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Abstract

We study the coexistence and global continuation of several slowly oscillating periodic
solutions for some systems of neutral FDEs due to the interaction of temporal delay and spatial
dihedral symmetries. By using the equivariant degree theory we establish general results on the
existence of multiple branches of nonconstant periodic solutions, classify their symmetries, and
describe their maximal continuations. As an application, we study in detail a ring of identi-
cal oscillators with identical coupling between adjacent cells and prove the existence of large
amplitude phase-locked and synchronous oscillations in these ring-structured systems. We also
give an example to illustrate the possibility of the coexistence of several slowly oscillatory pe-
riodic solutions when the bifurcation parameter is far away from the bifurcation point. The key
in our argument is the spectral theory for circulant matrices and the construction of a Liapunov
function to exclude periodic solutions of a certain integer multiple of the delay.
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1. Introduction

Many important mathematical models from physics, chemistry, biology, engineering,
etc., involve both time delay and spatial symmetry. The interaction of time lag and
symmetries may have signiDcant impact on a dynamical process and can result in for-
mation of various patterns exhibiting certain particular symmetry properties. Prediction
and description of these changing patterns constitutes a complex problem related to
the so-called symmetric bifurcation phenomena. The methods of the equivariant topol-
ogy and the representation theory of Lie groups are powerful mathematical techniques,
which have been e<ectively applied to the study of bifurcation problems with symme-
try (see [1–11,13–22,26–29]). In particular, the equivariant degree theory provides a
complete topological description of zeros of en equivariant map in terms of equivariant
topological obstructions, which can be e<ectively used to study symmetric bifurcation
problems with symmetries; the occurrence and global continuation.

The general deDnition of the equivariant degree degG(f;�) on a bounded invariant
open set � ⊂ V for an admissible equivariant map f :V → W between two repre-
sentations of a compact Lie group G (dim V ¿ dim W ) was introduced by Ize et al.
(cf. [13–16]). In their work, the equivariant degree of f is deDned as an element of
the equivariant homotopy groups of spheres. It was proved that this equivariant degree
has all the standard properties expected from a ‘degree theory’. From the applications
point of view, the most interesting case is where f :V ⊕ Rn → V (we assume here
that G acts trivially on Rn). In this case, by applying regular normal approximations
(cf. [4,8,17,22]), the map f can be deformed on � to f̃, for which the set of zeros
in � is composed of isolated disjoint compact subsets Z	 containing elements of the
same orbit type 	=(H). As the equivariant degree expresses the topological obstructions
for the existence of equivariant extensions of a map without zeros, it follows from
the additivity property that these obstructions depend on the orbit types in �. These
obstructions are called primary if dim W (H) = n (where W (H) =N (H)=H denotes the
Weyl’s group of H), and secondary if dim W (H)¿n.

Another version of an equivariant degree denoted by G-Deg(f;�), which we will
call here the primary G-degree, or simply G-degree, was introduced (independently of
the work of Ize et al.) by Geba et al. in [8]. As it turned out (see [2]), the primary
degree is a part of the equivariant degree corresponding to the primary obstructions.
The advantage of using the primary degree lies in the fact that it is relatively easy to
compute, even in the case of many classical non-abelian compact groups. Additional
feature of the primary degree, for certain types of groups, is the multiplicativity property
that further reduces the computations of the primary degree and permits to express it
in a form of a product.

In the case of an abelian symmetry group G, the G-degree was successfully ap-
plied to many symmetric local and global Hopf bifurcation problems for functional
di<erential equations with symmetry (cf. [6,20–22,27–29]). However, for non-abelian
symmetry groups there have been little progress for the existence of bifurcations of
functional di<erential equations using the equivariant degree method. Recent advances
in this direction (see [5,4,18]) provide new opportunities for possible applications of the
one-parameter G-degree to the study of global bifurcation problems with non-abelian
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symmetries. In particular, computational formulas were established for the groups of
type G = S1 × �, where � is a compact subgroup of a Dnite extension of SO(3) or a
Dnite group (cf. [4]). In fact, in some cases it is also possible to evaluate the secondary
components of the equivariant degree for the non-abelian actions.

In [19], a local theory was developed for bifurcations of delayed functional di<eren-
tial equations with dihedral symmetry. In particular, the joint impact of temporal delay
and spatial dihedral symmetry on the occurrence and multiplicity of Hopf bifurcations
of delayed functional di<erential equations was discussed and the orbit type classiDca-
tion of possible Hopf bifurcations was established. The obtained results were applied
to a ring of identical oscillators to describe the occurrence of several small amplitude
nonconstant symmetric periodic solutions near a bifurcation point. The results obtained
in [19] clearly indicate that an equivariance with respect to a non-abelian action can
have a signiDcant impact on the number of di<erent branches of periodic solutions via
a spontaneous bifurcation in a dynamical system.

The present paper is motivated by the work of Krawcewicz et al. [18,19]. The
purpose of this paper is two-fold. First, by using the equivariant bifurcation theory
developed by Geba et al. (cf. [8]), we study the existence, multiplicity and global
continuations of symmetric periodic solutions for the following one parameter family
of neutral functional di<erential equations (NFDEs) with dihedral symmetry

d
dt

[x(t) − b(xt ; 	)] = F(xt ; 	); 	∈R; (1.1)

where x∈Rn, �¿ 0 is a given constant and C� is the Banach space of continuous
bounded functions from (−∞; �] into Rn equipped with the usual supremum norm,
and b; F :C� × R → Rn are two continuously di<erentiable mappings speciDed later.
Secondly, we apply our symmetric Hopf bifurcation theorems to a ring of identical
oscillators with identical coupling between adjacent cells, which arises naturally from
coupled lossless transmission lines, and is governed by a neutral functional di<erential
equation. We will show how the temporal delay (both in kinetics and coupling) and the
dihedral symmetries of the system may cause various types of oscillations in the case
where each cell is described by only one state variable. In particular, we will prove
the existence of large amplitude phase-locked and synchronous periodic solutions in
these ring-structured neutral systems. More signiDcantly, we shall obtain the existence
of large number of slowly oscillating periodic solutions. To the best of our knowl-
edge, slowly oscillatory periodic solutions play very important role in the description
of global dynamics in functional di<erential equations (see [23] for delay equations)
but little is known about the coexistence of several such solutions.

The remainder of this paper is organized as follows. In Section 2, we extend
the results in [19] to neutral functional di<erential equations with dihedral symme-
try and discuss the global continuations of the obtained multiple branches of non-
constant periodic solutions. These results are then applied, in Section 3, to a ring
of identical cells governed by neutral equations and coupled by delayed di<usion
along the sides of a polygon, and several unbounded branches of synchronous os-
cillations and phase-locked oscillations are obtained. Finally, in Section 4, an example
is given to illustrate the possibility of the coexistence of several slowly oscillatory
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periodic solutions when the bifurcation parameter is far away from the bifurcation
point.

2. Symmetric Hopf bifurcation theorems

Let �¿ 0 be a given constant, n a positive integer and C� the Banach space of
continuous bounded functions from (−∞; �] into Rn equipped with the usual supremum
norm

‖’‖ = sup
−∞¡�6�

|’(�)|; ’∈C�:

If x : (−∞; � + A] → Rn is a continuous function with A¿ 0 and if t ∈ [0; A], then
xt ∈C� is deDned by

xt(�) = x(t + �); �∈ (−∞; �]:

Also, for any x∈Rn, we will use Lx to denote the constant mapping from (−∞; �] into
Rn with the value x∈Rn.

In what follows, for a compact Lie group G = � × S1 and a (closed) subgroup
H ⊂ G, we will denote by (H) the conjugacy class of H , which we will call an orbit
type. We will denote by A1(G) the free Z-module generated by the orbit types (H)
such that the Weyl’s group W (H) is a one-dimensional manifold admitting invariant
orientation (with respect to left and right translations on W (H)), and by A(�) we
will denote the Burnside ring of �. Let us recall that A(�) is generated by the set
�(�) = {(H) : dim W (H) = 0} (see [20] for more details).

Assume that V is an orthogonal representation of G, � ⊂ V ⊕ R an invariant open
bounded set, and f :V ⊕ R→ V a G-equivariant map such that f(x) �= 0 for x∈ @�.
Then the primary degree G-Deg(f;�) is an element of the Z-module A1(G), where
A1(G) is generated by the set �1(G)={(H) : dim W (H)=1 and W (H) is bi-orientable}
(see [4,2,8] for more details). As we have mentioned in the introduction, in some
special cases, the primary G-degree possesses an additional important property, which
we call the multiplicativity property.

We state this property only in the case of G = DN × S1, where DN is the dihedral
group of order 2N . In the case G := DN × S1, the G-degree computational formulas
(including the A(DN )-module tables) were developed in [18]. In fact, this property is
also valid for a larger class of, the so-called regularly twisted, compact Lie groups of
type � × S1 (see [5]).

Proposition 2.1. Assume that V is an orthogonal G = DN × S1-representation and
U is an orthogonal DN -representation. Let f :V ⊕ R → V (resp. g :U → U ) be
a G-equivariant (resp. DN -equivariant) map such that f(x) �= 0 for x∈ @� (resp.
g(x) �= 0 for x∈ @✵), where � ⊂ V ⊕R (resp. ✵ ⊂ U ) is an invariant open bounded
subset. Then

G-Deg(g× f;✵× �) = DN -Deg(g;✵) · G-Deg(f;�);

where DN -Deg(g;✵)∈A(DN ) and G-Deg(f;�)∈A1(G), and the dot ‘·’ denotes the
multiplication in the A(DN )-module A1(G).
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Let us describe the orbit types for the group DN and the orbit types for G = DN ×
S1 generating A1(G). The ring A(DN ) is generated by the orbit types (H) of DN

as follows: If N is an odd number, then �0(DN ) = {(Dk); (Zk): k|N}; and if N is
even then

D̃k = Zk ∪ "#NZk ; #N = e2i$=N ; " =

[
1 0

0 −1

]
:

Notice that all the generators of A1(DN × S1) are the ‘-folded �-twisted subgroups
of the type K (�;‘) := {('; z)∈K × S1; �(') = z‘}, where K is a subgroup of DN and
� :K → S1 a homomorphism. See [5,18] for more details. We have the following
‘-folded �-twisted subgroups of DN × S1 with non-trivial homomorphism �:

(i) the subgroups D(c;‘)
k and D̃(c;‘)

k , where c :Dk → Z2 is a homomorphism such that
ker c = Zk ;

(ii) the subgroup D(d;‘)
k and D̃(d;‘)

k (when k is even), where d :Dk → Z2 is a homo-
morphism such that ker d = Dk=2;

(iii) if k is divisible by 4, then there exists one more conjugacy class of the subgroup

D(d̂; ‘)
k , where ker d̂ = D̂k=2 := Zk=2 ∪ "#kZk=2 with #k = e2i$=k ;

(iv) the subgroups Z(’+;‘)
k , corresponding to the homomorphism ’+ given by ’+(z)=z+,

where + is an integer and z ∈Zk ⊂ S1 ⊂ C;
(v) in the case where k is an even number, we have the homomorphism d :Zk → Z2

such that ker d=Zk=2, for which we have the ‘-folded d-twisted subgroup Z(d;‘)
k .

Let us point out that in the case of G = DN × S1, the multiplication in A(DN )
allows us to establish the A(DN )-multiplication tables for A1(DN ×S1). Indeed, for two
generators (K), (H)∈A(DN ), knowing that

(K) · (H) =
∑
(L)

nL · (L) in A(DN );

implies that for the ‘-folded �-twisted subgroup H (�;‘) we have the following multi-
plication formula:

(K) · (H (�;‘)) =
∑
(L)

nL · (L) in A(DN );

where the coeNcient nL in the both formulas are the same. The relevant multiplication
tables are presented in Tables 1–3. We refer to [18,20] for more details.

Suppose that - :� → O(n) is an orthogonal representation of the group � := DN ,
N¿ 3, on V := Rn. Then - induces naturally an isometric Banach representation of
� on the space C� with the action · :� × C� → C� given by

('’)(�) := -(')(’(�)); '∈�; �∈ (−∞; �]:

Let us consider the following isotypical decomposition of V with respect to the
action of DN

V = V0 ⊕ V1 ⊕ · · · ⊕ Vk; (2.1)
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Table 1
Multiplication table for A(DN )

(Dm) (Dm) (D̃m) (D̃m) (Zm)
2mAN 2m|N 2mAN 2m|N

(Dk) (Dl)+ (Dl)+
lN

2mk (Zl)
lN

2mk (Zl)
Nl
km (Zl)

2kAN Nl−mk
2mk (Zl)

Nl−mk
2mk (Zl)

(Dk) (Dl)+ 2(Dl)+
lN

2mk (Zl)
lN

2mk (Zl)
Nl
km (Zl)

2k|N Nl−mk
2mk (Zl)

Nl−2mk
2mk (Zl)

(D̃k) lN
2mk (Zl)

lN
2mk (Zl) (D̃l)+ (D̃l)+

Nl
km (Zl)

2kAN Nl−mk
2mk (Zl)

Nl−mk
2mk (Zl)

(D̃k) lN
2mk (Zl)

lN
2mk (Zl) (D̃l)+ 2(D̃l)+

Nl
km (Zl)

2k|N Nl−mk
2mk (Zl)

Nl−2mk
2mk (Zl)

(Zk) Nl
km (Zl)

Nl
km (Zl)

Nl
km (Zl)

Nl
km (Zl)

2Nl
km (Zl)

Note: l = gcd(m; k), m|N and k|N .

Table 2
Multiplication table for A(Dn)

(Dm) (Dm) (D̃m) (D̃m) (Zm)
2mAn 2m|n 2mAn 2m|n

(Dk) (Dl)+ (Dl)+
ln

2mk (Zl)
ln

2mk (Zl)
nl
km (Zl)

2kAn nl−mk
2mk (Zl)

nl−mk
2mk (Zl)

(Dk) (Dl)+ 2(Dl)+
ln

2mk (Zl)
ln

2mk (Zl)
nl
km (Zl)

2k|n nl−mk
2mk (Zl)

nl−2mk
2mk (Zl)

(D̃k) ln
2mk (Zl)

ln
2mk (Zl) (D̃l)+ (D̃l)+

nl
km (Zl)

2kAn nl−mk
2mk (Zl)

nl−mk
2mk (Zl)

(D̃k) ln
2mk (Zl)

ln
2mk (Zl) (D̃l)+ 2(D̃l)+

nl
km (Zl)

2k|n nl−mk
2mk (Zl)

nl−2mk
2mk (Zl)

(Zk) nl
km (Zl)

nl
km (Zl)

nl
km (Zl)

nl
km (Zl)

2nl
km (Zl)

Note: l = gcd(m; k), m|n and k|n.
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Table 3
Table of multiplication (

D(d;l)
k

)
, 2|k

(
D(d;l)

k

)
, 2|k

2kAN 2k|N

(Dr), 2|r Excluded 2
(
D(d;l)

m

)
+ lm−2kr

2kr

(
Z(d;l)

m

)
2rAN
(Dr), 2|r 2

(
D(d;l)

m

)
+ ml−2kr

2kr

(
Z(d;l)

m

)
4
(
D(d;l)

m

)
+ ml−4kr

2kr

(
Z(d;l)

m

)
2r|N

Here we assume that m = gcd(k; r) is such that 2m|N .

where k = (N + 1)=2 if N is odd, or k = (N + 4)=2 if N is even, and

(i) V0 := V� = {v∈V : 'v = v;∀'∈�};
(ii) each isotypical component Vj, j=1; : : : ; k, is a direct sums of all subrepresentations

of V equivalent to a Dxed irreducible orthogonal representation of DN , which can
be described as follows:

(a1) For every integer number 16 j¡ [N=2], there is an orthogonal representation
-j (of real type) of DN on C given by

'z := 'j · z; for '∈ZN and z ∈C;
"z := Lz;

where 'j · z denotes the usual complex multiplication.
(a2) There is a representation c :DN → Z2 ⊂ O(1), such that ker c = ZN .
(a3) For N even, there is an irreducible representation d :DN → Z2 ⊂ O(1) such

that ker d = DN=2.
(a4) For N divisible by 4, there is an irreducible representation d̂ :DN → Z2 ⊂ O(1)

such that ker d̂ = D̂N=2.

We will denote by U := Cn the complexiDcation of V =Rn. It is not diNcult to see
that the isotypical decomposition (2.1) induces the following isotypical decomposition
of the complex representation U :

U = U0 ⊕ U1 ⊕ · · · ⊕ Uk; (2.2)

where U0 := U� and each of the isotypical components Uj is characterized by complex
representation of the following types:

(b1) For 16 j¡ [N=2], the representation 3j on C⊕ C is given by
'(z1; z2) := ('j · z1; '−j · z2); for '∈ZN ; and z1; z2 ∈C;
"(z1; z2) := (z2; z1):

(b2) The representation c :DN → Z2 ⊂ U (1), such that ker c = ZN .
(b3) In the case when N is even, the representation d :DN → Z2 ⊂ U (1), such that

ker d = DN=2.
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(b4) In the case when N is even, the representation d̂ :DN → Z2 ⊂ U (1), such that
ker d̂ = D̂N=2.

We are going to apply the equivariant bifurcation theory developed by Geba et al.
(cf. [8], see also [2,5,18]) to establish the existence, multiplicity and global continuations
of symmetric periodic solutions for the following one parameter family of equivariant
neutral functional di<erential equations (NFDEs):

d
dt

[x(t) − b(xt ; 	)] = F(xt ; 	); 	∈R; (2.3)

where x∈Rn; b; F :C�×R→ Rn are two continuously di<erentiable mappings satisfying
the following assumptions:

(A1) |b(’; 	) − b( ; 	)|6 Lk‖’−  ‖, where Lk ∈ [0; 1) is a constant, ’,  ∈C�, 	∈R.
(A2) F and b are �-equivariant, i.e., b('’; 	) = -(')b(’; 	), F('’; 	) = -(')F(’; 	).
(A3) F(0; 	) = 0 for all 	∈R.

An element (x; 	)∈V × R is called a stationary solution of (2.3) if F( Lx; 	) = 0. A
complex number 5∈C is said to be a characteristic value of the stationary solution
(x; 	) if it is a root of the following characteristic equation

det 6(x;	)(5) = 0; (2.4)

where

6(x;	)(5) = 5[Id − D’b( Lx; 	)(e5·Id)] − D’F( Lx; 	)(e5·Id):

A stationary solution (x; 	) is called nonsingular if det Dx LF(x; 	) �= 0, i.e., Dx LF(x; 	) :
V → V is an isomorphism, where LF :V × R → V , the restriction of F on V × R, is
deDned by

LF(x; 	) = F( Lx; 	); x∈V; 	∈R
and Dx LF(x; 	) denotes the derivative of LF with respect to x at (x; 	). A nonsingular
stationary point (x; 	) is called a center if it has a purely imaginary characteristic value.
We will call (x; 	) an isolated center if it is the only center in some neighborhood of
(x; 	) in V × R.

We also make the following assumption:

(A4) There exists an 	0 ∈R such that (0; 	0) is an isolated center with 5 = i70,
70 ¿ 0, being a characteristic value of (0; 	0).

Let �1 := (0; b)× (70 − c; 70 + c) ⊂ C. Under assumption (A2), the constants b¿ 0,
c¿ 0 and 8¿ 0 can be chosen to be suNciently small so that for every 	∈ [	0 − 8;
	0 + 8], there are no characteristic values of (0; 	) in @�1 except i70 for 	 = 	0. Note
that 6(0; 	)(5) is analytic in 5∈C and continuous in 	∈ [	0 − 8; 	0 + 8], it follows that
detC 6(0; 	0±8)(5) �= 0 for 5∈ @�1.

Since the mappings b and F are �-equivariant, for every 	∈R and 5∈C, the
operator 6(0; 	)(5) :Cn → Cn is �-equivariant and consequently 6(0; 	)(5)Uj ⊂ Uj for
every isotypical component Uj of U = Cn, j = 0; 1; : : : ; k.
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We put 6	;j(5) := 6(0; 	)(5)|Uj :Uj → Uj. Then we have

detC 6(0; 	)(5) =
k∏

j=0

detC 6	;j(5):

Solutions 5∈C of the equation det C6(5) = 0, 06 j6 k, will be called the jth iso-
typical characteristic value of (0; 	). We also deDne

c1; j(	0; 70) := degB(detC 6	0−8;j(·); �1) − degB(detC 6	0+8;j(·); �1)

for 06 j6 k. The number c1; j(	0; 70) will be called the jth isotypical crossing number,
for the isolated center (0; 	0) corresponding to the characteristic value i70.

Since an integer multiple of i70 can also be an jth isotypical

c‘;j(	0; 70) := degB(detC 6	0−8;j(·); �‘) − degB(detC 6	0+8;j(·); �‘);

where �‘ := (0; b) × (‘70 − c; ‘70 + c) ⊂ C and the constants b¿ 0; c¿ 0 and 8¿ 0
are chosen to be suNciently small so that there are no characteristic values of (0; 	)
in @�‘ except perhaps i‘70 for 	 = 	0. In other words, c‘;j(	0; 70) = c1; j(	0; ‘70). If
i‘70 is not a jth isotypical characteristic value of (0; 	0), then c‘;j(	0; 70) = 0.

In order to establish the existence of Hopf bifurcations at the stationary point (0; 	0),
we will reformulate the Hopf bifurcation problem for Eq. (2.3) as a �×S1-equivariant
bifurcation problem (with two parameters) in an appropriate isometric Banach repre-
sentation of G = � × S1. For this purpose, we make the following change of variable
x(t) = z((7=2$)t) for t ∈R. Then Eq. (2.3) is equivalent to the following equation:

d
dt

[z(t) − b(zt;7; 	)] =
2$
7

F(zt;7; 	); (2.5)

where zt;7 ∈C� is deDned by

zt;7(�) = z
(
t +

7
2$

�
)

; �∈ (−∞; �]:

Evidently, z(t) is a one-periodic solution of (2.5), if and only if x(t) is a 2$=7-periodic
solution of (2.3).

Let us identify (via the exponential isomorphism) R1=Z with the group S1, and
consider the Banach spaces V := L2(S1;Rn), W := C(S1;Rn) and the Sobolev space
H 1(S1;Rn). It is easy to see that the space V (resp. W) is an isometric Banach
representation of the group G = DN × S1 with the action being given by

('; �)z(t) = -(')z(t + �);

('; �)∈DN × S1; where t ∈ S1 and z ∈V (resp: W): (2.6)

DeDne

L :H 1(S1;Rn) → V; Lz(t) = ż(t);

K :H 1(S1;Rn) → V; Kz(t) =
∫ 1

0
z(s) ds; z ∈H 1(S1;Rn); t ∈ S1:
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Clearly, L and K are G-equivariant with respect to action (2.6). It is easy to show that
the inverse of L+K , which is denoted by (L+K)−1 :V → W, exists and is compact.
Furthermore, (L + K)−1 can be explicitly given by

(L + K)−1z(t) =
∫ t

0
z(s) ds +

∫ 1

0

(
1
2
− t + s

)
z(s) ds; z ∈V; t ∈ S1: (2.7)

By using (2.7), we can easily verify that for every ‘¿ 1,

(L + K)−1 sin 2‘$ · Id = − 1
2‘$

cos 2‘$ · Id; (2.8)

(L + K)−1 cos 2‘$ · Id =
1

2‘$
sin 2‘$ · Id; (2.9)

DeDne B :W × R× (0;∞) → W and N :W × R× (0;∞) → V by

B(z; 	; 7)(t) = b(zt;7; 	)N :W × R× (0;∞) → V; (2.10)

N (z; 	; 7)(t) =
2$
7

F(zt;7; 	); (2.11)

for z ∈W, (	; 7)∈R× (0;∞).
Let $ :W×R2 → W be the projection, then it can be shown that z ∈W is a solution

of (2.5), if and only if z = f(z; 	; 7), where f :W × R× (0;∞) → W is deDned by

f(z; 	; 7) = B(z; 	; 7) + (L + K)−1[N + K($− B)](z; 	; 7): (2.12)

By Conditions (A1) and (A2), we see that B is a G-equivariant condensing map.
Moreover, (2.12) and the compactness of (L+K)−1 implies that f :W×R×(0;∞) →
W is also a G-equivariant condensing map.

With respect to the restricted S1-action on W, we have the following isotypical
decomposition of the space W

W =
∞⊕
‘=0

W‘;

where W0 =WS1
is the S1-Dxed point space consisting of all constant mappings from

S1 into Rn, and W‘ with ‘¿ 1 is the vector space of all mappings of the form
x sin 2‘$ · +y cos 2‘$·, x; y∈V .

For ‘¿ 1, we can complexify W‘ by deDning a complex structure on W‘ as
follows:

i · (x sin 2‘$ · +y cos 2‘$·) = x cos 2‘$− y sin 2‘$·; x; y∈V (2.13)

and the isotypical �-decomposition (2.2) of U = Cn induces the following isotypical
�-decomposition of W‘

W‘ = W0; ‘ ⊕W1; ‘ ⊕ · · · ⊕Wk;‘; ‘¿ 1;

where for any Dxed 16 j6 k, the isotypical components Wj;‘, ‘¿ 1 can be described
exactly by the same conditions (b1)–(b4). We refer to [19] for more details.

Since W0 = V , we also have the following isotypical �-decomposition of W0

W0 = W0;0 ⊕W1;0 ⊕ · · · ⊕Wk;0;

where Wj;0 := Vj, 06 j6 k.
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Furthermore, Wj;‘, 06 j6 k, ‘¿ 0, are G-invariant and thus are the isotypical
G-components of the representation W.

We need a more detailed description of the G-isotypical components Wj;‘ (see [19]
for details). For every isotypical component Wj;‘, we denote by Yj;‘ the corresponding
irreducible representation of G, (i.e., Yj;‘ is equivalent to every irreducible subrepre-
sentation of Wj;‘).

The Drst type of Wj;‘ corresponds to the irreducible four-dimensional representations
Yj;‘ of G =DN × S1, where the action of G on the space R2 ⊕R2 =C⊕C is given by

('; �)(z1; z2) = ('j�‘z1; '−j�‘z2); for ('; �)∈ZN × S1;

("'; �)(z1; z2) = ('−j�‘z2; ' j�‘z1); for ("'; �)∈ "ZN × S1;

where (z1; z2)∈C× C, 16 j¡ [N=2]. We put h = gcd(j; N ):

(i1) If N=h is odd, we deDne the following element of A1(DN × S1) by

degj;‘ = (Z(�j ;‘)
N ) + (Dh × Z‘) + (D(c;‘)

h ) − (Zh × Z‘):

(i2) If N=h ≡ 2 (mod 4), we deDne

degj;‘ = (Z(�j ;‘)
N ) + (D(d;‘)

2h ) + (D(d̂; ‘)
2h ) − (Z(d;‘)

2h ):

(i3) If N=h ≡ 0 (mod 4), we put

degj;‘ = (Z(�j ;‘)
N ) + (D(d;‘)

2h ) + (D̃(d;‘)
2h ) − (Z(d;‘)

2h ):

(i4) For an isotypical component Wj;‘ on R2 = C of DN × S1 which is given by

('; �)z = �‘z; ('; �)∈ZN × S1;

("'; �)z = −�‘z; ("'; �)∈ "ZN × S1;

we deDne

degj;‘ := (D̃(c;‘)
N ):

(i5) If N is even then there is a two-dimensional irreducible representation on Yj;‘ =
R2 = C of DN × S1 given by

(g; �)z = �‘z; (g; �)∈DN=2 × S1;

(g; �)z = −�‘z; (g; �)∈ (DN \ DN=2) × S1:

We put

degj;‘ := (D̃(d;‘)
N ):

(i6) Finally, for N even and j = N=2, there may also be an isotypical component
WN=2; ‘ corresponding to the two-dimensional representation on YN=2; ‘ := R2 = C
of DN × S1 given by

('; �)z = 'N=2�‘z; ('; �)∈ZN × S1;

("'; �)z = −'N=2�‘z; ("'; �)∈ "ZN × S1:
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We put

degj;‘ := (D(d̂; ‘)
N ):

( j1) For the isotypical component corresponding to the type (a1) of the irreducible
representations of DN , i.e., Wj;0 = Vj, where 16 j¡ [N=2]. Let h = gcd(j; N )
and m := N=h. If m is odd, we put

degj := (Dh) − (Zh)

and if m is even, we put

degj := (Dh) + (D̃h) − (Zh):

( j2) For the isotypical component Wj;0 = Vj corresponding to the irreducible repre-
sentation Yj;0 of type (a2), we put

degj := (ZN ):

( j3) For Wj;0 corresponding to the irreducible representation Yj;0 of type (a3), we put

degj := (DN=2):

( j4) In the case j = N=2, Wj;0 = Vj corresponds to a one-dimensional irreducible
representation Yj;0 of type (a4), we put

degj := (D̂N=2):

Let us notice that the elements degj;‘, which correspond to the G-isotypical
components Wj;‘ of the space W, are Z-linearly independent in A1(G), i.e. they
generate freely a Z-submodule of A1(G). In this way, for every element ? of this
submodule, we can indicate its (j; ‘) coeNcient ?j;‘, which is an integer such that
?=
∑

j;‘ ?j;‘ degj;‘. Let us point out, that the elements degj;‘ are the primary G-degrees
of special G-equivariant maps (called elementary), which are associated with the
irreducible G-representations (see [5]). In the case of the elements degj;‘, we will

call the orbit type (Z (�j ;‘)
N ), if degj;‘ is of the type (i1)–(i3), (D̃(c;‘)

N ), if it is of type

(i4), (D̃(d;‘)
N ), if it is of type (i5), and (D(d̂; ‘)

N ), if it is of type (i6), the leading orbit
type for degj;‘. Notice that each of the elements degj;‘ is uniquely identiDed by its
leading orbit type. Let us also recall that (DN ) is the neutral (the unit) element for the
Burnside ring A(DN ), and every element in a∈A(DN ) can be represented in a unique
way as a linear combination

a =
∑
(K)

nK · (K):

We will say that an element a∈A(DN ) is normalized, if a =
∑

(K) nK · (K) and we
have nDN =1, nZN =0, i.e. a=(DN )+b, where b does not contain terms corresponding
to (DN ) or (ZN ).
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Lemma 2.1. Let (DN ) + bs, be normalized elements from A(DN ) and ds =∑
( j;‘) mj;‘; s degj;‘, mj;‘; s ∈Z, where s = 1; : : : ; k. Then

((DN ) − (ZN )) ·
k∑

s=1


((DN ) + bs) ·

∑
( j;‘)

mj;‘; s degj;‘




= 0 ⇒
∑
( j;‘)

mj;‘; s degj;‘ = 0;

where the dot ‘·’ denotes the A(DN )-multiplication in A1(G).

Proof. Suppose that b∈A(DN ) does not contain the (DN )-component, i.e. b=
∑

(K) nK ·
(K), and nDN = 0. Notice from the A(DN )-multiplication tables for A1(G), that in the
case degj;‘ is of the type (i4)–(i6), the element b · degj;‘ does not contain any leading
orbit type, so it cannot contribute to cancellation of the elements degj′ ; ‘′ . On the
other hand, if degj;‘ is of type (i1)–(i3), then leading orbit type in b · degj;‘ can
appear only if b contains component m(ZN ), 0 �= m∈Z. On the other hand, it follows
from the multiplication tables that (ZN ) · degj;‘ = 2(Z (�j ;‘)

N ), therefore in the product

[(DN ) + b] · degj;‘ the term (Z (�j ;‘)
N ) appears with the coeNcient 1 + 2m. It is therefore

clear that

((DN ) − (ZN )) ·
k∑

s=1

[((DN ) + bs) · mj;‘; s degj;‘] = 0 ⇒
k∑

s=1

mj;‘; s degj;‘ = 0:

This completes the proof.

Let us point out, that it is possible to have b ·degj;‘=0, for a not normalized element
0 �= b∈A(DN ). For example, consider the case N = 3 and put a = 2(D3) − (Z3) +
2(D1) − 2(Z1). Then, according to the above multiplication tables, we have

a · deg1; 1 = [2(D3) − (Z3) + 2(D1) − 2(Z1)] · [(Z(�1 ;1)
3 ) + (D1 × Z1)

+ (D(c;1)
1 ) − (Z1 × Z1)] = 0:

For every 06 j6 k and ‘¿ 0, we deDne

aj;‘(	; 7) := Id − DzB(0; 	; 7) − (L + K)−1[DzN (0; 	; 7)

+K(Id − DzB(0; 	; 7))]|Wj; ‘

= (L + K)−1[L(Id − DzB(0; 	; 7)) − DzN (0; 	; 7)]|Wj; ‘ ; (2.14)

where (	; 7)∈R× (0;∞).
We have the following technical lemma (see [19]):

Lemma 2.1. For any (	; 7)∈R× (0;∞), we have

aj;0(	; 7) = −2$
7

Dx LF(0; 	)|Vj (2.15)
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and

aj;‘(	; 7) =
1
i‘7

6	;j(i‘7); ‘¿ 1: (2.16)

Let 5= 	+ i7= (	; 7)∈R2 =C and 50 = 	0 + i70, we deDne a special neighborhood
U (r; -) of the stationary solution (0; 50)∈W × R2 by

U (r; -) := {(z; 5)∈W × C : ‖z‖¡r; |5− 50|¡-}:
It is clear that U (r; -) is G-invariant with respect to action (2.6). By the implicit
function theorem, we can choose suNciently small r ¿ 0 and -¿ 0 such that the
equation

z − f(z; 5) = 0; z ∈W; 5∈C= R2 (2.17)

has no solution (z; 5)∈ @U (r; -) with z �= 0 and |5− 50| = -.
A G-invariant function # :U (r; -) → R, deDned by

#(z; 5) := |5− 50|(‖z‖ − r) + ‖z‖
is called a complementing function with respect to U (r; -). DeDne the mapping F# :
U (r; -) → W×R by F#(z; 5) := (z − f(z; 5); #(z; 5)), where (z; 5)∈U (r; -). Then the
mapping F# is a G-equivariant condensing Delds, and the G-equivariant degree of the
map F# with respect to the set U (r; -), denoted by G-Deg(F#; U (r; -)), is well deDned
and is an element of A1(DN × S1) (see [22,29]).

By the excision property of the G-degree, it follows that G-Deg(F#; U (r; -)) does
not depend on the numbers r ¿ 0 and -¿ 0 (for suNciently small r and -), thus if
G-Deg(F#; U (r; -)) �= 0, then (0; 50) is a bifurcation point of (2.17), i.e., there exists a
continuum C ⊂ U (r; -) of nonconstant periodic solution of (2.17) such that (0; 50)∈ LC.

For each 16 j6 k, we deDne the numbers

+j(	0; 70) =

{
1 if sign det aj;0(	0; 70) = −1;

0 if sign det aj;0(	0; 70) = 1
(2.18)

and

+0(	0; 70) = sign det a0;0(	0; 70);

so

+0(	0; 70) = (−1)dim V0 sign det Dx LF(0; 	0)|V0 : (2.19)

The exact value of G-Deg(F#; U (r; -)) is given in the following lemma:

Lemma 2.2. Assume that (A1)–(A4) are satis=ed. Then

G-Deg(F#; U (r; -)) = +0


 k∏

j=1

((DN ) − +j(	0; 70) degj)




×


∑

j;‘
‘¿0

c‘;j(	0; 70) degj;‘


 ; (2.20)
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where +0 := +0(	0; 70) and the products are given by the multiplication in the Burn-
side ring A(DN ) and by the multiplication A(DN ) × A1(DN × S1) → A1(DN × S1),
respectively.

Proof. The proof is similar to that of Theorem 3.1 in [19] and is omitted.

Theorem 2.1. Assume that (A1)–(A4) are satis=ed. Then for every nonzero crossing
number c‘;j(	0; 70), there exist, bifurcating from (0; 	0; 70), branches of nonconstant
periodic solutions of (2.5). More precisely, if h := gcd(j; N ), then
(i1) if degj;‘ = (Z(�j ;‘)

N ) + (Dh ×Z‘) + (D(c;‘)
h )− (Zh ×Z‘), i.e., N=h ≡ 1 (mod 2), then

there are 2 branches of periodic solutions with the orbit type (Z(�j ;‘)
N ), m = N=h

branches with the orbit type (Dh × Z‘), and m = N=h branches with the orbit
type (D(c;‘)

h );

(i2) if degj;‘ =(Z(�j ;‘)
N )+(D(d;‘)

2h )+(D(d̂; ‘)
2h )− (Z(d;‘)

2h ), i.e., N=h ≡ 2 (mod 4), then there

are 2 branches of periodic solutions with the orbit type (Z(�j ;‘)
N ), N=2h branches

with the orbit type (D(d;‘)
2h ), and N=2h branches with the orbit type (D(d̂; ‘)

2h );

(i3) if degj;‘ =(Z(�j ;‘)
N )+(D(d;‘)

2h )+(D̃(d;‘)
2h )− (Z(d;‘)

2h ), i.e., N=h ≡ 0 (mod 4), then there

are 2 branches of periodic solutions with the orbit type (Z(�j ;‘)
N ), N=2h branches

with the orbit type (D(d;‘)
2h ), and N=2h branches with the orbit type (D̃(d;‘)

2h );
(i4) if degj;‘ = (D̃(c;‘)

N ), then there is one branch of periodic solutions of the orbit

type (D̃(c;‘)
N );

(i5) if degj;‘ = (D̃(d;‘)
N ), then there is one branch of periodic solutions of the orbit

type (D̃(d;‘)
N );

(i6) if degj;‘ = (D(d̂; ‘)
N ), then there is one branch of periodic solutions of the orbit

type (D(d̂; ‘)
N ).

Proof. The proof is similar to that of Theorem 3.2 in [19] and thus is omitted.

To describe the global continuation of the local bifurcation obtained in Theorem 2.1,
we introduce the period p of a periodic solution as an additional parameter. In other
words, we will put p = 2$=7 in system (2.5). With this in mind, we can rewrite
(2.5) as

d
dt

[z(t) − b(zt;2$=p; 	)] = pF(zt;2$=p; 	); (2.21)

where zt;2$=p ∈C� is given by

zt;2$=p(�) = z(t + �=p); �∈ (−∞; �]:

Using the same notations as in (2.12), we can deDne

Lf(z; 	; p) := f(z; 	; 2$=p)

= B(z; 	; 2$=p) + (L + K)−1[N + K($− B)](z; 	; 2$=p):
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Therefore, we can reduce (2.21) to the following Dxed point problem

z = Lf(z; 	; p); z ∈W: (2.22)

We also need the following assumptions:

(A5) Dx LF(0; 	)∈GL(Rn) for every 	∈R.
(A6) The set M∗ := {	∈R; (0; 	) has pure imaginary characteristic values} is com-

plete and discrete in R.

Let us deDne

M := {(0; 	; p); 	∈R; p¿ 0} ⊂ W × R2:

We have the following global symmetric Hopf bifurcation theorem:

Theorem 2.2. Assume that (A1)–(A3), (A5) and (A6) are satis=ed. Let S denote the
closure of the set of all nontrivial periodic solutions of (2.21). Then for each bounded
connected component C of S, C ∩M is a =nite set and if

C ∩M = {(0; 	1; p1); : : : ; (0; 	q; pq)};
then

q∑
s=1

+0(	s; 2$=ps)c‘;j(	s; 2$=ps) = 0;

for every ‘¿ 1 and j = 0; 1; : : : ; k.

Proof. Note that every point of C ∩M is a bifurcation point and by (A6), C ∩M ⊂
{(0; 	; p); 	∈M∗; i2$=p is a pure imaginary characteristic value of (0; 	)} is complete
and discrete in {0} × R2. Since C ∩ M ⊂ C is also bounded, it follows that the set
C ∩ M is Dnite. Suppose that C ∩ M = {(0; 	1; p1); : : : ; (0; 	q; pq)} for some positive
integer q¿ 0. Choose r ¿-¿ 0 to be suNciently small. For each s = 1; 2; : : : ; q, we
deDne a special neighborhood Us of (0; 	s; ps)∈W × R× (0;∞) by

Us := {(z; 	s; ps)∈W × R× (0;∞) : ‖z‖¡r; (	− 	0)2

+ 4$2(1=p− 1=ps)2 ¡-2} (2.23)

and a complementing function #s : LUs → R with respect to Us by

#s(z; 	; p) := [(	− 	0)2 + 4$2(1=p− 1=ps)2]1=2(‖z‖ − r) + ‖z‖: (2.24)

Without loss of generality, we can assume that Ui ∩ Uj = ∅ for i �= j. Put U = U1 ∪
U2 ∪ · · · ∪Uq. Then the set U is open and G-invariant. We can Dnd an open bounded
G-invariant subset �1 ⊂ W×R2 such that L�1∩M =∅, C\U ⊂ �1 and (@�1\U )∩S=∅.

Put � = U ∪ �1. We deDne a complementing function # : L� → R with respect
to � by

#(z; 	; p) =

{
#s(z; 	; p); for (z; 	; p)∈Us;

r; for (z; 	; p)∈ L� \ U:
(2.25)
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DeDne LF# : L� → W × R by

LF#(z; 	; p) := (z − Lf(z; 	; p); #(z; 	; p)); (z; 	; p)∈ L�: (2.26)

Then LF# is a G-equivariant condensing Deld and LF#(z; 	; p) �= 0 for all (z; 	; p)∈ @�.
Consequently, the G-degree G-Deg( LF#; �) is well-deDned.

We deDne a homotopy H : L� × [0; 1] → W × R by

H (z; 	; p; t) = (z − Lf(z; 	; p); (1 − t)#(z; 	; p) − t-); (z; 	; p; t)∈ L� × [0; 1]:

It is easy to see that H (z; 	; p; t) �= 0 for all (z; 	; p; t)∈ @� × [0; 1], and thus H
is an �-admissible homotopy. Since H (z; 	; p; 0) = LF#(z; 	; p) and H (z; 	; p; 1) =
(z − Lf(z; 	; p);−-) �= 0 for all (z; 	; p)∈ L�, it follows that G-Deg( LF#; �) = 0.

LF#(z; 	; p) = (z − Lf(z; 	; p); r) �= 0; for all (z; 	; p)∈ L� \ U:

Let LF#s := LF#| LUs
. By the excision and additivity properties of G-degree, we conclude

that

0 = G-Deg( LF#; �) =
q∑

s=1

G-Deg( LF#s ; Us): (2.27)

On the other hand, by Lemma 2.2, we have

G-Deg( LF#s ; Us) = +0(	s; 2$=ps)


 k∏

j=1

((DN ) − +j(	s; 2$=ps) degj)




×


∑

j;‘
‘¿0

c‘;j(	s; 2$=ps) degj;‘


 : (2.28)

Consider the coeNcients +j(	s; 2$=ps) corresponding to deg′
j of type (j2) (i.e. degj′ =

(ZN ). If +j(	s; 2$=ps) = −1 for some s, then by (A5), +j(	s; 2$=ps) = −1 for all
s = 1; : : : ; q. Consequently, (DN ) − (ZN )) can be factored out of (2.28). Since∏

j �=j′((DN ) − +j(	s; 2$=ps) degj) is a normalized element of A(DN ), it follows from
(2.27), (2.28), and Lemma 2.1, that for every ‘¿ 1 and j = 0; 1; : : : ; k,

q∑
s=1

+0(	s; 2$=ps)c‘;j(	s; 2$=ps) = 0:

The proof is complete.

Theorem 2.3. Assume that (A1)–(A3), (A5) and (A6) are satis=ed. Suppose that for
some ‘¿ 0 and some 06 j6 k, degj;‘ is an orbit type consisting of a single closed
subgroup Hj;‘ of DN ×S1. Let Sj;‘ denote the closure of the set of all nontrivial peri-
odic solutions of (2.21) with the orbit type degj;‘. Then for each bounded connected
component Cj;‘, Cj;‘ ∩M is a =nite set and if

Cj;‘ ∩M = {(0; 	1; p1); : : : ; (0; 	q; pq)};
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then
q∑

s=1

+0(	s; 2$=ps)c‘;j(	s; 2$=ps) = 0:

Proof. Since Cj;‘∩M is complete and discrete in {0}×R2, Cj;‘∩M is a Dnite set, i.e.,
Cj;‘∩M ={(0; 	1; p1); : : : ; (0; 	q; pq)} for some positive integer q¿ 0. Suppose that for
every s = 1; 2; : : : ; q, we have deDned a special neighborhood Us and a complementing
function #s, which are given by (2.23) and (2.24), respectively. Then (2.28) holds for
every s = 1; 2; : : : ; q. In particular, the degj;‘-component of G-Deg( LF#s ; Us) is equal to

+0(	s; 2$=ps)


 k∏

j=1

((DN ) − +j(	s; 2$=ps) degj)


 c‘;j(	s; 2$=ps) degj;‘:

Since degj;‘ is an orbit type consisting of a single closed subgroup Hj;‘ of DN × S1, it

follows that WHj; ‘ is G-invariant and Lf :WHj; ‘ ×R× (0;∞) → WHj; ‘ . Let Uj;‘
s =Us∩

WHj; ‘ and #j;‘
s =#s|Uj; ‘

s
, then Uj;‘

s is a special neighborhood of (0; 	s; ps) in WHj; ‘ and

#j;‘
s is a complementing function with respect to Uj;‘

s . By using a similar argument as
in Theorem 2.2, we can show that

q∑
s=1

G-Deg( LF#j; ‘s
; U j;‘

s ) = 0; (2.29)

where LF#j; ‘s
= LF#s |Uj; ‘

s
.

From the construction of the G-degree (cf. [8]), we see that the degj;‘-component

of G-Deg( LF#j; ‘s
; U j;‘

s ) is equal to the degj;‘-component of G-Deg(F#s ; Us). Therefore,
(2.29) implies that

q∑
s=1

+0(	s; 2$=ps)


 k∏

j=1

((DN ) − +j(	s; 2$=ps) degj)


 c‘;j(	s; 2$=ps) degj;‘ = 0:

Thus, we have
q∑

s=1

+0(	s; 2$=ps)c‘;j(	s; 2$=ps) = 0:

The proof is complete.

Finally, we consider the restricted ZN ×S1-action on W and the ZN ×S1-equivariant
bifurcation problem (2.21). We have the following global symmetric Hopf bifurcation
theorem. We refer to [29] for the proof.

Theorem 2.4. Assume that (A1)–(A3), (A5) and (A6) are satis=ed. For 06 j6
N −1, let Sj denote the closure of the set of all nontrivial periodic solutions of (2.21)
in which each periodic solution z(t) satis=es -(ei (2$=N ))z(t+j=N )=z(t). Then for each
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bounded connected component Cj, Cj ∩M is a =nite set and if

Cj ∩M = {(0; 	1; p1); : : : ; (0; 	q; pq)};
then

q∑
s=1

+0(	s; 2$=ps)c‘;j(	s; 2$=ps) = 0:

3. Hopf bifurcations in a ring of identical oscillators

In this section, we consider a ring of identical oscillators with identical coupling
between adjacent cells. Such a ring, which was studied by Turing (cf. [25]), provides
models for various situations in biology, chemistry and electrical engineering. The local
Hopf bifurcation of this Turing ring has been extensively analyzed in the literature, see
[1,23,29] and references therein.

We will propose models of neutral functional di<erential equations as the kinetics and
consider the delayed coupling and di<usion in the system. We will show how the tem-
poral delay (both in kinetics and coupling) and the dihedral symmetries of the system
may cause various types of oscillations in the case where each cell is described by only
one state variable. In particular, we will prove the existence of large amplitude phase-
locked and synchronous periodic solutions in these ring-structured neutral systems.

Let N¿ 3 be a positive integer. We consider now a ring of N identical cells that
are coupled by di<usion along the sides of an N -gon (see Fig. 1 below).

We assume that the state of jth cell at the current time is completely speciDed by
the value of one state variable at that instant. Each cell may be regarded as a chemical
system and the state variable of the jth cell, denoted by xj, may be regarded as
the concentration of the chemical substance in the jth cell. We assume that coupling
between cells occurs and the concentrations xj(t), j = 1; 2; : : : ; N , of N cells satisfy

x 1

x 2x 3

x N − 1 x N

Fig. 1. Ring of N identical cells coupled by di<usion along the sides of an N -gon.
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a system of neutral functional di<erential equations

d
dt

[
xj(t) − b(xjt ; 	)

]
= f
(
xjt ; 	
)

+ K(	)
(
xj+1
t + xj−1

t − 2xjt
)
; (3.1)

where j=1; 2; : : : ; N is expressed mod N , t ∈R denotes the time, 	∈R is a parameter,
and b; f :C�×R→ R, C� := C((−∞; �];R), are continuously di<erentiable functionals
which represent the kinetics within each cell, and K(	) :C� → R is a bounded linear
functional such that the mapping K :R → L(C�;R) is continuously di<erentiable. The
operator K(	) represents the coupling strength and the coupling term

K(	)
(
xj+1
t − xjt

)
+ K(	)

(
xj−1
t − xjt

)
in (3.1) is assumed to obey the ordinary Fickian law of di@usion.

We assume that

(H1) f :C�×R→ R is completely continuous, K(	) :C� → R is compact for all 	∈R
and there exists a constant Lk ∈ [0; 1) such that

|b(’; 	) − b( ; 	)|6 Lk‖’−  ‖; ’;  ∈C�; 	∈R:
(H2) f(0; 	) = 0 for all 	∈R.

By (H2), we see that (0; 	)∈RN × R is a stationary solution of (3.1) and the
linearization of (3.1) at (0; 	) reads

d
dt

[
xj(t) − D’b(0; 	)xjt

]
= D’f(0; 	)xjt + K(	)

(
xj+1
t + xj−1

t − 2xjt
)
; (3.2)

where j = 1; 2; : : : ; N mod N . Therefore, the number 5∈C is a characteristic value if
the following characteristic equation of (3.1) (see [12]):

detC 6	(5) = 0 (3.3)

is satisDed, where for each 	∈R; 5∈C, 6	(5) :CN → CN is given by

6	(5) := diag(5[1 − D’b(0; 	)e5·] − D’f(0; 	)e5·) − 8(5; 	); (3.4)

where 8(5; 	) :CN → CN is deDned by

{8(5; 	)z}j = K(	)[e5·(zj+1 + zj−1 − 2zj)];

for j = 1; 2; : : : ; N mod N and z = (z1; z2; : : : ; zN )∈CN .
Let #N := ei 2$=N . Then we have

CN = CN
0 ⊕ CN

1 ⊕ · · · ⊕ CN
N−1; (3.5)

where for j = 0; 1; : : : ; N − 1, the subspace CN
j is given by

CN
j =

{
(1; #j

N ; #
2j
N ; : : : ; #N−1

N )Tz; z ∈C
}
: (3.6)



W. Krawcewicz et al. / Nonlinear Analysis: Real World Applications 5 (2004) 309–354 329

Put

$	(5) := 5[1 − D’b(0; 	)e5·] − D’f(0; 	)e5·: (3.7)

Then for any z ∈C, 06 j6N − 1 and 16 k6N , we have

{6	(5)(1; #j
N ; : : : ; #

(N−1) j
N )z}k

=
{
$	(5)#(k−1) j

N − K(	)[e5·(#kj
N + #(k−2) j

N − 2#(k−1) j
N ]

}
z

=
{
$	(5) − K(	)e5·[#j

N + #j
N − 2]

}
#(k−1) j
N z

=[$	(5) + 4 sin2($j=N )K(	)e5·]#(k−1) j
N z: (3.8)

This implies that 6	(5)CN
j ⊂ CN

j and consequently we get the following lemma:

Lemma 3.1. Let $	(5) be given by (3.7). Then

detC 6	(5) =
N−1∏
j=0

[
$	(5) + 4 sin2 $j

N
K(	)e5·

]

and, consequently, 5∈C is a zero of (3.3) if and only if there exists a j∈{0; 1; : : : ;
N − 1} such that

pj(5; 	) := $	(5) + 4 sin2 $j
N

K(	)e5· = 0: (3.9)

Remark 3.1. We call (3.9) the jth characteristic equation of (3.1). Note that sin2

($j=N ) = sin2($(N − j)=N ), 06 j6N − 1. It follows that every zero of pj(5; 	),
j �= 0, N=2, is of even multiplicity. This is due to the symmetry in the system, which
forces characteristic values to be multiple.

We now make the following assumptions:

(H3) There exists an 	0 ∈R such that Lf
′
(0; 	0) �= 4 LK(	0) sin2($j=N ) for every j =

0; 1; : : : ; [N=2], here and in what follows, Lf
′
(0; 	) denote the derivative of Lf with

respect to the Drst argument at (0; 	) and LK(	) := K(	) L1.
(H4) There exist some j∈{0; 1; : : : ; [N=2]} and positive constants 70 ¿ 0, E¿ 0 and

8¿ 0 such that
(i) pj(i7; 	) = 0 for some (	; 7)∈ [	0 − E; 	0 + E]× [7− 8; 70 + 8] if and only if 	= 	0

and 7 = 70;
(ii) pj(u + iv; 	0) = 0 for some (u; v)∈ @� with � := (0; E) × (70 − 8; 70 + 8) if and

only if u = 0 and v = 70.

It is straightforward to obtain the following:
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Lemma 3.2. Assume (H1)–(H4) are satis=ed, then the jth isotypical crossing number
for the isolated center (0; 	0) corresponding to the value i70 is equal to

c1; j(	0; 70)

=




2[degB(pj(·; 	0 − 8); �)

−degB(pj(·; 	0 + 8); �)] if 16 j¡ [N=2];

degB(pj(·; 	0 − 8); �)

−degB(pj(·; 	0 + 8); �) if j = 0; or

N is even and j = N=2;

(3.10)

where pj(5; 	) = $	(5) + 4 sin2($j=N )K(	)e5·.

Now, we deDne an orthogonal representation - :DN → O(N ) of DN on RN by

(#Nx)j := xj−1; #N = ei2$=N ; ("x)j := xN−j;

x = (x1; x2; : : : ; xN )T ∈RN ; j = 1; 2; : : : ; N (mod N ):
(3.11)

Then it is easy to see that (3.1) is DN -equivariant.
It is easily veriDed that with respect to restricted ZN -action, the ZN -isotypical

decomposition of the complex representation CN := RN + iRN is given by (3.5) and
(3.6). Since " sends CN

j onto CN
−j, where −j is taken mod N , CN has the following

isotypical decomposition

CN = U0 ⊕ U1 ⊕ U2 ⊕ · · · ⊕ U(N−1)=2 if N is odd;

CN = U0 ⊕ U1 ⊕ U2 ⊕ · · · ⊕ UN=2−1 ⊕ UN=2 if N is even;

where

U0 = {(z; z; : : : ; z)∈CN : z ∈C};
Uj = {(1; #j

N ; : : : ; #
(N−1) j
N )z: z ∈C}

∪{(1; #−j
N ; : : : ; #−(N−1) j

N )z; z ∈C}; 16 j¡N=2

and if N is even,

UN=2 = {(1; #N=2
N ; : : : ; #(N−1)N=2

N )z: z ∈C} = {(1;−1; : : : ; 1;−1)z: z ∈C}:
Every irreducible subrepresentation of Uj, 16 j¡N=2, is equivalent to the irre-

ducible (real) four-dimensional representation on C× C:

'(z1; z2) := ('j · z1; '−j · z2); "(z1; z2) := (z2; z1); '∈ZN ; z1; z2 ∈C:
Hence, for any Dxed positive integer ‘¿ 0, the above irreducible representation
corresponds to the irreducible (real) four-dimensional representation of G = DN × S1

on C× C:

('; �)(z1; z2) = ('j�‘z1; '−j�‘z2); for ('; �)∈ZN × S1;

("'; �)(z1; z2) = ('−j�‘z2; ' j�‘z1); for ("'; �)∈ "ZN × S1; (3.12)
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where (z1; z2)∈C× C, 16 j¡ [N=2]. Put h = gcd(j; N ), then if N=h is odd, we have

degj;‘ = (Z(�j ;‘)
N ) + (Dh × Z‘) + (D(c;‘)

h ) − (Zh × Z‘) (3.13)

if N=h ≡ 2 (mod 4), we have

degj;‘ = (Z(�j ;‘)
N ) + (D(d;‘)

2h ) + (D(d̂; ‘)
2h ) − (Z(d;‘)

2h ) (3.14)

and if N=h ≡ 0 (mod 4), we have

degj;‘ = (Z(�j ;‘)
N ) + (D(d;‘)

2h ) + (D̃(d;‘)
2h ) − (Z(d;‘)

2h ): (3.15)

When N is even, every irreducible subrepresentation of UN=2 is equivalent to the
irreducible two-dimensional representation

gz =

{
z; g∈DN=2;

−z; g∈DN \ DN=2:

Hence, for any Dxed positive integer ‘¿ 0, the above irreducible representation cor-
responds to the irreducible two-dimensional representation of G = DN × S1 on C×C:

(g; �)z = �‘z; (g; �)∈ZN=2 × S1;

(g; �)z = −�‘z; (g; �)∈ (ZN \ DN=2) × S1: (3.16)

Therefore, we have

degN=2; ‘ = (D̃(d;‘)
N ): (3.17)

By virtue of Theorem 2.1 and Lemma 3.2, we have the following

Theorem 3.1. Assume that (H1)–(H4) are satis=ed. If c1; j(	0; 70) �= 0, then the sta-
tionary point (0; 	0) is a bifurcation point of (3.1) and several branches of nonconstant
periodic solutions bifurcate from (0; 	0; 70). More precisely, if h := gcd(j; N ), then

(i1) if 16 j¡N=2 and N=h ≡ 1 (mod 2), then there are at least 2 branches of peri-
odic solutions corresponding to the orbit type (Z(�j ;1)

N ), N=h branches of periodic
solutions corresponding to the orbit type (Dh×Z1), and N=h branches of periodic
solutions corresponding to the orbit type (D(c;1)

h );
(i2) if 16 j¡N=2 and N=h ≡ 2 (mod 4), then there are at least 2 branches of

periodic solutions corresponding to the orbit type (Z(�j ;1)
N ), N=2h branches of

periodic solutions corresponding to the orbit type (D(d;1)
2h ), and N=2h branches

of periodic solutions corresponding to the orbit type (D(d̂;1)
2h );

(i3) if 16 j¡N=2 and N=h ≡ 0 (mod 4), then there are at least 2 branches of
periodic solutions corresponding to the orbit type (Z(�j ;1)

N ), N=2h branches of
periodic solutions corresponding to the orbit type (D(d;1)

2h ), and N=2h branches
of periodic solutions corresponding to the orbit type (D̃(d;1)

2h );
(i4) if N is even and j = N=2, then there exists at least one branch of periodic

solutions corresponding to the orbit type (D̃(d;1)
N );

(i5) if j=0, then there exists at least one branch of periodic solutions corresponding
to the orbit type (DN × Z1).
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Remark 3.2. We note that the obtained branches of periodic solutions are subsets of the
so-called Fuller’s space BC(R;RN )×R2. For an obtained branch of periodic solutions
and a point (x; 	; 7) on it with 7¿ 0, p = 2$=7 is a period of x, for the sake of
convenience, we will call the periodic function x∈BC(R;RN ) a periodic solution on
the branch and the p¿ 0 a corresponding period of x. It can been shown that if
for any positive integer k ¿ 1, ik70 is not a characteristic value of the stationary
point (0; 	0), then for every branch of periodic solutions bifurcating from (0; 	0; 70)
and every periodic solution x(t) on it, the corresponding period p¿ 0 of x is also
a minimal period of x. We refer to [6,20,21,29] for more detailed discussion in this
aspect. Let WN := C(S1;RN ). Then the orthogonal representation - :DN → O(N ) of
DN on RN induces an isometric Banach representation of DN × S1 on WN :

('; �)z(t) = -(')z(t + �) ('; �)∈G := DN × S1; t ∈ S1 and z ∈WN :

We say that the obtained branch corresponds to the orbit type (H) in WN , denoted
by C(H), if for every periodic solution x(t) belonging to the branch and with a corre-
sponding period p¿ 0, z ∈WN given by z(t)=x(pt) satisDes Gz ∼ H , i.e., the isotropy
group Gz of z is conjugate to H in G.

The following Lemma 3.3 is obvious.

Lemma 3.3. If '∈ZN , then

"'" = '−1; "−1 = ": (3.18)

Lemma 3.4. For every j∈Z, the conjugacy class (Z(�j ;1)
N ) contains exactly two closed

subgroups of DN × S1:

Z(�j ;1)
N = {('; ' j)∈DN × S1; '∈ZN}; Z(�−j ;1)

N = {('; '−j)∈DN × S1; '∈ZN}:

Proof. By deDnition, we have

Z(�j ;1)
N = {('; �)∈ZN × S1; �j(') = � = 'j} = {('; ' j)∈DN × S1; '∈ZN}:

For every (g; �)∈ZN × S1; '∈ZN , by Lemma 3.3, we have

(g; �)('; ' j)(g; �)−1 = (g'g−1; ' j) = ('; ' j)

and

("g; �)('; ' j)("g; �)−1 = ("g'g−1"; 'j) = ("'"; 'j) = ('−1; ' j):

Therefore, Z(�−j ;1)
N = {('; '−j)∈DN × S1; '∈ZN} is conjugate to Z(�j ;1)

N , and
(Z(�j ;1)

N ) contains exactly two closed subgroups Z(�j ;1)
N ;Z(�−j ;1)

N of DN ×S1. The proof is
complete.

Lemma 3.5. If h|N , then the closed subgroup Zh × Z1 of DN × S1 is a subgroup of
every element of the conjugacy classes (Dh × Z1) and (D(c;1)

h ).
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Proof. By deDnition, it is easy to show that

Dh × Z1 = {('; 1); '∈Zh} ∪ {("'; 1); '∈Zh};
D(c;1)

h = {('; 1); '∈Zh} ∪ {("';−1);�∈Zh}:
For every (g; �)∈ZN × S1 and ('; 1)∈Zh × Z1, by Lemma 3.3, we get

(g; �)('; 1)(g; �)−1 = (g'g−1; 1) = ('; 1)

and

("g; �)('; 1)("g; �)−1 = ("g'g−1"; 1) = ("'"; 1) = ('−1; 1):

Thus, Zh × Z1 is a subgroup of each closed subgroup conjugate to Dh × Z1 or D(c;1)
h ,

and this completes the proof.

Lemma 3.6. If 2h|N , then the closed subgroup Z(d;1)
2h = {('; 1); (#2h';−1) : '∈Zh} of

DN × S1 is a subgroup of each closed subgroup conjugate to one of the following
closed subgroups:

D(d;1)
2h = {('; 1); (#2h';−1); ("'; 1); ("#2h';−1); '∈Zh};

D(d̂;1)
2h = {('; 1); (#2h';−1); ("';−1); ("#2h'; 1); '∈Zh};

D̃(d;1)
2h = {('; 1); (#2h';−1); ("#N'; 1); ("#N#2h';−1); '∈Zh}:

Proof. The proof is similar to that of Lemma 3.5 and is omitted.

Lemma 3.7. If N is even, then the conjugacy class (D̃(d;1)
N ) contains exactly one closed

subgroup given by

D̃(d;1)
N = {('; 1); (#N';−1); ("';−1); ("#N'; 1); '∈ZN=2}:

Proof. By deDnition, we can easily verify that

D̃(d;1)
N = {('; �)∈ D̃N × S1;d(') = �}

= {('; 1); (#N';−1); ("';−1); ("#N'; 1); '∈ZN=2}:
For every (g; �)∈ZN × S1, by using the fact that g2 ∈ZN=2, we can show that

(g; �)D̃(d;1)
N (g; �)−1 ⊂ D̃(d;1)

N ; ("g; �)D̃(d;1)
N ("g; �)−1 ⊂ D̃(d;1)

N :

Therefore, the conjugacy class (D̃(d;1)
N ) contains only one closed subgroup D̃(d;1)

N . The
proof is complete.

Theorem 3.2. Assume that (H1)–(H4) are satis=ed. If c1; j(	0; 70) �= 0, then the sta-
tionary point (0; 	0) is a bifurcation point of (3.1) and several branches of nonconstant
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periodic solutions bifurcate from (0; 	0; 70). More precisely, if h := gcd(j; N ), then

( j1) if 16 j¡N=2, then
( j1a) there are at least 2 branches of periodic solutions on which any periodic

solution x(t) = (xk(t))Nk=1 satis=es

xk+1

(
t +

jp
N

)
= xk(t) and xk−1

(
t +

jp
N

)
= xk(t); (3.19)

respectively, where k = 1; 2; : : : ; N (mod N ) and p¿ 0 is the corresponding
period of x;

( j1b) if N=h ≡ 1 (mod 2), then there are at least 2N=h branches of periodic solutions
on which any periodic solution x(t) = (xk(t))Nk=1 satis=es

xk−N=h(t) = xk(t); k = 1; 2; : : : ; N (mod N ); (3.20)

(j1c) if N=h ≡ 0 (mod 2), there are at least N=h branches of periodic solutions on
which any periodic solution x(t) = (xk(t))Nk=1 satis=es

xk−N=(2h)

(
t +

p
2

)
= xk(t); k = 1; 2; : : : ; N (mod N ); (3.21)

where p¿ 0 is the corresponding period of x.
( j2) if N is even and j = N=2, then there exists at least one branch of periodic

solutions on which any periodic solution x(t) = (xk(t))Nk=1 satis=es

xk−1

(
t +

p
2

)
= xk(t);

xN−k

(
t +

p
2

)
= xk(t); k = 1; 2; : : : ; N (mod N ); (3.22)

where p¿ 0 is the corresponding period of x;
( j3) if j = 0, then there exists at least one branch of periodic solutions on which any

periodic solution x(t) = (xk(t))Nk=1 satis=es

x1(t) = x2(t) = · · · = xN (t): (3.23)

Proof. By virtue of Theorem 3.1, we know that (0; 	0) is a bifurcation point and
(i1)–(i5) in Theorem 3.1 are satisDed.

Let K ⊂ G = DN × S1 be a closed subgroup. If there exists a branch of periodic
solutions corresponding to the orbit type (K) and bifurcating from (0; 	0; 70), then,
corresponding to |G=K | closed subgroups in the conjugacy class (K), there must exist
|G=K | di<erent branches of periodic solutions corresponding to the orbit type (K) and
bifurcating from (0; 	0; 70) and each branch corresponds to a closed subgroup in (K).
We say that a branch CH corresponds to a closed subgroup H in the conjugacy class
(K), if the branch CH is corresponds to the orbit type (K), and any periodic solution
x(t) = (xk(t))Nk=1 on the branch CH , z ∈C(S1;RN ) given by

z(t) = (x1(pt); : : : ; xN (pt)) (3.24)

has the isotropy group H , i.e., Gz = H , where p¿ 0 is the corresponding period
of x. Therefore, if x(t) = (x(k(t))Nk=1 is a periodic solution on the branch CH and has
a corresponding period p¿ 0, then z ∈C(S1;RN ) given by (3.24) satisDes

(g; �)z(t) = -(g)z(t + �) = z(t); ∀(g; �)∈H:
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Put h= gcd(j; N ). If 16 j¡N=2 and N=h ≡ 1 (mod N ), then Theorem 3.1(i1) implies
that there exist two branches of periodic solutions bifurcating from (0; 	0; 70) and
corresponding to the orbit type (Z(�j ;1)

N ). By Lemma 3.4, we see that the conjugacy
class (Z(�j ;1)

N ) contains two closed subgroups Z(�j ;1)
N and Z(�−j ;1)

N , and hence those two
branches corresponding to the orbit type (Z(�j ;1)

N ) correspond to the closed subgroups
Z(�j ;1)

N and Z(�−j ;1)
N , respectively. For every periodic solution x(t) = (xk(t))Nk=1 on the

branch C
Z

(�j ; 1)
N

, if p¿ 0 is the corresponding period of x, then z ∈C(S1;RN ) given by

(3.24) satisDes

('; ' j)z(t) = -(')z
(
t +

j
N

)
= z(t); ∀'∈ZN :

In particular, we have

(#N ; #
j
N )z(t) = -(#)z

(
t +

j
N

)
= z(t); #N = ei2$=N ∈ZN :

That is,

zk−1

(
t +

j
N

)
= zk(t); k = 1; 2; : : : ; N (mod N ):

Hence, we obtain

xk−1

(
t +

jp
N

)
= xk(t); k = 1; 2; : : : ; N (mod N ):

For every periodic solution x(t) = (xk(t))Nk=1 on the branch C
Z

(�−j ; 1)
N

, if p¿ 0 is the

corresponding period of x, then a similar argument implies that

xk−1

(
t − jp

N

)
= xk(t); k = 1; 2; : : : ; N (mod N )

and hence

xk+1

(
t +

jp
N

)
= xk(t); k = 1; 2; : : : ; N (mod N ):

The rest of Theorem 3.2 can be proved in a similar way and thus is omitted.

Remark 3.3. Following Alexander and Auchmuty [1], we call the periodic solution
obtained in Theorem 3.2 synchronous oscillations if (3.23) holds and phase-locked
oscillations if one equality of (3.19) holds for every k = 1; : : : ; N (mod N ). Intuitively,
synchronous oscillations occur when all the concentration oscillate in phase and phase-
locked oscillations are those where each concentration oscillates just like the others
except not necessarily in phase with each other. We refer to [1,7,9,21,26,29] for more
details.

To detect the global continuation of the branches of periodic solutions obtained in
Theorem 3.1, we further assume that

(H5) Lf
′
(0; 	) �= 4 LK(	) sin2($j=N ) for every 	∈R and j = 0; 1; : : : ; [N=2].
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(H6) For every j = 0; 1; : : : ; [N=2], the set

M∗
j := {	∈R; pj(iI; 	) = 0 for some I¿ 0}

is complete and discrete in R.

From (H5) and Lemma 3.1, we can easily see that for any 	∈R, 0 is not a char-
acteristic value of (0; 	). In other words, for every 	∈R, we have

Dx LF(0; 	) �= 0; (3.25)

where LF :RN × R→ RN is given by

LFj(x; 	) = Lf(xj; 	) + LK(	)(xj+1 + xj−1 − 2xj);

x = (x1; x2; : : : ; xN )∈RN ; j = 1; 2; : : : ; N:

Therefore, (A5) is satisDed. By (H6), (A6) is also satisDed.
In particular, (3.25) implies that

Lf
′
(0; 	) = Dx LF(0; 	)|V0 �= 0; ∀	∈R;

where V0 := (RN )DN = {(c; c; : : : ; c); c∈R}. Therefore, by (2.19), we have

+0(	; 2$=p) = (−1)dim V0 sign det LF(0; 	)|V0 = −sign Lf
′
(0; 	) �= 0: (3.26)

Since Lf :R2 → R is continuously di<erentiable with respect to the Drst argument,
(3.26) implies that +0(	; 2$=p) is a constant (1 or −1) for every (	; p)∈R × (0;∞).
Thus, by Theorems 2.3 and 2.4, we have the following global symmetric Hopf bifur-
cation theorem.

Theorem 3.3. Assume that (H1), (H2), (H5) and (H6) are satis=ed. For each j =
0; 1; : : : ; [N=2], put M̃ j = {(	; p)∈R × (0;∞); pj(i2$=p; 	) = 0 for p¿ 0}. If there
exists a j∈{0; 1; : : : ; [N=2]} such that for any =nite subset Ñ j ⊂ M̃ j,∑

(	;p)∈Ñ

c1; j(	; 2$=p) �= 0;

then for each (	; p)∈ M̃ j there exist, bifurcating from (0; 	; p), unbounded branches
of nonconstant periodic solutions of (3.1). More precisely, we have

( j1) if 16 j¡N=2, then there are at least 2 unbounded branches of periodic solutions
on which any periodic solution (xk(t))Nk=1 with a corresponding period p¿ 0
satis=es

xk+1

(
t +

jp
N

)
= xk(t) and xk−1

(
t +

jp
N

)
= xk(t);

respectively, where k = 1; 2; : : : ; N (mod N );
( j2) if N is even and j = N=2, then there exists at least one unbounded branch of

periodic solutions on which any periodic solution (xk(t))Nk=1 with a corresponding
period p¿ 0 satis=es

xk−1

(
t +

p
2

)
= xk(t); xN−k

(
t +

p
2

)
= xk(t); k = 1; 2; : : : ; N (mod N );
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( j3) if j = 0, then there exists at least one unbounded branch of periodic solutions
on which any periodic solution (xk(t))Nk=1 satis=es

x1(t) = x2(t) = · · · = xN (t):

4. The coexistence of multiple slowly oscillating periodic solutions

In this section, as a special example, we consider the following neutral functional
di<erential equation:

d
dt

[xk(t) − qxk(t − r)] = d[(xk+1(t) − qxk+1(t − r))

+ (xk−1(t) − qxk−1(t − r)) − 2(xk(t) − qxk(t − r))]

− axk(t) − aqxk(t − r) − g(xk(t) − qxk(t − r)); (4.1)

where k = 1; 2; : : : ; N mod N , N¿ 3 is a positive integer, a, d, r are positive constants,
g :R → R is continuously di<erentiable with g(0) = 0, q∈ [0; 1) is the bifurcation
parameter.

We remark that the continuous version of (4.1)

@
@t

[u(t; x) − qu(t − r; x)] = d
@2

@x2 [u(t; x) − qu(t − r; x)]

− au(t; x) − aqu(t − r; x) − g[u(t; x) − qu(t − r; x)];

where x∈ S1, has been studied by Wu and Xia (cf. [28,26]), and (4.1) arises from
coupled transmission lines (cf. [22]).

Let Q :R→ R be a continuously di<erentiable function such that

(i) Q(	) = 0 for all 	6 0.
(ii) Q′(	)¿ 0 for all 	¿ 0 and lim	→∞ Q(	) = 1.

Then we can reparametrize system (4.1) to get

d
dt

[xk(t) − Q(	)xk(t − r)]

=d[(xk+1(t) − Q(	)xk+1(t − r)) + (xk−1(t) − Q(	)xk−1(t − r))

− 2(xk(t) − Q(	)xk(t − r)] − axk(t) − aQ(	)xk(t − r) − g(xk(t)

−Q(	)xk(t − r)); (4.2)

for k = 1; 2; : : : ; N mod N . Then for any q∈ [0; 1), (xk(t))Nk=1 is a periodic solution of
(4.1) with q if it is a periodic solution of (4.2) with 	 = Q−1(q)¿ 0.

Let C0 := C((−∞; 0];R). DeDne b; f :C0 × R→ R by

b(’; 	) := Q(	)’(−r); ’∈C0
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and

f(’; 	) := −a’(0) − aQ(	)’(−r) − g(’(0) − Q(	)’(−r)); ’∈C0;

respectively, and for every 	∈R, deDne K(	) :C0 → R by

K(	)’ := d(’(0) − Q(	)’(−r)):

Then (H1) and (H2) are satisDed and (4.2) can be rewritten as

d
dt

[(xj)(t) − b((xj)t ; 	)] = f((xj)t ; 	) + K(	)((xj+1)t + (xj−1)t − 2(xj)t);

where j = 1; 2; : : : ; N mod N .
In what follows, for the sake of convenience, we put

g′(0) = +: (4.3)

Then the characteristic equation at the zero solution of (4.1) takes the form

detC 6(5) = 0; (4.4)

where for each 5∈C, 6(5) :CN → CN is given by

6(5) := diag(5(1 − qe−5r) + a + aqe−5r + +(1 − qe−5r)) − 8(5) (4.5)

in which the discretized Laplacian 8(5) :CN → CN is given by

{8(5)z}j = d[(1 − qe−5r)zj+1 + (1 − qe−5r)zj−1 − 2(1 − qe−5r)zj];

for z = (z1; z2; : : : ; zN )T ∈CN , j = 1; 2; : : : ; N mod N .
Corresponding to Lemma 3.1, we have

Lemma 4.1. Let $q(5) := 5(1 − qe−5r) + a + aqe−5r + +(1 − qe−5r). Then

det 6(5) =
N−1∏
j=0

[
$q(5) + 4d(1 − qe−5r) sin2 $j

N

]
:

Therefore, 5∈C is a zero of (4.4) if and only if there exists a j∈{0; 1; : : : ; [N=2]}
such that

pj(5; q) := $q(5) + 4d(1 − qe−5r) sin2 $j
N

= 0: (4.6)

Let 5 = i7 with 7¿ 0. Substituting it into (4.6), we get{
q7 sin 7r − q(a− + + 4d sin2($j=N )) cos 7r = a + +− 4d sin2($j=N );

q(a− 4d sin2($j=N )) sin 7r + q7 cos 7r = 7:
(4.7)
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Since D := q272 + q2(a− + + 4d sin2($j=N ))2 = q2[72 + (a− + + 4d sin2($j=N ))2]¿ 0
for q∈ (0; 1), it follows from (4.7) that[

sin 7r

cos 7r

]
=

1
D

[
2aq7

q[72 − a2 + (+− 4d sin2($j=N ))2]

]

or equivalently,

cot 7r =
72 − a2 + (+− 4d sin2($j=N ))2

2a7
;

q2 =
72 + (a + +− 4d sin2($j=N ))2

72 + (a− + + 4d sin2($j=N ))2
: (4.8)

If there exists a j∈{0; 1; : : : ; [N=2]} such that

+¡ 4d sin2 $j
N

¡a + +; (4.9)

then it is easy to show that for any real number 7¿ 0,

72 + (a + +− 4d sin2($j=N ))2

72 + (a− + + 4d sin2($j=N ))2
∈ (0; 1): (4.10)

For each Dxed j∈{0; 1; : : : ; [N=2]} so that (4.9) holds, put

hj(7) :=
72 − a2 + (+− 4d sin2($j=N ))2

2a7
:

Then we have

hj(0+) = −∞; hj(+∞) = +∞
and

h′j(7) =
4a72 − 2a(72 − a2 + (+− 4d sin2($j=N ))2)

4a272

=
72 + a2 − (+− 4d sin2($j=N ))2

2a72

¿
a2 − (+− 4d sin2($j=N ))2

2a72 ¿ 0:

Therefore, there exists a sequence of positive numbers {7j;k}∞k=0 such that

(1) 7j;k , k = 0; 1; : : : , satisfy the Drst equation of (4.8);
(2) 7j;0 ¡7j;1 ¡ · · ·¡7j;k ¡ · · · → ∞;
(3) k$=r ¡7j;k ¡ (k + 1)$=r, k = 0; 1; : : : , and hence

2r ¡ 2$=7j;0 ¡∞;
2r

k + 1
¡ 2$=7j;k ¡

2r
k
; k¿ 1:



340 W. Krawcewicz et al. / Nonlinear Analysis: Real World Applications 5 (2004) 309–354

Substituting this 7j;k into the second equation of (4.8), and using (4.9) and (4.10),
it follows that

qj;k :=

√√√√72
j; k + (a + +− 4d sin2($j=N ))2

72
j; k + (a− + + 4d sin2($j=N ))2

∈ (0; 1); (4.11)

where 0¡qj;0 ¡qj;1 ¡ · · ·¡qj;k ¡ · · · → ∞.
If, in addition to (4.9), we assume that

a2 ¿
$2

4r2 +
(
+− 4d sin2 $j

N

)2

; (4.12)

then

hj

( $
2r

)
=

r
a$

[
$2

4r2 − a2 +
(
+− 4d sin2 $j

N

)2
]
¡ 0

and hence,
$
2r

¡7j;0 ¡
$
r
;

which yields

2r ¡ 2$=7j;0 ¡ 4r:

Let 5=5(q) be a smooth curve of zeros of (4.6) so that 5(qj;k)=i7j;k . Di<erentiating
(4.6) with respect to q, we get

5′(q) =
5− a + +− 4d sin2($j=N )

e5r + r(5 + a + +− 4d sin2($j=N ))e5r − q
:

It follows from (4.6) that

e5r =
q(5− a + +− 4d sin2($j=N ))

5 + a + +− 4d sin2($j=N )
;

therefore, we have

5′(q) =
5− a + +− 4d sin2($j=N )

q(5− a + +− 4d sin2($j=N ))

5 + a + +− 4d sin2($j=N )
+ qr(5− a + +− 4d sin2($j=N )) − q

:

This leads to

sign Re 5′(q)|q=qj; k = sign Re
1

5′(q)

∣∣∣∣
q=qj; k

= sign Re
{
qr +

q

5+a++−4d sin2($j=N )
− q

5− a + +− 4d sin2($j=N )

}∣∣∣∣
q=qj; k ;5=i7j; k
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= sign Re

{
r +

1

i7j;k + a + +− 4d sin2($j=N )
− 1

i7j;k − a + +− 4d sin2($j=N )

}

= sign

{
r +

a + +− 4d sin2($j=N )

72
j; k + (a + +− 4d sin2($j=N ))2

+
a− + + 4d sin2($j=N )

72
j; k + (a− + + 4d sin2($j=N ))2

}

= sign

{
r +

2a72
j; k + 2a(a2 − (+− 4d sin2($j=N ))2)

[72
j; k + (a + +− 4d sin2($j=N ))2][72

j; k + (a− + + 4d sin2($j=N ))2]

}

=1¿ 0:

Let us summarize the above discussions for the sake of later reference.

Lemma 4.2. Assume that there exists a j∈{0; 1; : : : ; [N=2]} so that (4.9) is satis=ed.
The following statements hold true:

(i) (4.6) has a sequence of purely imaginary solutions ±i7j;k with 0¡7j;0 ¡7j;1 ¡
7j;2 ¡ · · · for q = qj;k ∈ (0; 1) with 0¡qj;0 ¡qj;1 ¡ · · ·¡qj;k ¡ · · · → ∞ given
by (4.11);

(ii) if 5(q) is a smooth curve of zeros of (4.6) with 5(qj;k)=i7j;k , then Re 5′(qj;k)¿ 0;
(iii) 2r ¡ 2$=7j;0 ¡∞; 2r=(k + 1)¡ 2$=7j;k ¡ 2r=k; k¿ 1;
(iv) if, in addition to (4.9), we assume that (4.12) holds, then

2r ¡ 2$=7j;0 ¡ 4r:

It is straightforward to obtain the following technical result.

Corollary 4.1. Assume that there exists a j∈{0; 1; : : : ; [N=2]} such that (4.9) holds.
Then the jth isotypical crossing number for the isolated center (0; qj;k) (k¿ 0) cor-
responding to the value i7j;k is equal to

c1; j(qj;k ; 7j;k) =




2[degB(pj(·; qj;k − 8); �)

−degB(pj(·; qj;k + 8); �)] = −2 if 16 j¡ [N=2];

degB(pj(·; qj;k − 8); �)

−degB(pj(·; qj;k + 8); �) = −1 if j = 0; or

N is even and j = N=2;

where pj(5; q) = $(5) + 4d(1− qe−5r) sin2($j=N ), � = (0; b)× (7j;k − c; 7j;k + c) ⊂ C
and the constants b¿ 0; c¿ 0 and 8¿ 0 are suCciently small.

By Theorem 3.2 and Corollary 4.1, we have
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Theorem 4.1. Assume there exist a j∈{0; 1; : : : ; [N=2]} such that +¡ 4d sin2($j=N )
¡a++. Then the stationary point (0; qj;k), k¿ 0, is a bifurcation point of (4.1). More
precisely, if h := gcd(j; N ), then

( j1) if 16 j¡N=2, then
( j1a) there are at least 2 branches of periodic solutions on which any periodic solu-

tion (xk(t))Nk=1 with a minimal period p satis=es

xk+1

(
t +

jp
N

)
= xk(t) and xk−1

(
t +

jp
N

)
= xk(t);

respectively, where k = 1; 2; : : : ; N mod N ;
( j1b) if N=h ≡ 1 (mod 2), then there are at least 2N=h branches of periodic solutions

on which any periodic solution (xk(t))Nk=1 satis=es

xk−N=h(t) = xk(t); k = 1; 2; : : : ; N (mod N );

( j1c) if N=h ≡ 0 (mod 2), there are at least N=h branches of periodic solutions on
which any periodic solution (xk(t))Nk=1 with the minimal period p satis=es

xk−N=(2h)

(
t +

p
2

)
= xk(t); k = 1; 2; : : : ; N (mod N );

( j2) if N is even and j=N=2, then there exists at least one branch of periodic solutions
on which any periodic solution (xk(t))Nk=1 with the minimal period p satis=es

xk−1

(
t +

p
2

)
= xk(t); xN−k

(
t +

p
2

)
= xk(t); k = 1; 2; : : : ; N (mod N );

( j3) if j = 0, then there exists at least one branch of periodic solutions on which any
periodic solution (xk(t))Nk=1 satis=es

x1(t) = x2(t) = · · · = xN (t):

Finally, we will investigate the maximal continuum of branches of nonconstant
periodic solutions obtained in Theorem 4.1. To do this, we Drstly establish some
a priori bounds for possible nonconstant periodic solutions of (4.1).

Lemma 4.3. Assume that

lim
z→±∞

g(z)
z

= +∞:

Then there exists a nondecreasing function M : [0; 1) → [0;∞) such that any periodic
solution (xk(t))Nk=1 of (4.1) with q∈ [0; 1) satis=es |xk(t)|6M (q) for all t ∈R and
k = 1; 2; : : : ; N .

Proof. Suppose that (xk(t))Nk=1 is a nontrivial periodic solution of (4.1). Then there
exist some k0 ∈{1; 2; : : : ; N} and t0 ∈R so that

|xk(t) − qxk(t − r)|6 |xk0 (t0) − qxk0 (t0 − r)|;
for t ∈R and k = 1; 2; : : : ; N: (4.13)



W. Krawcewicz et al. / Nonlinear Analysis: Real World Applications 5 (2004) 309–354 343

Without loss of generality, we may assume xk0 (t0) − qxk0 (t0 − r) �= 0. If this is not
the case, then xk(t) ≡ qxk(t − r), which together with (4.1) yields xk(t) ≡ 0, ∀t ∈R
k = 1; : : : ; N . This leads to a contradiction.

There are two possible cases:
Case 1: xk0 (t0) − xk0 (t0 − r)¿ 0.
In this case, we have

0 =
d
dt

[xk0 (t0) − qxk0 (t0 − r)]

= d[(xk0+1(t0) − qxk0+1(t0 − r)) + (xk0−1(t0) − qxk0−1(t0 − r))

− 2(xk0 (t0) − qxk0 (t0 − r))] − axk0 (t0)

− aqxk0 (t0 − r) − g[xk0 (t0) − qxk0 (t0 − r)]

6−axk0 (t0) − aqxk0 (t0 − r) − g[xk0 (t0) − qxk0 (t0 − r)]:

Hence,

axk0 (t0) + aqxk0 (t0 − r) + g[xk0 (t0) − qxk0 (t0 − r)]6 0;

which can be rewritten as

a[xk0 (t0) − qxk0 (t0 − r)] + 2aqxk0 (t0 − r) + g[xk0 (t0) − qxk0 (t0 − r)]6 0: (4.14)

Note that xk0 (t0) − xk0 (t0 − r)¿ 0, from (4.13) we get

a + 2aq
xk0 (t0 − r)

xk0 (t0) − qxk0 (t0 − r)
+

g[xk0 (t0) − qxk0 (t0 − r)]
xk0 (t0) − qxk0 (t0 − r)

6 0: (4.15)

It follows from (4.13) that

|xk(t)|6 q|xk(t − r)| + |xk0 (t0) − qxk0 (t0 − r)|
6 q2|xk(t − 2r)| + (1 + q)|xk0 (t0) − qxk0 (t0 − r)|
6 · · ·6 qm|xk(t − mr)| + (1 + q + · · · + qm−1)|xk0 (t0) − qxk0 (t0 − r)|:

Let m → ∞, then we have

|xk(t)|6 1
1 − q

|xk0 (t0) − qxk0 (t0 − r)|; (4.16)

for all t ∈R and k = 1; 2; : : : ; N . Therefore, (4.15) and (4.16) imply that

a− 2aq
1 − q

+
g[xk0 (t0) − qxk0 (t0 − r)]
xk0 (t0) − qxk0 (t0 − r)

6 0: (4.17)

Since limz→∞ f(z)=z=∞, by (4.17), we can Dnd a nondecreasing function M1 : [0; 1) →
[0;∞) such that

|xk0 (t0) − qxk0 (t0 − r)|6M1(q); q∈ [0; 1)
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and hence, from (4.16), it follows that

|xk(t)|6 1
1 − q

M1(q); (4.18)

for all t ∈R and k = 1; 2; : : : ; N .
Case 2: xk0 (t0) − xk0 (t0 − r)¡ 0.
In this case, we have

0 =
d
dt

[xk0 (t0) − qxk0 (t0 − r)]

= d[(xk0+1(t0) − qxk0+1(t0 − r)) + (xk0−1(t0) − qxk0−1(t0 − r))

− 2(xk0 (t0) − qxk0 (t0 − r))] − axk0 (t0)

− aqxk0 (t0 − r) − g[xk0 (t0) − qxk0 (t0 − r)]

¿−axk0 (t0) − aqxk0 (t0 − r) − g[xk0 (t0) − qxk0 (t0 − r)]:

Hence,

a[xk0 (t0) − qxk0 (t0 − r)] + 2aqxk0 (t0 − r) + g[xk0 (t0) − qxk0 (t0 − r)]¿ 0: (4.19)

Note that xk0 (t0) − xk0 (t0 − r)¡ 0, from (4.19) we also get

a + 2aq
xk0 (t0 − r)

xk0 (t0) − qxk0 (t0 − r)
+

g[xk0 (t0) − qxk0 (t0 − r)]
xk0 (t0) − qxk0 (t0 − r)

6 0:

In a similar way, we can Dnd a nondecreasing function M2 : [0; 1) → [0;∞) such that

|xk(t)|6 1
1 − q

M2(q); for all t ∈R and k = 1; 2; : : : ; N: (4.20)

Put

M (q) =
1

1 − q
M1(q) +

1
1 − q

M2(q):

Then M : [0; 1) → [0;∞) is nondecreasing and any periodic solution (xk(t))Nk=1 of (4.1)
satisDes

|xk(t)|6M (q);

for all t ∈R and k = 1; 2; : : : ; N . The proof is complete.

Next, we exclude nontrivial 4r-periodic solutions of (4.1).

Lemma 4.4. Assume $ := a + inf z �=0 g(z)=z¿ 0. Let

% = sup
{
q∈ [0; 1);

2aq
1 + q

¡$
}

:

Then for any q∈ [0; %), (4.1) has no nontrivial 4r-periodic solutions.
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Proof. Suppose for the contradiction that (xk(t))Nk=1 is a nontrivial 4r-periodic solution
of (4.1).

We rewrite (4.1) as

d
dt

[xk(t) − qxk(t − r)]

=d[(xk+1(t) − qxk+1(t − r))

+ (xk−1(t) − qxk−1(t − r)) − 2(xk(t) − qxk(t − r))]

− a(xk(t) − qxk(t − r)) − 2aqxk(t − r) − g(xk(t) − qxk(t − r)); (4.21)

for k = 1; 2; : : : ; N mod N .
Let

yk(t) :=




yk;1(t)

yk;2(t)

yk;3(t)

yk;4(t)


=




xk(t) − qxk(t − r)

xk(t − r) − qxk(t − 2r)

xk(t − 2r) − qxk(t − 3r)

xk(t − 3r) − qxk(t)


 : (4.22)

Then 


xk(t − r)

xk(t − 2r)

xk(t − 3r)

xk(t)


=

1
1 − q4 B




yk;1(t)

yk;2(t)

yk;3(t)

yk;4(t)


=

1
1 − q4 Byk(t); (4.23)

where

B =




q3 1 q q2

q2 q3 1 q

q q2 q3 1

1 q q2 q3


 :

Substituting (4.22) and (4.23) into (4.21), we get

d
dt

yk; s = d[yk+1; s + yk−1; s − 2yk;s] − ayk;s − 2aq
1 − q4 (Byk)s − g(yk;s); (4.24)

where 16 s6 4, k = 1; 2; : : : ; N mod N . Denote Y = (y1; y2; : : : ; yN )T and take a
Liapunov function

V (Y ) =
1
2

N∑
k=1

4∑
s=1

y2
k; s: (4.25)
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Let 〈·; ·〉 denote the standard inner product in RN . Put

A = (aij)N×N =




2 +
$
d

−1 0 · · · 0 −1

−1 2 +
$
d

−1 · · · 0 0

0 −1 2 +
$
d

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 2 +
$
d

−1

−1 0 0 · · · −1 2 +
$
d




: (4.26)

Since $¿ 0, we have

aii = 2 +
$
d

¿ 2 =
∑
i �=j

|aij|;

which implies that A is positive deDnite, and hence there exists an orthogonal matrix
T , such that

A = T−1DT; D = diag[51; 52; : : : ; 5N ]; (4.27)

where 5k ¿ 0, 16 k6N , are the eigenvalues of A.
Di<erentiating V along solutions of (4.24), we get

V̇ (4:24) =
N∑

k=1

4∑
s=1

yk;sẏ k; s

= d
N∑

k=1

4∑
s=1

yk;s[yk+1; s + yk−1; s − (2 + a=d)yk;s]

− 2aq
1 − q4

N∑
k=1

4∑
s=1

yk;s(Byk)s −
N∑

k=1

4∑
s=1

yk;sg(yk;s)

6 d
N∑

k=1

4∑
s=1

yk;s[yk+1; s + yk−1; s − (2 + a=d)yk;s]

− 2aq
1 − q4

N∑
k=1

4∑
s=1

yk;s(Byk)s −
N∑

k=1

4∑
s=1

y2
k; s inf

z �=0
g(z)=z

= d
4∑

s=1

N∑
k=1

yk;s

[
yk+1; s + yk−1; s −

(
2 +

$
d

)
yk;s

]
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− 2aq
1 − q4

N∑
k=1

4∑
s=1

yk;s(Byk)s

= −d
4∑

s=1

〈A Ly s; Ly s〉 − 2aq
1 − q4

N∑
k=1

4∑
s=1

yk;s(Byk)s; (4.28)

where Ly s := (y1; s; y2; s; : : : ; yN;s)T ∈RN .
By (4.27), for 16 s6 4, we have

〈A Ly s; Ly s〉 = 〈T−1DT Ly s; Ly s〉 = 〈DT Ly s; T Ly s〉 =
N∑

k=1

5k(T Ly s)2
k : (4.29)

If we denote by 5min the minimal eigenvalue of A, then 5min ¿ 0 and (4.29) implies
that

〈A Ly s; Ly s〉¿ 5min〈T Ly s; T Ly s〉 = 5min〈 Ly s; Ly s〉; 16 s6 4: (4.30)

We need the following result that was proved in [26] using the Nussbaum’s spectral
theorem for circulant matrices (cf. [24]).

Lemma 4.5. For any z = (z1; z2; z3; z4)T ∈R4, one has
4∑

s=1

zs(Bz)s¿− (1 − q)(1 + q2)
4∑

s=1

z2
s : (4.31)

Thus, from (4.28), (4.30) and (4.31), we Dnd

V̇ (4:24) 6−d5min

4∑
s=1

〈 Ly s; Ly s〉 +
2aq

1 − q4 (1 − q)(1 + q2)
N∑

k=1

4∑
s=1

y2
k; s

= −
(
d5min − 2aq

1 + q

) N∑
k=1

4∑
s=1

y2
k; s: (4.32)

We claim that

5min¿$=d: (4.33)

Let z ∈RN (z �= 0) be such that Az = 5minz and take a Dxed k ∈{1; : : : ; N} so that
|zk | = max16i6N |zi|, then we have

N∑
j=1

akjzj = 5minzk

and hence

(5min − akk)zk =
∑
j �=k

akjzj:
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Therefore,

5min = akk +
∑
j �=k

akj
zj
zk
¿ (2 + $=d) − 2 = $=d:

Thus (4.33) holds.
Now, from (4.32) and (4.33) it follows that

V̇ (4:24)6−
(
$ − 2aq

1 + q

) N∑
k=1

4∑
s=1

y2
k; s: (4.34)

Thus, if q∈ [0; %), then
2aq

1 + q
¡

2a%
1 + %

6$;

which, together with (4.34), yields V̇ (4:24) ¡ 0, and hence xk(t) → 0 for every 16 k
6N as t → ∞. This leads to a contradiction. The proof of Lemma 4.4 is complete.

Lemma 4.6. If $ := a + inf z �=0 g(z)=z¿ 0 and q = 0, then (4.1) has no nontrivial
periodic solutions.

Proof. If q = 0, then (4.1) reduces to the following ordinary equation:
d
dt

xk = d[xk+1 + xk−1 − 2xk ] − axk − g(xk); (4.35)

for k = 1; 2; : : : ; N mod N .
Denote X = (x1; x2; : : : ; xN )T and take a Liapunov function V (X ) = 1

2

∑N
k=1 x2

k . By
using a similar argument as in the proof of Lemma 4.4, we obtain

V̇ (4:35)6− $
N∑

k=1

x2
k :

Therefore, every solution of (4.1) tends to zero as t → ∞. In particular, (4.1) has no
nontrivial periodic solutions. The proof is complete.

Now, we are in a position to present the following results on the global continua-
tions of branches of slowly oscillatory periodic solutions of (4.1). Here, by a slowly
oscillatory solution of (4.1) we mean a solution with a period larger than 2r.

Theorem 4.2. Assume that

(1) $ := a + inf z �=0 g(z)=z¿ 0, limz→±∞ g(z)=z = +∞;
(2) 2a¿$=r and there exists a j∈{0; 1; : : : ; [N=2]} such that

+¡ 4d sin2 $j
N

¡+ +

√
a2 − $2

4r2 ; + := g′(0);
(3)

qj :=

√√√√72
j + (a + +− 4d sin2($j=N ))2

72
j + (a− + + 4d sin2($j=N ))2

¡%;
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where % := sup{q∈ [0; 1) : 2aq=(1 + q)¡$} and 7j is the unique solution in
(0; $=r) of the equation

cot 7r =
72 − a2 + (+− 4d sin2($j=N ))2

2a7
:

Then for each q∈ (qj; %), the following statements hold true:

( j1) If 16 j¡N=2, then there are at least two slowly oscillatory periodic solutions
(x(1)

k (t))Nk=1 and (x(2)
k (t))Nk=1 of (4.1) with minimal periods p1; p2 ∈ (2r; 4r) and

satisfying

x(1)
k+1

(
t +

jp1

N

)
= x(1)

k (t) and x(2)
k−1

(
t +

jp2

N

)
= x(2)

k (t); (4.36)

respectively, where k = 1; 2; : : : ; N mod N .
( j2) If N is even and j=N=2, then there exists at least one slowly oscillatory periodic

solution (xk(t))Nk=1 of (4.1) with a minimal period p∈ (2r; 4r) and satisfying

xk−1

(
t +

p
2

)
= xk(t); xN−k

(
t +

p
2

)
= xk(t); k = 1; 2; : : : ; N (mod N ):

(4.37)

(j3) If j=0, then there exists at least one slowly oscillatory periodic solution (xk(t))Nk=1
of (4.1) with a minimal period in (2r; 4r) and satisfying

x1(t) = x2(t) = · · · = xN (t): (4.38)

Proof. We consider the reparametrized system (4.2). It has been shown that (H1) and
(H2) are satisDed. By (2), we see that

a + +¿+ +

√
a2 − $2

4r2 ¿ 4d sin2 $j
N
¿ 0

and hence
Lf
′
(0; 	) = −a− aQ(	) − +(1 − Q(	))

= −(a + +) − (a− +)Q(	)

6

{
−(a + +); if a¿ +;

−2a; if a¡+

¡ 0:

As LK(	) = K(	) L1 = d(1 − Q(	))¿ 0, it follows that Lf
′
(0; 	) �= 4 LK(	) sin2($j=N ) for

every 	∈R and every j = 0; 1; : : : ; [N=2], that is, (H5) holds.
Since +¡ 4d sin2($j=N )¡a + +, it follows from Lemma 4.2 that for 	 = Q−1(qj;k)

(k¿ 0), the stationary solution (0; 	) of (4.2) has purely imaginary solution ± i7j;k

with 0¡7j;0 ¡7j;1 ¡ · · ·¡7j;k ¡ · · · → ∞, and 0¡Q−1(qj;0)¡Q−1(qj;1)¡ · · ·
¡Q−1(qj;k)¡ · · · → ∞. Hence, the set

M∗
j = {	∈R; pj(iI; Q(	)) = 0 for some I¿ 0}

is complete and discrete in R. Therefore, (H6) is also satisDed.



350 W. Krawcewicz et al. / Nonlinear Analysis: Real World Applications 5 (2004) 309–354

Since +¡ 4d sin2($j=N )¡a + +, it follows from Lemma 4.2 and Corollary 4.1
that for any integer k¿ 0, the jth isotypical crossing number for the isolated center
(0; Q−1(qj;k)) corresponding to i7j;k

c1; j(Q−1(qj;k); 7j;k) = c1; j(qj;k ; 7j;k)

=

{−2 if 16 j¡ [N=2];

−1 if j = 0; or N is even and j = N=2:

Therefore, by virtue of Theorem 3.3, there are unbounded branches of nonconstant
periodic solutions of (4.2), bifurcating from (0; Q−1(qj;k); 2$=7j;k) for every integer
k¿ 0. In particular, if 16 j¡N=2, then there are at least 2 unbounded branches of
periodic solutions of (4.2) satisfying (4.36), if N is even and j=N=2, then there exists
at least one unbounded branch of periodic solutions of (4.2) satisfying (4.37) and if
j = 0, then there exists at least one unbounded branch of periodic solutions of (4.2)
satisfying (4.38).

As limz→±∞ g(z)=z=+∞, it follows from Lemma 4.3 that there exists a nondecreas-
ing function LM :R→ [0;∞) so that every periodic solution (xk(t))Nk=1 of (4.2) satisDes
|xk(t)|6 LM (	) for all t ∈R and k =1; 2; : : : ; N . As $=a+inf z �=0 g(z)=z¿ 0, it follows
from Lemma 4.4 that for every 	6Q−1(%), (4.2) has no nontrivial 4r-periodic solu-
tions which implies that (4.2) has also no nontrivial 4r=n-periodic solutions for every
integer n¿ 1.

Since 0¡qj;0 =qj ¡%, we have Q−1(qj;0)=Q−1(qj)¡Q−1(%). Moreover, by Con-
dition (2), we easily show that

a2 ¿
$2

4r2 +
(
+− 4d sin2 $j

N

)2

:

That is, (4.12) holds, and hence Lemma 4.2 implies that 2r ¡ 2$=7j;0 ¡ 4r. Con-
sequently, for each 3∈ (qj; %), any unbounded connected branch Nj of nonconstant
periodic solution bifurcating from (0; Q−1(qj;0); 2$=7j;0) must satisfy

Nj|3 ⊂
{

(x; 	; p)∈BC(R;RN ) × R2; p∈ (2r; 4r);

sup
t∈R

|xk(t)|6 LM (	); k = 1; : : : ; N
}
;

where

Nj|3 := {(x; 	; p)∈Nj; 	6Q−1(3)}:
By Lemma 4.6, we see that (4.2) has no nontrivial periodic solution, that is, Nj does

not intersect with the hyperplane 	=0. Therefore, the projection of Nj|3 onto the 	-space
is contained in [0; Q−1(3)] and Nj|3 ∩ {(x; Q−1(3); p); (x; p)∈BC(R;RN ) × R} �= ∅.
This shows that for every 	∈ (Q−1(qj); Q−1(3)], if 16 j¡N=2, then (4.2) has at least
2 slowly oscillatory periodic solutions satisfying (4.36), if N is even and j=N=2, then
(4.2) has at least one slowly oscillatory periodic solution satisfying (4.37) and if j=0,
then (4.2) has at least one slowly oscillatory periodic solutions satisfying (4.38). Thus,
noting that 3∈ (qj; $) is an arbitrary number, we conclude that the statements ( j1)–
(j3) hold true and the proof is complete.
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If we assume inf z �=0 g(z)=z¿ 0 in Theorem 4.1, then $ = a + inf z �=0 g(z)=z¿ a, and
hence %=sup{q∈ [0; 1); 2aq=(1+q)¡$}=1. As +¡ 4d sin2($j=N )¡a++, it follows
from (4.10) that

qj =

√√√√72
j + (a + +− 4d sin2($j=N ))2

72
j + (a− + + 4d sin2($j=N ))2

∈ (0; 1):

That is, condition (3) of Theorem 4.1 is satisDed.
Consequently, we have the following:

Theorem 4.3. Assume that

(1) inf z �=0 g(z)=z¿ 0, limz→±∞ g(z)=z = +∞;
(2) 2a¿$=r and there exists a j∈{0; 1; : : : ; [N=2]} such that

+¡ 4d sin2 $j
N

¡+ +

√
a2 − $2

4r2 ; + := g′(0):

Let 7j be the unique solution in (0; $=r) of the equation

cot 7r =
72 − a2 + (+− 4d sin2($j=N ))2

2a7
:

Put

qj :=

√√√√72
j + (a + +− 4d sin2($j=N ))2

72
j + (a− + + 4d sin2($j=N ))2

:

Then qj ∈ (0; 1) and for each q∈ (qj; 1), the conclusions of Theorem 4.1 hold true.

The following Theorem 4.4 gives a suNcient condition on the coexistence of several
slowly oscillatory periodic solutions of (4.1) when the parameter is far away from the
bifurcation point.

Theorem 4.4. Assume that

(1) inf z �=0 g(z)=z = g′(0) = 0, limz→±∞ g(z)=z = +∞,
(2) 2a¿$=r, 4d¡

√
a2 − $2=4r2.

Let L7 be the unique solution in (0; $=r) of the equation

cot 7r =
72 − a2 − 16d2 sin4($=N )

2a7
:

Put

Lq :=

√
L72 + (a− 4d sin2 $=N )2

L72 + (a + 4 sin2 $=N )2
¡ 1:
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Then for each q∈ ( Lq; 1), system (4.1) has at least 2[N=2] (if N is odd) or 2[N=2]− 1
(if N is even) slowly oscillatory periodic solutions with minimal periods in (2r; 4r)
which are described below:

( j1) There are at least [N=2] (if N is odd) or [N=2]−1 (if N is even) slowly oscillatory
periodic solutions (x( j)

k (t))Nk=1 with minimal periods pj ∈ (2r; 4r), 16 j¡N=2,
and satisfying

x( j)
k+1

(
t +

jpj

N

)
= x( j)

k (t);

for k = 1; 2; : : : ; N mod N .
( j2) There are at least [N=2] (if N is odd) or [N=2]−1 (if N is even) slowly oscillatory

periodic solutions (x( j)
k (t))Nk=1 with minimal periods pj ∈ (2r; 4r), 16 j¡N=2,

and satisfying

x( j)
k−1

(
t +

jpj

N

)
= x( j)

k (t);

for k = 1; 2; : : : ; N mod N .
( j3) If N is even, there exists at least one slowly oscillatory periodic solution

(xk(t))Nk=1 with a minimal period p∈ (2r; 4r) and satisfying

xk−1

(
t +

p
2

)
= xk(t); xN−k

(
t +

p
2

)
= xk(t);

for k = 1; 2; : : : ; N mod N .

Proof. Clearly, condition (1) of Theorem 4.3 holds, and by (2), condition (2) of The-
orem 4.3 also holds for every j∈{1; : : : ; [N=2]}. Therefore, for every j∈{1; : : : ; [N=2]},
the conclusions of Theorem 4.3 holds true.

Now, we deDne a function as follows:

h(x; y) =
x + (a− 4dy)2

x + (a + 4dy)2 ; x∈ (0;∞); y∈ [0; 1]:

Then by (2), we can easily verify that for y∈ [0; 1],

@
@x

h(x; y) =
16ady

[x + (a + 4dy)2]2

and for x¿ 0 and y∈ [0; 1],

@
@y

h(x; y) =
−16ad[x + a2 − 16d2y2]

[x + (a + 4dy)2]2 ¡
−16ad[a2 − 16d2]

[x + (a + 4dy)2]2 ¡ 0:

Therefore, h(x; y) is nondecreasing in x∈ (0;∞), and decreasing in y∈ [0; 1] if x¿ 0.
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Now, for each j∈{1; : : : ; [N=2]}, let 7j ∈ (0; $=r) and qj be speciDed by Theo-
rem 4.3. As

hj(7) :=
72 − a2 + 16d2 sin4($j=N ))2

2a7
¿ Lh(7) :=

72 − a2 + 16d2 sin4($=N )
2a7

for every 16 j6 [N=2], and cot 7r is decreasing in 7∈ (0; $=r), it follows that 7j6 L7
for every j∈{1; : : : ; [N=2]}. Therefore, for 16 j6 [N=2], we have

qj =

√
h
(
72
j ; sin2 $j

N

)
6

√
h
(

L72; sin2 $
N

)
= Lq¡ 1:

Therefore, by Theorem 4.3, for each j∈{1; : : : ; [N=2]} and each q∈ ( Lq; 1), the
statements of Theorem 4.4 hold true and the proof is complete.
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