof of the theorem is completer

3. Periodic traveling waves

In this section we consider the case when (1.1) has a positive uniform equilibrium state.
Our aim is to prove the existence of a family of periodic traveling waves, arising via a
Hopf bifurcation from this uniform equilibrium state. Our approach will be via the fol-
lowing Hopf bifurcation theory for functional differential equations of mixed type, due to
Rustichini [2].
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Let t be a given positive real number, and denotelby C([—z, 7], R") the Banach
space of continuous functions from the interivak, t] to R”, endowed with the supremum
norm. Consider the following functional differential equation of mixed type:

X =F(x,a),

wherea € (—ag, ap) is a real parameter ang is a given constant?’ : C x (—ap, og) —
R" is of classC? andF(I%, a) =0 for alle € (—ag, ag), wherek is a given constant, and
K is the mapping fromi—t, r] into R" identically taking the valu& on[—t, t]. For a
continuous mapping: R — R, x; € C is defined byx;(s) = x (¢t + s) for s € [—7, 7].

Denote byF’(¢, ) the Frechét derivative of the function&l-, «), evaluated ap, and
write its representation as

F'($. o) (¥) = / dn(, @) ()Y (s)

for ¢ € C, wheren(-, «) is a function of bounded variation.
We denote the characteristic matrixaat= 0 of the equilibriumk as

T
As,a) =sI — /dn(e, a)e’.
-7

We then have
Theorem 3.1. Assume that there exists> 0 such that

(i) deta(iz,0) =0andiz is a simple zero ofletA(A, 0) =0;
(i) There exists n@ # £z with detA(iw, 0) =0;
(i) ReA/(0) # 0, wherex(x) is the Cl-curve such thatletA(r(x), o) = 0 for small
o> 0.

Then there exists a one-parameter family of periodic solutions of periods cldse/to
bifurcating from the steady-state solutidgh

Keeping in mind the various properties@f(/) described in Section 1, Eqg. (1.1) can be
recast in the following form which is slightly more convenient for the present section:

wit)=ujt,r)+ Dulwjr1(t) +w;_1() — 2w ()] — dpw; (),
wit,r) = 4= 372 o BU, b(wi(t =),

B, k) = Bulk —j),

Ba(l) = [T exp—ilo — dasir(w/2)]dw.

(3.1)

To apply Theorem 3.1, we also assutne C2. We are interested in seeking traveling
waves of the type

wit)=¢(+cj), ¢:R— R.
Lettings =t + ¢j, we get
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@ (s) = Dp[d(s + )+ d(s — ) — 2¢(s)]| — dnp (s)
no . :
+ o k;wﬁa(k — Pb(@(s —r 4 k= j)c)).

Therefore, we obtain the profile equation

$(s) = Dp[d(s + )+ ¢(s — ) — 2¢(s)] — dnp (s)
m 00
+ Zl;—:&ﬁa(ob((qxs —r+10)). (3.2)

We are interested in a periodic wave of period/@ (with @ > 0) and so

d(s+2n/w) =¢(s), seR.
Our approach is to seek a Hopf bifurcation of (3.2) from the steady &tatehereK > 0
satisfies

duK = ub(K), K >0. (3.3)

Of course, we assume here that the parametgrg and the birth functioi (w) are such

that a positive rooK exists to (3.3) (ecologically realistic choices fiofw) include the

case thab(w) increases linearly witlw whenw is small, reaches a maximum and tends

to zero asw — oo; in this case it is clear that a ro& > 0 can be found for (3.3) for

suitable values of the parametels, « and those associated wittiw)). If no rootK > 0

can be found for (3.3) this will be (for ecologically realistitw)) becauseib(w) < d, w

onw € (0, 00), and in this case extinction of the population is predicted in the last section.
Linearizing (3.2) at the constant solutighand letting

b (K) =B, (3.4)
we obtain

$(s) = Dp[¢p(s + )+ d(s — ) = 26(s)] — dnp(s)

+%B 3" Bal)g(s —r +10). (3.5)

[=—00

Let ¢ (s) = €**. This gives the characteristic equation

o
h= Dl e =2 —d + 2B Y paDe (3.6)
2

|=—00

LettingA =iz in (3.6), withz > 0, gives

Lad

iz=2Dy, [Cos(cz) — 1] —dpy + o

Be ¥ 3" Bu(D)[cosize) +isinze)]. (3.7)

l=—00

Noting thatB, (1) = B, (—1), we obtain

: M —izr .
iz=2D,, [Cos(cz) - 1] —dy + EBe |:,3a ) + 2; B COS(lzc):|. (3.8)
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We now need to develop an explicit formula féy(0) + 2 ;24 B« (1) codlzc).

Lemma 3.2. For anyx > 0, we have

Bu(0)+ 2 u(l) cOSlx) = 2re4SiIP /2, (3.9)
=1

Proof. Letc; = e¥* andh;(t) = 0in (2.2). Itis easily verified that in this case the solution
of (2.2) is
Uj (t) — ekteijx,

where ) = —4Dsir?(x/2) — d. But also, the solution;(¢) can be found from expres-
sion (2.3). Comparing the two expressions, we get

o0
ie—dt Z IBDt(k_j)eikx ze—(4Dsir\2(x/2)+d)teijx_

2 =
Accordingly,
Z Z Bpi(k — j)elkx —e 4D s'nz(x/z)feljx
k=—00

which, witha = Dz, yields

o0
% Z ,Ba(l)eilx 26740(5"12()6/2).

I=—00

SincepB, (1) = B (—1), we conclude that

Bu(0)+ 2 u(l) cOSlx) = 2we4SiIP /2,
=1

This completes the proof.O
With the results of Lemma 3.2 in mind, (3.8) becomes
iz=—-4D,, Sinz(cz/Z) —d, + /LBe_izre_‘la sif(cz/2)

Separating the real and imaginary parts gives

0= —4D,, SiM(cz/2) — dy + e~%S(/2) B cogzr), (3.10)
—z= e_MSinz(Cz/z),u,B sin(zr).
Thus, we have
4D,y SirP(cz/2) + dy = e~ % SP(€2/D | B cog7r) (3.11)

and

—z=e M Sinz(cz/z);LB sin(zr). (3.12)
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Lemma 3.3. Assume that|B| > d,,. Let

x*= min{x [0, 1]; M|B|e74‘” > 4D,,x —i—dm},

0=/ (uB)?—d2,

21 = (Be 45" — (4D, x* + dy)?,

1 20
ro=—|m — arctand— ,

<0 m

1 21
r=—|m —arctan———|.

71 4D, x* + d,,

Then for every fixed € (rp, r1) there exists a unique paik, z) with ¢ = ¢(r) andw =
w(r) > 0such that(3.11) and (3.12) are satisfied andr € (7 /2, 7), w(r) = 27 /z(r).

Proof. Note thatifu|B| > d,, andx* is defined as above, then

Qx):= \/ u2B2e¢=8ax — (ADyyx + dp)?

is a monotonically decreasing function efe [0, x*] with £2(0) = zp and 2(x*) = z1.
Therefore,

ol laps 0,
R(x):= ——|n —arctaq —
£2(x) 4Dy x + dp,

is an increasing function of € [0, x*] with R(0) = rg andR(x*) = r1. Therefore, ifr €
(ro, r1] then there exists a unique= x(r) € (0,x*] C (0, 1] so thatR(x(r)) = r. Let
w:=w(r)=2(x()). Then
22+ (ADyx + dp)? = p2B2e 8%
and
w

tal =
nzr) 4D, x +d,,

By letting x = sir’(cw), we complete the proof. O

Let 2 = A(c) be theC1-smooth curve of solutions of (3.6) such that) = iz. Differ-
entiating (3.6) with respect tg we obtain

e B _ - :
N = Di(e —e )W e+ 2) + 5 (1) Y Bl

I=—00

1B 5, < ,
+ 5T Y BaDI e+ 2],

|=—00

Using the fact thag, () = B,(—1), we obtain

> BaDI=0.

|=—00
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Therefore,
_ Dm (e)LC _ e—)»C))L

1— Dy(ere — e ) + BB re=try g, (et
Therefore, whe.(c) =iz, we get
_ Dy, (eizc - eiizc)(iz)
T 1— Dy(ei — e e 4 r[A + dy — Dy (€3 4 e~i2¢ — 2)]
_ —2D,,zsin(zc)

1— 2i D, SiN(z¢) + rliz + dy + 4Dy, SiPP(z¢/2)]
Consequently, we have

)\‘/

)\,/

1+ rd,, + 4D,,r sirf(zc/2) 0
< U
[1+ dpr + 4Dyr it (z¢/2)12 4 [rz — 2D,y Sin(zc) 12
Therefore, applying Theorem 3.1, we obtain

Re\' = —2D,,zsin(zc)

Theorem 3.4. Letrg andry be defined as in Lemn&3. Then, for every € (ro, r1), (1.1)
has a family of periodic traveling waves; (1) = ¢(t +¢j), j € Z, of period2r /w(r), for
¢ nearc(r), wherew is close tow(r) andc(r) andw(r) are the unigue solutions ¢8.11)
and (3.12) with 2zr /w(r) € (/2, ).

Appendix A

In this appendix we derive inequality (2.10). First, we shall show thatfferWOl’z(R),
1/2 1/2

Il < V2| £ 2 fell iz (A1)
To see this, note that

X

(f@)? = (f@)* = (f(~00))* = / %(f(S))st

—0o0

=2 / F&f()ds <2 fll2ll 2l 2

which establishes (A.1). Now lef W&’Z(R) be the piecewise linear function such that
f(j)=¢&,jeZ. Then

o0 oo

1
Hf”iz:g > EEn+E+E)< ) £

j=—00 j=—00

while

[ flZ2= Y G802

j=—00
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Thus (A.1) becomes

suplg;| <vV2| D &2
j=—00

1/4 1/4

jel

D En—&)
j=—00

so that (2.10) holds.
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