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Abstract

We consider an artificial neural network where the signal transmission is of a digital (McCul
Pitts) nature and is delayed due to the finite switching speed of neurons (amplifiers). For a pa
connection topology, we show that all solutions starting from nonoscillatory initial states w
eventually synchronized and stabilized at a unique limit cycle, and hence such a network can
as a synchronized oscillator.
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1. Introduction

In this paper, we consider the following system of delay differential equations{
ẋ = −µx + a11f (x(t − τ ))+ a12f (y(t − τ )),

ẏ = −µy + a21f (x(t − τ ))+ a22f (y(t − τ )),
(1.1)

✩ Research partially supported by the Science Foundation of Hunan University, by the National N
Science Foundation of PR China (10071016), and by the Foundation for University Key Teacher by the M
of Education of China, and by the Key Research program of Science and Technology of the Ministry of Ed
of China.

* Corresponding author.
E-mail address:hhuang@hnu.net.cn (L. Huang).

1 Research partially supported by the Natural Sciences and Engineering Research Council of Can
Mathematics for Information Technology and Complex Systems, and by Canada Research Chairs Progr
0022-247X/03/$ – see front matter 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0022-247X(03)00168-9



S. Guo et al. / J. Math. Anal. Appl. 281 (2003) 620–632 621

n

ork of
esistor
tivation
n
he finite
at the
ctive.
same
ove our
dback.
has
tems
ently,
when

func-

iables

n-
for
whereµ andτ are given constants,f :R → R is the McCulloch–Pitts nonlinear functio
given by

f (ξ)=
{
α if ξ > σ,
β if ξ � σ,

whereα �= β andσ are constants. Such a system describes the dynamics of a netw
two neurons [6] where each neuron is represented by a linear circuit consisting of a r
and a capacitor, and where each neuron is connected to another via nonlinear ac
function f multiplied by the synaptic weightsaij (i �= j). We also allow that a neuro
may have self-feedback and we assume that signal transmission is delayed due to t
switching speed of neurons. The McCulloch–Pitts nonlinearity reflects the fact th
signal transmission is of digital nature: a neuron is either fully active or completely ina

Despite the low number of units, two-neuron networks with delay often display the
dynamical behaviors as large networks and can thus be used as prototypes to impr
understanding of the computational performance of large networks with delayed fee
The case where the functionf is smooth has been studied in [1–3,9,11,13], but little
been done whenf is of McCulloch–Pitts type, since most results in the dynamical sys
theory requires the continuity and smoothness of nonlinear functions involved. Rec
in [4,7,8,10], model (1.1) with the piecewise constant activation function was studied
the synaptical connection topology satisfies either[a11 = a22 = 0,a21 = a12 = 1] or [a11 =
a22 = 0, a21 = −a12 = 1], or more generally,[a11 = a12> 0, a21> 0, −a21< a22 � a21].

We focus here on the asymptotical behaviors of model (1.1), where the activation
tion is given by

f (ξ)=
{ −δ if ξ > 0,
δ if ξ � 0,

(1.2)

whereδ �= 0 is a given constant. To simplify the presentation, we first rescale the var
by

t∗ = µt, τ ∗ = µτ, x∗(t∗)= µ

δ
x(t), y∗(t∗)= µ

δ
y(t), f ∗(ξ)= 1

δ
f

(
δ

µ
ξ

)
,

and then drop the∗ to get{
ẋ = −x + a11f (x(t − τ ))+ a12f (y(t − τ )),

ẏ = −y + a21f (x(t − τ ))+ a22f (y(t − τ ))
(1.3)

with

f (ξ)=
{ −1 if ξ > 0,

1 if ξ � 0.
(1.4)

It is natural to have the phase spaceX = C([τ,0];R
2) as the Banach space of co

tinuous mappings from[−τ,0] to R
2 equipped with the sup-norm, see [5]. Note that

each given initial valueΦ = (ϕ,ψ)T ∈X, one can solve system (1.3) on intervals[0, τ ],
[τ,2τ ], . . . successively to obtain a unique mapping(xΦ, yΦ)T : [−τ,∞] → R

2 such that
xΦ |[−τ,0] = ϕ, yΦ |[−τ,0] = ψ , (xΦ, yΦ) is continuous for allt � 0, almost differentiate
and satisfies (1.3) fort > 0. This gives a unique solution of (1.3) defined for allt � −τ .
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In applications, a network usually starts from a constant (or nearly constant) state.
fore, we shall concentrate on the case where each component ofΦ has no sign change o
[−τ,0]. More precisely, we considerΦ ∈X+,+ ∪X+,− ∪X−,+ ∪X−,− =X0, where

C± = {±ϕ: ϕ : [−τ,0] → [0,∞) is continuous and
has only finitely many zeros on[−τ,0]}

and

X±,± = {
Φ ∈X: Φ = (ϕ,ψ)T , ϕ ∈ C±, andψ ∈ C±}

.

Clearly, all constantly initial values (except for 0) are contained inX0.
Clearly, the connection weights have a fundamental effect on the dynamics of th

works. In this paper, we consider the following special connection topology:

(H1) |a12|< a11, |a22|< a21, a11a22 − a12a21 = 0.

In other words, we assume that the self-feedback to neuron 1 and the interaction fro
ron 1 to neuron 2 are inhibitory and respectively dominate the interaction from neu
to 1 and the self-feedback to neuron 2. We also assume that the determinant of the c
tion matrix is zero. We shall show that every solution starting from an initial state iX0
will be eventually synchronized and stabilized at a unique attractive limit cycle, and h
such a network can be used as a synchronized oscillator.

2. Preliminary results

In this section, we establish several lemmas which will be needed later.
First, we further rescale the variables of (1.3) by

u(t)= x(t)

a11 + a12
, v(t)= y(t)

a21 + a22
, m= a11 − a12

a11 + a12
> 0.

Then the rescaled system is equivalent to the following system:{
u̇= −u+ 1

2[f (u(t − τ ))+ f (v(t − τ ))] + m
2 [f (u(t − τ ))− f (v(t − τ ))],

v̇ = −v + 1
2[f (u(t − τ ))+ f (v(t − τ ))] + m

2 [f (u(t − τ ))− f (v(t − τ ))].
(2.1)

As such, the simple form of (1.4) will enable us to carry out a direct elementary an
of the dynamics of the network due to its obvious connection with the following sys
of linear nonhomogeneous ordinary differential equations:{

u̇= −u− 1,
v̇ = −v − 1,

(2.2){
u̇= −u+m,

v̇ = −v +m,
(2.3){

u̇= −u+ 1,
v̇ = −v + 1,

(2.4){
u̇= −u−m,

v̇ = −v −m.
(2.5)
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For the sake of simplicity, in the remaining part of this paper, for a givens ∈ [0,∞)

and a continuous functionz : [−τ,∞) → R, we define a mappingzs : [−τ,0] → R by
zs(θ)= z(s + θ) for θ ∈ [−τ,0].

First, we have the following observation:

Lemma 2.1. If (u(t), v(t))T is a solution of system(2.1) with initial value Φ =
(ϕ,ψ)T ∈ X0, then the solution of(2.1) with the initial valueΦ = (−ϕ,−ψ)T ∈ X0 is
(−u(t),−v(t))T .

Let (u(t), v(t))T be a solution of (2.1) with initial value inX0. Then, we have

Lemma 2.2. If there exists somet0 � 0 such that(ut0, vt0)
T ∈X−,+, then there exists som

t∗0 � t0 such that(ut∗0+τ , vt∗0+τ )T ∈X+,+ andu(t∗0 + τ ) < v(t∗0 + τ ).

Proof. In view of (2.1) and(ut0, vt0)
T ∈ X−,+, (u(t), v(t))T satisfies (2.3) fort ∈ (t0,

t0 + τ ). By the continuity of solutions, fort ∈ [t0, t0 + τ ], we have

u(t)= (
u(t0)−m

)
et0−t +m, v(t)= (

v(t0)−m
)
et0−t +m, (2.6)

Let t1 be the first zero ofu(t)v(t) in [t0,∞). Then (2.6) holds for allt ∈ [t0, t1 + τ ]. On
the other hand,u(t)v(t)= 0 implies

t = t0 + ln
(
m− u(t0)

) − lnm or t = t0 + ln
(
m− v(t0)

) − lnm.

In view of u(t0)� 0 andv(t0) > 0, we have

t1 = t0 + ln
(
m− u(t0)

) − lnm.

This, together with (2.6), implies that

u(t1 + τ )=m−me−τ > 0, v(t1 + τ )= v(t0)−m

m− u(t0)
me−τ +m> 0.

Moreover, it is easy to see that(ut1+τ , vt1+τ )T ∈ X+,+ andu(t1 + τ ) < v(t1 + τ ). Thus,
the conclusion holds witht∗0 = t1. This completes the proof.✷
Lemma 2.3. If there exists somet0 � 0 such that(ut0, vt0)

T ∈X−,− andu(t0) < v(t0), then
there exists somet∗0 � t0 such that(ut∗0+τ , vt∗0+τ )T ∈X+,+ andu(t∗0 + τ ) < v(t∗0 + τ ).

Proof. We distinguish two cases.
Case1: (1 − u(t0))/(1 − v(t0))� eτ . From (2.1) and(ut0, vt0)

T ∈X−,−, (u(t), v(t))T

satisfies (2.4) fort ∈ (t0, t0 + τ ). By the continuity of solutions, fort ∈ [t0, t0 + r], we have

u(t)= (
u(t0)− 1

)
et0−t + 1, v(t)= (

v(t0)− 1
)
et0−t + 1. (2.7)

Let t1 be the first zero ofu(t)v(t) in [t0,∞). Then (2.7) holds for allt ∈ [t0, t1 + τ ]. On
the other hand,u(t)v(t)= 0 implies

t = t0 + ln
(
1− u(t0)

)
or t = t0 + ln

(
1− v(t0)

)
.
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In view of u(t0) < v(t0), we have

t1 = t0 + ln
[
1− v(t0)

]
.

This, together with (2.7), implies that

u(t1 + τ )= u(t0)− 1

1− v(t0)
e−τ + 1 � 0, v(t1 + τ )= 1− e−τ > 0.

Moreover, it is easy to see that(ut1+τ , vt1+τ )T ∈ X−,+. Thus, from Lemma 2.2 it fol
lows that there exists somet∗0 � t1 + τ such that(ut∗0+τ , vt∗0+τ )T ∈X+,+ andu(t∗0 + τ ) <

v(t∗0 + τ ).
Case2: 1< (1− u(t0))/(1− v(t0)) < e

τ . Using a similar argument as above, we ge

u(t1 + τ )= u(t0)− 1

1− v(t0)
e−τ + 1> 0 and v(t1 + τ )= 1− e−τ > 0.

Note thatu(t0) < 0 and (2.7) holds fort ∈ (t0, t0 + τ ), we have somet2 ∈ [t1, t1 + τ ] such
thatu(t2)= 0. In fact, by (2.7), we have

t2 = t0 + ln
(
1− u(t0)

)
,

and we can easily show thatu(t−τ ) < 0 andv(t−τ ) > 0 for t ∈ (t1+τ, t2+τ ). Therefore,
(u(t), v(t))T satisfies (2.3) fort ∈ (t1 + τ, t2 + τ ). Thus, fort ∈ [t1 + τ, t2 + τ ], we have

u(t)= [
u(t1 + τ )−m

]
et1+τ−t +m=

[
u(t0)− 1

1− v(t0)
e−τ + 1−m

]
et1+τ−t +m,

v(t)= [
v(t1 + τ )−m

]
et1+τ−t +m= (1− e−τ −m)et1+τ−t +m. (2.8)

It follows that

u(t2 + τ )=m− e−τ + (1−m)
1− v(t0)

1− u(t0)
> 0,

v(t2 + τ )= (1− e−τ −m)
1− v(t0)

1− u(t0)
+m> 0,

and hence

v(t2 + τ )− u(t2 + τ )= v(t0)− u(t0)

1− u(t0)
e−τ > 0.

Moreover, from (2.7) and (2.8), it is easy to see that(ut2+τ , vt2+τ )T ∈ X+,+. This com-
pletes the proof. ✷
Lemma 2.4. If there exists somet0 � 0 such that(ut0, vt0)

T ∈X+,+ andu(t0)� v(t0), then
the first zero ofu(t)v(t) in [t0,∞) is t1 = t0 + ln(1+ u(t0)). Moreover, we haveu(t1)= 0
andv(t1)= (v(t0)− u(t0))/(1+ u(t0))� 0.

The proof of Lemma 2.4 is similar to that of Lemma 2.3, and thus is omitted.
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Construct a piecewise functionF : [0,∞)→ [0,∞) defined by

F(x)=




f1(x) if x ∈ [eτ − 1,∞),

f2(x) if x ∈ [1−e−τ
m

, eτ − 1
)
,

f3(x) if x ∈ [ 1−e−τ
m+e−τ ,

1−e−τ
m

)
,

f4(x) if x ∈ (
0, 1−e−τ

m+e−τ
)
,

0 if x = 0

(2.9)

for m� e−τ , or

F(x)=




f1(x) if x ∈ [eτ − 1,∞),

f5(x) if x ∈ [
m+1−me−τ
m+1−m2 (e

τ − 1), eτ − 1
)
,

f3(x) if x ∈ [ 1−e−τ
m+e−τ ,

m+1−me−τ
m+1−m2 (e

τ − 1)
)
,

f4(x) if x ∈ (
0, 1−e−τ

m+e−τ
)
,

0 if x = 0

(2.10)

for 0<m< e−τ , where

f1(x)= me−2τ x

(m+ 1− e−τ )(m+ 1−me−τ )
, (2.11)

f2(x)= me−2τ x

(m2 − 1)e−τ x + (m+ 1−me−τ )(1− e−τ )+m+ 1− e−τ
, (2.12)

f3(x)= me−2τ x

(m2 − 1)(e−τ −m)x + (m+ 1−me−τ )(m+ 1− e−τ )
, (2.13)

f4(x)= e−2τ x

2(1−m)(1− e−τ )x + (1− e−τ )2
, (2.14)

and

f5(x)= m2e−3τ x

(m+ 1−me−τ )[(1−m2)e−τ x + (me−τ − 1)(1− e−τ )+m2] . (2.15)

Elementary calculations lead to the following

Lemma 2.5. The functionF defined by(2.9) or (2.10) is continuous, monotonically in
creasing on the interval[0,∞), and satisfies thatF(x) < x for all x ∈ (0,∞). Moreover,
the zero is a stable fixed point.

3. Global attractivity of a periodic orbit

We start with the following

Theorem 3.1. Assume that(uΦ, vΦ)T is a solution of system(2.1) with initial value
Φ ∈ X0. If Φ = (ϕ,ψ)T ∈ X+,+ ∪ X−,− and ϕ(0) = ψ(0), then uΦ(t) = vΦ(t) for
all t � 0, and uΦ(t) = vΦ(t) = q(t) for all t � τ + ln[1 + ϕ(0)] (respectively, fort �
τ + ln[1−ϕ(0)]), whereq(t) is a periodic function with minimal periodω= 2 ln(2eτ −1).
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Proof. We only consider the case whereΦ = (ϕ,ψ)T ∈ X+,+. The case whereΦ =
(ϕ,ψ)T ∈X−,− can be dealt with analogously.

Using Eq. (2.1), we can easily obtain thatu(t)= v(t) for all t � t0. Therefore, it suffices
to show that the solutionu(t) of the equation

u̇= −u+ f
(
u(t − τ )

)
(3.1)

with the initial conditionϕ ∈C+ is eventually periodic with minimal period 2 ln(2eτ − 1).
Let t1 be the first nonnegative zero ofu(t) on [0,∞). Then fort ∈ (0, t1 + τ ) except at
most finitely manyt , we have

u̇= −u− 1, (3.2)

from which and the continuity of the solution it follows that

u(t)= e−t
[
ϕ(0)+ 1

] − 1

for t ∈ [0, t1 + τ ], and in particular,

u(t1)= e−t1
[
ϕ(0)+ 1

] − 1 = 0.

This implies

t1 = ln
[
1+ ϕ(0)

]
and

u(t1 + τ )= e−(t1+τ )
[
ϕ(0)+ 1

] − 1 = e−τ − 1< 0.

Also

ut1+τ (θ) := u(t1 + τ + θ)= e−(t1+τ+θ)
[
ϕ(0)+ 1

] − 1 = e−(τ+θ) − 1< 0

for θ ∈ (−τ,0]. Therefore,ut1+τ ∈ C−.
To construct a solution of (3.1) beyond[0, t1+ τ ], we consider the solution of (3.1) wit

the new initial valueϕ∗ = ut1+τ . Let t2 be the first zero aftert1 of u. Thent2> t1 + τ and
on (t1 + τ, t2 + τ ), we have

u̇= −u+ 1 (3.3)

and hence

u(t)= e−(t−t1−τ )
[
u(t1 + τ )− 1

] + 1= (e−τ − 2)e−(t−t1−τ ) + 1

for t ∈ [t1 + τ, t2 + τ ]. In particular,

u(t2)= (e−τ − 2)et1−t2+τ + 1= 0,

which implies

t2 = t1 + τ + ln(2− e−τ ).

Also,

ut2+τ (θ)= u(t2 + τ + θ)= (e−τ − 2)et1−t2−θ + 1= 1− e−(τ+θ) > 0

for θ ∈ (−τ,0]. Therefore,ut2+τ ∈ C+.
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Repeating the above arguments and lettingt3 be the first zero aftert2 of u, t3> t2 + τ ,
and we know (3.2) holds on(t2 + τ, t3 + τ . Consequently

u(t)= e−(t−t2−τ )
[
u(t2 + τ )+ 1

] − 1= (2− e−τ )e−(t−t2−τ ) + 1

for t ∈ [t2 + τ, t3 + τ ]. In particular,

u(t3)= (2− e−τ )et2−t3+τ − 1= 0,

which implies

t3 = t2 + τ + ln(2− e−τ ).

Also,

ut3+τ (θ)= u(t3 + τ + θ)= (2− e−τ )et2−t3−θ − 1= e−(τ+θ) − 1> 0

for θ ∈ [−τ,0]. Therefore,ut3+τ ∈C−.
This also shows thatut3+τ (θ)= ut1+τ (θ) for θ ∈ (−τ,0]. Due to the uniqueness of th

Cauchy initial value problem (see [5]), we haveu(t + t3 + τ ) = u(t + t1 + τ ) for t � 0.
Namely, fort � t1 + τ , u(t) is periodic with minimal periodω = t3 − t1 = 2 ln(2eτ − 1).
This completes the proof.✷

We remark that the aforementioned result was obtained also in [12]. We inclu
detailed proof for the sake of completeness. From Theorem 3.1, ifΦ = (ϕ,ψ)T ∈ X is
synchronized (i.e.,ϕ = ψ) then the solution(uΦ, vΦ)T : [−τ,∞)→ R

2 is synchronized
that is,uΦ(t) = vΦ(t) for all t � 0, due to the uniqueness of the Cauchy initial va
problem of (2.1) (see [5]). The above result shows that the solution(uΦ, vΦ)T of (2.1) is
synchronized even if the initial valueΦ is asynchronous butϕ(0)= ψ(0) and(ϕ,ψ)T ∈
X+,+ ∪ X−,−. Moreover, a synchronized solution of (2.1) is characterized by the s
equation (3.1) and Theorem 3.1 shows that a solution of (3.1) with initial value inC± is
eventually periodic and is of the minimal periodω = 2 ln(2eτ − 1).

We now discuss the case where the initial valueΦ = (ϕ,ψ)T ∈X+,+ andϕ(0)�ψ(0).
In view of Lemma 2.4, the first zero ofu(t)v(t) in [0,+∞) is t1 = ln(1+ϕ(0)). Moreover,
u(t1) = 0 andv(t1) = (ψ(0)− ϕ(0))/(1 + ϕ(0)) � 0. It is easy to see that the values
[t1, u(t1), v(t1)] are completely determined byϕ(0) andψ(0). Without loss of generality
we let u(0) = ϕ(0) = 0 andv(0) = ψ(0) = v � 0. We will show that the behavior o
(u(t), v(t))T ast → +∞ is completely determined by the valuev. Recall that ifv = 0, then
by Theorem 3.1,(u(t), v(t))T is eventually periodic and coincides with the synchroni
periodic solution(q(t), q(t))T . Our analysis below shows that the behavior of(u(t), v(t))T

ast → +∞ can be understood in terms of the iterations of a one-dimensional map in
v > 0.

We start with
Case1: v � eτ − 1. In view of (2.1) andΦ = (ϕ,ψ)T ∈ X+,+, (u(t), v(t))T satisfies

system (2.2). By the continuity of the solution, fort ∈ [0, τ ], we have

u(t)= [
u(0)+ 1

]
et0−t − 1 = e−t − 1,

v(t)= [
v(0)+ 1

]
et0−t − 1= (1+ v)e−t − 1. (3.4)
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It follows thatu(τ)= e−τ − 1< 0 andv(τ )= (1+ v)e−τ − 1> 0. From (3.4), we see tha
(uτ , vτ )

T ∈ X−,+. This, together with the proof of Lemma 2.2, implies that the sec
zero ofu(t)v(t) on [0,∞) is

t2 = τ + ln
[
m− u(τ)

] − lnm= τ + ln[m+ 1− e−τ ] − lnm

and

u(t)= [
u(τ)−m

]
eτ−t +m= (e−τ − 1−m)eτ−t +m,

v(t)= [
v(τ )−m

]
eτ−t +m= [

(1+ v)e−τ − 1−m
]
eτ−t +m (3.5)

for t ∈ [τ, t2 + τ ]. This implies

u(t2 + τ )=m−me−τ > 0, v(t2 + τ )= me−2τ v

m+ 1− e−τ
+m(1− e−τ ).

Moreover, we see that(ut2+τ , vt2+τ )T ∈ X+,+ andu(t2 + τ ) < v(t2 + τ ). This, together
with Lemma 2.4, implies that the third zero ofu(t)v(t) on [0,∞) is

t3 = t2 + τ + ln
[
1+ u(t2 + τ )

] = t2 + τ + ln[m+ 1−me−τ ]
and satisfiesu(t3)= 0 and

v(t3)= v(t2 + τ )− u(t2 + τ )

1+ u(t2 + τ )
= me−2τ v

(m+ 1− e−τ )(m+ 1−me−τ )
= f1(v) > 0,

where the functionf1 is defined as in (2.11).
Case2: (1−e−τ )/m� v < eτ −1 andm� e−τ . Using a similar argument as above, w

have that (3.4) holds fort ∈ [0, τ ]. Moreover,u(τ)= eτ − 1< 0 andv(τ )= (1+ v)e−τ −
1< 0. Recall thatv(0)= v > 0, there existst2 ∈ [0, τ ] such thatv(t2)= 0. From (3.4) we
have

t2 = ln(1+ v).

Moreover, from (3.4), it follows thatu(t−τ ) < 0 andv(t−τ ) > 0 for t ∈ (τ, t2+τ ). Thus,
(u(t), v(t))T satisfies (2.3) fort ∈ (τ, t2 + τ ). Namely, fort ∈ [τ, t2 + τ ], (3.5) holds. It
follows that

u(t2 + τ )= e−τ −m− 1

1+ v
+m> 0, v(t2 + τ )=m+ e−τ − 1+m

1+ v
> 0.

Also sinceu(τ) < 0 andv(τ ) < 0, there must exist the third and forth zeroest3, t4 ∈
(τ, t2 + τ ) of u(t)v(t). From (3.5), we have

t3 = τ + ln
[
m+ 1− (1+ v)e−τ

] − lnm, t4 = τ + ln[m+ 1− e−τ ] − lnm,

such thatv(t3)= 0 andu(t4)= 0. Moreover, from (3.4) and (3.5), we see thatu(t − τ ) < 0
andv(t − τ ) < 0 for t ∈ (t2 + τ, t3 + τ ). Thus(u(t), v(t))T satisfies (2.4) fort ∈ (t2 + τ,

t3 + τ ). Namely, fort ∈ [t2 + τ, t3 + τ ], we have

u(t)= [
u(t2 + τ )− 1

]
et2+τ−t + 1 =

(
m− 1+ e−τ − 1−m

1+ v

)
et2+τ−t + 1,

v(t)= [
v(t2 + τ )− 1

]
et2+τ−t + 1 =

(
m− 1+ e−τ − 1+m

)
et2+τ−t + 1. (3.6)
1+ v



S. Guo et al. / J. Math. Anal. Appl. 281 (2003) 620–632 629
This implies

u(t3 + τ )= (m− 1)(1+ v)+ e−τ − 1−m

(m+ 1)eτ − (1+ v)
m+ 1> 0,

v(t3 + τ )= (m− 1+ e−τ )(1+ v)− 1−m

(m+ 1)eτ − (1+ v)
m+ 1> 0.

From (3.5) we see thatu(t − τ ) < 0 andv(t − τ ) > 0 for t ∈ (t3 + τ, t4 + τ ). Thus
(u(t), v(t))T satisfies system (2.3) fort ∈ (t3 + τ, t4 + τ ). It follows that for t ∈ [t3 + τ,

t4 + τ ],
u(t)= [

u(t3 + τ )−m
]
et3+τ−t +m

=
[
(m− 1)(1+ v)+ e−τ − 1−m

(m+ 1)eτ − (1+ v)
m+ 1−m

]
et3+τ−t +m,

v(t)= [
v(t3 + τ )−m

]
et3+τ−t +m

=
[
(m− 1+ e−τ )(1+ v)− 1−m

(m+ 1)eτ − (1+ v)
m+ 1−m

]
et3+τ−t +m. (3.7)

This implies

u(t4 + τ )= (m2 − 1)e−τ v + (1+m−me−τ )(1− e−τ )
m+ 1− e−τ

> 0,

v(t4 + τ )= (m2 − 1+me−τ )e−τ v + (1+m−me−τ )(1− e−τ )
m+ 1− e−τ

> 0.

Moreover, from (3.5)–(3.7), we have

(ut4+τ , vt4+τ )T ∈X+,+ and u(t4 + τ ) < v(t4 + τ ).

This, together with Lemma 2.4, implies that the fifth zero ofu(t)v(t) on [0,∞) is t5 =
t4 + τ + ln[1+ u(t4 + τ )] andu(t5)= 0,

v(t5)= v(t4 + τ )− u(t4 + τ )

1+ u(t4 + τ )

= me−2τ v

(m2 − 1)e−τ v + (m+ 1−me−τ )(1− e−τ )+m+ 1− e−τ
= f2(v) > 0,

where the functionf2 is defined as in (2.12).
Case3: (1 − e−τ )/(m + e−τ ) � v < (1 − e−τ )/m andm � e−τ . Using a similar ar-

gument as above, we haveu(t2 + τ )=m+ (e−τ − 1 −m)/(1 + v) < 0 andv(t2 + τ )=
m+ e−τ − (1+m)/(1+ v)� 0, which, together with the fact thatu(τ)= e−τ − 1< 0 and
v(τ )= (1+ v)e−τ − 1< 0, implies that there existst3 ∈ (τ, t2 + τ ) such thatv(t3)= 0. It
follows from (3.5) that

t3 = τ + ln
[
m+ 1− (1+ v)e−τ

] − lnm.

From (3.4) and (3.5) we see thatu(t − τ ) < 0 andv(t − τ ) < 0 for t ∈ (t2 + τ, t3 + τ ).
Therefore,(u(t), v(t))T satisfies (2.4) fort ∈ (t2 + τ, t3 + τ ). Namely, (3.6) holds fort ∈
[t2 + τ, t3 + τ ]. It follows thatu(t3 + τ ) > 0 andv(t3 + τ ) > 0. Also sinceu(t2 + τ ) < 0
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ave
andv(t2 + τ )� 0, there existst4 ∈ (t2 + τ, t3 + τ ) such thatu(t4)= 0. It follows from (3.6)
that

t4 = τ + ln
[
(1−m)v + 2− e−τ

]
.

From (3.5) and (3.6), we haveu(t − τ ) < 0 andv(t − τ ) > 0 for t ∈ (t3 + τ, t4 + τ ).
Therefore,(u(t), v(t))T satisfies (2.3) fort ∈ (t3 + τ, t4 + τ ). By the continuity of solution
(3.7) holds fort ∈ [t3 + τ, t4 + τ ], which implies that

u(t4 + τ )=m− e−τ + 1−m

m

m+ 1− (1+ v)e−τ

(1−m)v+ 2− e−τ
> 0,

v(t4 + τ )=m− e−τ + ve(−2τ )

(1−m)v + 2− e−τ
+ 1−m

m

m+ 1− (1+ v)e−τ

(1−m)v + 2− e−τ
> 0.

Moreover, from (3.6) and (3.7), we see that

(ut4+τ , vt4+τ )T ∈X+,+ and u(t4 + τ ) < v(t4 + τ ).

This, together with Lemma 2.4, implies that the fifth zero ofu(t)v(t) on [0,∞) is t5 =
t4 + τ + ln[1+ u(t4 + τ )] and satisfiesu(t5)= 0 and

v(t5)= v(t4 + τ )− u(t4 + τ )

1+ u(t4 + τ )

= me−2τ v

(m2 − 1)(e−τ −m)v + (m+ 1−me−τ )(m+ 1− e−τ )
= f3(v) > 0,

where the functionf3 is defined as in (2.13).
Case4: 0< v < (1− e−τ )/(m+ e−τ ). Using a similar argument as in Case 2, we h

u(t2+ τ )=m+ (eτ −1−m)/(1+v)< 0 andv(t2 + τ )=m+ e−τ − (1+m)/(1+v) < 0.
It follows from (3.4) and (3.5) that(ut2+τ , vt2+τ )T ∈ X−,− andu(t2 + τ ) < v(t2 + τ ).
We claim that[1 − u(t2 + τ )]/[1 − v(t2 + τ )] < eτ . Suppose to the contrary. If 0< v <
(1− e−τ )/(m+ e−τ ) and[1− u(t2 + τ )]/[1− v(t2 + τ )] � eτ , then[

(1−m)(eτ − 1)− 1
]
v+ (2− e−τ )(eτ − 1)� 0.

Thus, we have(1−m)(eτ −1)−1� 0 andv > (2− e−τ )(eτ −1)/[(m−1)(eτ −1)+1]>
(1− e−τ )/(m+ e−τ ), which is a contradiction. Therefore,[1− u(t2 + τ )]/[1− v(t2 + τ )]
< eτ . Using similar arguments as in the proof of Lemma 2.3, we have

t3 = t2 + τ + ln
[
1− v(t2 + τ )

] = τ + ln
[
(1−m− e−τ )v + 2− e−τ

]
,

t4 = t2 + τ + ln
[
1− u(t2 + τ )

] = τ + ln
[
(1−m)v + 2− e−τ

]
,

u(t3 + τ )= (m− 1)v+ e−τ − 2

(1−m− e−τ )v + 2− e−τ
e−τ + 1> 0,

v(t3 + τ )= 1− e−τ > 0,

u(t4 + τ )= 1− e−τ + (m− 1)e−τ v
(1−m)v + 2− e−τ

> 0,

v(t4 + τ )= 1− e−τ + (m− 1+ e−τ )e−τ v
−τ > 0,
(1−m)v + 2− e
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es

the
wheret3 andt4 represent the third and forth zeroesu(t)v(t) on [0,∞), respectively. More-
over, it is easy to show that(ut4+τ , vt4+τ )T ∈ X+,+ and u(t4 + τ ) < v(t4 + τ ). This,
together with the proof of Lemma 2.4, implies that the fifth zero ofu(t)v(t) on [0,∞)

is t5 = t4 + τ + ln[1+ u(t4 + τ )] and satisfiesu(t5)= 0 and

v(t5)= v(t4 + τ )− u(t4 + τ )

1+ u(t4 + τ )
= e−2τ v

2(1−m)(1− e−τ )v + (1− e−τ )2
= f4(v) > 0,

where the functionf4 is defined as in (2.14).
Case5: ((m+1−me−τ )/(m+1−m2))(eτ −1)� v < eτ −1 and 0<m< e−τ . Using

a similar argument as in Case 2, we haveu(t2 + τ )=m+ (e−τ − 1−m)/(1+ v) < 0 and
v(t2 + τ ) = m + e−τ − (1 + m)/(1 + v) > 0, which, together with the fact thatu(τ) =
e−τ − 1< 0 and thatv(τ )= (1 + v)e−τ − 1< 0, implies that there existst3 ∈ (τ, t2 + τ )

such thatv(t3)= 0. It follows from (3.5) that

t3 = τ + ln
[
m+ 1− (1+ v)e−τ

] − lnm.

From (3.4) and (3.5), we haveu(t − τ ) < 0 andv(t − τ ) < 0 for t ∈ (t2 + τ, t3 + τ ).
Therefore,(u(t), v(t))T satisfies (2.4) fort ∈ (t2 + τ, t3 + τ ). Namely, for t ∈ [t2 + τ,

t3 + τ ], (3.6) holds. Also sincev � (m + 1 − me−τ )(eτ − 1)/(m + 1 − m2) and 0<
m < e−τ , we haveu(t3 + τ ) � 0 andv(t3 + τ ) > 0. Furthermore, it follows from (3.5
and (3.6) that(ut3+τ , vt3+τ )T ∈X−,+. This, together with the proof of Lemma 2.2, impli
that

t4 = t3 + τ + ln
[
m− u(t3 + τ )

] − lnm,

u(t4 + τ )=m(1− e−τ ) > 0, v(t4 + τ )= v(t3 + τ )−m

m− u(t3 + τ )
me−τ +m> 0,

wheret4 represents the forth zero ofu(t)v(t). Moreover, we have(ut4+τ , vt4+τ )T ∈X+,+
andu(t4 + τ ) < v(t4 + τ ). This, together with the proof of Lemma 2.4, implies that
fifth zero ofu(t)v(t) on [0,∞) is t5 = t4 + τ + ln[1 + u(t4 + τ )] and satisfiesu(t5) = 0
and

v(t5)= v(t4 + τ )− u(t4 + τ )

1+ u(t4 + τ )

= m2e−3τ v

(m+ 1−me−τ )[(1−m2)e−τ v + (me−τ − 1)(1− e−τ )+m2]
= f5(v) > 0,

where the functionf5 is defined as in (2.15).
Case6: (1− e−τ )/(m+ e−τ )� v < ((m+ 1−me−τ )/(m+ 1−m2))(eτ − 1) and 0<

m< e−τ . Using a similar argument as in Case 2, we haveu(t3 + τ ) > 0 andv(t3 + τ ) > 0.
Then, we have(ut4+τ , vt4+τ )T ∈ X+,+, u(t4 + τ ) < v(t4 + τ ), u(t5) = 0, andv(t5) =
f3(v) > 0, where t4 and t5 represent the forth and fifth zeroes ofu(t)v(t), respec-
tively.
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As discussed above for Cases 1–6, we obtain a new valueF(v). Thus we can repeat th
same analysis and construction to getF 2(v)= F(F(v)) assuming that the initial conditio
is the valueF(v). By Lemma 2.5, we continue to iterateF to get a sequence

v,F (v),F 2(v), . . . ,F n(v), . . . ,

whereFn(v) = F(Fn−1(v)). Therefore, by usingF and its iterates, we can character
the behavior of the solution(u(t), v(t))T of system (2.1) with initial valueΦ = (ϕ,ψ)T ∈
X+,+ andϕ(0) � ψ(0). Using the properties ofF(x) stated in Lemma 2.5 that the ze
is the unique stable fixed point, we have limn→∞ Fn(x)= 0 for all x ∈ [0,∞). Therefore,
every solution(u(t), v(t))T of system (2.1) with initial valueΦ = (ϕ,ψ)T ∈ X+,+ and
ϕ(0)� ψ(0) is either ultimately periodic with minimal periodω = 2 ln(2eτ − 1) (i.e., to
coincide with the synchronized solution(q(t), q(t))T ) or approaches the periodic sol
tion (q(t), q(t))T as t → ∞. Thus, from Lemmas 2.1–2.4, we obtain the following m
theorem.

Theorem 3.2. Every solution(u(t), v(t))T of system(2.1)with initial valueΦ = (ϕ,ψ)T ∈
X0 is either eventually periodic with minimal periodω = 2 ln(2eτ − 1) or approaches the
periodic solution(q(t), q(t))T ast → ∞.

Theorem 3.2 implies that the synchronized solution(q(t), q(t))T is the global attracto
for all solutions of (2.1) with initial values inX0.
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