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ASYMPTOTIC SPEED OF PROPAGATION OF
WAVE FRONTS IN A 2D LATTICE DELAY
DIFFERENTIAL EQUATION WITH GLOBAL
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ABSTRACT. In this paper, we derive a lattice model for
a single species in a two dimensional patchy environment with
infinite number of patches connected locally. by diffusion. Un-
der the assumption that the death and diffusion rates of the
mature population are age independent, we show that the dy-
namics of the mature population is governed by a lattice delay -
differential equation with global interactions. We obtain the
existence of monotone travelling waves for wave speeds ¢ > ¢«
by the standard monotone iteration method and the construc-
tion of upper-lower soclutions. We show that the minimal wave
speed c« is also the asymptotic speed of propagation. -

1 Introduction The existence and (asymptotic) speed of travelling
wave fronts of biological systems are of paramount importance due to
their connection to geographically spread of infections or propagation
of epidemics. Omne of the simplest models for the dynamics of a single
species that accounts for spatial interaction as well as the age structure
is of the following form

0 o 2
(1.1) au(t, @, ) + -égu(t a,x) = D(ax)-é;g—fuz(t1 a,z) — d(a)u(t, a,x)
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forx € R, t > 0, where u(t, a, z) is the population density at time ¢, age
a and spatial location & per unit age and per unit spatial length, D(a)
is the diffusion coeflicient accounting for spatial dispersion and d(a) is
the death rate at age a > 0. The total mature population at time ¢ and
location z is defined by

|a =
w(t, ) z/ u(t, a,z) da,
.

where r is the length of maturation period. The equation for w can be
derived using equation (1.1) as

2

7, | d
(1.2) Efw(t’ x) = u{t,r,x) + D'm,a 5

dnw(t,z), xR, t>0,

w(t, z)

if we assume that (¢, o0, 2) = 0 and
(1.3) D(a) = Dy, = const. and d(a) = d,,, = const. for a > 7.

Using the Fourier transform, one can obtain explicitly the function
u(t,r, z) as (see [16]):

1 — ‘I"f' d(z)d" eo - (fl"‘"ll)z
e” Jo ° b(w(t —r,y))e” T dy,
47l’C£ — O

(1.5) o = ‘/OTD(z). dz, = exp{ — /OT d(z) dz},

where b: Ry := [0, c0) — R, is the birth rate.
This model with a birth function

(1.4)  w(t,r,2) =

-

(1.6) b(w) = pwe™ ", w >0,

was studied in [16], where it was shown that when 1 < up/d,, < e, there

exist monotone travelling waves connecting two spatially homogeneous
equilibria

(1.7) w? =0 and wt= (—11111 (f@) > 0.
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A discrete analog of the model (1.1) was developed in [22] as follows:

3} s,
(1.8) - 'é'_!‘;‘u_j(t, a) + 'é"a'lﬂj(t, a)

= D(a)[u;+1(t, @) + uj—1 (¢, a) — 2u;(t, a)] — d(a)u; (L, c;)

for t >0, j € Z:={0,%£1,%£2,---}, where u;{{,a) denote the density
of the population of the species of the jth patch at time £ > 0 and
age a > 0, D(a) and d(a) denote the diffusion rate and death rate of
the population at age a respectively. Assuming that u;(¢,00) = 0 for
t >0, j € Z. Note that

w;(t) = /oo u;(t, a) da

is the total mature population at the jth patch. From (1.8) and assuming
(1.3), it was obtained that

9) 25D o1, r) 4 Doy (1) + w511
| — 2w, (£)] — demw;(£) for t > 0,
where
- (1.10) uj(g r) = 5% ki@ Ba(d — k) bl (t — 7)),
and
(1.11) Ba(l) = /W i) —dasin®(g) g, — p—2 /W cos(lw)e?™ s dw_,

for any | € Z. Here u and « are defined in (1.5), and ¢ is the imaginary
unit.

Assume that the birth function b : R, — R, satisfies the following
properties -

(Hi) bis continuous and b(0) =0, b'(0) > dm/p, blw) < V¥ (0)w for
w e Ry

(Hs) b is non-decreasing on [0, K], and pb(w) = d,w has a unique
solution w* € (0, K]. "
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Weng et al. [21] showed that there exists a positive number ¢, such that
for any ¢ > ¢4, (1.9) has a monotone travelling wave solution connecting
two spatially homogeneous equilibria w® = 0 and w* > 0. Furthermore,
they introduced the concept of asymptotic speed of propagation into
the model (1.9), and showed that c. is exactly the asymptotic speed of
propagation.

The concept “asymptotic speed of propagation” concerns with the
asymptotic behavior (as ¢ — oo) of solutions of (1.9) as follows: c. > 0
ig called the asymptotic speed if for any c1,c3 with 0 < ¢; < ¢, < e,
the solutions tend to zero uniformly in the region |j| > cot, whereas
it is bounded away from zero uniformly in the region |j| £ cit for ¢
sufficiently large. The discussion of asymptotic speed of propagation
can be found in {1, 2, 3, 5, 6, 11, 12, 14, 18, 20].

Note that equations (1.2) and (1.9) are in general nonlocal, involving
integration over the whole spatial domain in (1.4} and summation over
all integer 7 € Z in (1.10). The idea of nonlocal interaction in a model
with time delay was considered by Britton (4], by Gourley and Britton
[7, 8], by Smith and Thieme [15], among others (see [9] for a short
survey).

In this paper, we shall extend the work in [21] to higher dimensional
dynarmical systems with interaction between patches. We will consider
the case in two space dimensions (2D) even though the results in this
paper are valid for the n dimensional case. The rest of the paper is
organized as follows. In Section 2, we derived the 2D lattice model. The
existence of travelling wave fronts is given in Section 3 and the initial
value problem is discussed in Section 4. The discussion on asymptotic
speed of wave propagation is given in Section 5.

2 2D model derivation Let 1w, ;,(¢,a) denote the density of the
population of the species of the (j1, j2)th patch at time ¢ > 0 and age a >
0. Using D(a) and d(a} to denote the diffusion rate and death rate of the
population at age a respectively, and assuming the patches are located
at the integer set nodes of a 2-dimensional lattice and assuming spatial
diffusion occurs only at the nearest neighborhood and is proportional to
the difference of the densities of the population at adjacent patches, we
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obtain the following model

s, s,
(2'1) atu’.h,’iz(t CL) + u.?l:.?2 (t (L)
= D(G)A%f‘jl,.ﬁ (t’ a‘) — d(a)ujl,jz (t, G'):
t>0, j=(j1,52) €Z* :=Z x Z,
where

A%y gy (B @) = Uy 11,5 (6 @) + gy 1 5, (£,0) + w5 o 41t @)
- a1t @) + Ui e (6 @) + w155 41 (8 0)
+ Ujy 1,42 -1 (8, @) F uji 1,501 (8, @) — Buyy 4, (t, @).
Clearly, - |
i) = | winlta)da

is the total mature population at the (j1,72)th patch. From (2.1), we
obtain

(22) dw.?l .?2 (t

/ 6t’u,3132(t a) da
—/ { 3 Uiz (@) + D(a)A gy, (¢, @)

- d(a')'uh a2 (ts a)}da"
Assume (1.3) holds and that
Usy ,Fo (t,OO) =0 fort>0, (jl,jg) SAS
We obtain from (2.2) and (2.1) that
dw;, ., (t )
(2.3) “_J",f_() = Ujy .42 (t,T)+DmA2wj1 J2 (t)"“dmwjlsz (t) fort>0.

In order to obtain a closed system for w;, we need to evaluate uj, j, (¢, 7).
For fixed s > 0, let

Vi S () = Uji (bt —s) fors<t< s+
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Since only the mature population can reproduce, we have

(2'4) Jl,j')( ) = Ujy J)('f’ 0) “" b(wh iz (3))
where b : R, — Ry is the birth function. From (2.1),
dow O 9
(2.5) 3;%17.7.2 (L) = auh,jz (¢, a) s + aauh,:}e (t, CL) s
= D(t — s)AV} . (1) —d(t — s)V} . (¢).

Consider the discrete Fourier transform (see [10, 19]):

1 - —_7 ) (7]
(2.6) (f wlaf—v’?) — Z Z i(frwr+72 2)%‘?’32(1;)

Jl=““00 Ja=—0c0

(2'7) 31 jg(f) = m/ f z(glw]+32w2)?f (t (.(Jlau)z) d(.u‘]_ du)g,

where i is the imaginary unit. Applying (2.6) to equation (2.5) yields
o

(28) v

v (t, Wy, wa) = [D(t — 8)(e™! 4 e~ ™1 4 iz 4 gmiw2
+ ei(wl“f‘wiz) + e—i(wl—l—wz) + ei(wl—w;g)

+ eflw2=@r) gy — gt — s)|v? (¢, w1, ws)

= { — 4D(t — 5) {Sin2 (-Ed—l) + sin? (-L-L)-—Q—)
| 2 2
+ sin? (w—-——-ml t “’2) + sin? (——w—wl — wz)]
2 2
— d(t — S)}’{)S(t, Wi, wa).
‘This equation can be solved easily as

85 —4 t _ _ o
.U"(t,wl,wg) = Us(sgwl,(—U2)€ g(w) f7 D(z—s)d= I d(z g.)dz,

where

g(w) = g(w1:w2) = Sj.Il2 (%) ‘|‘Sil’].2 (%%) + Sil’lz (w]. ';w:?)

+ sin? (w—l—%ﬂ), w = (w1, wy).
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Using the inverse discrete Fourier transform (2.7) we obtain
\a 1) = 1 — [l d(z~s)dz
s (B) = 5 e e

T T
X f / et(hm+32w2)—4asg(w)v“(3, Wi, we)dw dws, -
— T o

where o = f: D(z — s)dz. By (2.4) and (2.6), we obtain

i & - —i(kw 3 W
vS (8, wy,wa) = o Z Z p—ilkiw+kaws) bW, iy ())-
kl1=-'-00 .’cg:—oo
Hence,
1 . o0 a4 .
29 Viu®=gre HOTE 50 30 bwk ()

k1ﬂ—QG ko=—00
T T ' -
. / / exp{i[(j1 — k1)w1 + (Ja — k2)ws]
—dasg(w)} dwy dws.

Let s=t—r, p=c Jod=Mz fo D(z)dz. Then (2.9) yields

(2.10) ujl,jm,r):# ST blwrg et — 1)

EBi1=—o0 ka=—co

% [j; [_:: exp{i[{j1 — k1)wr + (2 — k?)‘-"?]

— deeg(w) } dw) dws.

Denofe
71' T
(211) Ga(l) — Ga(ll, 12) = f / el(l1w1+lng)—4cx9(W) dwy dws,

where [ = (I1,13). The following lemma describes the properties of G'(«).
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Lemma 2.1. Let Go(l) be given in (2.11). Then

(i) Gal—l,l2) = Ga(ls,l2), Gally, —l2) = Gall1,12), Ga(l) = Gu(=1)
for l € Z2, that is, Ga(l) is an isotropic function for any o > 0;

(11) Wle-———oo Zlg =0 ()_1
(i) Ga() >0ifa=0 andl e Z%; Go(l) >0 ifa >0 and | € Z2.

Proof. For

(2.12) g(w) = sin® (‘iﬂ-) + sin? (3)—3)
2 2
| + sin? (-——-—-w1 * w2) + sin? <~—~————w1 — wg)
2 ' 2

1
=2 — E(coswl -+ cOSwsy) — COSwy COSwWoy,

let |+ w = 1wy + laws, then we have

Ga (Z) — fﬂ /71- ei(l-w)wtla[Z—%(coswg_-i-coswg)—coswl cOs wa] dw1 dws

T g
— / / €2a(cos w1 --cos w2)+4cr COS w1 COS wa—8ox
— -

x {cos(l - w) + isin(l - w)| dwy dws.
Note that e?®(coswitcoswa)tdacoswicoswa—8a ig an even function of wy
and wa in [—m, 7] % [—m, 7] and sin(l - w) is an odd functlon of wy and
wy in [—m, 7] % [—m, 7] . Therefore,

T ar
Ga(l) — / / 62a(cosu1+coswg}+4a COS'wy Cos twn—8a COS(Z . ’LU) dwl dUJQ.
—.—-Tr —

We complete the proof of (i).

Now we show conclusion (ii). Firstly, we give the 2D Fourier series
expansion for function f(z,y) as follows (sce [18]),

o0

e
(2.13) f(m,y): Z Z Clhzgei(hm—i—fzy)’

11='—-C>0 lQ:—DO

where

1 T T .
Cite = Ty L @ ye bty qudy 11, € Z.
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Let

f(w1,w2) = exp{2a(cosw; + cosws) + 4 cosw; coswa — 8a}.

We can rewrite the expression of G, (1) as

kis i)
Ga(l):/ f Fwy,wo)etlhrentlawad g, qy,,

Let Ciy 1, = (1/(27)*)G(1). Then we have from (2.13)

1 oo ‘oo oo o .
(27)2 > D, Gall= > D Gy -ef0H=0
l1=—OO lg=—00 . !!1—‘:—00 12:'—"00
—_ 5 - 1.
f(wl wQ) w1 =0,wa=0

The conclusion of (ii) follows.
On the other hand, we have

Ga(l) Z fﬂ. \/ﬂ- ei(£1w1+12w2)+2a(cosw1+cosw2)—120¢ dwl dCUQ
—ar o —1r
== ehsaﬁa (l]_)ﬁa(lZ):

where 3,(l;), i = 1,2 are defined in (1.11). From the following conclu-
sions showed by Weng et al. (see [21]):

fa(m) >0 for meZ, a=0,
Ba(m) >0 for meZ, a>0,

we obtain conclusion (iii). This completes the proof. O

3 Ixistence of travelling waves In this section, we assume that

the birth function b : Ry — Ry satisfies (H;) and (Hz) in the first
section.

A travelling wave of (2.3) is a solution of (2.3) of the form

(31) wjl,jz(t) = (,b(S),
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where s = j A j1V1 +j21/2 + ct, _7 = (j]_,jg), R (?/1,1/2) 18 a
given unit vector, and ¢ > 0 is the wave speed. Substituting (3.1) into
(2.3) yields

n=1

9 :
(3.2) cé%%—) = Dy, [ Z(qu(s F+Up)+ O(8 — ) + d(s + v + o)
| +¢(S-U1—*Vg)+¢(8+1/1—1/2)

+- qﬁ(s + vy — Vl) — 8qb(s)] — dqnd)(s)

(zw)z Z Z Ga() b{(p(s + 1 v —cr)).

El -2 fn -— 0

By (Hj), then we know that (3.2) has two equilibria w® = 0 and w™ > 0.
Define a subset .A of Z2 as follows:

A= {(1,0), (0,1), (=1,0), (0, 1), (1,1, (—1,—1), (1,—1), (—1,1)}.

Denote p = (P1,02), D jez2 = 2olim—oo 2olee—oo 80d the characteristic
equation (3.2) at w® by A(A, ¢, w®) = 0, we have

(3.3) AN\ quw?)=—cA+ Dy [ Z eMP) 8] — dm
peEA

b’(O),u Z G (1)) e

2
(27r) leZ2
which can be simplified as follows. Let.
A
(3.4) S(a) = (2 @ > Ga)er
leZ?2
A{l-v) 2&[C()b{d1+(_.ﬂb wa+2 cos wh C.D")\’-Ug—‘]:]
—m e [ [
leZ?

x cos(l - w)dw dwa,
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then

aS(a) Aiv)
do 271‘)2 Z

lezZ?

X / / [2(cosw1 + coswsy) + 4 coswy coswy — 8]

e C()S(l w)e2a(cosw1+cosw2)+4acosw«; cos wa — 8¢ dwl dwg
)\(t ) 2a(cnz,w1 +cos wa )+4da coswy cosws —8a
(2w)2 )
lez2

X { Z cos[(l +p) - w] — 8 cos(lw; + lgwg)} dw duws
peA

= S(a)[e*”t + e M 4 eMvr 4 g M2 AUt g o= M)
+ eMvimre) g gAlam) g,
Since S(0) =1, |
(3.5) S{c) - exp{[e™ +e M £ M2 e ¢ erlntvz)
4 e AtEe) | M) | Mramn) _glg)
_ e2alB(w)—d]
where |
E(\, v) := cosh(Ary) + cosh(Avz)
+ cosh(A(x1 + o)) + cosh(A(v1 — va)).
Therefore, we have
AN, ¢, w?) = U (0)pe2lECm=dl=rer _ox 4 oD [E(\v) ~ 4] = dim.

Differentiating A()\, c,w?) with respect to A, we obtain

0 0
mA(A,c, w")

= b’ (0)u{ 2ce[r1 sinh(Awy) + ve sinh(Ava) + (1 + v2) sinh(A(2y + 1))
+ (v — vo) sinh(A(vy — v2))] — er}exp{2a[E(A,v) — 4] — Acr}
— ¢+ 2D, {1 sinh(An) + va sinh(Ava)
+ (11 + v2) sinh(A(z1 + 12)) + (¥1 — va) sinh(A(xn — 12))],



388 P. WENG, J. WU, H. HUANG AND J. LING

and

52
A2
= b (0)pu{2a[v? cosh(Avy) + v3 cosh(Ava)

AN, e,

+ {1 + 12)? cosh(A(vy + 12)) + (11 — v2)? cosh(A\(v1 — 19))]

+ [2a]ur sinh(Avy) 4+ vo sinh(Awva) + (11 + v2) sinh (A (v + 7))

+ (v — va) sinh(A(vy — 12))] — er)*} exp{2c[E(\, v) — 4] — Aer}
+ 2D,,[vF cosh(Avy) + v3 cosh(Avg) + (11 + 12)2 cosh(A (g + 10))
+ (g — v2)? cosh( My — v2))].

Since "5?5 (A, c,w®) > 0for A € R, the graph of A(\, ¢, w?) as a function
of A € R is convex. Furthermore, it can be easily verified that

Alim Al c,w") = 400, A(0,c,w®) = V(0 — dy > 0,

(3.6) 5 o
—S—XA(’\ ¢, w ).A:D = — ('(Q)pr +1)ec <0

if ¢ > 0 and (Hy)~(Hz) hold. In addition, we note that E(\,v) —4 >
0 for all A € R, and then we can show that A()0,w®) > 0 and
lime—, o0 A(N ¢, w") < 0 for any glven A, therefore, we have the following
observations.

Lemma 3.1. There exist a pair of c. and A\, such that

B A cow?) =0; aa)\A('\*aca %) =0;

(ii) for0<c<ec. and any A > 0, A\, c,w’) > 0;

(iii) for any ¢ > c., the equation A(N c,w?) = 0 has two positive real
roots 0 < A1 < A2, and there exists a eg > 0 such that for any
e € (0,e9) with

0< A €A1+ €< Aq,

we have

(3.7) A + ¢, ¢w’) < 0.
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We now define C' = C(R, [0, K1), and
(i) ¢(s) is non-decreasing for s € R,
pel: : o . 1
(i)  lim ¢(s) =" lim ¢(s) = wt,
S—r— 0 5—r X0
and an operator on C as

H($)(s) = D Gall) b(qb(s +1l-v—er)), ¢eC, sk

lez?2

(2 )
The following lemma summarizes some useful properties of H.

Lemma 3.2. Assume that b: R, — R, satisfies (Hy) and (Hy). Then
we have

(i) ifpelsS, and P(s) =0 for s € R, then H(p)(s) 2 0 for s € R;

(iiy if ¢ € S, then H(¢)(s) is non-decreasing for s € R;

(i) H(y)(s) < H(d)(s) for s € R provided that ,¢ € C and 1(s) <
¢(s) < K for s € R.

Definition 3.1. A function U € C is called an upper solution of (3.2) if
it is differentiable almost everywhere (a.e.) and satisfies the inequality

elU'(s) = Dy, [ Z U(s+p-v)— SU(S)] —dnU(s) + H(U)(s) a.e. in R.
peEA

Similarly, a function L € C is called a lower solution of ‘(3.2) if it is
differentiable almost everywhere and satisfies

cL'(s) < Dy, [Z L(s+p-v)— 8L(3)] — dm L(8) + H(L)(s) a.e. in R.
pEA

Suppose that

wt, s> 0,
(3.8) U(s) =

g1 <
and

0, s =0,
(3.9) L(S) {C(l 53)6)‘13, 5 <0,

where A1 and ¢ are given as in Lemma 3.1, { > 0 is chosen small enough
so that L(s) < U(s) for s € R and L is the lower solution of (3.2).
Clearly, we have 0 < L(s) < U(s) < wt < K and L(s) # 0 for s € R.
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Lemma 3.3. U given by (3.8) and L given by (3.9) are a pair of upper
and lower solutions of (3.2).

Proof. If § > 0, then we have from (iii) of Lemma 3.2 and the fact that
0 < (1/2m) Y jez2 Ga(l) < 1, and b(w) < b(w™) for 0 < w < wt the
following holds:

dl;(;) +D,, [ Z U(s+p-v)— SU(S)] — dmU(s) + H(U)(s)

peA

<0+ Dp(8wt — 8wt — dpw™ + bwt)u = 0.

Note that U(s) < e*%wt for s € R and b(gp) < ¥ (0)¢ for ¢ > 0.
Therefore, if s < 0, then

dU(s) 4 Dm[

—C

7 Z (U{s+p-v)— 8U(s)} — dnU(s) + H(U)(s)

peEA

< mc)\le)\1sw+ +- me+ [ E :eAL(S-I-p*V) _ 86)\18} _ dm,w—l-e)\ls
. pEA

b’(O)#
+ BT > GaU(s+1-v—cr)
lez2
< e’\ls'w"*'{ —cA1 + Dy, [ Z eM@v) 8}
pEA

---d b’(O)IJ' Z G (l)eAl(lu cr)}

(2 lez?
= (),

Hence, U is an upper solution of (3.2).

Note that L(s) > 0 and thus H(L)(s) > 0 for s € R. Therefore, for
s > 0, we have

4L 4 p, [Z L(s+p-v)— SL(S)] — dmL(s) + H(L)(s) 2 0.
8 pEA

Note also that ((1 — e%*)e™® < 0 for s = ( and

L(s) > ¢(1 —e*)e™M* =: h(s) for s € R,
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Therefore,
H(L)(s) = H(h)(s) forseRR.

Consequently, if s < 0, then

(3.10)

—C

dL(s) Dm[

ds D L{s+p-v)~ 8L(s)] ~ d L(8) + H{L)(s)

pe A

= _C)\ICC‘-'ALS -+ C()\l + E)Ce(€+)\1)3 + D,,

><‘ {Z: C[(l _ ee(s-i—p‘u))e)q(s-{—p-u) _ 8((1 _ GES)E)\ls}

peEA

— dml(1 — e*)e ’\13 + H(h)(s).

Applying Taylor’s expansion of b(u) about zero, we can write

(3.11) H(h(s)) = (2 ) > Ga{V(0)R(s + 1 v —cr)

lezZ2
+Q(h(s+1 v —cr))},

where

(3.12)

| Z Ga(l)Q((s +1 vz —cr)) < C2Re?Ms,

lez?

7
(2m)*
and R is a constant. From (3.10)-(3.12) and Lemma 3.1 we obtain

dL(s-)
ds

+ D, { Z Lis+p-v)— SL(S)] — dm L(8) + H(L)(s)

pE.A

> e A(A, e, w?) — CA(A + €, ¢, w)etrtels CzRe”‘“‘ > 0,

if ¢ and € are chosen small enough. Hence L is a lower solution of (3.2).
This completes the proof.

Consider the following equivalent form of equation (3.2):

(3.13) W) 1 niis) = F($)(s),
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where

Po)e) = (- %2 - 22 (o

C

+

D [Z o +p- y_)} + = H(g)(s),

peA

and 7 > 0 is chosen so that » — d;./c — 8Dy, /c > 0. Then, F(¢)(s) >
F (1)) (s) for s € R provided that ¢(s) > 4(s) for s € R. Moreover,

F(uw®) = nu?, F(w®) =nuw™.

For any bounded solutions. ¢ : R — R, (3.13) is equivalent to

(3.14) P(8) = e"”S/ e F'(¢)(t) dt.
It is natural to define an operator 7T : § — C by
(3.15) (Té)(s) = &= / MF(G)(E)dt, pES, teR,

and it is straightforward to verify the following.

Lemma 3.4. The operator T' defined in (3.15) has the following prop-
eriies:

(i) ifoel, thenTope S,

(i) 4f ¢ ds an upper (a lower) solution of (3.2), then ¢(s) > (T'¢)(s)
x (4(s) < (TH)(s)) for s € R;

(iii) 4f ¢(s) = ¢(s) for s € R, then (Tp)(s) > (T)(s) fors e R ;

(iv) if ¢ is an upper (a lower) solution of (3.2), then T'¢ is also an upper
(a lower) solution of (3.2). |

We now construct a series of functions by the following iterative
scheme: U, = T"U,_1, n > 1 with Uy = U. By Lemma 3.4, we
have '

w? SL(s) <+« SUp(8) S Upy(8) < -+ < Uo(s) <w™.

Using Lebesgue’s dominated convergence theorem, we know that the
limit function U,(s) = lim, oo Uy, (s) exists and is a fixed point of 7.
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This gives a solution of (3.2). Furthermore, U, lies in S and is non-
decreasing with the limits

(3.16) im  U(s) =,  lm U,(s) =w".
- — D0 S—r 00

Summarizing the above discussions, we obtain the following existing
theorem of travelling waves.

Theorem 3.1. Assume that b : Ry — Ry satisfies (Hy) and (H).
Then there exists c, > 0, such that for every ¢ > ¢, (2.3) has a mono-
tone travelling wave solution ¢ : R — R satisfying the boundary condi-
lion

0

Aim o(s) =w®,  lm ¢(s) =w™.

4 Solutions of initial value problem In this section, we ghall
investigate the existence and isotropic properties of solutions for the
initial value problem of model (2.3) with uy, 4, (¢,7) defined in (2.10).
For the convenience of discussion, we first list some notations to be
used.

3l = [jral + |j2rzl, By ={i€Z®||jl, < N,N €N},

C;t_'[_'r: 0] = C([—T’ 0]1 [Oa I{]), O_?E[—-T, T) = C’([—-?‘, T): [01 I{])a

wj(t) = ’H)(t,j) = ujjl,jz(t): .7 - (.j13j2) < Z'Q:

Wty =W(t, ) = {w;(t)}jezz,

supp W(t,-) = {j | w(t,5) # 0} is the support of W (¢, -),

W(t) = V(2) if wjy 5. (8) = vy, 4o (t) for § = (1, 4a) € Z2,

W(t) = V(t) it W(t) = V() and wy, 3, (1) > v 4, ()

for j € supp V (¢, ).
Also we say W is isotropic on an interval I if w_j, j;,(£) = wj, 4, (¢) and
Wiy~ (£} = Wiy ,ja (t) for j € Z?> and t € I,

In the remaining part of this paper, we assume that the birth function
b:R; — R, is continuous, and satisfies

(Hg) b is non-decreasing on [0, K], and pb(w) = dpw has a unique
solution w* € (0, K|;
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(Hs) 8(0) =0, b (0)>dn/n, |blw)—b(v)| < V(0)|w — v| for w,v €
Ry

(Hs) pb(w) > dpw for w € (0,w™), and pb(w) < dpw for w € (wt, co).

Clearly, the birth function b{w) = pwe™%¥ in Nicholson’s blowflies model

satisfies the above assumptions, when the parameters are in appropriate

ranges.
- The initial value problem of (2.3) can be written as

f

(] (L) = e 'wJ (0) + / —o(E=s)

o[ o] +

X Z Go(D)b(wi;(s — 7‘))} ds, jE€Z? t>0,
lez?
| w;(t) = wi(t), jeZ? te[-nr0,

where 6 = 8Dm + din, and w4(t), t € [—3‘*, 0], 7 € Z? are given initial
data. A simple change of varldble yields an equivalent form of (2.3) as

@2 w0 =0+ [ Dol Swninte-9)

peA

(%)2 > Ga()b(wrr;(t — s — 'r))}

leZ2

jeZ? t>0.

'The existence and isotropic properties of the b()hltl()ll to the initial value
problem is given by the following theorem.

Theorem 4.1. For any given function
We = {w.?}j€z2: ‘ZU;-] < O}'_i{:[_?"v 0]: JE Zga

(4.1} has a unigue solution W(¢t) = {w;(t)}jezz with w; € Ck[—r, o).
If W° is isotropic on [—r,0], then W is isotropic on R_.

Proof. For W° = {w?};ez> with wi € CEl—r,0] and for every T €
(0, 0o, define a set

Sy = {W = {w;}ez2| w; € CL[-r,T), w;i(t) = wi(t), t € [-r, 0]}
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and an operator F*' = {F}"};ez2 on S, where for every W € Sy, j € 72,

4

¢
e %%w,(0) +/ e o(t—s)
0

<{Dn| T wirels)] +

peEA

FEW](t) =

lez?

Clearly, for fixed T > 0, FT[W](t) is continuous in t € [~r, T)
that if W € ST, then we have |

: t '
0 < FIIW](t) < e %K + 8Dk + jb(K)] / o—8(t=s) gg
0

1 .
L e K + <[BDmK + dp K|(1 - e

= K,

for t € [0,T) and 5 € Z2. Therefore, F*(Sr) C St.
For any W € S¢ and A > 0, define a norm as follows:

IWlx:=sup juy(t)le™.
te[0,T),j €22

X Z Go(D)b(wyy;(s — 7"))} ds, je€Z% t>0,

| w3 (), | jez? te[-r0.

. Note

For any W, W € St, let ¢;(¢) = w;(t) —W;(t) and ®(t) = {¢;(t)}jezz,

then for ¢t > 0 we have

t
FFWI®) - EF @) = [ oo {Dm S byan(s) ds

peA

+ # > GaW)blwigs(s — 7)) — b (s — r))]} ds,

lez?
i ‘
=/ e—a(tws)Dm Z (f)j+p(8)d5
0 peEA
(W T s(t—s—r)
G 00 [, e
+ < leZ

X [b(wir;(8)) — b(wi45(s)))ds, t—r >0,
L0, t—7r <0.
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When £ — + > 0, using property in (Hj3), we have

|F W) — FF W] < /D emit-np, D ls4n(s)lds

pEA

! t—r
+“b © Z Ga(l)/(; 8_6(t—5_—r)|¢l+j (s)ds,

2
(QW) lez?

which leads to

|FT[W](@) — F W) e™™ < D, /0 e e MmN N g o ()| ds

pEA

7 t—1r
O S G [ e e g o)l ds

lez?
Thus

(4.3) [[FTW](z) — FTW)(@)]x

A t—1r
< 8D || ®]| 5 / e~ 9 ds 4 ub'(0)]|® || /0 e~ M=) g
0

80 Y (0 IV
= E2m g a1 - ey 4 EE Oy omar ey,
A A
Since
, .
(4.4) im 2Rm 1 o=ty O ar  maey g
A—oo A A
and S is a Banach space with norm | - ||, we have from (4.3) and (4.4)

that FT is a contracting map and hence has a unique fixed point W in
St it A > 0 is sufficiently large. This shows that a unique solution of
(4.1) exists on [0,T) for any 7' > 0, which guarantees the uniqueness
and existence of solution W to (4.1) on [0, c0).

The isotropic property of the solution on [—, 00) starting from an
isotropic initial data W on [—r, 0] can be verified by noting that the sub-

space ijn of Sr, consisting all elements which are isotropic on [—7, 00),
is closed and FT(54) c SL. O
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5 Asymptotic speed of wave propagation Let

1

Le(A) = d+ Ac

{QDmE(.)\, L’) + be(o)eﬁa[E(A,u)—4]-}\cr}_.

Then, we can rewrite A(\,¢,0) =0 as

(5.1) Le(A) =1,

ancd the minimum speed defined in Lemma 3.1 can also be written as
(5.2) cx :=1Inf{c > 0] Lc(A) =1 for some A € Ry},

In the following, we will show that ¢, is the asymptotic speed of wave
propagation in the sense that the solution of (4.1) satisfies

(5.8)  Jim sup{uy(8)] lil, 2 et} =0 for ¢ € (e., 00),
— 00

(5.4) 1'1tminf min{w; ()| |j|, < ¢t} > wt force (0, c4),
—_—r O3 '

if the initial function W@ satisfies some biologically realistic conditions
to be specified in the following theorems.

Theorem 5.1. Assume that W° = {w3};ez2, with w§ € Ck[-r,0] for
j € Z2, is isotropic on {—r,0], and there exists an integer N1 € N such
that suppW?°(t, ) C Bn, fort & |—7,0]; Then for any ¢ > ¢, we have

Jm sup{w; () | 1jl, 2 ct} = 0.
Proof. Define a sequence of maps by
W () = FRIWO—U(¢) forneN, t> —r,
W) = (w;” ()} ez,

(©) roy w_;?(t), t e [-r0],
wy () = {w;.’((}), t € (0, 00).

Then W9 is isotropic and supp W®)(¢, ) C By, for t > —r. By an
argument similar to that for Theorem 4.1, we obtain the convergence of

{W{™1 on [0,00). Let

W) = lim W@, te0,o00).
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Then W is a solution of (4.1) with the isotropic property due to Lebesgue’s
theorem of dominated convergence.

Using the assumption on W, we can find M > 0 and N € N such
that

(5.5) wg-o)(t)e’\(j"’) < Me*M fort> —v, je€Z2

For any e1 > ca, let co € (ca,¢1), for ¢ = 0, we have from (5.5) and
(Hq) that

t
(56) w:s_l)(t)e)\(j-u--cgt) ___e-—(J—l—Acg)t{wgo)(o)e)\(j-v) +/ 853Dm
0

L)) — Ao L
X Z wgﬂgp(s)e)‘(u"'p) YJe é‘(p )’ds + )2 Z Go(l)
peA lez?

t
x / easb('wl(f:_)‘j (S —_— T))e')‘((.7+l)u) e—}\(l-u) ds}
0
< em(ORelty e’*N{l + (2D B\, v)

t
_{_#bl(o)eZa[E(A,u)—‘i])/ 6(5-}-)\62)5 dS}
: 0

< e=(8+Aea)t gy M (W ear) {1 + (2DmE(A,v)

P
) " #b;(o)e‘%x[E(A,u)—fl) -'*/\CQT']/ 8(64_)\02).9 dS‘}

_ 0

< MeMVFem) 1 L. (N)].

By induction we obtain
(5.7)  wi™ (@)ervmeet) < MANFeEn L 4 Lo (W) + -+ (Lep (V)).

Since ¢z > ¢4, we can choose A > 0 such that L.,(A) < 1. For this choice
of A, the right hand side of (5.7) is bounded from above uniformly for
n. By taking the limit from (5.7) we obtain that for j € Z,

M eMN +ear) .y
w;(t) < eMezi—(7)]
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for £ > 0. Thus by using the isotropic property of W, we obtain

| M e MN+car) A .
ws(t S e (CchlJlu—).
Therefore, we have
M e MN+car) _
sup{w; (L) | 7], 2 e1t} < c eMe2malt  gast — oo
1 - LCZ (A)

which leads to
IA{lim sup{w; (t) | l7ly = a1t} =0, ¢ > c..
—r 00 '

Therefore we complete the proof. 0

In order to obtain (5.4), we follow the approaches used by Aronson [2],
Aronson and Weiberger [1, 3|, Diekmann [5, 6], Lui [11, 12}, Radcliffe
|14}, Thieme [17] and Weinberger [20], to develop a comparison principle
and to construct a suitable sub-solution of (4.2).

For any T > 0, we define a map on

Moo = {(I) == {ij}jEZz I $j = Pj1,52 € C}? ['_T! OO)}

by
ET = {Egr}jez%
where for ® € M,,t > T, € Z2,

] |
Tra — 6—53 , —_
AUORY {Dm S it =)

pEA

N (zi)z D GaDb(ras(t — 5~ fr))} ds.

lez?2

Lemma 5.1. Suppose that
(5.8) ET[®(t) = ®(t) fort>T,
where @ € .M.;o satisfies

(i) for any t/ > 0, there exists an N = N(#¥') € N such that for any
t e [0,t], supp®(t,') C Bn;
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(i) 4 {(tn,J(”),Jgn))} C Ry %22, i = (™, ™) € supp B(tn, ),
and hnlnwoo(tna jfn)ﬂ.].‘zn)) - (fO! (0)1-720)) then .7(0) = (J(O):JQO)) &
supp ®(to, -)-

If there exists at = 0 such that the solution W of (4.2) satisfies

'W(E+ t) =~ ®(t) fortel0,T],
then ‘
WI(E+1) = () forte]0,00).
Proof. Let
to=sup{t =T | W({+1t) > ()}

If 1o < o, since W () is non-negative, there exists {(tn, J{”), 32”) )}n_

such that

(a) tnlth n-—>{>o,

(b) 5@ = (5, 55 € supp B(tn, ),
(€) wimy (E + tn) < djm) (En)-

Under assumption (i), {77} must be bounded. Thus, {(™} is com-

posed of finite groups of integer set (jjf . 32")) and hence contains a con-
vergent sub-sequence, which is a constant set sequence {j(9}. By (b)
and (c), we know that 50 € supp ®(to, ) and w0 { + ta) < ¢; (to).

Noting that tg > T and t > 0, we obtain from the deﬁmtlon of tg and
(5.9) that

T
W0y (f-{— to) = / edés{Dm Z ’wj(o)+p(£+ o — 8)
J0

peA
T
> /U B—as{Dm1;¢j(o)+p(to — 8)
Z Z Ga (1) b( qu(n).H(?fo —.5— 7‘))}
£1=——oo lp=—o0

= Ej[®](to) > ¢ (to),

which ig a contradiction. Therefore, g = co. This completes the proof.
W
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Define K, = K.(h,T,N, ) as

T
(5.9)  K.(h,T,N,)\) = f e‘(5+)‘c)3{2DmE(A, V)
. , 0

Z Gy l)(,.\(i.u c’r‘)}d

L <N

e 7T)2

1 — —(§4-Me)T"
" {me(A, V)

d+ Ac
Z G (Z)CAUV w)}

|:.| <N~

(2
then we have the following.

Lemma 5.2. For any ¢ € (0,c¢.), there exist h € (0,0'(0)),T > 0 and
N e N, such that

(5.10) | K.(h,T,N,\)>1 for)eR.
Proof. By the definition of K,(h, T, N, A), we have
K.(h,T,N,—)\) > K.(h,T,N,\) for x> 0.
Therefore, we only need to show that
Ko(h,T,N,X) > 1 for A>0.

- We claim that there exist Ng > 0,A\g > 0,hg € (0,0'(0)) and Ty > O
such that

K.(h,T,N,A\) >1 for A= Xo, N2 Ny, h 2 hp and T = T.

In fact, since

S(a) = Y Ga()ert) = 2B =4 >

2
(27T) lez?

Which holds uniformly for A € R, we can choose Ng > 0 and hp &€
(0,b'(0)) (hg can be chosen arbitrarily), such that for N = Ny and

h > hy, we have
> Galher) > 0.
<N

(2 )2
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Since
eMlpiival)

)\lali%o Aew + 6 - %

we can choose Ty > 0 and Ag > 0 such that for T" > Tp and A > Mg, we
have

Din —8T A (w1 |+{) Do — 8T\ WAl |+ al)
i 1 > —_— e 1 — e i) (241 [ %) ™ 1
erslTe e o g o e =
Then for N = Ng, T > T, h > hg and A = Mg, we have
' 2Dm —8Toy A1l +lvz])
Ko(h, T, N, A) > = +§(1~e 0yerlal+ivel) > .

If (5.11) is not true, then there exist {hn}, {Tn}, {\n}, {Nn} Satisfying
b, Tbl(e)a Th T oo, Ny, T oo, {)\n} C [0: AO] and

Ke(hn, Ty Ny An) <1, n=1,2,..

Since {A,} is bounded, we can choose a sub-sequence {)\m} which has
a finite limit, say \. By Fatou’s Lemma, we have

1< Le(M) < lim inf Ke(Rng, T Vs Any,) < 1,

which is impossible. This completes the prool. ]
Define a function with two parameters w, § as

{e"“’y sin(Cy) for y € [0, 7,

(5.11) q(y;w, §) = for y € R\ [0 ¢l

We have the following lemma:
Lemma 5.3. Let ¢ € (0,c.). There exist a {p > 0, a continuous func-

tion w = w(() defined on [0, o}, and a positive number &1, € (0,1) such
that

T
(5.12) / e"‘%‘{Dm Z glm 4+ cs+p - v)
0

peEA

q(m-l—l-u—l—c:s—l—cr)} ds > q(m — 61)
|z| <N

for m € R, where q(y) = q(y;&(¢), €).
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Proof. Define

T
1) = [t D 3 e
‘ 0

pEA

} ,
n éj, 1 ~ Z Ga (l)e-—)\(l-u-i-c35+m‘)} dS,
(2) <N '

where T, h and N are defined in Lemma 5.23. We mention here that
one can choose N sufficiently large so that

(5.13) —N + c.(T"+ 1) < 0.
Using Lemma 5.3 we have
(5.14) LX) =K. (h,T,N,A\)>1 forall AeR.

Let A = w +i¢, we have L(A)|a=w+ic = Re[L(A)] + ¢ Im [L(A)], where

T
— —ds E : —w(es+p1r) . _ }.Lh

T
X Z Gu(l) f g9 gmwlbvresten) aog (1. v+ cs + or) ds,
il <N 0

g ’ ]
Im [L(A)] = — Dy 6_53{ Z e~ e TP ) gin C(es 4+ p - V)} ds — £2
0 pEA

. .
x Z Gal(l) / e~ dpmwlbvrester) gin ¢(1- v + cs + or) ds.
<N 0

Since L”(A) > 0 and limyy—o L(X) = o0, we conclude that L(A) can
achieve its minimum, say at A = #. Then we obtain

T }
L'(®) = ~D,, A g% I:Z(cs +p- 1})@‘9(cs+p'“)] ds — (;W;Q
peEA

T
X Z Ga(l) f e (l - v + cs + cr)e Ovtester) g =,
<N 0
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We now define a function H = H(w, () by

H(w,¢) = ¢Im[L(N)] for ¢ #0,

H(w,0) = lim H(w,() = L'(w).

Then H(B,O) == ( and %—%(9,0) = L”(8) > 0. The implicit function
theorem implies that there exist {; > 0 and a continuous function w =

2(¢) defined on [0, (1] with @(0) = € such that H(w((),{) = 0 for
€ [0, ¢1]. Hence, we have

(5.15) Im [L()\)]‘ =0 for ¢ €[0,¢].

A=w(C)+iC

By (5.15), we have Re [L(w +14()]|,_, .—q = L(#) > 1. Thus there exists
€2 > 0 such that

(5.16) Re[L(@(¢) +i¢)] > 1 for ¢ € [0,¢s].

Lef 0 < ¢ < ¢o:=min{{1,{2,7/(2N + cu(T + 7)) }. For m € [0,7/(]
wnd s € [0, 7], we have '

2
-zg— <-2N<m+p-v+es <2N +¢,T <L % for p € A,

and

9
-—% <—2N<m+l-v+es+or <2N+e.T <2 for |l], < N.

¢

If m e [0,7/C], let U = (—n/¢,0) U (w/{, 27 /), then we have

sin((m-+p-v+es) <0
(5.17) | for m+1l-v+esclU, pe A,
sin{(m+I{-v4+es+cer)<0
for m+Il-v+es+erelU, |, <N
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Therefore, by (5.17) and the definition of ¢{y), we obtain

T
(5.18) /o e“‘ss{Dm Z gim+cs+p-v)

peA

Z Go(Wg(m +1- u-l—c,s—l—c'r)}

( )2 <N

T
szf -
0

X { Z e~ @) (m+estpr) gin(C(m + cs +p - v)) ds}
pe.A

ph (T . G (D e—®Q) (mtlutester)
-+ (271_)2 . e Z a( )8
e <N

x sin(C{m +1 v+ cs + cr))ds.
Using a trigonometric identity and (5.16}, (5.17) and (5.18) we obtain

T
(5.19) fo e“‘ss{Dm Z glm+cs+p-v)

PEA

GaDglm +1-v+cs+cr)
" G )2“:4;\, awm r}

e—‘:‘(C)m{ sin(¢m)Re [L(N)]
+ cos(¢m)Im [L(A)]})\zﬂ(C)+ig

> e~ )™ gin(¢m)

= g(m),

We should emphasize that (5.19) is a strict inequality for m € (0, w/¢).
On the other hand, if m = 0 or m = /¢, (5.19) is also a strict inequality
by using (5.18) and (5.19). In fact, if m = n/¢ and l;14 + lave > 0, we
have

i
,m"l‘llUl“l""leg-l—C(S—FT’) > —C_-,:

Similarly, if m =0 and l- v = —N, we have from (5.14) that

m+l-v+e(s+7r) < —=N4+c(T+7) <0.
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However, for both cases, we have from (5.18) and the definition of ¢ that
gim+1l-v+cs+sr)=0 and sin({(m+1-v+cs+ sr)) <0,

and thus (5.19) is a strict inequality. Therefore, for m € [0,7/¢], w
have .

-
(5.20) / e‘éS{Dm Z glm+cs+p-v)
0

peA

;:;2 Z Ga(Dg(m 1. 1/+CS+CT)}dS>Q(m)'
<N

Then (5.13) follows for m € [0, 7/¢] from the continuity consideration.
If m & [0, %/¢], then ¢(m) = 0. Noting that ¢(y) > 0 for y € R, we
distinguish four cases:

1% m > z + (| +1v2]). Then we have m+es+-l.v>n/Cforl e A, se
[0, T'|, which leads to g(m + ¢s +1- ) = 0. Therefore, we can choose
41 € (0, 1) such that (5.13) holds.

2° w/¢ <m < /¢ (jv1] + |v2]). In this case, there exists a s’ € (0, T)
small enough such that m + cs’ — (1| + [v2]) € (0,7/¢) because of
m — (Jv1] + |in]) < w/¢. So fOT g(m +cs — (Jvr] + |e2])) ds > 0 for the
continuity of g(y), thus (5.21) holds which leads to (5.13).

3° —[cT + (Jv1| + |r2])] < m < 0. Since m + T + (Jv1| + |v2]) > 0, there
exists a s” € (0, T') such that m+c8"+(|u1|+|1/2|) € (0,7/¢). Similar
to 22, (5.13) still holds since one has fo (m~+cs+ (i +]e)))ds > 0.

4° m < ——[cT—i— (lvi| -+ [v2])]. Similar to 12, we have g(m +e¢s +1-v) =0

since m+es+l-v<0forle A, s¢ [O T, so we can choose §; > 0
such that (5.13) holds.

Summarizing the above arguments, we conclude that inequality (5.13)
holds for m &€ R. This completes the proof. : O

Now we consider the following family of functions
Ry w, (,y) i= max q(y + 13w, C)

_ M for y < v+ p,
(5.21) =44 -rw Q) fory+p<y<y+7I,
0 for y >y + Z,
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where
(5.22) M = M(w,¢) = max {q(y;w,C) l 0<y< %}

and p = p(w, ) is the point where the above maximum M is achieved.
The following lemma gives a sub-solution of (4.2).

Lemma 5.4. Let ¢ € (0,c.). be given, then there exist T > 0, ¢ >
0, we R, D> 0 and aqg > 0 such that for any o € (0,00) and for any
t>T '

(5.23) ET[oc®](t) = o®(t) fort>T,

where q)(t) = {¢j(t)}j622: ng (t) = R(Uly I Ly (:'.'D + Ct)'

Proof. Let h € (0,0'(0)), T > 0, N > 0 be chosen such that
Ko(h,T,N,\) >1 forall AeR.

According to Lemma 5.4, we can choose ¢ > 0, w = () and §; € (0,1)
such that (5.13) holds.

Let o7, be the smallest positive root of the equation b{w) =-hw. Then
b(w) > hw for w € (0, o). Choose gg € (0,0, M 1), where M i defined
in (5.23). Let ¢ € (0,00) and £ > T, then

- |
(5.24) Eflodlo) = | e"ﬂs{apmz¢j+p<t—s)

peA _

M (Qi)?- Z Ga(l) b{ogjpi(t — s — 'r))} ds

leZ?

T
Z / e-—-a’S{qun Z qu-l—p (t bl S)
0

pec.A

T (gf;)z Z Ga(l) blogdjp(t — s — r))} ds.

[l EN

We now distinguish two cases.
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Case (i) |jlo<D+p+ec(t—T)— N.If|l}, < N,s € [0,T], then
N+l <D+p+e(t—T)< D+4+p+ec(t—s)

and consequently

(5.25) ET[o®)(t) > {SDmaM + (zfr)z S Ga(l)b(ch)}
_ [, <N

AT
X / e % ds
0

> oM Ky(h,T,N,0) > oM.

Case (ii) D+p+ct—T)-N<|jl, £F+D+ct If|l|, £N and
t > T, then

(5.26) L+l =1l-v+j- v
= (- V)2 £2(1-0)(F-v) + (G- U)Q,)I/Q

LGy ()

= Wl g g,
LGy N
e P E )
< G000

”I'“ala

~ provided D > N2/28; — p+ N. Since ¢;(t) is decreasing with respect to
|71, we have from (5.25), (5.27) and the isotropic property that

E;T [o@](2)

z "./OT‘*JS{D”[Z mex | alsl, + LT 15 )

Loz D=c(t—s) 172

* oy 30 Ca) g il S v Las

1|, <N mz—D—e(t—s— |71
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T ,
— —&s . .
o [ e {pu] e ot 4]

ph . | |
-+ (27)2" Z Ga(l) ngn—l%}ic:tQ(U1u+l V+C'5+CT+51+’I])}(£5

> vn:_;{l%{ctq(lﬂu + 7).

Combining (i) and (ii), we obtain (5.24) and complete the proof. O

Lemma 5.5. Assume that W = {w;};ez2 s a solution of (4.1), and
assume that

(i) W° = {w} ezz, with w] € CEt[—r,0l, is isotropic on [—7,0];
(ii) there exists Ny € N such that

suppW?(t,") C By, forte[-r0], and wj{0)>0 for|jl, < N
Then there exists to > r such that
w;i(t) >0 fort € [to,00) and j € Z°,

The conclusion of Lemma 5.6 is obtained directly from an observation
from (4.1).

Lemma 5.6. Let {Qn(t, N)} be defined by Q1(t,N) =a € [0,wT), and

Qa6 V) = 38D @ult N+ gy 3 Gallb@alt, M) (1™

2
@m)* in

forn =1,2,---. Then for any ¢ > 0, there exist t(e), N(e) and 7i(e)
such that for any t > I(e), N > N(e} and n > #i(e),

Qn(t, N) > wt —e.
Proof. First, we note that

+ +
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and

1
0<Qit,N)<w"™, 0< =(1- e~ < 1,

> Gall) < 1.

. <N

(27t')"‘

Therefore, we have by induction that 0 < @, (t,N) < K for all n €
N, £>0and N € N.
Let € > 0 be sufficiently small such that e < a < w™ — €. Since

8D pw + ub(w) > (8D, + dp)w for 0<w < wT,

we have

inf {SDm w + pb(w)
(8D7n + dyn)’“.)

Choose (e} < 1 so that

§w§w+~——e}>1.

€)[8Dmw + pb(w)] > (8D +dm)w for e <w < wh —

Define a sequence as follows:

My =a, My, = af;) (8 DM + ub(My)), n = 2.

Then we have the following observations:

(i) ife < M, < w™ —e¢, then M, 41 > My;
(ii) if M, > wt — ¢, then

cv(é)

My > 8D, (wt —€) + ub(w™ —€)] > wt —

We now claim that J\ffn > wt — e for large n. If not, then using (ii) we
can assume that M, < wt — e for all n. Then by (i), lim,—co My =
M < w™t — ¢ exists and we have

v o(€)
M = 5

[8Dm M + pub(RT)),

which is impossible by (5.28). Therefore, there is 7i(e) > 0 such that
M, > wt — ¢ for all n > 7i(c).
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Choose t(¢) and N (e) such that

(231_)2 (1 — e~ %t Z Ga(l) = ale).

1t <N(e)

Then, for any ¢t > #{e) and N > _N—(e), we have @Q;(t, N) = a = M; and

Quit(t,N) > %(1 — e~ o)y (SDan(t, N)

H

e > Ga(l)b(Qn(t,N)))

4], <N(e)

_l_

> %a(e) (8D Qn(t, N) + pb(Qn (t, N))).

Using the monotonicity of b on [0, K] and by induction, we obtain
Qn(t,N) > M, > wt — ¢ for all n > fi(e). This completes the proof.
' O

Theorem 5.2. Assume that W° satisfies all conditions in Lemma 5.6.
Then for any c € (0, c.), we have

lim inf min{w; )| il < et} > wt.
—00 :

Proof. Fix ¢1 € (0,¢.) and choose ca € (¢1,¢x). According to Lem-
ma 5.5, there exist 77> 0, { > 0, w € R, D > 0 and oo > 0 such that
for any o € (0,00) and any ¢ > 1",

ET[a®](t) = o®(t),

where ®(t) = {¢;(t)} jez2,#;(t) := R(|jl. | w,{, D+cot). By Lemma 5.6,
we can find tg5 > 7 so that

wj(t) >0 forte [to,fo -I—T], jE 72,
Then we can choose o1 € (0, gg) such that
(5.28) oM <wt, wilte+1t)>aoe;t) forte[0,T], je 72,

We refer from the comparison principle (Lemma 5.2) that (5.29) holds
for t > 0. Hence by (5.22) and the definition of ¢;(t), we have

(5.29) ‘wj(tu—l—t) >oM fort>0, Ul!’ Sp+D+Cz‘t.
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By (4.2), we obtain

.
(5.30) w;(to +1t) = / 6“63{Dm Z Witp(to + 1t — 5)
o .

pEA

+_(_2__%_2_ > GQ(Z)b(wHJ(toH——s—T))}ds-

1, <N

Let a = oM = @Q1(¢t,N) and let Q,(t, N) be defined in Lemma 5.7.
Then by induction and using (5.30)—(5.31), we have

w;(to +1) = Qnlt, N) fort =0,
l7le < p+ D + cot — 2nNN.

Therefore, for any € > 0 small enough , we can find #(€), N(¢) and 7i(e)
such that

wi(t) = wt —e fort >ty +t(e),

(5.31) S
17l < p+ D+ eca(t —to) — 27(e) N ().

Define

t1 = max {tg + #(¢),

27(e)N(€) + coto — p— D
Co — '

Since ¢z > ¢1, we have from (5.32) that
wi{t) >wh —e fort>t1, |jl £ at.

This completes the proof. [
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