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Abstract

We consider an artificial neural network where the signal transmission is of a digital (McCulloch—
Pitts) nature and is delayed due to the finite switching speed of neurons (amplifiers). For a particular
connection topology, we show that all solutions starting from nonoscillatory initial states will be
eventually synchronized and stabilized at a unique limit cycle, and hence such a network can be used
as a synchronized oscillator.
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1. Introduction

In this paper, we consider the following system of delay differential equations

X =—px+ainf(x(t—1)) +awf(yi—r1)), (1.1)
y=—uy+axnfxt—1)+anf(yt—-r1)), '
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wheren andt are given constants;: R — R is the McCulloch—Pitts nonlinear function
given by

a if&>o,
B if&<o,

wherea # B ando are constants. Such a system describes the dynamics of a network of
two neurons [6] where each neuron is represented by a linear circuit consisting of a resistor
and a capacitor, and where each neuron is connected to another via nonlinear activation
function f multiplied by the synaptic weights;; (i # j). We also allow that a neuron
may have self-feedback and we assume that signal transmission is delayed due to the finite
switching speed of neurons. The McCulloch—Pitts nonlinearity reflects the fact that the
signal transmission is of digital nature: a neuron s either fully active or completely inactive.

Despite the low number of units, two-neuron networks with delay often display the same
dynamical behaviors as large networks and can thus be used as prototypes to improve our
understanding of the computational performance of large networks with delayed feedback.
The case where the functighis smooth has been studied in [1-3,9,11,13], but little has
been done wheyfi is of McCulloch—Pitts type, since most results in the dynamical systems
theory requires the continuity and smoothness of nonlinear functions involved. Recently,
in[4,7,8,10], model (1.1) with the piecewise constant activation function was studied when
the synaptical connection topology satisfies eifagr = apo = 0,a21 = a12 = 1] or[a11 =
a2 =0,a21 = —a12 = 1], or more generallfja11 = a12 > 0,a21 > 0, —az1 < a2z < az1].

We focus here on the asymptotical behaviors of model (1.1), where the activation func-
tion is given by

f($)={

| -8 if&>0,
wheres # 0 is a given constant. To simplify the presentation, we first rescale the variables
by
t :,U.t, T =MUT, X (t ):g-x(t)s y (t )zgy(t)s f (é):gf _é )
nw
and then drop the to get

{x=—x+a11f(x(t—r))+a12f(y(t—r)), (1.3)
y=—=y+axnf&x@t—r1))+axfyit—r1)) '
with
—1 if
GE { oeso (L4)

It is natural to have the phase spate= C([r, 0]; R?) as the Banach space of con-
tinuous mappings frori—1, 0] to R? equipped with the sup-norm, see [5]. Note that for
each given initial valug = (¢, ¥)” € X, one can solve system (1.3) on intervgdsr],
[t,27], ... successively to obtain a unique mappind, y®)7 : [—t, 0co] — R? such that
x®?li—rop =0, y®|[—c.0 = ¥, x®, y®) is continuous for alk > 0, almost differentiate
and satisfies (1.3) far> 0. This gives a unique solution of (1.3) defined foralt —z.
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In applications, a network usually starts from a constant (or nearly constant) state. There-
fore, we shall concentrate on the case where each componénha$ no sign change on
[—7, 0]. More precisely, we consid@ ¢ X™T U X™~ U Xt UX™~ = Xq, where

C* ={+¢: ¢:[-1,0]— [0, 00) is continuous and
has only finitely many zeros dr-t, 0]}
and
X*E=loeXx: o=(p,¥)", peC*, andy € C*}.
Clearly, all constantly initial values (except for 0) are contained ¢n

Clearly, the connection weights have a fundamental effect on the dynamics of the net-
works. In this paper, we consider the following special connection topology:

(H1) |a12l < a1, lazz| < az1, a11a22 — agza21=0.

In other words, we assume that the self-feedback to neuron 1 and the interaction from neu-
ron 1 to neuron 2 are inhibitory and respectively dominate the interaction from neuron 2
to 1 and the self-feedback to neuron 2. We also assume that the determinant of the connec-
tion matrix is zero. We shall show that every solution starting from an initial stalin

will be eventually synchronized and stabilized at a unique attractive limit cycle, and hence
such a network can be used as a synchronized oscillator.

2. Preliminary results

In this section, we establish several lemmas which will be needed later.
First, we further rescale the variables of (1.3) by

t t -
u(t):L), v(t):L, m=M>O.
ai1+ai2 az1+ a2 ail+ a2

Then the rescaled system is equivalent to the following system:
{ u=-u+ %[f(u(t =)+ flt =N+ Zf @ —1))— fu - 1),

vV=—v+ %[f(u(t =)+ flt =N+ F[f @t —1) = fuit —1)]
As such, the simple form of (1.4) will enable us to carry out a direct elementary analysis

of the dynamics of the network due to its obvious connection with the following systems
of linear nonhomogeneous ordinary differential equations:

2.1)

Y @2
o e
s in @4
i 29
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For the sake of simplicity, in the remaining part of this paper, for a giver0, co)
and a continuous function:[—t, c0) — R, we define a mapping;:[—z,0] — R by
zs(0) =z(s +0) for0 e [—7,0].

First, we have the following observation:

Lemma 2.1. If (u(),v())! is a solution of systen{2.1) with initial value @ =
(¢, ¥)T € Xo, then the solution of2.1) with the initial value® = (—¢, —¥)T € Xg is
(—u(®), —v()’.

Let (u(r), v(r))T be a solution of (2.1) with initial value iXo. Then, we have

Lemma 2.2. If there exists somg > 0 such that(u,,, v,o)T e X7, then there exists some
15 = to such that(u,gH, v,5+T)T e Xt+t andu(ty + 1) < v(ty + 7).

Proof. In view of (2.1) and(us, v,)" € X, (u(r), v(t))! satisfies (2.3) for € (1o,
to + ). By the continuity of solutions, far € [, 1o + ], we have
u(t) = (u(to) —m)e™ " +m, v(t) = (v(to) — m)e'™™" +m, (2.6)

Let 1 be the first zero ofi(¢t)v(¢) in [70, o0). Then (2.6) holds for alt € [70, 11 + 7]. On
the other handy(¢)v(¢t) = 0 implies

t=to+In(m —u(to)) —Inm or t=1o+In(m—v(10)) —Inm.
In view of u(fg) < 0 andv(zg) > 0, we have

rn=to+In(m —u(t0)) — Inm.
This, together with (2.6), implies that

t J—
u(h+t)=m—me * >0, v(t1+t)=mme_r+m > 0.
m — u(fo)

Moreover, it is easy to see thai; 4+, v,1+f)T e Xtt andu(ty + v) < v(t1 + 7). Thus,
the conclusion holds with; = ;. This completes the proof.0

Lemma 2.3. If there exists som#g > 0 such that(u,,, v,O)T € X~ andu(r) < v(tg), then
there exists somg > ro such that(u; ., U15‘+r)T e Xt andu(t§ + 1) <v(t§ + 7).

Proof. We distinguish two cases.
Casel: (1 — u(t0))/(1 — v(to)) = €. From (2.1) anduy,, vi,)" € X7, (u(@), v(@®))"
satisfies (2.4) for € (7, to + 7). By the continuity of solutions, fare [z, 10 + 7], we have

u(t) = (u(t0) — 1)e™" + 1, v(®) = (v(t0) — 1)e" + 1. (2.7)

Let #1 be the first zero ofi(r)v(¢) in [tg, o). Then (2.7) holds for all € [rg, 11 + 7]. On
the other handy(¢)v(¢) = 0 implies

t=t0+IN(1—u(0)) or r=to+In(1—v(r0)).
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In view of u(fg) < v(tg), we have
n=1o+In[1—v(ro)].
This, together with (2.7), implies that

u(to) — 1e,f

1<0, t =1l—-e¢T">0.
1 (o) + v(t1 + 1) e ' >

u(tr+1v)=

Moreover, it is easy to see thait;, ., v,1+T)T e X—t. Thus, from Lemma 2.2 it fol-
lows that there exists somg > 11 + t such that(u; ., “fé+f)T e Xt andu(f + 1) <

v(t5 + 7).
Case2: 1< (1 —u(tg))/ (1 — v(t0)) < e'. Using a similar argument as above, we get
-1
u(t1+t)=u(t0) e "+1>0 and vir+1)=1—e"T">0.

1-v(0)

Note thatu(zg) < 0 and (2.7) holds for € (7, 1o + 7), we have some < [t1, 11 + 7] such
thatu(z2) = 0. In fact, by (2.7), we have

=1+ In(l— u(to)),

and we can easily show thatr — ) < 0 andv(r —t) > O forz € (t1+ 7, t2+1). Therefore,
(u(r),v(t))T satisfies (2.3) for € (t1 + 7, t2 + 7). Thus, fort € [t1 + 1, 2 + 7], we have

o) —1
u(t) = [u(tl +1)— m]e’“'f_’ +m= [%e—f +1— mj|et1+r—t +m,
v =[vitr+1)—m]e"™TT tm=1—-eT" —m)eT +m. (2.8)
It follows that
1—v(
u(tr+t)=m—e " +(1—m)i0) > 0,
1—u(to)
1—
vi+1)=0A—-e"" _m)l_izg(;; +m >0,
and hence

v(to) —u(to) _,
1—u(t)

vito+1)—ult2+1)= > 0.

Moreover, from (2.7) and (2.8), it is easy to see thas ., v;,+:)! € XT*. This com-
pletes the proof. O

Lemma 2.4. If there exists somg > 0 such that(uy,, v,,)" € X andu(to) < v(10), then
the first zero of«(¢)v(z) in [fg, 00) iS 11 = to + IN(1 + u(t0)). Moreover, we have(t;) =0
andv(t1) = (v(to) — u(t0))/(1 +u(t0)) > 0.

The proof of Lemma 2.4 is similar to that of Lemma 2.3, and thus is omitted.
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Construct a piecewise functidn: [0, co) — [0, co) defined by

filx) ifxele’ —1,00),
folx) ifxe[EE et —1),
Fx)=1{ falx) if xe[ie irl—’;*f)’ (2.9)
fatx) if x € (0, 2=4=),
0 ifx=0
form>e 7, or
filx) if x ele’ —1,00),
fs(x) ifxe [%(er __P’ et — 1),
Fx)={ fa(x) ifxe [,};_,;% (€" — 1)), (2.10)
falx) ifxe (0, 15%),
0 ifx=0
forO<m < e 7, where
me=2x
= 2.11
1) m+1l—e)(m+1—me ")’ (2.11)
me % x
= 2.12
f2(x) m2=De " x+(m+1—meD)1—e)+m+1—e7’ ( )
me % x
= 2.13
f3(x) m2 =D *—mx+m+1l—mem+1—e7)’ ( )
e 2T
= 2.14
S = A A e 1 A= e )2 (2.14)
and
2,-3t
fs(x) = me (2.15)

m+1—me)[(A—m2)e x4+ (me " —1)(L—e7)+m?]
Elementary calculations lead to the following

Lemma 2.5. The functionF defined by(2.9) or (2.10)is continuous, monotonically in-
creasing on the intervdl0, co), and satisfies thak'(x) < x for all x € (0, o0). Moreover,
the zero is a stable fixed point.

3. Global attractivity of a periodic orbit

We start with the following
Theorem 3.1. Assume thatu®,v?)” is a solution of systeni2.1) with initial value
®eXo If ®@=(p, ) e XU X~ and ¢(0) = ¥(0), thenu®(r) = v®(r) for

all t >0, andu®(r) =v®(t) =q() for all t > v + In[1 + ¢(0)] (respectively, for >
7+ In[1—¢(0)]), whereg (¢) is a periodic function with minimal period = 2 In(2¢™ — 1).
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Proof. We only consider the case whede = (¢, )T € X**. The case wher@® =
(¢, )T € X~ can be dealt with analogously.

Using Eqg. (2.1), we can easily obtain that) = v(z) for all t > 1. Therefore, it suffices
to show that the solution(r) of the equation

i=—u+ f(ut—1)) (3.1)

with the initial conditionp € C™ is eventually periodic with minimal period 22 — 1).
Let #1 be the first nonnegative zero ofr) on [0, co). Then forz € (0,71 + t) except at
most finitely manyr, we have

un=-u—1, (3.2)
from which and the continuity of the solution it follows that
u)y=e"'[p0)+1] -1
fort € [0, 11 + t], and in particular,
u(t) =e™™ [(p(O) + 1] —1=0.
This implies
t1=In[1+¢(0)]
and
u(ty + 1) = e 1t0) [(p(O) + 1] —1l=e¢T"-1<0.
Also
Un+e(0) i=u(ti+7+0) =e T [p0) +1] - 1= —1<0

for 0 € (—t, 0]. Thereforeu; +. € C~.

To construct a solution of (3.1) beyoi@ ¢, + ], we consider the solution of (3.1) with
the new initial valuep* = u;, .. Letr, be the first zero afteq of u. Thens, > 1 + v and
on(t1+ t,t2 + 1), we have

i=-u+1 (3.3)
and hence
u(t) = e -7 [u(tl +1)— 1] il (e T —2)e 1D 11
fort € [11 + 7, 12+ 7). In particular,
u(ty) = (e * —2)e72t7 1 1=0,
which implies
h=n+t+In2-e7").
Also,
Uppsr() =ult+T+0)=(e " =220 +1=1-¢" >0

for 6 € (—7,0]. Thereforeu,,+. € C*.
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Repeating the above arguments and lettinlge the first zero aftew of u, 13 > 12 + 7,
and we know (3.2) holds ofi2 + 1, 13 + 7. Consequently

u@) =e T u(tr+ 1) + 1] —1=(2—e e 1T 41
fort € [t2+ 7, 13+ t]. In particular,

u(z) = (2—e e27BTT _1=0,
which implies

t3=tr+t+IN2—-e77).
Also,

g (@) =u(tz+1+0)=2—e e _ 1= _150

for 0 € [-7, 0]. Thereforeu;;4r € C™.

This also shows that, 1. () = u;, - () for 6 € (—t, 0]. Due to the uniqueness of the
Cauchy initial value problem (see [5]), we hav& + 3+ 1) =u(t + 1+ 7) fort > 0.
Namely, fort > 11 + , u(z) is periodic with minimal period =3 — 11 = 2In(2e* — 1).
This completes the proof.O

We remark that the aforementioned result was obtained also in [12]. We included a
detailed proof for the sake of completeness. From Theorem 3d@. = (¢, )’ € X is
synchronized (i.e = v) then the solutioru?®, v®)” :[—t, c0) — R? is synchronized,
that is,u® (r) = v®(¢) for all + > 0, due to the uniqueness of the Cauchy initial value
problem of (2.1) (see [5]). The above result shows that the sol@i8nv?®)? of (2.1) is
synchronized even if the initial valug is asynchronous bui(0) = v (0) and (g, ¥)T €
X+t* U X~ ~. Moreover, a synchronized solution of (2.1) is characterized by the scalar
equation (3.1) and Theorem 3.1 shows that a solution of (3.1) with initial val@&-iis
eventually periodic and is of the minimal peried= 2 In(2e* — 1).

We now discuss the case where the initial vatue: (¢, )7 € X+ andg(0) < ¥ (0).

In view of Lemma 2.4, the first zero af(z)v(¢) in [0, +00) is#1 = In(1+ ¢(0)). Moreover,

u(t1) = 0 andv(r1) = (¥ (0) — ¢(0))/(1+ ¢(0)) > 0. It is easy to see that the values of

[t1, u(t1), v(¢1)] are completely determined lp(0) and,(0). Without loss of generality,

we letu(0) = ¢(0) = 0 andv(0) = ¥(0) = v > 0. We will show that the behavior of
(u(t), v(1))T ast — +oo is completely determined by the valueRecall that ifv = 0, then

by Theorem 3.1(u(t), v(z))T is eventually periodic and coincides with the synchronized
periodic solutiong (1), ¢(1))T . Our analysis below shows that the behaviofuaf), v(r))”

ast — +oo can be understood in terms of the iterations of a one-dimensional map in case
v>0.

We start with

Casel: v >e” — 1. In view of (2.1) and® = (¢, ¥)T € XTF, (u(r), v(r))! satisfies
system (2.2). By the continuity of the solution, o€ [0, t], we have

u(t) =[u(0) +1Je® " —1=e¢"" -1,
v(@) =[v(0) + 1] —1=1+v)e " — 1L (3.4)
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It follows thatu(r) =e " —1 < 0andv(t) = (1+v)e " — 1> 0. From (3.4), we see that
(ur,v)T € X—F. This, together with the proof of Lemma 2.2, implies that the second
zero ofu(¢r)v(z) on[0, co) is

=1 +|n[m —u(t)] —Inm=t+Inm+1—e"]—Inm
and

u(®)=[u(t)—mle""+m=("T"—1—m)e"" +m,

v =[v@) —mle" " +m=[A+v)e T —1-—mle" " +m (3.5)
fort € [z, t2 + ]. This implies

me 2%y
u(to+t)=m—me * >0, v +1)=———+m@d—e"").
m+1l—e T
Moreover, we see thas,+r, v,+7)7 € Xt andu(tz + ) < v(t2 + 7). This, together

with Lemma 2.4, implies that the third zeromoft)v(¢) on [0, co) is
n=h+t+In[l+u+10)]=t2+t+IN[m+1—me™ "]
and satisfies(13) = 0 and

v +1) —u(t2 + 1) me 2Ty
v(ts) = 14+u(t2+1) T m+l—eTYm+1—me
where the functiory; is defined as in (2.11).
Case2: (1—-e ")/m<v<e’—1andm > e . Using a similar argument as above, we
have that (3.4) holds fare [0, t]. Moreoveru(t) = e — 1 <0 andv(t) = (1+v)e " —
1 < 0. Recall that(0) = v > 0, there exist$; € [0, t] such thatv(r2) = 0. From (3.4) we
have

— = A®>0

2 =In(1+v).

Moreover, from (3.4), it follows thai(r — ) < 0 andv(r — t) > Ofor¢t € (t, 2+ 7). Thus,
(u(r),v(r))T satisfies (2.3) for € (z, 12 + 7). Namely, forz € [t, 12 + 7], (3.5) holds. It
follows that
-7
u(t2+t)=e]__’_7n:)1+m>0, v(t2+t)=m+e7r—ij_’:)1>
Also sinceu(t) < 0 andv(z) < 0, there must exist the third and forth zerags <
(t,12+ 1) of u(®)v(r). From (3.5), we have

t3=r+|n[m+l— 1+ v)eft] —Inm, ta=7+INm+1—e" 7] —Inm,

such that(¢3) = 0 andu(t4) = 0. Moreover, from (3.4) and (3.5), we see thét— 1) <0
andv(r —7) <0 fort e (t+ 1,13+ 7). Thus(u(r), v(r))T satisfies (2.4) for € (t2 + 1,
t3+ 7). Namely, fort € [t2 + 7, 13 + 1], we have
-7
u(t) = [u(iz 4+ 1) — 1] 4 1= (m —1+ %
1+m
Tro

)etz+tl‘ + 1,

v(t) =[v2+7) — 1] + 1= (m —14e7 - >e’2+” +1  (3.6)
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This implies

_ m-DA4+v)+e "T—1—m
u(ts+1) = mtDe —At0) m—+1>0,

m—-14+e HA+v)—1-m
v(t3+ 1) mtDer —+0) m+1>
From (3.5) we see thai(t — t) <0 andv(t — ) > 0 for¢t € (t3 + 7,14 + 7). Thus
(u(), v(r))! satisfies system (2.3) fore (t3 + 1, 14 + 7). It follows that forz € [t3 + ,

14+ 7],

u(t) = [u(t3 +1)— m]e’3+r7’ +m
m-1DA+v)+e " —1—m
(m+ e — (1+v)
v() =[vtz+ 1) —m]e*t" " +m

m+1— mi|et3+f’ +m,

m—-14+e HA+v)—1-—m fatr—
= 1- sttt . 3.7
[ miber—d+n T m}e o G-
This implies
2_1 -7 1 _ “T)(1l—¢ 7
u(t4+t)=(m e Tv+ (L4+m—me F)( e )>0’
m+l—eT
2_1 —T\,—T 1 _ “T)W(1—e T
v(t4+t)=(m +me e v+ (A+m—me 7)) e )>O.
m+1—eT

Moreover, from (3.5)—(3.7), we have
(T Uz4+r)T eX™T and u(ts+ 1) <v(ta+ 7).

This, together with Lemma 2.4, implies that the fifth zerauof)v(z) on [0, c0) iS t5 =
ta+ 7 +IN[14u(ta+ v)] andu(ts) =0,
v(ta+ 1) —u(ta+1)
1+u(ta+1)

v(fs) =

me 2Ty 0
S mZ—De v+ m+l-—me)1l—e ) d+m+1l—eT F2(v) >0,
where the functiory; is defined as in (2.12).

Cased: (l—e H/m+e " <v<l—-—e")/mandm > e~ 7. Using a similar ar-
gument as above, we hau¢rn + 1) =m+ (¢ * —1—m)/(1L+v) <0 andv(tz + ) =
m+e " — (1+m)/(1+v) > 0, which, together with the fact thatr) =e¢™ " — 1 < 0 and
v(t) = (14+v)e * — 1< 0, implies that there exists € (z, 2 + 7) such thatw(r3) = 0. It
follows from (3.5) that

3=t +|n[m+1— 1+ v)eft] —Inm.

From (3.4) and (3.5) we see thafr — 7) <0 andv(t — ) <0 fort € (12 + 7,13 + 7).
Therefore (u(t), v(t))T satisfies (2.4) for € (12 + 7, 13 + 7). Namely, (3.6) holds for €
[t2 + 7,13 + 7]. It follows thatu(r3 + ) > 0 andv(rz3 + ) > 0. Also sinceu(r» +1) <0
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andu(z2 +t) > 0, there existy; € (12 + 7, 13+ t) such thau(z5) = 0. It follows from (3.6)
that
a=1+ In[(l— m)v+2— e_r].
From (3.5) and (3.6), we havwe(r — ) < 0 andv(t — ) >0 fors € (13 + 7,14 + 7).
Therefore(u(r), v(t))! satisfies (2.3) for € (t3+ 7, 14+ ). By the continuity of solution,
(3.7) holds fort € [r3 + 1, t4 + ], which implies that
_ l1-mm+1—A+ve "
t =m-—e ' 0,
ulta+o)=m—e "+ m (l—-mv+2—e7 -
(ta+7) — ve(—20) +1—mm+1—(1+v)e_r 0
T)= — > U.
viia meoe A-mw+2—eT" m (l—-mv+2—e"7

Moreover, from (3.6) and (3.7), we see that

U1yt Uz4+r)T eXtt and u(ta+1) <v(ta+1).

This, together with Lemma 2.4, implies that the fifth zerauf)v(z) on [0, co) iS t5 =
ta+ 7 +In[1+ u(ts + 7)] and satisfies (r5) = 0 and
o(ts) = v(ta+7) —u(ta+7)

> = 14+ u(ts+r1)

me 2%y 0

S m2=DeT—mv+m+l—me)m+1l—eT) fs@) >0,

where the functiorys is defined as in (2.13).
Cased:0<v<(1—e")/(m+ e 7). Using a similar argument as in Case 2, we have

utz+t)=m+(E" —1-—m)/(1+v) <O0andv(io+1)=m+e " —(1L+m)/(1+v) <O.
It follows from (3.4) and (3.5) thatuy,+r, v,2+T)T € X7~ andu(tz + 1) < v(t2 + 7).
We claim that{1 — u(t2 + t)]/[1 — v(t2 + 7)] < e*. Suppose to the contrary. If O v <
L—e")/(m~+e ") and[1— u(r2 + 1)]/[1— v(r2 + )] = €7, then

[A—m)(e" -1 —1Jv+@2—eT)(e" -1 <O.

Thus, we havél—m)(e* —1)—1<O0andv > (2—e ") (" —1)/[(m —D)(e"— 1)+ 1] >
(1—e77)/(m+ e~ 7), which is a contradiction. Therefore, — u(r2 + 1)]/[1 — v(t2 + 1)]
< e". Using similar arguments as in the proof of Lemma 2.3, we have

t3=t2+r+|n[1—v(t2+t)]=r+|n[(1—m—e_r)v+2—e_r],

u=n+t+n[l—u@+0)]=t+N[A-mv+2-e"7],
m—1Dv+et-2 e

t = 1>0

u(ta+1) (1—m—e*f)v+2—e*fe B

vitz+T)=1—e"T7 >0,

_ (m—1e v

t =1-¢" 0,
ulta +1) ¢ +(1—m)v—i—2—e*r>
. m—=14ee v

Al-m+2—eT7

vita+t)=1—¢ >0,
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wherers andz4 represent the third and forth zerags)v(¢) on [0, co), respectively. More-
over, it is easy to show thau, ., v,+-)7 € X andu(ts + 7) < v(ta + 7). This,
together with the proof of Lemma 2.4, implies that the fifth zera:@v(¢) on [0, co)
ists =14+t +IN[14+ u(t4 + 7)] and satisfies(r5) = 0 and

v(la+7) —ulta+7t) e 2Ty
14+ u(ta+1) T 20-mA—e v+ (1—eT)2

v(ts) = = fa(v) >0,
where the functiory; is defined as in (2.14).

Case5: (m+1—me™7)/(m+1—m?))(e" —1) <v<e® —1and O<m < e 7. Using
a similar argumentasin Case 2, we have + t)=m+ (e " —1—m)/(14+v) <0 and
vip+t)=m+e T — (1 +m)/(1+ v) > 0, which, together with the fact that(r) =
e " —1<O0andthat(r) = (1+v)e " — 1 <0, implies that there exists € (t, 12 + 1)
such that(z3) = 0. It follows from (3.5) that

t3=r+|n[m+l— 1+ v)eft] —Inm.

From (3.4) and (3.5), we have(r — ) < 0 andv(t — ) <O forz € (r2 + 1,13 + 7).
Therefore,(u(t), v(t))T satisfies (2.4) for € (12 + ©,t3 + 7). Namely, forz € [t + 1,

13 + 71, (3.6) holds. Also since > (m + 1 — me 7)(e* — 1)/(m + 1 — m?) and O<

m < e ¢, we haveu(ts + t) < 0 andv(rz + ) > 0. Furthermore, it follows from (3.5)
and (3.6) thatu ;.. vt3+I)T € X~ T. This, together with the proof of Lemma 2.2, implies
that

ta=13+71 +|n[m—u(t3+t)] —Inm,

t J—
uta+1)=m(l—e"7) >0, v(m—i—r):wme*f—i—m >0,
m—u(t3+1)
wherer, represents the forth zero ofr)v(r). Moreover, we haveu,, ., v,4+,)T eXxtt
andu(z4 + t) < v(ta + 7). This, together with the proof of Lemma 2.4, implies that the
fifth zero of u(r)v(z) on [0, 00) ist5 =14 + v + IN[1 + u(z4 + t)] and satisfies(r5) =0
and

v(ta+ 1) —u(ta+7)

its) = = it o)
. m2e=3%y
T m4+1—me ™) [(L—m2eTv+ (meT —1)(L—eT) + m?]
= fs(v) >0,

where the functiorys is defined as in (2.15).

Caseb: (L—e ") /m+e ") <v<(m+1—me 7)/(m+1—m?)(e” —1) and O<
m < e~ T, Using a similar argument as in Case 2, we hagg + ) > 0 andv(rz3 + 7) > 0.
Then, we haveu,1., vt4+r)T e X u(ta+ 1) <v(ta + 1), u(ts) =0, andv(ts) =
f3(v) > 0, wherets and 15 represent the forth and fifth zeroes ofr)v(r), respec-
tively.
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As discussed above for Cases 1-6, we obtain a new valug Thus we can repeat the
same analysis and construction to §&(v) = F (F(v)) assuming that the initial condition
is the valueF (v). By Lemma 2.5, we continue to iteraféto get a sequence

v, Fv), F2(v),..., F"(v), ...,

where F” (v) = F(F"~1(v)). Therefore, by using” and its iterates, we can characterize
the behavior of the solutiofu(r), v(¢))” of system (2.1) with initial value = (¢, ¥)T €
Xt* ande(0) < ¥ (0). Using the properties of (x) stated in Lemma 2.5 that the zero
is the unique stable fixed point, we have Jimy, F"(x) = 0 for all x € [0, co). Therefore,
every solution(u(z), v(t))T of system (2.1) with initial valued = (¢, ¥)" € X™* and
¢(0) < ¥ (0) is either ultimately periodic with minimal period = 2In(2¢* — 1) (i.e., to
coincide with the synchronized solutiag (¢), ¢ (¢))7) or approaches the periodic solu-
tion (q(r), q(t))T ast — oo. Thus, from Lemmas 2.1-2.4, we obtain the following main
theorem.

Theorem 3.2. Every solution(u (), v(r))T of systen2.1)with initial value® = (¢, ¥)7 €
Xo is either eventually periodic with minimal perieg)= 2 In(2¢™ — 1) or approaches the
periodic solution(g(t), ¢ (1))’ ast — oo.

Theorem 3.2 implies that the synchronized solutig), ¢ (r))” is the global attractor
for all solutions of (2.1) with initial values iXg.
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