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Abstract

We study the coexistence and global continuation of several slowly oscillating periodic
solutions for some systems of neutral FDEs due to the interaction of temporal delay and spatial
dihedral symmetries. By using the equivariant degree theory we establish general results on the
existence of multiple branches of nonconstant periodic solutions, classify their symmetries, and
describe their maximal continuations. As an application, we study in detail a ring of identi-
cal oscillators with identical coupling between adjacent cells and prove the existence of large
amplitude phase-locked and synchronous oscillations in these ring-structured systems. We also
give an example to illustrate the possibility of the coexistence of several slowly oscillatory pe-
riodic solutions when the bifurcation parameter is far away from the bifurcation point. The key
in our argument is the spectral theory for circulant matrices and the construction of a Liapunov
function to exclude periodic solutions of a certain integer multiple of the delay.
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1. Introduction

Many important mathematical models from physics, chemistry, biology, engineering,
etc., involve both time delay and spatial symmetry. The interaction of time lag and
symmetries may have significant impact on a dynamical process and can result in for-
mation of various patterns exhibiting certain particular symmetry properties. Prediction
and description of these changing patterns constitutes a complex problem related to
the so-called symmetric bifurcation phenomena. The methods of the equivariant topol-
ogy and the representation theory of Lie groups are powerful mathematical techniques,
which have been effectively applied to the study of bifurcation problems with symme-
try (see [1-11,13-22,26-29]). In particular, the equivariant degree theory provides a
complete topological description of zeros of en equivariant map in terms of equivariant
topological obstructions, which can be effectively used to study symmetric bifurcation
problems with symmetries; the occurrence and global continuation.

The general definition of the equivariant degree degg(f,€2) on a bounded invariant
open set Q C V for an admissible equivariant map f:V — W between two repre-
sentations of a compact Lie group G (dim V' > dim ') was introduced by Ize et al.
(cf. [13-16]). In their work, the equivariant degree of f is defined as an element of
the equivariant homotopy groups of spheres. It was proved that this equivariant degree
has all the standard properties expected from a ‘degree theory’. From the applications
point of view, the most interesting case is where f:V @& R" — V' (we assume here
that G acts trivially on R"). In this case, by applying regular normal approximations

(cf. [4,8,17,22]), the map / can be deformed on Q to f, for which the set of zeros
in © is composed of isolated disjoint compact subsets Z, containing elements of the
same orbit type a=(H ). As the equivariant degree expresses the topological obstructions
for the existence of equivariant extensions of a map without zeros, it follows from
the additivity property that these obstructions depend on the orbit types in 2. These
obstructions are called primary if dim W(H)=n (where W(H)=N(H)/H denotes the
Weyl’s group of H), and secondary if dim W(H) > n.

Another version of an equivariant degree denoted by G-Deg(f,(2), which we will
call here the primary G-degree, or simply G-degree, was introduced (independently of
the work of Ize et al.) by Geba et al. in [8]. As it turned out (see [2]), the primary
degree is a part of the equivariant degree corresponding to the primary obstructions.
The advantage of using the primary degree lies in the fact that it is relatively easy to
compute, even in the case of many classical non-abelian compact groups. Additional
feature of the primary degree, for certain types of groups, is the multiplicativity property
that further reduces the computations of the primary degree and permits to express it
in a form of a product.

In the case of an abelian symmetry group G, the G-degree was successfully ap-
plied to many symmetric local and global Hopf bifurcation problems for functional
differential equations with symmetry (cf. [6,20-22,27-29]). However, for non-abelian
symmetry groups there have been little progress for the existence of bifurcations of
functional differential equations using the equivariant degree method. Recent advances
in this direction (see [5,4,18]) provide new opportunities for possible applications of the
one-parameter G-degree to the study of global bifurcation problems with non-abelian
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symmetries. In particular, computational formulas were established for the groups of
type G=S' x I, where I' is a compact subgroup of a finite extension of SO(3) or a
finite group (cf. [4]). In fact, in some cases it is also possible to evaluate the secondary
components of the equivariant degree for the non-abelian actions.

In [19], a local theory was developed for bifurcations of delayed functional differen-
tial equations with dihedral symmetry. In particular, the joint impact of temporal delay
and spatial dihedral symmetry on the occurrence and multiplicity of Hopf bifurcations
of delayed functional differential equations was discussed and the orbit type classifica-
tion of possible Hopf bifurcations was established. The obtained results were applied
to a ring of identical oscillators to describe the occurrence of several small amplitude
nonconstant symmetric periodic solutions near a bifurcation point. The results obtained
in [19] clearly indicate that an equivariance with respect to a non-abelian action can
have a significant impact on the number of different branches of periodic solutions via
a spontaneous bifurcation in a dynamical system.

The present paper is motivated by the work of Krawcewicz et al. [18,19]. The
purpose of this paper is two-fold. First, by using the equivariant bifurcation theory
developed by Geba et al. (cf. [8]), we study the existence, multiplicity and global
continuations of symmetric periodic solutions for the following one parameter family
of neutral functional differential equations (NFDEs) with dihedral symmetry

%[x(t)—b(x,,oc)]:F(xt,oc), aeR, (1.1)

where x€R", 7> 0 is a given constant and C; is the Banach space of continuous
bounded functions from (—oo,1] into R” equipped with the usual supremum norm,
and b,F:C; x R — R" are two continuously differentiable mappings specified later.
Secondly, we apply our symmetric Hopf bifurcation theorems to a ring of identical
oscillators with identical coupling between adjacent cells, which arises naturally from
coupled lossless transmission lines, and is governed by a neutral functional differential
equation. We will show how the temporal delay (both in kinetics and coupling) and the
dihedral symmetries of the system may cause various types of oscillations in the case
where each cell is described by only one state variable. In particular, we will prove
the existence of large amplitude phase-locked and synchronous periodic solutions in
these ring-structured neutral systems. More significantly, we shall obtain the existence
of large number of slowly oscillating periodic solutions. To the best of our knowl-
edge, slowly oscillatory periodic solutions play very important role in the description
of global dynamics in functional differential equations (see [23] for delay equations)
but little is known about the coexistence of several such solutions.

The remainder of this paper is organized as follows. In Section 2, we extend
the results in [19] to neutral functional differential equations with dihedral symme-
try and discuss the global continuations of the obtained multiple branches of non-
constant periodic solutions. These results are then applied, in Section 3, to a ring
of identical cells governed by neutral equations and coupled by delayed diffusion
along the sides of a polygon, and several unbounded branches of synchronous os-
cillations and phase-locked oscillations are obtained. Finally, in Section 4, an example
is given to illustrate the possibility of the coexistence of several slowly oscillatory
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periodic solutions when the bifurcation parameter is far away from the bifurcation
point.

2. Symmetric Hopf bifurcation theorems

Let 7 >0 be a given constant, n a positive integer and C; the Banach space of
continuous bounded functions from (—oo, 7] into R” equipped with the usual supremum
norm

loll="sup |o(0), ¢eC.
—oco<0<t
If x:(—o00,7+ 4] — R" is a continuous function with 4 > 0 and if 7 €[0,4], then
x; € C; is defined by

x(0)=x(t+0), 0O¢c(—o0,1].

Also, for any x € R”, we will use x to denote the constant mapping from (—oo, 7] into
R” with the value x € R".

In what follows, for a compact Lie group G = I" x S! and a (closed) subgroup
H C G, we will denote by (H) the conjugacy class of H, which we will call an orbit
type. We will denote by 4,(G) the free Z-module generated by the orbit types (H)
such that the Weyl’s group W(H) is a one-dimensional manifold admitting invariant
orientation (with respect to left and right translations on W(H)), and by A(I') we
will denote the Burnside ring of I'. Let us recall that A(I") is generated by the set
O(I)={(H): dim W(H)=0} (see [20] for more details).

Assume that V' is an orthogonal representation of G, @ C V' @& R an invariant open
bounded set, and f:V & R — ¥V a G-equivariant map such that f(x) # 0 for x € 0Q.
Then the primary degree G-Deg(f,€) is an element of the Z-module 4;(G), where
A(G) is generated by the set @(G)={(H): dim W(H)=1 and W(H) is bi-orientable}
(see [4,2,8] for more details). As we have mentioned in the introduction, in some
special cases, the primary G-degree possesses an additional important property, which
we call the multiplicativity property.

We state this property only in the case of G =Dy x S!, where Dy is the dihedral
group of order 2N. In the case G := Dy x S!, the G-degree computational formulas
(including the A(Dy )-module tables) were developed in [18]. In fact, this property is
also valid for a larger class of, the so-called regularly twisted, compact Lie groups of
type I' x S' (see [5]).

Proposition 2.1. Assume that V is an orthogonal G = Dy x S'-representation and
U is an orthogonal Dy-representation. Let f:V ® R — V (resp. g:U — U) be
a G-equivariant (resp. Dy-equivariant) map such that f(x) # 0 for x €0Q (resp.
g(x) # 0 for x € 0U), where Q C V@R (resp. U C U) is an invariant open bounded
subset. Then

G-Deg(g x f,U x Q) = Dy-Deg(g,U) - G-Deg(f, ),

where Dy-Deg(g,0) € A(Dy) and G-Deg(f,Q)€ A1(G), and the dot <> denotes the
multiplication in the A(Dy)-module A4,(G).
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Let us describe the orbit types for the group Dy and the orbit types for G = Dy x
S! generating A4;(G). The ring A(Dy) is generated by the orbit types (H) of Dy
as follows: If N is an odd number, then ®y(Dy) = {(Dy),(Z;): k|N}; and if N is
even then

1 0
0 -1

Dy =7y UénZy, &y =e*™V,

Notice that all the generators of 4(Dy x S') are the /-folded 0-twisted subgroups
of the type K(®/) := {(y,z) €K x §';0(y) =z’}, where K is a subgroup of Dy and
0:K — S' a homomorphism. See [5,18] for more details. We have the following
/-folded O-twisted subgroups of Dy x S' with non-trivial homomorphism 0:

(1) the subgroups D,(f’/) and f)ic’/), where ¢:Dy — Z; is a homomorphism such that
kerc = Z4;

(ii) the subgroup D](Cd’/) and E;Cd’/) (when k is even), where d : Dy — Z, is a homo-
morphism such that ker d = Dy»;

(iii) if & is divisible by 4, then there exists one more conjugacy class of the subgroup
D,({d’/), where kerd = ﬁk/z = Ly Ui Ly with & = g2k,

(iv) the subgroups Zi‘/’“’/), corresponding to the homomorphism ¢, given by ¢,(z)==z",
where v is an integer and z€ Z; C S' C C;

(v) in the case where k is an even number, we have the homomorphism d: Z; — 7,
such that ker d = Zy,, for which we have the /-folded d-twisted subgroup Z}Cd’/).

Let us point out that in the case of G = Dy X St the multiplication in A(Dy)
allows us to establish the A(Dy )-multiplication tables for A4;(Dy x S'). Indeed, for two
generators (K), (H) € A(Dy), knowing that

(K)-(H)=Y _n.-(L) in A(Dy),
(L)

implies that for the /-folded O-twisted subgroup H*") we have the following multi-
plication formula:

(K)-(H*?)y=Y "n,-(L) in A(Dy),
(L)

where the coefficient n; in the both formulas are the same. The relevant multiplication
tables are presented in Tables 1-3. We refer to [18,20] for more details.

Suppose that p:I" — O(n) is an orthogonal representation of the group I' := Dy,
N =3, on V := R". Then p induces naturally an isometric Banach representation of
I' on the space C; with the action -:I' x C; — C; given by

(ye)(0) == p(y)@(0)), yeTl,0€(—o0,1]

Let us consider the following isotypical decomposition of V' with respect to the
action of Dy

V=Vy®&V @& &V, (2.1)
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Table 1

Multiplication table for A(Dy)
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(D) (D) (Dn) (D) (Zn)
2miN 2m|N 2mtN 2m|N
(D) (D)+ (D+ N (7)) N (7)) Nz
2kiN Nt (@) Nt (1)
(D) (D)+ 2(Dp)+ N (7)) INAZ)) NL(Z))
2k‘N le;,;nk(zl) NI— ka(z)
(D) NAZ)) NAZ)) D)+ D)+ N(z))
2ktN N @) N ()
(D) INAZ)) NAZ)) D)+ 2(Dy)+ M(Z))
2k|N M) N2
(Zi) Mz Mz Mz Mz Mz))
Note: | = ged(m,k), m|N and k|N.
Table 2
Multiplication table for A(D,)
(D) (D) (D) (D) (Zn)
2min 2m|n 2min 2m|n
(D) D)+ D)+ S (z)) S (z)) 2L(z))
2kt L2y )
(D) D)+ 2D+ S (7)) S (Z)) )
2kl (2 Ho(Z))
(D) S (Z)) (Z)) D)+ D)+ Mz
2kt ek (Z,) U2
(D) S (Z)) S (Z)) D)+ 2D+ Mz
2ke|n () o (Z))
(Zi) sz Bz sz sz wl(z))

Note: 1 = ged(m, k), m|n and k|n.
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Table 3
Table of multiplication
d,! d.l

(D}C )), Z‘k (D;{ )), 2|k

2ktN 2k|N
(DV)’ 2"’ Excluded 2<D§7(111)) T Imz—kfkr (and,l))
2r¢N
(), 2 2(D) + i (2) 4(D1) 4 mizie (2)
2r|N

Here we assume that m = ged(k,r) is such that 2m|N.

where k= (N + 1)/2 if N is odd, or £k = (N +4)/2 if N is even, and

(i) Vo:=VI={veV:yw=uvVyerl};

(i1) each isotypical component V;, j=1,...,k, is a direct sums of all subrepresentations
of V' equivalent to a fixed irreducible orthogonal representation of Dy, which can
be described as follows:

(al) For every integer number 1 < j < [N/2], there is an orthogonal representation
p; (of real type) of Dy on C given by
9z =19/ .z, for y€Zy and z€C,

Kz 1=z,

where 7/ - z denotes the usual complex multiplication.

(a2) There is a representation ¢: Dy — Z; C O(1), such that kerc = Zy.

(a3) For N even, there is an irreducible representation d:Dy — Z, C O(1) such
that kerd = Dy,.

(a4) For N divisible by 4, there is an irreducible representation d:Dy — 7, C o(1)
such that kerd = DN/z.

We will denote by U := C”" the complexification of ' =R". It is not difficult to see
that the isotypical decomposition (2.1) induces the following isotypical decomposition
of the complex representation U:

U=Uyo U@ & Uy, (2.2)

where Uy := U’ and each of the isotypical components U; is characterized by complex
representation of the following types:

(bl) For 1 <j <[N/2], the representation #; on C ® C is given by
Wz22) = () 21,97 - z), for y€Zy, and z),2, €C,

K(ZI)ZZ) = (ZZ)ZI )
(b2) The representation c¢: Dy — Z, C U(1), such that kerc = Zy.

(b3) In the case when N is even, the representation d:Dy — Z, C U(1), such that
kerd = DN/Z.
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(b4) In the case when N is even, the representation d:Dy — 7, C U (1), such that
kerd = DN/Q.

We are going to apply the equivariant bifurcation theory developed by Geba et al.
(cf. [8], see also [2,5,18]) to establish the existence, multiplicity and global continuations
of symmetric periodic solutions for the following one parameter family of equivariant
neutral functional differential equations (NFDEs):

%[x(t) — b(xp, )] =F(x,0), o€R, (2.3)

where x e R", b, F : C, xR — R" are two continuously differentiable mappings satisfying
the following assumptions:

(A1) |b(@,0) — (Y a)| < k||@ — ||, where k €[0,1) is a constant, ¢, € C;, x € R.
(A2) F and b are I'-equivariant, i.e., b(yp, o) = p(y)b(@,®), F(yp,o) = p(y)F (o, ®).
(A3) F(0,a)=0 for all x € R.

An element (x,o) €V x R is called a stationary solution of (2.3) if F(x,a)=0. A
complex number A€ C is said to be a characteristic value of the stationary solution
(x, ) if it is a root of the following characteristic equation

det Ay (1) =0, (2.4)
where
Aey(A) = A[1d — D,b(x,2)(e*1d)] — D,F(%,o)(e* 1d).

A stationary solution (x,) is called nonsingular if det D.F(x,a) # 0, i.e., D,F(x,0):
V' — V is an isomorphism, where F:}V x R — V, the restriction of F on J x R, is
defined by

F(x,0)=F(%,0), x€V, aeR

and D,F(x,o) denotes the derivative of F with respect to x at (x,«). A nonsingular
stationary point (x, o) is called a center if it has a purely imaginary characteristic value.
We will call (x,o) an isolated center if it is the only center in some neighborhood of
(x,) in V' x R.

We also make the following assumption:

(A4) There exists an o€ R such that (0,00) is an isolated center with 1 = if,
o > 0, being a characteristic value of (0, ).

Let Q, :=(0,b) X (fo—c, fo+c) C C. Under assumption (A2), the constants b > 0,
¢ >0 and 6 > 0 can be chosen to be sufficiently small so that for every a € [0y — 9,
o + 0], there are no characteristic values of (0,a) in 0€Q; except iffy for o = ay. Note
that A(g,,)(4) is analytic in A€ C and continuous in o € [ag — 6, 09 + 6], it follows that
detc A(O’“Oié)(/l) # 0 for A€09Q,.

Since the mappings b and F are [-equivariant, for every o« € R and 1€ C, the
operator A(g,,)(4):C" — C" is I'-equivariant and consequently A ,(4)U; C U; for
every isotypical component U; of U =C", j=0,1,...,k.
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We put 4, ;(1) := A0, (4)|y, : Uj — U;. Then we have
k

detc A(..(2) = [ [ dete 4,,;(4).
j=0

Solutions 4 € C of the equation detcA(4) =0, 0 < j <k, will be called the jth iso-
typical characteristic value of (0,0). We also define

c1,j(20, Po) := degp(dete Ay, —s5,(+), 21) — degp(dete Ay, p6,(-), 21)

for 0 < j < k. The number ¢, (o, fo) will be called the jth isotypical crossing number,
for the isolated center (0,cq) corresponding to the characteristic value if.
Since an integer multiple of ify can also be an jth isotypical

cr.j(20, Po) := degp(dete Ay, —s5,(+), Q27) — degp(dete Ay r6,(-), 27),

where Q, :=(0,b) x (/o — ¢, /Py + ¢) C C and the constants b > 0,c > 0 and § > 0
are chosen to be sufficiently small so that there are no characteristic values of (0, )
in 08, except perhaps i/fy for o = 0. In other words, ¢, j(%, fo) = c1 (00,7 fo). If
it Bo is not a jth isotypical characteristic value of (0,09), then ¢/ ;(o, fo) = 0.

In order to establish the existence of Hopf bifurcations at the stationary point (0, o),
we will reformulate the Hopf bifurcation problem for Eq. (2.3) as a I' x S'-equivariant
bifurcation problem (with two parameters) in an appropriate isometric Banach repre-
sentation of G =TI x S'. For this purpose, we make the following change of variable
x(t) =z((p/2n)t) for t € R. Then Eq. (2.3) is equivalent to the following equation:

120 — bz =

2n

5 F(z,p,0), (2.5)

where z, 5 € C; is defined by

z,5(0) =z (t + % 0) , 0Oe(—o0,1].

Evidently, z(#) is a one-periodic solution of (2.5), if and only if x(¢) is a 27/f-periodic
solution of (2.3).

Let us identify (via the exponential isomorphism) R'/Z with the group S', and
consider the Banach spaces ¥~ := L*(S',R"), # := C(S',R") and the Sobolev space
H'(S',R"). It is easy to see that the space ¥~ (resp. #°) is an isometric Banach
representation of the group G = Dy x S! with the action being given by

(7, 0)z(2) = p(y)z(t + 0),

(7,0)eDy x S',  where t€S' and z€ 7" (resp. W"). (2.6)
Define

L:H'(SY,R") — v, Lz(t)=2(t),

1
K:H'(S",R") — 7, Kz(t):/ z(s)ds, zeHYS',R"), tesS'.
0
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Clearly, L and K are G-equivariant with respect to action (2.6). It is easy to show that
the inverse of L+ K, which is denoted by (L+K)~': 7" — %", exists and is compact.
Furthermore, (L + K)~! can be explicitly given by

t 1
(L+K)*lz(t):/0 z(s)ds+/0 (;tJrs) 2(s)ds, zev, teS'.  (2.7)

By using (2.7), we can easily verify that for every £ > 1,

1
(L+K) 'sin2/n-1d = ——— cos2/n - 1d, (2.8)
2/n
1
(L+K) 'cos2/nm-1d = — sin2/n - 1d, (2.9)
2
Define B: # x R x (0,00) — # and N:# x R x (0,00) — ¥~ by
B(z, o, B)(t) = b(z,p, )N : W x R x (0,00) — 77, (2.10)
2n
N(z,0, p)(t) = FF(Z@/;,OC), (2.11)

forze W, (o, f) €R x (0,00).
Let m: % xR* — ¥ be the projection, then it can be shown that z € # is a solution
of (2.5), if and only if z= f(z,0,f), where f:# x R x (0,00) — #  is defined by

f(z0,B)=B(z0,p) + (L +K)"'[N +K(n — B)(z,% ). (2.12)

By Conditions (Al) and (A2), we see that B is a G-equivariant condensing map.
Moreover, (2.12) and the compactness of (L-+K)~! implies that f: % x Rx (0,00) —
W is also a G-equivariant condensing map.

With respect to the restricted S'-action on ¥, we have the following isotypical
decomposition of the space #~

W=aW,
/=0

where W o =W"S "is the S'-fixed point space consisting of all constant mappings from
S! into R", and #', with /> 1 is the vector space of all mappings of the form
xsin2/m-+ycos2/m, x,y V.

For / > 1, we can complexify #", by defining a complex structure on %, as
follows:

i-(xsin2/m-+ycos2/m)=xcos2/nw — ysin2/n-, x,y€V (2.13)

and the isotypical I'-decomposition (2.2) of U = C”" induces the following isotypical
I'-decomposition of #7,

Wi=Wor®NWisr® - SWhke, (21,

where for any fixed 1 < j < k, the isotypical components ¥ ; ,, / > 1 can be described
exactly by the same conditions (bl)—(b4). We refer to [19] for more details.
Since #"o =V, we also have the following isotypical I'-decomposition of #

WOZWO,()@W],O@"'@W&O,
where W ;0 :=V;, 0<j <k
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Furthermore, %7 ,, 0 <j <k, />0, are G-invariant and thus are the isotypical
G-components of the representation 7.

We need a more detailed description of the G-isotypical components #”; , (see [19]
for details). For every isotypical component %" ,, we denote by Y; , the corresponding
irreducible representation of G, (i.e., Y;, is equivalent to every irreducible subrepre-
sentation of ¥, /).

The first type of #; , corresponds to the irreducible four-dimensional representations
Y;, of G=Dy x S, where the action of G on the space R’ ®R?>=C & C is given by

(ya T)(ZI,ZZ) = ('))j‘LjZl, Vﬁj‘c/z2 )a for (’Y’ T) € ZN X Sls
(10, 1)(z1.22) = (0 /7' 20,9/7721),  for (kp,1) €KZy x ST,
where (z1,2) € C x C, 1 < j <[N/2]. We put h=ged(j,N):

(il) If N/h is odd, we define the following element of A;(Dy x S') by
deg,;, = (Zy"") + (D x Z,) + (D) = (Zy x 7).
(i2) If N/h =2 (mod 4), we define
degj/ _ (Z(9 /)) + (D(d /)) + (D(d /)) (Z(d )y,
(13) If N/h = 0(mod 4), we put
deg;, = (2" + (D5 + (D) — (257,
(i4) For an isotypical component W;, on R? = C of Dy x S' which is given by
(p1)z=1'z, (y,1)€Zy xS,
(ky, 1)z =—1"z, (xy,7)EKZy X S,
we define
deg; , 1= (D~§§’/)).

(i5) If N is even then there is a two-dimensional irreducible representation on Y, =
R?> = C of Dy x S' given by

(gsT Z — TKZ» (gyT)EDN/Z X Sla

(g"[)zzf—gfz, (gar)E(DN\DN/Z)XSI'
We put
d,/
deg; , := (D).

(i6) Finally, for N even and j = N/2, there may also be an isotypical component
W np,s corresponding to the two-dimensional representation on Yy / := R2=C
of Dy x S! given by

0z =7y"*z,  (poezy xS,

(ky, 1)z =—y"*1'z,  (kp,1)EKZN X S\
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We put
d,/
degi,/ = (va )).

(j1) For the isotypical component corresponding to the type (al) of the irreducible
representations of Dy, ie., # ;o= V;, where 1 <j <[N/2]. Let h = gcd(j,N)
and m := N/h. If m is odd, we put

deg; := (Dy) — (Zn)
and if m is even, we put
deg; := (Dy) + (D) — (Zp).

(j2) For the isotypical component # ;o = V; corresponding to the irreducible repre-
sentation Yo of type (a2), we put

deg; := (Zy).
(j3) For # ;o corresponding to the irreducible representation Y; o of type (a3), we put
deg; := (Dnp2).

(j4) In the case j = N/2, # ;o = V; corresponds to a one-dimensional irreducible
representation Y; o of type (a4), we put

deg; := (D))

Let us notice that the elements deg;,, which correspond to the G-isotypical
components #;, of the space ¥/, are Z-linearly independent in 4,(G), i.e. they
generate freely a Z-submodule of 4;(G). In this way, for every element u of this
submodule, we can indicate its (j,/) coefficient u;,, which is an integer such that
,u:Zj’ / Wj,r deg; ,. Let us point out, that the elements deg; , are the primary G-degrees
of special G-equivariant maps (called elementary), which are associated with the
irreducible G-representations (see [5]). In the case of the elements deg;,, we will

call the orbit type (Zy'*"), if deg,, is of the type (i1)—~(i3), (DY), if it is of type
(i4), (D), if it is of type (i5), and (D), if it is of type (i6), the leading orbit
type for deg;,. Notice that each of the elements deg; , is uniquely identified by its
leading orbit type. Let us also recall that (Dy) is the neutral (the unit) element for the

Burnside ring A(Dy ), and every element in a € 4(Dy) can be represented in a unique
way as a linear combination

a:ZnK-(K).
(K)

We will say that an element a € A(Dy) is normalized, if a = Z(K) ng - (K) and we
have np, =1, nz, =0, i.e. a=(Dy)+ b, where b does not contain terms corresponding
to (Dy) or (Zy).
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Lemma 2.1. Let (Dy) + by, be normalized elements from A(Dy) and dy =
Z(j,/) mjsdeg; ,, mj, s €Z, where s=1,....k. Then

k
(D) = (Zn)) - > |((Dx) +b5) - > mj s deg;,

s=1 %)

=0 = Zm}-,/,sdegl-/zo,
(0

where the dot *-’> denotes the A(Dy)-multiplication in A1(G).

Proof. Suppose that b € A(Dy ) does not contain the (Dy )-component, i.c. b:Z(K) ng -
(K), and np, = 0. Notice from the A(Dy )-multiplication tables for 4;(G), that in the
case deg; , is of the type (i4)—(i6), the element b-deg; , does not contain any leading
orbit type, so it cannot contribute to cancellation of the elements deg, ,. On the
other hand, if deg;, is of type (il)—(i3), then leading orbit type in b - deg;, can
appear only if b contains component m(Zy), 0 # m € Z. On the other hand, it follows
from the multiplication tables that (Zy) - deg; , = 2(21(\,9/’/)), therefore in the product
[(Dn)+b]-deg; , the term (Z](Vo"/) ) appears with the coefficient 1+ 2m. It is therefore
clear that
k k

(Dx) = (Zn)) - S L(DN) + by) - mydeg, 1=0 = 3 my /. deg,, =0.

s=1 s=1

This completes the proof. [

Let us point out, that it is possible to have b-deg; , =0, for a not normalized element
0 # be A(Dy). For example, consider the case N =3 and put a = 2(D3) — (Z3) +
2(Dy) — 2(Zy). Then, according to the above multiplication tables, we have

a-degl,1 =[2(D3) — (Z3) +2(Dy) — 2(Z )] - [(Z{"") + (D) x Zy)
+(DVy — (2, x Zy)]=0.
For every 0 < j <k and / > 0, we define
aj /(o B):=1d — D.B(0,0, B) — (L + K)~'[D.N(0,2, B)
+K(d — D.B(0, o, f)]|w,,
= (L+K)"'[L(d — D-B(0, 2 )) — D-N(0, e, f)]|w,, (2.14)
where (2, ) € R x (0, 00). |

We have the following technical lemma (see [19]):

Lemma 2.1. For any (o, )€ R x (0,00), we have
aj,()(OC, ﬁ) = -

2n

5 D.F(0,a)|p, (2.15)
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and

aj /(o B)=—7 Ao (i), ¢ =1. (2.16)

1
i’ p

Let A=a+if= (o, f) €R?>=C and iy =y +ifo, we define a special neighborhood
U(r,p) of the stationary solution (0, ) € #~ x R? by

Ur,p):={(zA) e xC:lz|| <r |4— | <p}.

It is clear that U(r,p) is G-invariant with respect to action (2.6). By the implicit
function theorem, we can choose sufficiently small » > 0 and p > 0 such that the
equation

z— f(z,A)=0, zeW, 1eC=R? (2.17)

has no solution (z,4) € 0U(r, p) with z #£ 0 and |1 — A¢| = p.
A G-invariant function ¢: U(r, p) — R, defined by
&z, 4) = |2 = Zol(llzll = ) + |1z]]

is called a complementing function with respect to U(r, p). Define the mapping F;:
U(r,p) = W xR by Fe(z,1) = (z — f(z,4),&(z, 4)), where (z,A) € U(r,p). Then the
mapping F: is a G-equivariant condensing fields, and the G-equivariant degree of the
map F: with respect to the set U(r,p), denoted by G-Deg(Fz, U(r,p)), is well defined
and is an element of 4,(Dy x S') (see [22,29]).

By the excision property of the G-degree, it follows that G-Deg(Fg, U(r, p)) does
not depend on the numbers » > 0 and p > 0 (for sufficiently small » and p), thus if
G-Deg(F¢, U(r,p)) # 0, then (0, 4y) is a bifurcation point of (2.17), i.e., there exists a
continuum C C U(r, p) of nonconstant periodic solution of (2.17) such that (0, 1) € C.

For each 1 < j <k, we define the numbers

1 if signdeta; (o, fo) = —1,

vi(ot, = (2.18)
(- fo) {O if signdeta; o(ao, fo) =1

and
vo(oo, Bo) = sign det ag,o(%, fo),
)
vo(2t, o) = (— 1™ "0 sign det D, F(0, )| 47, (2.19)
The exact value of G-Deg(F¢, U(r,p)) is given in the following lemma:

Lemma 2.2. Assume that (A1)—(A4) are satisfied. Then

k
G-Deg(F, U(r,p))=vo | [[ ((Dw) = vj(20. o) deg))

j=1

X Zcz,j(doaﬁo)degj,/ , (2.20)

Wt
/>0
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where vy := vo(o, fo) and the products are given by the multiplication in the Burn-
side ring A(Dy) and by the multiplication A(Dy) x A1(Dy x S') — A1(Dy x SY),
respectively.

Proof. The proof is similar to that of Theorem 3.1 in [19] and is omitted. [

Theorem 2.1. Assume that (A1)—(A4) are satisfied. Then for every nonzero crossing
number c; (a0, fo), there exist, bifurcating from (0,0, fo), branches of nonconstant
periodic solutions of (2.5). More precisely, if h = gcd(j,N), then

(il) if deg;, = (Zy"") + Dy x Z) + (D) — (Zy x Z,), i.e., Nh = 1(mod 2), then
there are 2 branches of periodic solutions with the orbit type (Zg?"’/)), m = N/h
branches ;vith the orbit type (Dy, x Z;), and m = N/h branches with the orbit
type (D}"));

(i2) if deg, , =(Zy"")+ (DS N (D) — (24D, fve., NJh = 2 (mod 4), then there
are 2 branches of periodic solutions with the orbit type (Z(Of’/)) N/2h branches
with the orbit type (D(d /)) and N/2h branches with the orbit type (D(d /))

(i3) if deg, , =(Z\"")+ (DS )+ (DY) —(Z857), i.e., NJh = 0(mod4), then there
are 2 branches of periodic solutions with the orbit type (Z(g"/)) N/2h branches
with the orbit type (D( Z)) and N/2h branches with the orbit type (D(d /))

(i4) if deg;, = (Dg\?”), then there is one branch of periodic solutions of the orbit
type (D7)

(i5) if deg; , = (05;”) ), then there is one branch of periodic solutions of the orbit

L)y,
type (Dy™");

(i6) if deg;, = (Dﬁ’/)), then there is one branch of periodic solutions of the orbit
type (D).

(0,7)

Proof. The proof is similar to that of Theorem 3.2 in [19] and thus is omitted. [J

To describe the global continuation of the local bifurcation obtained in Theorem 2.1,
we introduce the period p of a periodic solution as an additional parameter. In other
words, we will put p = 2zn/f in system (2.5). With this in mind, we can rewrite
(2.5) as

1200~ Bz ) = PF (i), @21)
where z,5,/, € C; is given by
Zoap(0) =z(t + 0/p), 0€(—o0,1].
Using the same notations as in (2.12), we can define
[z p):= f(z,02n/p)
= B(z,0,21/p) + (L + K) '[N + K(n — B)](z, 2,27/ p).
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Therefore, we can reduce (2.21) to the following fixed point problem
z=f(z0,p), zEW (2.22)
We also need the following assumptions:
(A5) D,F(0,0) € GL(R") for every o€ R.

(A6) The set M* := {ax € R; (0,x) has pure imaginary characteristic values} is com-
plete and discrete in R.

Let us define
M :={(0,0, p);a €R, p >0} C W x R%.

We have the following global symmetric Hopf bifurcation theorem:

Theorem 2.2. Assume that (A1)—(A3), (A5) and (A6) are satisfied. Let S denote the
closure of the set of all nontrivial periodic solutions of (2.21). Then for each bounded
connected component C of S, CNM is a finite set and if

CNM={(0,01,p1),...,(0,04, pg)}.
then

q
Z vo(ots, 210/ pg )es, j (s, 27/ ps) = 0,

s=1

for every £/ =21 and j=0,1,... k.

Proof. Note that every point of C N M is a bifurcation point and by (A6), CNM C
{(0,0, p); 0 € M*,i27/ p is a pure imaginary characteristic value of (0,0)} is complete
and discrete in {0} x R%. Since CNM C C is also bounded, it follows that the set
C N M is finite. Suppose that C N M = {(0,0, p1),...,(0,04, py)} for some positive
integer ¢ > 0. Choose r > p > 0 to be sufficiently small. For each s =1,2,...,q, we
define a special neighborhood U; of (0,0, ps) € # x R x (0,00) by

Uy :={(z, 0 ps) €W x R x (0,00): ||z]| <7, (a — 2)*

+4n’(1/p = 1/ps)* < p*} (2.23)
and a complementing function & : U, — R with respect to Uy by
&z, p) =[x — a0)* +42°(1/p = 1/p 12 (lz] = ) + |=]]- (2.24)

Without loss of generality, we can assume that U; N\ U; =0 for i # j. Put U = U, U
U, U---UU,. Then the set U is open and G-invariant. We can find an open bounded
G-invariant subset Q; C W x R? such that Q; M =0, C\U C Q and (0Q,\U)NS=0.

Put Q = U U Q,. We define a complementing function ¢:Q — R with respect

to Q by
éS(Z7 O(, p)’ fOI‘ (Z’ O(:v p) E US‘:
(z,0, p) =

_ (2.25)
7, for (z,0, p) € Q\ U.
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Define F;:Q — W x R by

Foz0p) =z~ [(z%p),&z%p), (5%p)cQ. (2.26)
Then F'; is a G-equivariant condensing field and F:(z, o, p) # 0 for all (z,a, p) € 0Q.

Consequently, the G-degree G:Deg(F & Q) is well-defined.
We define a homotopy H : Q x [0,1] — #" x R by

H(z,o, p,t) = (z — f(z0, p),(1 — )é(z, 0, p) — tp), (z,00, p,t) € Q x [0,1].

It is easy to see that H(zo, p,t) # 0 for all (z,0, p,)€0Q x [0,1], and thus H
is an_Q-admissible homotopy. Since H(z,o, p,0) = Fe(z,, p) and H(z,a, p,1) =

(z— f(z,0, p),—p) # 0 for all (z,a, p) € Q, it follows that G-Deg(F¢, Q) = 0.
Fiza p)=(~ f(zop).r)#0, forall (z,0,p)€Q\U.

Let F g = F ¢|lg,- By the excision and additivity properties of G-degree, we conclude
that

q
0=G-Deg(F= Q)= G-Deg(Fe,Uy). (2.27)

s=1

On the other hand, by Lemma 2.2, we have

k
G-Deg(Fe,, Us) = vo(as, 27/ ps) | [ [ ((Dw) — vj(o, 2/ ps) deg;)
j=1
< [ > cr (o5 2m/py)deg; , | - (2.28)
il
/j>0

Consider the coefficients v;(x,27/ps) corresponding to deg} of type (j2) (i.e. deg; =
(Zn). If vi(o,27/ps) = —1 for some s, then by (AS), v;(ay,2m/ps) = —1 for all
s = 1,...,q. Consequently, (Dy) — (Zy)) can be factored out of (2.28). Since
H#J.,((DN) — vj(ocs,2n/ps)degj) is a normalized element of A(Dy), it follows from
(2.27), (2.28), and Lemma 2.1, that for every / > 1 and j=0,1,...,k,

q
Z vo(ots, 21/ pg )es, j(ots, 210/ ps) = 0.

s=1

The proof is complete. [

Theorem 2.3. Assume that (A1)—(A3), (AS) and (A6) are satisfied. Suppose that for
some >0 and some 0 < j <k, deg; , is an orbit type consisting of a single closed
subgroup H;; of Dy x S'. Let S/ denote the closure of the set of all nontrivial peri-
odic solutions of (2.21) with the orbit type deg; ,. Then for each bounded connected
component C*', C/' N M is a finite set and if

CH M ={(0,a1, p1),....(0,04, pg)},
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then
q

> voo 21/ py)e, j (o, 27/ p) = 0.

s=1

Proof. Since C// NM is complete and discrete in {0} x R?, CH'NM is a finite set, i.e.,
CH M ={(0,a1, p1),...,(0, o, Pg)} for some positive integer g > 0. Suppose that for
every s =1,2,...,¢q, we have defined a special neighborhood U, and a complementing
function &, which are given by (2.23) and (2.24), respectively. Then (2.28) holds for
every s =1,2,...,q. In particular, the degj’ ,-component of G-Deg(F & Uy) 1s equal to

k
VO(OC.sazn/Ps) H((DN) - V](ds,zﬁ/]?s)degj) C/,j(dsazn/ps)degj,/'
j=1

Since deg; , is an orbit type consisting of a single closed subgroup H; , of Dy x St it
follows that _“//HN is G-invariant and f W H xR % (0,00) — WHio Let U;{"K =U,N
yHic and & = &l ye» then U/’ is a special neighborhood of (0, oy, py) in %+ and
&' isa complementing function with respect to U, By using a similar argument as
in Theorem 2.2, we can show that

q
> G-Deg(F 4, U ) =0, (2.29)
s=1

where F gt =F: AT

From the construction of the G-degree (cf. [8]), we see that the deg; ,-component

of G-Deg(F . et U’ ) is equal to the deg; ,-component of G-Deg(F,, Us). Therefore,
(2.29) implies that

q k
> vo(os2m/py) | [T ((Dn) — vi(o. 2/ ps) deg)) | er.j(os. 2/ py) deg; , = 0.
s=1 j=1
Thus, we have
q

> vo(os 21/ py)er, j (o, 27/ p) = 0.

s=1

The proof is complete. [

Finally, we consider the restricted Zy x S'-action on %~ and the Zy x S'-equivariant
bifurcation problem (2.21). We have the following global symmetric Hopf bifurcation
theorem. We refer to [29] for the proof.

Theorem 2.4. Assume that (A1)—(A3), (A5) and (A6) are satisfied. For 0 <j <
N —1, let S’ denote the closure of the set of all nontrivial periodic solutions of (2.21)
in which each periodic solution z(t) satisfies p(e'®"N))z(t+ j/N)=z(t). Then for each
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bounded connected component C/, C/ "\ M is a finite set and if

M ={(0,a1, p1),.... (0,04, pg)},

then

q
> vo(o 21/ py)e,j (o, 27/ p) = 0.

s=1

3. Hopf bifurcations in a ring of identical oscillators

In this section, we consider a ring of identical oscillators with identical coupling
between adjacent cells. Such a ring, which was studied by Turing (cf. [25]), provides
models for various situations in biology, chemistry and electrical engineering. The local
Hopf bifurcation of this Turing ring has been extensively analyzed in the literature, see
[1,23,29] and references therein.

We will propose models of neutral functional differential equations as the kinetics and
consider the delayed coupling and diffusion in the system. We will show how the tem-
poral delay (both in kinetics and coupling) and the dihedral symmetries of the system
may cause various types of oscillations in the case where each cell is described by only
one state variable. In particular, we will prove the existence of large amplitude phase-
locked and synchronous periodic solutions in these ring-structured neutral systems.

Let N >3 be a positive integer. We consider now a ring of N identical cells that
are coupled by diffusion along the sides of an N-gon (see Fig. 1 below).

We assume that the state of jth cell at the current time is completely specified by
the value of one state variable at that instant. Each cell may be regarded as a chemical
system and the state variable of the jth cell, denoted by x/, may be regarded as
the concentration of the chemical substance in the jth cell. We assume that coupling
between cells occurs and the concentrations x/(¢), j = 1,2,...,N, of N cells satisfy

Fig. 1. Ring of N identical cells coupled by diffusion along the sides of an N-gon.
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a system of neutral functional differential equations
dr, . . . - _
= O -] = 7 (da) + k@ (4 -2, 3.1)

where j=1,2,...,N is expressed mod N, ¢ € R denotes the time, o € R is a parameter,
and b, [ :C; xR — R, C; := C((—o0,1],R), are continuously differentiable functionals
which represent the kinetics within each cell, and K(«): C; — R is a bounded linear
functional such that the mapping K : R — L(C;,R) is continuously differentiable. The
operator K(o) represents the coupling strength and the coupling term

K@) (x" =) + K (e =)

in (3.1) is assumed to obey the ordinary Fickian law of diffusion.
We assume that

(HI) f:C:xR — R is completely continuous, K(«): C; — R is compact for all o € R
and there exists a constant k£ €[0, 1) such that

b(@,0) — b(ho)| < kllo = I, @ peC, 2ER
(H2) f(0,0)=0 for all € R.

By (H2), we see that (0,0)€RY x R is a stationary solution of (3.1) and the
linearization of (3.1) at (0, ) reads

%[xf(r) = Dyb(0 x| = Dy (0,20 + K(o) (/™ 457! = 2], (3.2)

where j =1,2,...,NmodN. Therefore, the number A€ C is a characteristic value if
the following characteristic equation of (3.1) (see [12]):

dete 4,(2) =0 (3.3)
is satisfied, where for each « € R, A€ C, 4,(1):CY — CV is given by

Ay(2) := diag(A[1 — D,b(0,0)e* ] — D, £(0,0)e* ) — 3(2, ), (3.4)
where 6(/,0):CY — CV is defined by

{6(J,0)z}; = K(a)[e" (Z/ 1! + 271 — 227)],

for j=1,2,...,NmodN and z = (z',22,...,2¥)eCV.
Let &y := ¢ 2N, Then we have

cV=cCclecfo- ---oCy_,, (3.5)
where for j =0,1,...,N — 1, the subspace Cj-v is given by
—{a.8.¢.....e7"; zec}. (3.6)
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Put
@,(2) 1= A[1 — D,b(0,2)e”] — D, f(0, )™ (3.7)
Then for any zeC, 0 <j <N —1and | <k <N, we have

{4,001, o &0 P2k
:{wa(},)gg\i‘ﬂ)/ _ K(a)[e/L(ég + 55\/[6*2)] _ 255\/[(71”]}2
z{m(i) — K()e"[& + &, — 2]}5%‘*1)1‘2
— 2 . G elk—1)j
=[w,(1) + 4sin”(nj/N)K(x)e" 1&y V2. (3.8)
This implies that 4,(4)C} C C} and consequently we get the following lemma:

Lemma 3.1. Let @, (1) be given by (3.7). Then

N—1 .
dete 4,1 = [ | [wa(/l) + 4sin’ %’ K(a)e”
=0

and, consequently, 1€ C is a zero of (3.3) if and only if there exists a j€{0,1,...,
N — 1} such that

i) 1= () + 4sin® % K(@)e =0. O (3.9)

Remark 3.1. We call (3.9) the jth characteristic equation of (3.1). Note that sin?
(nj/N) = sin*(n(N — j)/N), 0 <j <N — 1. 1t follows that every zero of pi(J,a),
Jj # 0, N/2, is of even multiplicity. This is due to the symmetry in the system, which
forces characteristic values to be multiple.

We now make the following assumptions:

(H3) There exists an oy € R such that f'/(O, ) # 4K (o) sin’(nj/N) for every j =
0,1,...,[N/2], here and in what follows, }_” /(O,a) denote the derivative of j_’ with
respect to the first argument at (0, o) and K(o) := K(a)1.

(H4) There exist some j € {0,1,...,[N/2]} and positive constants fo > 0, ¢ > 0 and
0 > 0 such that

(1) p;(if,a)=0 for some (o, f) € [otg — &, 000 + €] X [ — 9, fo + 0] if and only if x =y

and = fo;

(i1) pj(u+iv,00) = 0 for some (u,v) € 02 with Q := (0,¢) x (fo — 6, o + 0) if and

only if u=0 and v = f.

It is straightforward to obtain the following:



330 W. Krawcewicz et al. | Nonlinear Analysis: Real World Applications 5 (2004) 309354

Lemma 3.2. Assume (H1)—(H4) are satisfied, then the jth isotypical crossing number
for the isolated center (0,00) corresponding to the value ify is equal to

c1,j (20, Bo)
2[degp(pj(- %0 — 9),2)
—degg(p;(,00 +0), Q)] if 1<j<[N/2],
=g degg(p;(-,00 — 9),€2) (3.10)
—degg(pi( a0 +0),Q) if j=0, or
N is even and j = NJ2,

where pi(L,a) =w, (L) + 4 sin?(7j/N)K (o)e’".

Now, we define an orthogonal representation p:Dy — O(N) of Dy on RY by
(Enx)ji=xmq, &y =,
x=(x1,x,...,x05) €RY, j=L1L2,...,N(modN).

Then it is easy to see that (3.1) is Dy-equivariant.

It is easily verified that with respect to restricted Zy-action, the Zy-isotypical
decomposition of the complex representation CV := RY + iRY is given by (3.5) and
(3.6). Since x sends q\/ onto CV j» where —j is taken mod N, CV has the following
isotypical decomposition

CN:U()@Ul@Uz@"-EBU(N_])/z if N is odd,

(rkx)j == xXn—j, 311

CN=Uy@U @U@ - ®Uys_1 ®Uyp if N is even,
where

Uoz{(z,z,...,z)E(EN: z€C},
U={(1,&,....80 " zeC}

U{(L &, L&Yz zeC), 1< <N2
and if N is even,
Unjp = {(1, N2, &Nz zeCh = {(1,—1,...,1,—1)z: z€ C}.

Every irreducible subrepresentation of U;, 1 <j < N/2, is equivalent to the irre-
ducible (real) four-dimensional representation on C x C:

YWz1,2) = 21,97 ), K(z1,22) = (22,21), Y EZy, z1,22€C.

Hence, for any fixed positive integer / > 0, the above irreducible representation
corresponds to the irreducible (real) four-dimensional representation of G = Dy x S'!
on C x C:

(1,1)(z1,22) = (/121,971 z),  for (p,7)€Zy x S,

(ky,t)(z1,22) = (y*j‘cfzz, yf‘c‘”zl ), for (ky,t)€eKZy X Sl, (3.12)
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where (z1,2,) € C x C, 1 < j < [N/2]. Put h = gcd(j,N), then if N/A is odd, we have

deg;, = (Zy"") + (Dy x Z,) + (D) — (2 x Z) (3.13)
if N/h =2 (mod4), we have

deg;, = (Z"") + (DS;) + (D5 — (25" (3.14)
and if N/h = 0(mod 4), we have

deg; , = (2" + (D5) + (DS ") — (285", (3.15)

When N is even, every irreducible subrepresentation of Uy, is equivalent to the
irreducible two-dimensional representation

z, g € Dyp2,
gz =
—z, g€Dy\ Dyp.

Hence, for any fixed positive integer / > 0, the above irreducible representation cor-
responds to the irreducible two-dimensional representation of G =Dy x S' on C x C:

(9.0)z=1"z, (g9,1)EZyp x S",

(g>’C)ZZ_T(Z> (g,'C)G(ZN\DN/z) XSI' (316)
Therefore, we have
degy , = (D). (3.17)

By virtue of Theorem 2.1 and Lemma 3.2, we have the following

Theorem 3.1. Assume that (H1)—(H4) are satisfied. If ¢ (%0, Bo) # 0, then the sta-
tionary point (0,09) is a bifurcation point of (3.1) and several branches of nonconstant
periodic solutions bifurcate from (0,9, o). More precisely, if h := gcd(j,N), then

(il) if 1 < j < N/2 and N/h = 1 (mod?2), then there are at least 2 branches of peri-
odic solutions corresponding to the orbit type (Zg\?"’l)), N/h branches of periodic
solutions corresponding to the orbit type (D x Z,), and N/h branches of periodic
solutions corresponding to the orbit type (ch’l));

(12) if 1 <j<N/2 and N/h = 2(mod4), then there are at least 2 branches of
periodic solutions corresponding to the orbit type (Z%)”l)), N/2h branches of

periodic solutions corresponding to the orbit type (Dgz’l)), and N/2h branches

of periodic solutions corresponding to the orbit type (D%’l));

(13) if 1 <j<N/2 and N/h = 0(mod4), then there are at least 2 branches of
periodic solutions corresponding to the orbit type (Zg\f"’l)), N/2h branches of
periodic solutions corresponding to the orbit type (Dg‘:l’l) ), and N/2h branches
of periodic solutions corresponding to the orbit type (ﬁ%’l));

(i4) if N is even and j = NJ2, then there exists at least one branch of periodic
solutions corresponding to the orbit type (DNE\‘;’I));

(15) if j=0, then there exists at least one branch of periodic solutions corresponding
to the orbit type (Dy X Zy).
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Remark 3.2. We note that the obtained branches of periodic solutions are subsets of the
so-called Fuller’s space BC(R, R") x R2. For an obtained branch of periodic solutions
and a point (x,o, ) on it with f >0, p =2xn/f is a period of x, for the sake of
convenience, we will call the periodic function x € BC(R,R") a periodic solution on
the branch and the p > 0 a corresponding period of x. It can been shown that if
for any positive integer k > 1, ikfly is not a characteristic value of the stationary
point (0,0), then for every branch of periodic solutions bifurcating from (0, o, o)
and every periodic solution x(¢) on it, the corresponding period p > 0 of x is also
a minimal period of x. We refer to [6,20,21,29] for more detailed discussion in this
aspect. Let Wy := C(S',RY). Then the orthogonal representation p:Dy — O(N) of
Dy on RY induces an isometric Banach representation of Dy x S' on Wy:

(7, Nz(t) = p(Nz(t +0)  (7,0)eG:=Dy x S', teS" and z e Wy.

We say that the obtained branch corresponds to the orbit type (H) in Wy, denoted
by Cu)y, if for every periodic solution x(¢) belonging to the branch and with a corre-
sponding period p > 0, z € W)y given by z(¢t)=x( pt) satisfies G, ~ H, i.c., the isotropy
group G, of z is conjugate to H in G.

The following Lemma 3.3 is obvious.

Lemma 3.3. If y€ Zy, then

k=771, k=« (3.18)
Lemma 3.4. For every j € Z, the conjugacy class (Zg\f”l)) contains exactly two closed
subgroups of Dy x S':

ZyY ={(ny)yeby x Syezy}, 7y "V ={(ny7)eDy x Sy e Zy}.
Proof. By definition, we have

2y = {(. )€ Zy x S50,0) =1 =7/} = {(7)) € Dy x Sy €2},
For every (g,0) € Zy X SlyeZy, by Lemma 3.3, we have

(9.0 0" = (grg™" 7)) = (1.97)

and

1

(kg,0)(y, 7 )reg, )" = (gpg~"1c,97) = (eyrc,p)) = (771,97,

Therefore, Zg\?*f’l) = {(3,y/)eDy x S';7€Zy} is conjugate to Zﬁﬁ””, and
(2" contains exactly two closed subgroups Z\/"", Z\/~"" of Dy x S'. The proof is
complete. [

Lemma 3.5. If h|N, then the closed subgroup 7, x 7, of Dy x S' is a subgroup of
every element of the conjugacy classes (D, X Z1) and (Dﬁf’l)).
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Proof. By definition, it is easy to show that
Dy x Zy ={(3,1);7 € Zn} U{ (s, 1);7 € Zy},
DY ={(n iy €Zi} U{(ky. =15 T € 24}
For every (¢g,0)€ Zy x S' and (y,1) € Z;, x Z,, by Lemma 3.3, we get
(9.0, (9. 0)" = (grg . )=, 1)
and
(19, 0)(7, )19, 0)™" = (rgyg™ "%, 1) = ey, 1) = (371, ).

Thus, Z, x Z, is a subgroup of each closed subgroup conjugate to D, x Z; or Dgf’l),
and this completes the proof. [

Lemma 3.6. If 2k|N, then the closed subgroup Z(d ) = ={(y, 1), (éamy,—1):y € Zs} of
Dy x 8" is a subgroup of each closed subgroup conjugate to one of the following
closed subgroups:

DS = {(0. 1), oy, = 1), (19, 1), (5217, — 1 )37 € Zy},
DS = {(5, 1), (Ean = 1), (9, = 1), (kEai 137 € 24},
DSy = {0, 1), o — 1), (kEny 1), (En Eny, =1 )57 € Zy ).
Proof. The proof is similar to that of Lemma 3.5 and is omitted. [

Lemma 3.7. If N is even, then the conjugacy class (D~§\§l’1)) contains exactly one closed
subgroup given by

DY = {0 D (Enr, =10, (9, =1, (k8w ;9 € Zya ).
Proof. By definition, we can easily verify that
DYV ={(y.1) €Dy x S';d(y) =1}
= {1, Cnvy, =1, (9, = 1), (8w, 157 € iy}
For every (g,0) € Zy x S', by using the fact that g° € 2y, we can show that
(90D (g.0)” € DYV, (9. 0)DY (g, 0)”" < D

Therefore, the conjugacy class (Df\?’l)) contains only one closed subgroup D%’l). The
proof is complete. [

Theorem 3.2. Assume that (H1)—(H4) are satisfied. If ¢, (a0, po) # 0, then the sta-
tionary point (0,00) is a bifurcation point of (3.1) and several branches of nonconstant
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periodic solutions bifurcate from (0,9, o). More precisely, if h := gcd(j,N), then

1 <j< , then
i) if 1 <j<N/2, th
(jla) there are at least 2 branches of periodic solutions on which any periodic
solution x(1) = (xx(¢))Y_, satisfies

Xpo1 |+ /P =x¢(t) and x;_, t+j—p = xx(2), (3.19)
N N
respectively, where k =1,2,...,N (modN) and p > 0 is the corresponding
period of x;

(j1b) if N/h = 1(mod 2), then there are at least 2N/h branches of periodic solutions
on which any periodic solution x(t) = (x¢(t))}_, satisfies

Xe_wn() =xe(t),  k=1,2,...,N(mod N); (3.20)

(jle) if N/h = 0(mod?2), there are at least N/h branches of periodic solutions on
which any periodic solution x(t) = (x;(1))}_, satisfies
e/ (t v g) —x(t), k=1,2,...,N (modN), (3.21)
where p > 0 is the corresponding period of x.
(j2) if N is even and j = NJ/2, then there exists at least one branch of periodic
solutions on which any periodic solution x(t) = (x;(¢))}_, satisfies

Xp—1 (t + g) =xx(1),

Yy s (r n g) — (1), k=1,2,...,N(modN), (3.22)
where p > 0 is the corresponding period of x;

(j3) if j=0, then there exists at least one branch of periodic solutions on which any
periodic solution x(t) = (x;(t))_, satisfies

xi(1) =x(t) = - - = xn(2). (3.23)

Proof. By virtue of Theorem 3.1, we know that (0,0) is a bifurcation point and
(i1)—(i5) in Theorem 3.1 are satisfied.

Let K C G =Dy x S' be a closed subgroup. If there exists a branch of periodic
solutions corresponding to the orbit type (K) and bifurcating from (0, o, fo), then,
corresponding to |G/K| closed subgroups in the conjugacy class (K ), there must exist
|G/K| different branches of periodic solutions corresponding to the orbit type (K) and
bifurcating from (0, o, fp) and each branch corresponds to a closed subgroup in (K).
We say that a branch Cy corresponds to a closed subgroup H in the conjugacy class
(K), if the branch Cy is corresponds to the orbit type (K), and any periodic solution
x(t) = (x(¢))}_, on the branch Cy, z € C(S',RY) given by

2(t) = (xa(pt),....xn(pt)) (3.24)

has the isotropy group H, i.e., G, = H, where p > 0 is the corresponding period
of x. Therefore, if x(¢) = (x(x(¢)){_, is a periodic solution on the branch Cy and has
a corresponding period p > 0, then z € C(S',RV) given by (3.24) satisfies

(9.0)z(1) = p(9)z(t + 0) = 2(¢),  V(g,0) € H.
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Put h=ged(j,N). If 1 <j < N/2 and N/h = 1 (mod N), then Theorem 3.1(il) implies
that there exist two branches of periodic solutions bifurcating from (0,a, o) and
corresponding to the orbit type (Zg\?f’l)). By Lemma 3.4, we see that the conjugacy
class (zﬁﬁf’” ) contains two closed subgroups Zg\?”l) and Z%L"’l), and hence those two
branches corresponding to the orbit type (Z;gf’l)) correspond to the closed subgroups
Z%)”l) and Zg)*f’l), respectively. For every periodic solution x(¢) = (xk(t));{\/:1 on the
branch Cz“,’f’”’ if p> 0 is the corresponding period of x, then z € C(S',R") given by

(3.24) satisfies

(1:9))2(0) = p(7)z (t + ]]\,) =z(t), Vy€Zy.
In particular, we have

(&n> EN2(t) = p(&)z (t + ]<,) =z(1), iv=e""Nezy.
That is,

Z1 <t—|— 1{/) —2(1), k=1,2,...,N(modN).

Hence, we obtain

X1 <t—|—]]5> —x(t), k=1,2,...,N (mod N).

For every periodic solution x(¢) = (xk(t))ﬁc\’:1 on the branch Cz(o,j,l), if p >0 is the
N

corresponding period of x, then a similar argument implies that

X1 (:—%’) —x(t), k=1,2,...,N(modN)

and hence

Xern (t—i—]]\];) —x(1), k=1,2,...,N (mod N).

The rest of Theorem 3.2 can be proved in a similar way and thus is omitted. [

Remark 3.3. Following Alexander and Auchmuty [1], we call the periodic solution
obtained in Theorem 3.2 synchronous oscillations if (3.23) holds and phase-locked
oscillations if one equality of (3.19) holds for every k=1,...,N (mod V). Intuitively,
synchronous oscillations occur when all the concentration oscillate in phase and phase-
locked oscillations are those where each concentration oscillates just like the others
except not necessarily in phase with each other. We refer to [1,7,9,21,26,29] for more
details.

To detect the global continuation of the branches of periodic solutions obtained in
Theorem 3.1, we further assume that

(H5) f/(O,fx) + 4K (o) sin®(7j/N) for every € R and j =0,1,...,[N/2].
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(H6) For every j=0,1,...,[N/2], the set
M; :={0eR; p;(io,a)=0 for some ¢ > 0}

is complete and discrete in R.

From (HS) and Lemma 3.1, we can easily see that for any a € R, 0 is not a char-
acteristic value of (0,a). In other words, for every « € R, we have

D,F(0,0) # 0, (3.25)
where F:RY x R — RV is given by
Fina)= F (<o) + R 27" = 20)),
x=0xLx% V) eRY, j=12,....N.
Therefore, (AS5) is satisfied. By (H6), (A6) is also satisfied.
In particular, (3.25) implies that
F(0,0) =DF(0,0)|y, #0, VacR,
where ¥y := (R ={(c,c,...,c); c€R}. Therefore, by (2.19), we have
vo(a, 2/ p) = (—1)™ "osign det F(0, )|y, = —sign f (0,2) # 0. (3.26)

Since f:R? — R is continuously differentiable with respect to the first argument,
(3.26) implies that vo(a,27/p) is a constant (1 or —1) for every (o, p) € R x (0,00).
Thus, by Theorems 2.3 and 2.4, we have the following global symmetric Hopf bifur-
cation theorem.

Theorem 3.3. Assume that (H1), (H2), (H5) and (H6) are satisfied. For each j =
0,1,....[N/2], put M;={(o, p) ER x (0,00); p;(i2m/p,a) =0 for p > 0}. If there
exists a j€{0,1,...,[N/2]} such that for any finite subset N; C M,

> crj(a2n/p) #0,
(cc,p)GN

then for each (o, p) GM_/ there exist, bifurcating from (0,a, p), unbounded branches
of nonconstant periodic solutions of (3.1). More precisely, we have

(j1) if' 1 < j < NJ2, then there are at least 2 unbounded branches of periodic solutions
on which any periodic solution (xx(t))Y_, with a corresponding period p >0
satisfies

Xpi1 (tJr J;) =x;(t) and xp_ <t+ J]\f) = xx(2),

respectively, where k=1,2,...,N (mod N);

(j2) if N is even and j = NJ2, then there exists at least one unbounded branch of
periodic solutions on which any periodic solution (xx(t))}_, with a corresponding
period p > 0 satisfies

Yoo (r+ g) — (), X (1+ g) —x(1), k=1,2,...,N(modN);
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(j3) if j =0, then there exists at least one unbounded branch of periodic solutions
on which any periodic solution (x(1))_, satisfies

x1(t) =x(2) = - - - = xn(2).

4. The coexistence of multiple slowly oscillating periodic solutions

In this section, as a special example, we consider the following neutral functional
differential equation:

d
3, () — axi(t = )] = d[(xie1 (1) — gxea(t = 1))
A (1 (1) = qui—1 (2 = 1)) = 200 (t) — gt — 7))

—axi(1) — agxi(t — r) — gu(t) — qu(t =), (4.1)

where k=1,2,...,Nmod N, N > 3 is a positive integer, a, d, r are positive constants,
g:R — R is continuously differentiable with g(0) =0, ¢g€[0,1) is the bifurcation
parameter.

We remark that the continuous version of (4.1)

g t =d ¢ t
S lu(tx) — qult = 1)l = d <5 [u(tx) — gult — 7))

—au(t,x) — aqu(t — r,x) — glu(t,x) — qu(t — r,x)],

where x € S!, has been studied by Wu and Xia (cf. [28,26]), and (4.1) arises from
coupled transmission lines (cf. [22]).
Let O:R — R be a continuously differentiable function such that

(1) Q(a) =0 for all « < 0.
(i) Q'(a) > 0 for all o > 0 and lim, .., O(2) = 1.

Then we can reparametrize system (4.1) to get
& i)~ 0 — )
=d[(xi41(2) — Q()Xps1 (1 = 7)) + (Xp—1(1) — Q(@)xx—1(1 — 7))
— 2(xx (1) = Q(a)xie(t = 1)] — axp(t) — aQ(o)xi(t — r) — g(x(t)

— O(e)xi(t — 1)), (4.2)

for k =1,2,...,NmodN. Then for any g €[0,1), (x;(¢))y_, is a periodic solution of
(4.1) with g if it is a periodic solution of (4.2) with « = Q7 !(¢) = 0.
Let Cy := C((—00,0],R). Define b, f: Cy x R — R by

b(p,2) := Q()p(=r), @eCy
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and

(@, ) := =ap(0) — aQ(a)p(=r) — g(¢(0) = O()p(=7)), ¢ € Co,
respectively, and for every o« € R, define K(a): Cy — R by

K(a)p = d(9(0) — Q(2)p(=r)).
Then (H1) and (H2) are satisfied and (4.2) can be rewritten as

d
37 L) = b(0x ) )] = f (G ) 0) + K@) (G e+ Gj—1)0 = 2087 )0),

where j=1,2,...,NmodN.
In what follows, for the sake of convenience, we put

g'(0)=v. (4.3)
Then the characteristic equation at the zero solution of (4.1) takes the form

detc 4(4) =0, (4.4)
where for each 1€ C, A(4):CY — CV is given by

A(J) = diag(A(1 — ge™) +a+age ™" + v(1 —ge™")) — 5(1) (4.5)
in which the discretized Laplacian §(1):CY — CV is given by

{600z} = dI(1 = ge™")zjer + (1 — g™ ")z — 2(1 — ge™7)z/],

for z=(z1,22,...,zy)T €CV, j=1,2,...,Nmod N.
Corresponding to Lemma 3.1, we have

Lemma 4.1. Let w,(A) := A(1 —qge ") +a+aqge ™ +v(1 — ge=*"). Then

N—1 .
det A1) = [wq(i) +4d(1 — ge=*")sin? % .
j=0

Therefore, . €C is a zero of (4.4) if and only if there exists a j€{0,1,...,[N/2]}
such that
=AY i 2 TEj
pi(4.q) == wy(4) +4d(1 — ge” ") sin N 0. (4.6)

Let A =1f with # > 0. Substituting it into (4.6), we get

4.7)

{ gP sin pr — g(a — v + 4d sin®(nj/N)) cos fr = a 4+ v — 4d sin*(j/N),
g(a — 4d sin®(1j/N)) sin fr + gf cos fr = p.



W. Krawcewicz et al. | Nonlinear Analysis: Real World Applications 5 (2004) 309354 339
Since D := ¢*f* + ¢*(a — v + 4d sin®(1j/N))* = ¢*[f2 + (a — v + 4d sin*(nj/N))?] > 0
for g €(0,1), it follows from (4.7) that

sin fr 2aqf

cos fir qlf? — a* + (v — 4d sin*(mj/N))*]

1
)

or equivalently,

ﬁZ — & + (V — 44 Sil’lz(ﬂ:j/N))z

t =
cot fir 2af

> B4 (a+v—4dsin*(nj/N))?
B? + (a — v + 4d sin®(nj/N))?
If there exists a j€{0,1,...,[N/2]} such that

(4.8)

v < 4d sin? % <a+, (4.9)

then it is easy to show that for any real number f > 0,
B* + (a+ v — 4d sin®(nj/N))?

B? + (a — v + 4d sin®(nj/N))?

For each fixed j€{0,1,...,[N/2]} so that (4.9) holds, put

B — a® + (v — 4d sin’(nj/N )}
2af .

€(0,1). (4.10)

hi(B) ==
Then we have

hi(0+)=—o0, hj(+00)=~+00
and

4af? — 2a(f? — a® + (v — 4d sin*(mj/N))?)

() = 4a2p?

P+~ (v—4dsin’(nj/N))
= 2ap?

2 S22 2
a® — (v —4d sin“(wj/N)) -

2 0.

Therefore, there exists a sequence of positive numbers {f;;}°, such that

(1) Bjx, k=0,1,..., satisty the first equation of (4.8);
(2) Bro<Bin < <Pjx<-— 00

(3) knfr < Bjx < (k+1)m/r, k=0,1,..., and hence
2r
?7

2r < 2m/Bjo < oo, 1 <2n/Bix < k>1.
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Substituting this f3;; into the second equation of (4.8), and using (4.9) and (4.10),
it follows that

2+ (a+ v —4d sin’(mj/N))?
2+ (@ — v+ 4d sin’(j/N )P

qjk = €(0,1), (4.11)

where 0 < gj0 <gj1 <+ <qjx <-- — oo.
If, in addition to (4.9), we assume that

a > % + <v — 4d sin® ?\{)2 , (4.12)
then
T ro| n? 5 .2 T :
hj (;) = [M—a + (v—4dsm N)] <0
and hence,

7I<ﬂ <7r
-~ 0 7’
2r / r

which yields
2r < 2m/Bjo < 4r.

Let A=/(g) be a smooth curve of zeros of (4.6) so that A(g;«)=ip; . Differentiating
(4.6) with respect to ¢, we get

) —a+v—A4dsin’*(nj/N)
e’ +r(J 4 a+v—4dsin*(nj/N))e —q
It follows from (4.6) that
i _ 4V —a+v—4dsin’(mj/N))
J4a+v—4dsin*(nj/N) ’

Z(g)=

therefore, we have

A —a+v—4dsin*(nj/N)

g(J. — a+ v — 4d sin*(nj/N))
)+ a+v—4dsin’*(nj/N)

g)= :
+qr(A—a+v—4dsin*(nj/N)) — q

This leads to

1
signRe 2'(q)|,=4,, = signRe
9=4j.k )»/(q) =

. q q
=signRe < gr + —
8 {q tatv—adsin’(jIN) J—a+tv— 4d sinz(nj/N)}

9=4,.kA=1Bjk
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1 1
=signRe ¢ r + - 3 — = )
iBix+a+v—4adsin’(nj/N) ifjx —a+v—4dsin’(nj/N)

. a+ v — 4d sin*(nj/N) N a — v+ 4d sin*(1j/N)
= r
s 2+ (a+v—4dsin’(nj/N))? B2+ (a— v+ 4dsin’(mj/N))>

, 2af?, + 2a(a® — (v — 4d sin*(nj/N))*)
=sign< r+ L 2
[sz',k +(a+v—4dsin (nj/N))z][ﬁjz.ﬁk + (a — v+ 4d sin”(1j/N))?]

=1>0.
Let us summarize the above discussions for the sake of later reference.

Lemma 4.2. Assume that there exists a j€{0,1,...,[N/2]} so that (4.9) is satisfied.
The following statements hold true:

(i) (4.6) has a sequence of purely imaginary solutions £if;; with 0 < ;o < ;1 <
Bi2<--- for g=q;r€(0,1) with 0 < g0 <qj1 <--- <qjp <--+ — 00 given
by (4.11);
(ii) if A(q) is a smooth curve of zeros of (4.6) with A(q;)=ip;x, then Re X'(q;x) > 0;
(iii) 2r < 27/B0 < 00, 2r/(k + 1) < 2m/Bis < 2rfk, k > 1;
(iv) if, in addition to (4.9), we assume that (4.12) holds, then

2r <2m/Bj0 < 4r.
It is straightforward to obtain the following technical result.

Corollary 4.1. Assume that there exists a j€{0,1,...,[N/2]} such that (4.9) holds.
Then the jth isotypical crossing number for the isolated center (0,q;) (k = 0) cor-
responding to the value i is equal to

2[degp(pj(-qjk — 0),Q2)
—degp(pj(- gk +0), D] =2 if 1<) <[N/2],
(k> Bi) = § degg(p;( g — 0),€2)
—degy(pi(-qjk +6),2)=—-1 if j=0, or
N is even and j = NJ2,

where pi(4,q)=w(A)+4d(1 — ge~ ") sin®(nj/N), Q=(0,b) x Bjxk—c,Bix+c)cC
and the constants b > 0,c > 0 and 0 > 0 are sufficiently small.

By Theorem 3.2 and Corollary 4.1, we have
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Theorem 4.1. Assume there exist a je {0,1,...,[N/2]} such that v < 4d sin*(nj/N)
< a+v. Then the stationary point (0,q; ), k = 0, is a bifurcation point of (4.1). More
precisely, if h:= ged(j,N), then

(Gl) if 1 <j < NJ2, then
(jla) there are at least 2 branches of periodic solutions on which any periodic solu-
tion (xx(t))}_, with a minimal period p satisfies

Jjp jp
Xk+1 (f+ N) =x;(t) and xp— (f+ N) = x (1),

respectively, where k =1,2,...,N mod N;
(jlIb) if N/h = 1(mod2), then there are at least 2N/h branches of periodic solutions
on which any periodic solution (x(¢))Y_, satisfies

() =x:(2), k=1,2,....,N(modN);

(jlc) if N/h = 0(mod2), there are at least N/h branches of periodic solutions on
which any periodic solution (xx(t))}_, with the minimal period p satisfies

Xe—nah) <t + g) —xi (1), k=1,2,...,N(modN);

(j2) if N is even and j=N/2, then there exists at least one branch of periodic solutions
on which any periodic solution (x;(t))Y_, with the minimal period p satisfies

Xi—1 <t+ g) =x;(1), Xn_k <t+ g) =xx(t), k=12,...,N(modN);

(j3) if j=0, then there exists at least one branch of periodic solutions on which any
periodic solution (xx(t))}_, satisfies

xl(t) ZXZ(t) =--- :)CN(I).

Finally, we will investigate the maximal continuum of branches of nonconstant
periodic solutions obtained in Theorem 4.1. To do this, we firstly establish some
a priori bounds for possible nonconstant periodic solutions of (4.1).

Lemma 4.3. Assume that

Then there exists a nondecreasing function M :[0,1) — [0,00) such that any periodic
solution (x(1))_, of (4.1) with q€[0,1) satisfies |x¢(t)] < M(q) for all t€R and
k=12,...,N.

Proof. Suppose that (xx(¢))Y_, is a nontrivial periodic solution of (4.1). Then there
exist some kg € {1,2,...,N} and 7 € R so that
(1) = ga(t = )| < e (o) — ok (0 — 7)),

for t€R and k=1,2,...,N. (4.13)
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Without loss of generality, we may assume x, () — gxi,(fo — r) # 0. If this is not
the case, then x;(¢) = gxi (¢ — r), which together with (4.1) yields x;(¢) = 0, Vi€ R
k=1,...,N. This leads to a contradiction.

There are two possible cases:

Case 1: xi,(to) — x,(to — ) > 0.

In this case, we have

0= S o) — g (o — ]
= d[(xXp+1(t0) = gxky+1(fo — 7)) + (3 —1(f0) — gXk—1(t0 — 7))
— 2(xg,(f0) — gxi,(t0 — 1))] — axi,(fo)
—aqxy,(to — ) — g[xk,(f0) — gxi(fo — )]
< —axg,(fo) — agxg,(to — r) — glxk,(f0) — gxi,(to — 1)].
Hence,
axy,(fo) + agxg,(fo — r) + glxk, (o) — qxk, (1o — r)] <0,
which can be rewritten as
alxk,(t0) — gxi,(to — )] + 2aqxy, (o — 1) + glxk, (f0) — qxi,(f0 — )] < 0. (4.14)
Note that xy, (o) — xx,(to — ) > 0, from (4.13) we get

iy (fo = 7) glxi,(t0) — i, (fo — )]
Xk (10) — gk (o — 1) Xpo(10) — gy (f0 — ) <0 (4.15)

It follows from (4.13) that

a+2aq

e (O] < qlx(t — )| + |xi (o) — gxay (o — 1)
< @it — 2r)| + (1 + q)lxx, (to) — qxiy(fo — 7))
< <GPt —mr) + (L4 g+ 4 g™ Dl (o) — g, (to — 7).

Let m — oo, then we have

lex(1)] < bk, (t0) — qxi, (t0 — 1)1, (4.16)

l—¢
for all e R and £k =1,2,...,N. Therefore, (4.15) and (4.16) imply that

_2aq | gbxi(t) — gt — )] _ 0
1 -9 xko(to)quko(tofr)

a (4.17)

Since lim,_,», f(z)/z=00, by (4.17), we can find a nondecreasing function M, :[0,1) —
[0,00) such that

xi, (f0) — qxiy (o — )| < Mi(q), ¢ €[0,1)
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and hence, from (4.16), it follows that

1
(O] < 7= Mi(9), (4.18)
q

forall teR and k=1,2,...,N.
Case 2: xi,(to) — xx,(to — r) < 0.
In this case, we have

0= %[xko(tO) — gxi, (1o — )]
= d[(xky+1(f0) — gxiy1(t0 — 1)) + (Xky—1(t0) — Xk —1(t0 — 7))
— 2(xx (t0) — gxiy (2o — 1))] — axg, (o)
— aqx,(to — r) — glxr,(t) — gxi(to — )]
= —axy,(fo) — aqx,(to — 1) — glxr(t0) — qxx,(fo — 1)].
Hence,
alx (o) — quig (to — )]+ 2aqus, (to — 1) + gl (o) — g (fo — )] = 0. (4.19)

Note that xg,(f) — xx,(f0 — ) < 0, from (4.19) we also get

Xi, (o — 1) 9ber (t0) = qrie(to = )] _
Xy (t0) — g, (o — 1) X (t0) — qx, (o — 1)

a+2aq

In a similar way, we can find a nondecreasing function M, :[0,1) — [0,00) such that
1
|xx(8)] < quz(q), for all f€R and k=1,2,...,N. (4.20)
Put
1 1
M(q) = —M(q) + —M(q).
I—gq 1—gq

Then M :[0,1) — [0,00) is nondecreasing and any periodic solution (xk(t))ﬁc\/:1 of (4.1)
satisfies

e (D] < M(q),

for all te R and £k =1,2,...,N. The proof is complete. []
Next, we exclude nontrivial 4r-periodic solutions of (4.1).
Lemma 4.4. Assume @ := a + inf. 4 g(z)/z > 0. Let
2aq
p {q [0, 1) 3= p }

Then for any q €10,0), (4.1) has no nontrivial 4r-periodic solutions.
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Proof. Suppose for the contradiction that (x(¢))}_; is a nontrivial 4r-periodic solution

of (4.1).
We rewrite (4.1) as

d
&[xk(t) —qxp(t — )]

=d[(xx41(2) = g1 (1 = 1))
+ (1 (1) = qua—1 (¢ = 1)) = 200 (t) — gxi(t —7))]

—alx(t) — qxi(t — 1)) — 2agx(t — r) — g(xi(t) — gxi(t — 1)), (4.21)
for k=1,2,...,NmodN.
Let
Vi1(?) xi(1) — gxi(t — )
t) = Vi2(1) _ xe(t —r) — qxp(t — 2r) . (422)
Yi3(t) xi(t = 2r) — gxi(t — 3r)
Vra(t) xie(t = 3r) — gxi(1)
Then
xk(t—r) Yi1(2)
xi(t = 2r) _ Via(2) _ ¥Byk(t), 423)
xi(t — 3r) L=q"" | () I—¢
xi(1) Via(l)
where
1 g ¢
B—

q3
¢ ¢ 1 ¢
q
1

Substituting (4.22) and (4.23) into (4.21), we get

2a
‘24 Bye)s — gns),  (4.24)

d
g7 ks = Ak + Vim1s = 2ks] — ks — 7

where 1 <s<4, k=1,2,...,NmodN. Denote ¥ = (y1,¥2,...,yy)" and take a
Liapunov function

N
V(Y)= % > v (4.25)
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Let (-,-) denote the standard inner product in R". Put

o )
24+ 2 0 o 0 1
t
w
T ) 0
i
0 -1 2+§ e 0 0
A = (a,:,—)NxN = . (426)
w
0 0 0 242
*t
w
1 0 0 1 242
I T

Since w > 0, we have

w
Gii:2+g >2:Z|“£/‘7
i#]

which implies that A is positive definite, and hence there exists an orthogonal matrix
T, such that

A=T7'DT, D=diag[,%,...,x] (4.27)

where 1; > 0, 1 <k < N, are the eigenvalues of 4.
Differentiating 7 along solutions of (4.24), we get

N 4
Visan = Z Z Vs Vs

k=1 s=1

N
=d > Y yislists + Viers — @+ a/d)yis]

k=1 s=1
2aq vV o2 Vo2
o4 S wksBys =D vrst(Ves)
k=1 s=1 k=1 s=1
N 4

<dY Y veslyiers + viers — 2+ ajd) yis]
k=1 s=1

4 N

N 4
DI INUBED 9) DR IVOL
k=1

s=1 k=1 s=1

4 N

=d Z Z Vis [ykﬂ,s + Vi—1,5 — (2 + %) yk,f]

s=1 k=1
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N 4
2aq
- 1 — a4 Zzyk,S(Byk)x
q k=1 s=1
4 2aq N 4
=—d) UiuF) -1 o DO vesBye)s. (4.28)
s=1 k=1 s=1

where y; := (yl,s,yz,s,...,yN,S)T cRVN.
By (4.27), for 1 <s <4, we have

N
(A5 §5) = (T7'DT 3, 55) = (DTF . TFs) = > i(TFo}- (4.29)
k=1

If we denote by Amin the minimal eigenvalue of A4, then Ay, > 0 and (4.29) implies
that

<A,)7S7 )_)s> = /lmin<T)7saT)7S> - }vmin<J_}sa )_}S>a 1 <5< 4. (430)

We need the following result that was proved in [26] using the Nussbaum’s spectral
theorem for circulant matrices (cf. [24]).

Lemma 4.5. For any z = (21,23,23,24)" € R*, one has
4

4
D n(Bz)y = —(1—q)(1+¢)) 2 (4.31)

s=1 s=1

Thus, from (4.28), (4.30) and (4.31), we find
4 N 4

. . 2aq
Varey < —dmin Y (Fo V) + g+ PSR
s=1 k=1 s=1

N
, 2aq 2
= - (d/bmin - 1 +q> Zzyk,s' (432)
We claim that
Amin = @/d. (4.33)

Let ze RY (z # 0) be such that 4z = A,z and take a fixed k€ {1,...,N} so that
|zx| = max; <;<n|zi|, then we have

N
Y " aizj = dminZ
j=1

and hence

(min — A )2k = Y Aiyj.
J7k
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Therefore,
i = g+ > ay 2L > 2+ v/d) — 2= o/d.
- Zk
J#k
Thus (4.33) holds.
Now, from (4.32) and (4.33) it follows that

N 4
. 2a
Vi < — (w -1 jq) oD i (434)

k=1 s=1

Thus, if ¢ €[0, ), then
2aq 2a9
< <@
l+q 1+p¢

5

which, together with (4.34), yields V(4,24) < 0, and hence x;(t) — 0 for every 1 <k
< N as t — oo. This leads to a contradiction. The proof of Lemma 4.4 is complete. [

Lemma 4.6. If w = a + inf.4g(z)/z >0 and q =0, then (4.1) has no nontrivial
periodic solutions.

Proof. If ¢ =0, then (4.1) reduces to the following ordinary equation:
d
g7 % = At + -1 = 2] — e — g(), (4.35)
for k=1,2,...,NmodN.
Denote X = (x1,X,...,xy)! and take a Liapunov function V(X ) = % Zszl x2. By
using a similar argument as in the proof of Lemma 4.4, we obtain

N

; 2

Vass) < —@ E X
=1

Therefore, every solution of (4.1) tends to zero as ¢ — oo. In particular, (4.1) has no
nontrivial periodic solutions. The proof is complete. [

Now, we are in a position to present the following results on the global continua-
tions of branches of slowly oscillatory periodic solutions of (4.1). Here, by a slowly
oscillatory solution of (4.1) we mean a solution with a period larger than 2r.

Theorem 4.2. Assume that

(1) @ :=a+inf_u g(z)/z > 0, lim. o g(2)/z = +o0c;
(2) 2a > ©/r and there exists a j€{0,1,...,[N/2]} such that

: 2
3) v<4dsin2%<v+\/a2—%, v =g (0);

B3 + (a+ v — 4d sin®(mj/N))?
B2+ (a — v + 4d sin’(j/N))?

&
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where ¢ = sup{q€[0,1) : 2aq/(1 + q) < @w} and P; is the unique solution in
(0, m/r) of the equation
B? — a® + (v — 4d sin*(nj/N ))?

cot fir = 2af

Then for each q € (q;,0), the following statements hold true:

(D) If 1 < j < N/2, then there are at least two slowly oscillatory periodic solutions
(x}cl)(t))f{vzl and (x,({z)(t))fc\/:1 of (4.1) with minimal periods pi, p» € (2r,4r) and
satisfying

respectively, where k =1,2,...,N mod N.
(j2) If N is even and j=N/2, then there exists at least one slowly oscillatory periodic
solution (xi(1))Y_, of (4.1) with a minimal period p € (2r,4r) and satisfying
Xi (z + g) — (1), xys (r + g) —x(1), k=1,2,...,N(modN).
(4.37)
(j3) If j=0, then there exists at least one slowly oscillatory periodic solution (x(1))}_,
of (4.1) with a minimal period in (2r,4r) and satisfying
x1(1) =x(t) = - - - = xn(0). (4.38)

Proof. We consider the reparametrized system (4.2). It has been shown that (H1) and
(H2) are satisfied. By (2), we see that

2 .
a+v>v+\/a2—%>4dsin27;v—]20

and hence
7'0,0) = —a— aQ(@) - v(1 - O())
=—(a+v)—(a—v)O(x)
- {—(a+v), ?f az>v,
—2a, if a<v
< 0.

As K(a) = K(a)] = d(1 — O(x)) = 0, it follows that 7 (0,2) # 4K () sin’(nj/N) for
every o € R and every j =0,1,...,[N/2], that is, (H5) holds.

Since v < 4d sin*(nj/N) < a + v, it follows from Lemma 4.2 that for o = 0 Y q;x)
(k = 0), the stationary solution (0,o) of (4.2) has purely imaginary solution %if};
with 0 < o <P <--<Pjx<--+ — oo, and 0< Q0 Ng;0) <O Ngj1)<---
< 07'(gjx) < -+ — oo. Hence, the set

M} ={e€R; p;(ic,0(2)) =0 for some o >0}

is complete and discrete in R. Therefore, (H6) is also satisfied.
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Since v < 4d sin®(1j/N) < a + v, it follows from Lemma 4.2 and Corollary 4.1
that for any integer £ > 0, the jth isotypical crossing number for the isolated center

(0, Q*I(qj,k)) corresponding to if3; «
1, (07 Bik) = c1,/(qjks Brk)

-2 if 1</ <[N2],
) -1 if j=0, or N is even and j = N/2.

Therefore, by virtue of Theorem 3.3, there are unbounded branches of nonconstant
periodic solutions of (4.2), bifurcating from (0,0~ '(g;x),2n/B; ) for every integer
k = 0. In particular, if 1 <j < N/2, then there are at least 2 unbounded branches of
periodic solutions of (4.2) satisfying (4.36), if N is even and j = N/2, then there exists
at least one unbounded branch of periodic solutions of (4.2) satisfying (4.37) and if
j =0, then there exists at least one unbounded branch of periodic solutions of (4.2)
satisfying (4.38).

As lim,_, 4, g(z)/z=+00, it follows from Lemma 4.3 that there exists a nondecreas-
ing function M : R — [0, 00) so that every periodic solution (xk(t))fc\/:1 of (4.2) satisfies
ee(t)] < M(o) for all t€R and k=1,2,...,N. As w=a+inf.4 g(z)/z > 0, it follows
from Lemma 4.4 that for every o < O~ '(p), (4.2) has no nontrivial 4r-periodic solu-
tions which implies that (4.2) has also no nontrivial 4r/n-periodic solutions for every
integer n > 1.

Since 0 < g;,0=¢; < 0, we have 0~ !(¢q;0)=0"'(¢q;) < O~'(¢). Moreover, by Con-
dition (2), we easily show that

2 N\ 2
a > %—i— <v—4dsin27;\{) .
That is, (4.12) holds, and hence Lemma 4.2 implies that 2r < 2n/f;0 < 4r. Con-
sequently, for each n€(g;,¢), any unbounded connected branch X; of nonconstant
periodic solution bifurcating from (0, 0~'(g;),27/B;0) must satisfy

5, C {(x,cx,p)eBC(R, RY) x R%; pe(2r4r),

sup P (1)] < M(a),k = 1,...,N},
teR

where

Z‘j|}’l = {(X,OC, P) S Zj; S Q_l(’?)}

By Lemma 4.6, we see that (4.2) has no nontrivial periodic solution, that is, 2; does
not intersect with the hyperplane «=0. Therefore, the projection of X;|, onto the a-space
is contained in [0,07!(y)] and 2|, N {(x,0"'(n), p); (x,p)€EBC(R,RY) x R} # (.
This shows that for every a € (0~ (g;), 0~ '(n)], if | <j < N/2, then (4.2) has at least
2 slowly oscillatory periodic solutions satisfying (4.36), if N is even and j =N/2, then
(4.2) has at least one slowly oscillatory periodic solution satisfying (4.37) and if j=0,
then (4.2) has at least one slowly oscillatory periodic solutions satisfying (4.38). Thus,
noting that n € (g;,w) is an arbitrary number, we conclude that the statements (j1)—
(j3) hold true and the proof is complete. [J
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If we assume inf.) ¢g(z)/z > 0 in Theorem 4.1, then @ =a + inf.4 g(z)/z = a, and
hence 9=sup{q € [0,1);2aq/(1+q) < w}=1. As v < 4d sin’(nj/N) < a+v, it follows
from (4.10) that

| B+ (a+v—4dsin’(nj/N))?
v B2+ (a — v + 4d sin*(mj/N )}

€(0,1).

That is, condition (3) of Theorem 4.1 is satisfied.
Consequently, we have the following:

Theorem 4.3. Assume that

(D inf#o g(Z)/Z =0, lim;_, 4 g(2)/z = +o00;
(2) 2a > n/r and there exists a j€{0,1,...,[N/2]} such that

, 2
v < 4d sin’ % <v+ H, vi=g'(0).

Let B; be the unique solution in (0,n/r) of the equation
B* — a* + (v — 4d sin’(mj/N))?
2af '

cot fr =

Put

B2 + (a + v — 4d sin®(mj/N))*
B3 + (a — v+ 4d sin®(mj/N))?

qj ‘=
Then q; €(0,1) and for each q € (q;,1), the conclusions of Theorem 4.1 hold true.

The following Theorem 4.4 gives a sufficient condition on the coexistence of several
slowly oscillatory periodic solutions of (4.1) when the parameter is far away from the
bifurcation point.

Theorem 4.4. Assume that

(1) inf:0 g(z)/z = ¢'(0) =0, lim: .1 g(z)/z = +o0,

(2) 2a > w/r, 4d < \/a? — w2 /4r2.
Let B be the unique solution in (0,7/r) of the equation

p? — a® — 16d* sin*(n/N)

cot fir = 2af

Put

_ [P+ (a—4dsin’ n/N)? -
7 B? + (a + 4sin’ /N )?
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Then for each q €(q,1), system (4.1) has at least 2[N/2] (if N is odd) or 2[N/2] — 1
(if N is even) slowly oscillatory periodic solutions with minimal periods in (2r,4r)
which are described below:

(j1) There are at least [N/2] (if N is odd) or [N/2]—1 (if N is even) slowly oscillatory
periodic solutions (x (t))k \ with minimal periods p; € (2r,4r), 1 <j < NJ/2,
and satisfying

W), (r + Jﬁ’) (),

for k=1,2,...,NmodN.

(j2) There are at least [N/2] (if N is odd) or [N/2]—1 (if N is even) slowly oscillatory
periodic solutions (xk (t))k \ with minimal periods p; € (2r,4r), 1 <j < NJ/2,
and satisfying

A (HJ]?) A0,

for k=1,2,...,NmodN.
(j3) If N is even, there exists at least one slowly oscillatory periodic solution
(ce(£))N_, with a minimal period p € (2r,4r) and satisfying

Xi—1 (t + g) =x;(t),  XN_k (l + g) = xx(2),
for k=1,2,...,Nmod N.

Proof. Clearly, condition (1) of Theorem 4.3 holds, and by (2), condition (2) of The-
orem 4.3 also holds for every j € {1,...,[N/2]}. Therefore, for every j € {1,...,[N/2]},
the conclusions of Theorem 4.3 holds true.

Now, we define a function as follows:

x+(a—4dy)’

x+ (a+4dy)?¥’ x€(0,00), y€[0,1].

h(x,y) =

Then by (2), we can easily verify that for y €0, 1],

16ad y
[x + (a + 4d y)*T?

0
&h(xa y) -

and for x > 0 and y €[0,1],

—16ad[x + a* — 16d%y?]  —16ad[a® — 16d%]

*h( )= [x + (a + 4dy)?] [x + (a + 4dy)2T

Therefore, A(x, y) is nondecreasing in x € (0,00), and decreasing in y €[0, 1] if x > 0.
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Now, for each je{l,...,[N/2]}, let ;€ (0,n/r) and g; be specified by Theo-
rem 4.3. As
B2 — &% + 16d* sin*(nj/N))>
2ap

B? — @ + 16d% sin*(n/N)

> h(p) = 20

hi(B) ==

for every 1 < j < [N/2], and cot fr is decreasing in ff € (0,7/r), it follows that f; < B
for every j€{1,...,[N/2]}. Therefore, for 1 < j < [N/2], we have

Therefore, by Theorem 4.3, for each je€{l,...,[N/2]} and each g€(gq,1), the
statements of Theorem 4.4 hold true and the proof is complete. [
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