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Abstract. An on-center off-surround network of three identical neurons with delayed feedback is
considered, and the effect of synaptic delay of signal transmission on the pattern formation and global
continuation of nonlinear waves is described. The spontaneous bifurcation of multiple branches of
periodic solutions is discussed, and their spatio-temporal patterns and mode interactions are studied
by using the symmetric bifurcation theory of delay differential equations coupled with representation
theory of standard dihedral groups, Liapunov’s direct method, LaSalle’s invariance principle, a priori
estimates, and differential inequalities.
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1. Introduction. We consider the system of delay differential equations

εẋj = −xj(t) + h(xj(t− 1))− [g(xj−1(t− 1)) + g(xj+1(t− 1))− 2g(xj(t− 1))],
(1.1)

where j = 1, 2, 3(mod 3), ε = τ−1 > 0, ẋj(t) =
d
dtxj(t), h, g ∈ C2(R;R) with h(0) =

g(0) = 0, or, equivalently, we consider

ẋj(t) = −xj(t) + f(xj(t− τ))− [g(xj−1(t− τ)) + g(xj+1(t− τ))](1.2)

with f = h+ 2g and τ = ε−1 > 0.
Such a system models the evolution of a network of three identical neurons with

delayed feedback. There are several reasons why we are particularly interested in
such a system. First, if h and g are monotonically increasing, then the network
modeled by (1.2) has the property that the self-feedback is excitatory (positive) and
the feedback from other neurons is inhibitory (negative). This property is called
the on-center off-surround characteristic of a network, and such networks have been
found in a variety of neural structures such as neocortex [1], cerebellum [2], and
hippocampus [3]. The network described by system (1.2) is of the minimal size among
all possible networks with such an on-center off-surround characteristic, and examples
of a network of three neurons include the basic rhythm generating circuits of central
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NONLINEAR WAVES IN NETWORKS OF NEURONS 837

pattern generators [4, 5] and the canonical cortical circuit proposed in [1, 6]. See also
[7] for the motivation of the study of small neural populations. Second, much progress
has been made for the theory of dynamics (and, in particular, for the local bifurcation
and global continuation of periodic solutions) of scalar delay differential equations (see,
for example, [8, 9, 10]), and it is natural to see how the results and methods for scalar
delay differential equations can be extended to systems of delay differential equations.
Some progress has been made in this direction for a network of two neurons without
self-feedback and with delayed interaction (see, for example, [11, 12, 13, 14]). An
important factor to the progress in [11, 12, 13] is the fact that such a system can be
changed to the so-called unidirectional cyclic system of delay differential equations to
which the recently developed powerful theory of Mallet-Paret and Sell [15, 16] and
the geometric method developed in [17] can be applied. System (1.2), however, is
bidirectional in the sense that the growth rate for the ith cell (component) depends
on the feedback from the (i− 1)th and (i+1)th cells, and both with a delay. We hope
this detailed case study can provide motivation for a more general geometric theory
for the global dynamics of bidirectional cyclic systems of delay differential equations.
Third, we would like to use this detailed case study to demonstrate how systems
with time delay can be used for coupled oscillators. In particular, we note that, in
the classical work (see [18] for references), for a ring of cells coupled by diffusion
along the sides of a polygon, it was observed that if the coupling is instantaneous,
then Hopf bifurcations occur only when the state of each cell is described by at least
two variables, and our case study here provides an example in which a ring of cells
coupled by delayed nonlinear diffusion exhibits multiple symmetric Hopf bifurcations
even when the state of each cell is described by a single variable.

According to the Cohen–Grossberg–Hopfield convergence theorem [19, 20], under
standard assumptions on the sigmoid signal functions h and g and if τ = 0, then every
solution of system (1.2) is convergent to the set of equilibria. Such a convergence has
important applications to a number of areas such as content addressable memory and
pattern identification. On the other hand, it was observed in [21] and later confirmed
in a number of papers (see [14, 22, 23] and references therein) that large delay may
cause nonlinear oscillations in the network. Most of these nonlinear oscillations appear
in the form of periodic solutions with certain spatio-temporal structures and, if stable
under small perturbation, may represent memory of the network to be stored and
retrieved. Therefore, it is important to discuss the spatio-temporal patterns of these
periodic solutions and to describe the mode interaction along multiple branches of
such periodic solutions.

Needless to say, this is a very difficult task due to the infinite-dimensional nature
of the problem caused by the synaptic delay and the possible spatial structure of the
system (equivariant with respect to a D3-action). Some general theorems are avail-
able about the existence and global continuation of periodic solutions in symmetric
delay differential equations; see [23] for local bifurcation and [24] for global contin-
uation. However, applications of these general results to concrete systems such as
(1.1) involve several highly nontrivial tasks: (i) distribution of zeros in characteristic
equations which are usually transcendental and depend on parameters; (ii) symmetry
analysis on certain generalized eigenspaces of the generator of a linearized system and
identification of these spaces with a direct sum of two identical absolute irreducible
representations of D3; (iii) calculation of the so-called crossing numbers which are
related to the usual transversality condition in a standard Hopf bifurcation theory
(see section 2 for details); (iv) a priori estimation of the period and of the norm of a
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838 LIHONG HUANG AND JIANHONG WU

periodic solution.
In this paper, we show the following:
(a) The model equation (1.1) is equivariant with respect to a D3-action.
(b) There exists a sequence of critical values {τk} at which the linearization of

(1.1) at the zero solution has a pair of purely imaginary eigenvalues.
(c) The generalized eigenspace of the above eigenvalues is four-dimensional and

is the direct sum of two identical absolutely irreducible representations of D3.
(d) Near each τk, there exist eight branches of periodic solutions, two of which

are phase-locked, three are standing waves, and three are mirror-reflecting
waves.

(e) These bifurcations of periodic solutions exist for all τ > τk (global continua-
tion); the branches of mirror-reflecting waves and the branches of phase-locked
oscillations do not coincide, but coincidence of some branches of mirror-
reflecting waves and some branches of standing waves may occur through
periodic doubling.

The local bifurcation and the asymptotic forms of the aforementioned waves will
be described in section 2, and their global continuation will be studied in section 3.

2. The local existence and asymptotic forms of waves. We start by stating
a general result due to [23]. Let C denote the Banach space of continuous mappings
from [−1, 0] into R

n equipped with the supremum norm ||φ|| = sup−1≤θ≤0 |φ(θ)| for
φ ∈ C. In what follows, if σ ∈ R, A ≥ 0, and x : [σ − 1, σ +A] → R

n is a continuous
mapping, then xt ∈ C, t ∈ [σ, σ +A], is defined by xt(θ) = x(t+ θ) for −1 ≤ θ ≤ 0.

Suppose that F : C → R
n is C2-smooth with F (0) = 0. Consider the delay

differential equation

ẋ(t) = τF (xt),

where τ > 0. Let Lφ = DF (0)φ with φ ∈ C. It is well known that the linear system

ẋ(t) = τLxt

generates a strongly continuous semigroup of linear operators with an infinitesimal
generator A(τ). Moreover, the spectrum σ(A(τ)) of A(τ) consists of eigenvalues which
are solutions of the characteristic equation

det∆(τ, λ) = 0, λ ∈ C,

where C is the set of all complex numbers, and the characteristic matrix ∆(τ, λ) is
given by

∆(τ, λ) = λIn − τL(eλ·In),

where In is the identity matrix on C
n, eλ·z is the mapping from [−1, 0] into C

n given
by eλ·z(θ) = eλθz for z ∈ C

n and θ ∈ [−1, 0], and L(eλ·In) = (L(eλ·e1), . . . , L(eλ·en))
with (e1, . . . , en) being the standard basis of R

n and L(eλ·ej) the image of eλ·ej under
the complexification of the linear mapping L for each j = 1, . . . , n.

We assume the following.
(G1) The characteristic matrix is continuously differentiable in τ ∈ (0,∞), and

there exist τ0 ∈ (0,∞) and β0 > 0 such that (i) A(τ0) has eigenvalues ±iβ0; (ii)
the generalized eigenspace, denoted by U(iβ0,−iβ)(A(τ0)), of these eigenvalues ±iβ0
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NONLINEAR WAVES IN NETWORKS OF NEURONS 839

consists of only eigenvectors of A(τ0) associated with ±iβ0; (iii) all other eigenvalues
of A(τ0) are not integer multiples of ±iβ0.

To state the next assumption that describes the possible (spatial) symmetry of
the system considered, we need to introduce some group-theoretic preliminaries. We
refer to [18, 25] for more details.

In what follows, by a (compact) Lie group Γ, we mean a closed subgroup of
GL(Rn), the group of all invertible linear transformations of the vector space R

n into

itself. Note that the space of n×nmatrices may be identified with R
n2

, which contains
GL(Rn) as an open subset. We say that Γ is a closed subgroup of GL(Rn) if it is a
closed subset of GL(Rn) as well as a subgroup of GL(Rn). A specific example of a
Lie group is the special orthogonal group SO(n) that consists of all n× n matrices A
such that AAT = In and detA = 1, where AT is the transpose of A. In particular,
SO(2) consists precisely of the planar rotations

Rθ =

(
cosθ −sinθ
sinθ cosθ

)
.

In this way, SO(2) may be identified with the circle group S1, the identification being
Rθ → eiθ. Two other Lie groups will be used in this paper. The first is Zn, the
cyclic group of order n. (The order of a finite group is the number of elements that it
contains.) The second is the dihedral group Dn of order 2n that is generated by Zn
together with an element (called the flip) of order 2 that does not communicate with
Zn.

Let V be a topological vector space over the field of complex numbers C or the
field of real numbers R, and let GL(V ) be the group of isomorphisms of V onto
itself. We say that a compact Lie group Γ acts on V if there is a continuous mapping
Γ × V � (γ, v) 
→ γ · v ∈ V such that (a) for each γ ∈ Γ, the mapping ργ : V → V
given by ργ(v) = γ · v is linear; (b) if γ1, γ2 ∈ Γ, then γ1 · (γ2 · v) = (γ1γ2) · v. The
mapping that sends γ ∈ Γ to ργ ∈ GL(V ) is called a representation of Γ on V . In
what follows, we shall write γv for γ · v for all γ ∈ Γ and v ∈ V .

If Γ acts on both V and W and if there is a linear isomorphism A : V →W such
that A(γv) = γ(Av) for all v ∈ V and γ ∈ Γ, then we say the Γ actions on V and W
are isomorphic, and such a linear isomorphism is called a Γ-isomorphism.

Let Γ act on V , and let W be a subspace of V . We say that W is Γ-invariant if
γw ∈ W for every γ ∈ Γ and w ∈ W . We thus obtain a Γ-action on W called the
restricted action of Γ on W .

Finally, if Γ acts on V , we say a linear mapping F : V → V is Γ-equivariant if
F (γv) = γF (v) for all γ ∈ Γ and v ∈ V . A representation of Γ on V is absolutely
irreducible if the only linear mappings on V that are Γ-equivariant are scalar multiples
of the identity. A Γ-invariant subspace W of V is Γ-irreducible if the only invariant
subspaces of W are {0} and W . It is known that up to a Γ-isomorphism there are
only a finite number of distinct Γ-irreducible subspaces, denoted by U1, . . . , Us. If we
define Wk as the sum of all Γ-irreducible subspaces of V that are Γ-isomorphic to Uk,
then V = W1 ⊕ · · ·Ws, and this is called an isotypical decomposition of V . In the
case in which Γ = ZN and V = C

n for two fixed positive integers n and N , every
irreducible subspace must be one-dimensional, and the restricted action of Γ to any
such irreducible subspace is Γ-isomorphic to the Γ-action on C defined by ρ · z = ρjz
for some nonnegative integer j and for all z ∈ C, where ρ is the generator of ZN ≤ S1.

With this short introduction to group-theoretic preliminaries, we can now state
the next set of assumptions.
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840 LIHONG HUANG AND JIANHONG WU

(G2) There exists a compact Lie group Γ acting on R
n such that F is Γ-equivariant;

i.e., F (γφ) = γF (φ) for (γ, φ) ∈ Γ×C, where γφ ∈ C is given by (γφ)(θ) = γφ(θ), θ ∈
[−1, 0].

Note that the real Γ-action on R
n can be naturally extended to a Γ-action on C

n

by

γ(u+ iv) = γu+ iγv, γ ∈ Γ, u, v ∈ R
n.

This action is called the complexification of the Γ-action on R
n. In what follows,

we will simply call the complexification of Γ on C
n the Γ-action on C

n. Due to the
Γ-equivariance of F , we can easily show that Ker∆(τ0, iβ0) is an invariant subspace of
C
n with respect to the complexification of the Γ-action on R

n. We need the following
assumption.

(G3) There exists a real m-dimensional absolutely irreducible representation of Γ
on V such that the restricted action of Γ on Ker∆(τ0, iβ0) is isomorphic to the action
of Γ on V ⊕ V defined by γ(v1, v2) = (γv1, γv2) for γ ∈ Γ, v1, v2 ∈ V .

Let {bj1 + ibj2}mj=1 be a basis for Ker∆(τ0, iβ0), and for any β > 0 define
sinβ , cosβ ∈ C([−1, 0];R) by

sinβ(θ) = sin(βθ), cosβ(θ) = cos(βθ), θ ∈ [−1, 0].

Then the columns of Φτ0 = (ε1, . . . , ε2m) form a basis for U(iβ0,−iβ0)(A(τ0)), where

εj = sinβ0bj1 + cosβ0bj2,

εm+j = cosβ0
bj1 − sinβ0

bj2, 1 ≤ j ≤ m.

It can be shown (see Lemma 2.1 of [23]) that there exist δ0 > 0 and a continuously
differentiable function λ : (τ0 − δ0, τ0 + δ0) → C such that λ(τ0) = iβ0, λ(τ) is an
eigenvalue of A(τ), U(λ(τ),λ(τ))(A(τ)) consists of eigenvectors of A(τ) associated with

these eigenvalues, and dimU(λ(τ),λ(τ))(A(τ)) = dimU(iβ0,−iβ0)(A(τ0)).
We will require the following transversality condition.
(G4) d

dτReλ(τ) |τ=τ0 �= 0.
Let ω = 2π

β0
. Denote by Pω the Banach space of all continuous ω-periodic map-

pings x : R → R
n. Then Γ× S1 acts on Pω by

(γ, eiθ)x(t) = γx

(
t+

θ

2π
ω

)
, (γ, eiθ) ∈ Γ× S1, x ∈ Pω.

Denote by SPω the subspace of Pω consisting of all ω-periodic solutions of ẋ(t) =
τ0Lxt. Then, for each subgroup Σ ≤ Γ× S1, the fixed point set

Fix(Σ, SPω) = {x ∈ SPω; (γ, θ)x = x for all (γ, θ) ∈ Σ}
is a subspace.

Under assumption (G1), the columns of U(t) = Φτ0(0)e
B(τ0)t, t ∈ R, form a basis

for SPω, where

B(τ0) =

(
0 −β0Im

β0Im 0

)
.

Also, SPω is a Γ× S1-invariant subspace of Pω (see Lemma 2.3 of [23]). We can now
state the general symmetric local Hopf bifurcation theorem (Theorem 2.1 of [23]).
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NONLINEAR WAVES IN NETWORKS OF NEURONS 841

Lemma 2.1. Assume that (G1)–(G4) are satisfied and dimFix(Σ, SPω) = 2 for
some Σ ≤ Γ × S1. Then, for a chosen basis {δ1, δ2} of Fix(Σ, SPω), there exist
constants a0 > 0, τ∗0 > 0, σ0 > 0, C1-smooth functions τ∗ : R

2
a0

→ R, ω∗ :
R

2
a0

→ (0,∞), and a C1-smooth mapping x∗ : R
2
a0

→ C(R;Rn), where R
2
a0

= {a ∈
R

2; |a| < a0} and C(R;Rn) is the Banach space of all continuous mappings from R

into R
n equipped with the supremum norm such that, for each a ∈ R

2
a0
, x∗(a) is an

ω∗(a)-periodic solution of ẋ(t) = τF (xt) with τ = τ∗(a), and

γx∗(a)(t) = x∗(a)
(
t− ω∗(a)

ω
θ

)
, (γ, θ) ∈ Σ,

x∗(0) = 0, ω∗(0) = ω, τ∗(0) = τ∗0 ,
x∗(a) = (δ1, δ2)a+ o(|a|) as |a| → 0.

Furthermore, for |τ − τ0| < τ∗0 , |ω̃ − 2π
β0
| < σ0, every ω̃-periodic solution of ẋ(t) =

τF (xt) with ‖xt‖ < σ0, γx(t) = x(t − ω̃
ω θ) for (γ, θ) ∈ Σ, and t ∈ R must be of the

above type.
We now consider the system (1.1). It arises from

ẏj(t) = −yj(t) + h(yj(t− τ))− [g(yj−1(t− τ)) + g(yj+1(t− τ))− 2g(yj(t− τ))]

with ε = τ−1 and by the change of variable xj(t) = yj(τt). We will apply Lemma 2.1
to (1.1) with F : C → R

3 by

(F (φ))j = −φj(0) + h(φj(−1))− [g(φj−1(−1)) + g(φj+1(−1))− 2g(φj(−1))]

for φ ∈ C := C([−τ, 0];R3) and j(mod 3).
Proposition 2.2. Let Γ = D3 be the dihedral group of order 2× 3. Denote by ρ

the generator of the cyclic subgroup Z3 ≤ D3 and by κ the flip. Define the action of
Γ on R

3 by {
(ρx)j = xj+1, j(mod 3),
(κx)2 = x3, (κx)3 = x2, (κx)1 = x1, x ∈ R

3.
(2.1)

Then F is Γ-equivariant.
Proof. For φ ∈ C and j(mod 3), we have

(F (ρφ))j

= −(ρφ)j(0) + h((ρφ)j(−1))− [g((ρφ)j−1(−1)) + g((ρφ)j+1(−1))− 2g((ρφ)j(−1))]

= −φj+1(0) + h(φj+1(−1))− [g(φj(−1)) + g(φj+2(−1))− 2g(φj+1(−1))]

= ((ρF )(φ))j

and

(F (κφ))1

= −(κφ)1(0) + h((κφ)1(−1))− [g((κφ)3(−1)) + g((κφ)2(−1))− 2g((κφ)1(−1))]

= −φ1(0) + h(φ1(−1))− [g(φ2(−1)) + g(φ3(−1))− 2g(φ1(−1))]

= ((κF )(φ))1.

Moreover,

(F (κφ))2

= −(κφ)2(0) + h((κφ)2(−1))− [g((κφ)1(−1)) + g((κφ)3(−1))− 2g((κφ)2(−1))]

= −φ3(0) + h(φ3(−1))− [g(φ1(−1)) + g(φ2(−1))− 2g(φ3(−1))]

= ((κF )(φ))2.
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842 LIHONG HUANG AND JIANHONG WU

Similarly, (F (κφ))3 = ((κF )(φ))3. This completes the proof.
Let

γ = h′(0), β = g′(0).(2.2)

Then the linearization of (1.1) at x = 0 ∈ R
3 is

1

τ
Ẋj(t) = −Xj(t) + γXj(t− 1)− β[Xj−1(t− 1) +Xj+1(t− 1)− 2Xj(t− 1)],(2.3)

where j = 1, 2, 3(mod 3). The characteristic equation takes the form

det∆(τ, λ) = 0,

where

∆(τ, λ) = (λ+ τ)I3 − τMe−λ, λ ∈ C,(2.4)

and

M =


γ + 2β −β −β

−β γ + 2β −β
−β −β γ + 2β


 .(2.5)

Proposition 2.3. det∆(τ, λ) = (λ+ τ − γτe−λ)[λ+ τ − (γ + 3β)τe−λ]2.
Proof. Let χ = ei

2π
3 and

vk = (1, χk, χ2k)T , k = 0, 1, 2.(2.6)

Clearly, v0 = (1, 1, 1)T and v2 = v1. Let

Ck = {vkz; z ∈ C}, k = 0, 1, 2.

Then

C
3 = C0 ⊕ C1 ⊕ C2

and

(∆(τ, λ)vk)j

= (λ+ τ − (γ + 2β)τe−λ)(vk)j + τβe−λ(ei
2π
3 k + e−i

2π
3 k )(vk)j

=

[
λ+ τ − τ(γ + 2β)e−λ + 2βτcos

(
2π

3
k

)
e−λ

]
(vk)j

=
[
λ+ τ −

(
γ + 4βsin2

(π
3
k
))
τe−λ

]
(vk)j .

That is,

∆(τ, λ)|Ck

= λ+ τ −
(
γ + 4βsin2

(π
3
k
))
τe−λ

=

{
λ+ τ − γτe−λ if k = 0,
λ+ τ − (γ + 3β)τe−λ if k = 1, 2.
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NONLINEAR WAVES IN NETWORKS OF NEURONS 843

This completes the proof.
We now make the following assumption.
(H1) |γ| < 1, γ + 3β > 1.
The critical values of τ where the characteristic equation has purely imaginary

zeros are described in the following.
Proposition 2.4. Let A(τ) denote the infinitesimal generator of the semigroup

generated by system (2.3). Assume that (H1) is satisfied. Define
βk = 2kπ − arccos

1

γ + 3β
,

τk = −βkcot βk, k ≥ 1.

Then the following hold.
(i) For every fixed τ ≥ 0, all zeros of λ+ τ − γτe−λ have negative real parts.
(ii) At (and only at) τ = τk, A(τ) has purely imaginary eigenvalues. These

eigenvalues are given by ±iβk with βk ∈ (2kπ − π
2 , 2kπ).

(iii) All other eigenvalues of A(τk) are not integer multiples of ±iβk.
(iv) The generalized eigenspace U(iβk,−iβk)(A(τk)) consists of eigenvectors of A(τk)

associated with ±iβk only and

U(iβk,−iβk)(A(τk)) =

{
4∑
i=1

xiεi; xi ∈ R, i = 1, . . . , 4

}
,

where, for θ ∈ [−1, 0],

ε1(θ) = Re(eiβkθv1) = cos(βkθ)Rev1 − sin(βkθ)Imv1,

ε2(θ) = Im(eiβkθv1) = sin(βkθ)Rev1 + cos(βkθ)Imv1,

ε3(θ) = Re(eiβkθv2) = cos(βkθ)Rev1 + sin(βkθ)Imv1,

ε4(θ) = Re(eiβkθv2) = sin(βkθ)Rev1 − cos(βkθ)Imv1.

Proof. (i) Let λ = u+ iv be a zero of λ+τ−γτe−λ. Then we get v = −γτe−usinv
and u+ τ = γτe−ucosv, from which it follows that

γ2τ2e−2u = v2 + (u+ τ)2.

Consequently, u < 0, for otherwise the left-hand side of the above equality is strictly
less than τ2, while the right-hand side is larger than or equal to τ2.

To verify (ii)–(iv), let λ = iv with v > 0 be a solution of λ+τ−(γ+3β)τe−λ = 0.
Then {

τ = (γ + 3β)τcosv ,

v = −(γ + 3β)τsinv .

So

tan v = −v
τ
,

from which it follows that tan v < 0, and hence v /∈ [0, π2 ] + Zπ; here Z is the set of
all integers. Therefore, we must have

v = 2kπ − arccos
1

γ + 3β
= βk, k ≥ 1,
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844 LIHONG HUANG AND JIANHONG WU

and

τ = −βk cotβk = τk.

Therefore, λ+ τ − (γ+3β)τe−λ = 0 has purely imaginary roots (given by iβk) if and
only if τ = τk for some k ≥ 1.

It is well known that φ ∈ C([−1, 0];C3) is an eigenvector of A(τk) associated
with the eigenvalue iβk if and only if φ(θ) = eiβkθz,−1 ≤ θ ≤ 0, for some vector
z ∈ C

3 such that ∆(τk, iβk)z = 0 (see, for example, pp. 198 in [9]). From the proof of
Proposition 2.3, we then have v ∈ 〈v1, v2〉, the complex space spanned by v1 and v2.
Similar arguments apply to −iβk. Therefore, the eigenspace of A(τk) associated with
±iβk is spanned by eiβkθv1, e

iβkθv2, e
−iβkθv1, and e

−iβkθv2. Therefore, this space has
the real basis {ε1, ε2, ε3, ε4}. On the other hand, the eigenspace of A(τk) associated
with iβk is of dimension 2 and the algebraic multiplicity of λ = iβk as a zero of
det∆(τk, λ) = 0 is also 2. So the well-known folk theorem in functional differential
equations (see [26] or Theorem 4.2 in [9]) implies that U(iβk,−iβk)(A(τk)) must coincide
with the eigenspace of A(τk) associated with ±iβk. This completes the proof.

Proposition 2.5. Let Γ = D3 act on R
2 by

ρ

(
x1

x2

)
=

(
− 1

2 −
√

3
2√

3
2 − 1

2

)(
x1

x2

)
,

κ

(
x1

x2

)
=

(
x1

−x2

)
,

(
x1

x2

)
∈ R

2.

Then R
2 is an absolutely irreducible representation of Γ, and the restricted action of

Γ on Ker∆(τk, iβk) is isomorphic to the action of Γ on R
2 ⊕ R

2.

Proof. The proof for the absolute irreducibility of the representation of Γ on R
2

is straightforward and can be found in, for example, [18]. Clearly,

Ker∆(τk, iβk) = {(x1 + ix2)v1 + (x3 + ix4)v2; xi ∈ R, i = 1, . . . , 4}.

Define

J((x1 + ix2)v1 + (x3 + ix4)v2) = (x1 + x3, x2 − x4, x2 + x4, x3 − x1)
T .

Clearly, J : Ker∆(τk, iβk) ∼= R
4 is a linear isomorphism. Note that

ρ[(x1 + ix2)v1 + (x3 + ix4)v2]

= (x1 + ix2)e
i 2π3 v1 + (x3 + ix4)e

−i 2π3 v2

=

[(
−1

2
x1 −

√
3

2
x2

)
+ i

(
−1

2
x2 +

√
3

2
x1

)]
v1

+

[(
−1

2
x3 +

√
3

2
x4

)
+ i

(
−1

2
x4 −

√
3

2
x3

)]
v2

and

κ[(x1 + ix2)v1 + (x3 + ix4)v2] = (x1 + ix2)v2 + (x3 + ix4)v1.
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NONLINEAR WAVES IN NETWORKS OF NEURONS 845

Therefore,

J(ρ[(x1 + ix2)v1 + (x3 + ix4)v2])

=

(
−1

2
(x1 + x3)−

√
3

2
(x2 − x4),−1

2
(x2 − x4) +

√
3

2
(x1 + x3),

− 1

2
(x2 + x4)−

√
3

2
(x3 − x1),−1

2
(x3 − x1) +

√
3

2
(x2 + x4)

)T

= ρJ((x1 + ix2)v1 + (x3 + ix4)v2)

and

J(κ[(x1 + ix2)v1 + (x3 + ix4)v2])

= (x3 + x1, x4 − x2, x4 + x2, x1 − x3)
T

= κJ [(x1 + ix2)v1 + (x3 + ix4)v2].

This completes the proof.
Proposition 2.6. For each fixed k ≥ 1, there exist δk > 0 and a C1-mapping

λk : (τk−δk, τk+δk) → C such that λk(τk) = iβk and λk(τ)+τ−(γ+3β)τe−λk(τ) = 0
for all τ ∈ (τk − δk, τk + δk). Moreover, d

dτReλk(τ)|τ=τk > 0.
Proof. The existence of δk and the mapping λk follow from the implicit function

theorem. We now substitute λ = λk(τ) into λ+ τ − (γ+3β)τe−λ = 0, differentiating
the equality with respect to τ , to get

d

dτ
Reλk(τ)|τ=τk

= Re
−1 + (γ + 3β)e−λ

1 + τ(γ + 3β)e−λ

∣∣∣∣
λ=iβk,τ=τk

= Re
λ/τ

1 + (λ+ τ)

∣∣∣∣
λ=iβk,τ=τk

=
β2
k

τk[(1 + τk)2 + β2
k]
.

This completes the proof.
Fix k ≥ 1. Let ω = 2π

βk
, and let Pω be the Banach space of continuous ω-periodic

mappings x : R → R
3. Γ× S1 acts on Pω by

(γ, eiθ)x(t) = γx(t+ θ), eiθ ∈ S1, x ∈ Pω, γ ∈ Γ.

We will write γx for (γ, 1)x when γ ∈ Γ and x ∈ Pω. Let SPω denote the subspace of
Pω consisting of all ω-periodic solutions of (2.3) with τ = τk. Then

SPω = {x1ε
∗
1 + x2ε

∗
2 + x3ε

∗
3 + x4ε

∗
4; xi ∈ R, i = 1, . . . , 4},

where 


ε∗1(t) = cos(βk t)w1 − sin(βk t)w2,

ε∗2(t) = sin(βk t)w1 + cos(βk t)w2,

ε∗3(t) = cos(βk t)w1 + sin(βk t)w2,

ε∗4(t) = sin(βk t)w1 − cos(βk t)w2,
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846 LIHONG HUANG AND JIANHONG WU

and

w1 =

(
1,−1

2
,−1

2

)T
, w2 =

(
0,

√
3

2
,−

√
3

2

)T
.

Proposition 2.7. With ε∗i given above, we have
(i) κε∗1 = ε∗3, κε

∗
2 = ε∗4, κε

∗
3 = ε∗1, κε

∗
4 = ε∗2;

(ii) ρε∗1 = − 1
2ε

∗
1−

√
3

2 ε
∗
2, ρε

∗
2 = − 1

2ε
∗
2+

√
3

2 ε
∗
1, ρε

∗
3 = − 1

2ε
∗
3+

√
3

2 ε
∗
4, ρε

∗
4 = − 1

2ε
∗
4−

√
3

2 ε
∗
3.

Proof. (i) is obvious from the definition of the action of κ in Proposition 2.2. To
prove (ii), we note that

ρ




1

− 1
2

− 1
2


 =


 − 1

2

− 1
2

1


 = −1

2




1

− 1
2

− 1
2


−

√
3

2




0
√

3
2

−
√

3
2


 ,

ρ




0
√

3
2

−
√

3
2


 =




√
3

2

−
√

3
2

0


 =

√
3

2




1

− 1
2

− 1
2


− 1

2




0
√

3
2

−
√

3
2


 .

So

ρε∗1 = cos(βk t)

[
−1

2
w1 −

√
3

2
w2

]
− sin(βk t)

[√
3

2
w1 − 1

2
w2

]
= −1

2
ε∗1 −

√
3

2
ε∗2,

ρε∗2 = sin(βk t)

[
−1

2
w1 −

√
3

2
w2

]
+ cos(βk t)

[√
3

2
w1 − 1

2
w2

]
=

√
3

2
ε∗1 −

1

2
ε∗2,

ρε∗3 = cos(βk t)

[
−1

2
w1 −

√
3

2
w2

]
+ sin(βk t)

[√
3

2
w1 − 1

2
w2

]
= −1

2
ε∗3 +

√
3

2
ε∗4,

ρε∗4 = sin(βk t)

[
−1

2
w1 −

√
3

2
w2

]
− cos(βk t)

[√
3

2
w1 − 1

2
w2

]
= −

√
3

2
ε∗3 −

1

2
ε∗4.

This completes the proof.
Note that, if x is a periodic solution of (1.1), then so is (γ, eiθ)x for every (γ, eiθ) ∈

Γ×S1. If the symmetry of x is Σx for a subgroup of Γ×S1, that is, Σx = {(γ, eiθ) ∈
Γ×S1; (γ, eiθ)x = x}, then the symmetry of (γ, eiθ)x is given by (γ, eiθ)Σx(γ, e

iθ)−1,
which is conjugate to Σx. It is known that the subgroups of D3×S1, up to conjugacy,
that describe the symmetry of periodic solutions of (1.1) which exhibit certain spatial-
temporal patterns are given below (see, for example, p. 368 in [18]):

Σ±
(2,3) = 〈(κ,±1)〉,

Σ±
ρ = 〈(ρ, e±i 2π3 )〉.

More specifically, for example, Σ−
(2,3) is a group generated by (κ,−1) ∈ D3 × S1.

Proposition 2.8.

Fix(Σ+
(2,3), SPω) = {ycos(βk t)w1 + z sin(βk t)w1; y , z ∈ R},

F ix(Σ−
(2,3), SPω) = {ycos(βk t)w2 + z sin(βk t)w2; y , z ∈ R},

F ix(Σ−
ρ , SPω) = {yε∗1 + zε∗2; y, z ∈ R},

F ix(Σ=
ρ , SPω) = {yε∗3 + zε∗4; y, z ∈ R}.
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NONLINEAR WAVES IN NETWORKS OF NEURONS 847

Proof. First, x ∈ Fix(Σ+
(2,3), SPω) if and only if κx = x. However, for x =∑4

i=1 xiε
∗
i , we have

κx = x1ε
∗
3 + x2ε

∗
4 + x3ε

∗
1 + x4ε

∗
2.

Therefore, x ∈ Fix(Σ+
(2,3), SPω) if and only if x1 = x3 and x2 = x4. This shows that

Fix(Σ+
(2,3), SPω) is spanned by ε∗1 + ε∗3 and ε∗2 + ε∗4.

Second, x ∈ Fix(Σ−
(2,3), SPω) if and only if κx(t) = x(t + ω

2 ) for t ∈ R. Let

x =
∑4

i=1 xiε
∗
i . Then, as cos(βk t+βk

ω
2 ) = −cos(βk t) and sin(βk t+βk

ω
2 ) = −sin(βk t),

we get ε∗i (t +
ω
2 ) = −ε∗i (t), and thus x(t + ω

2 ) = −∑4
i=1 xiε

∗
i . This implies that

κx(t) = x(t+ ω
2 ) if and only if x1 = −x3 and x2 = −x4. Therefore, Fix(Σ

−
(2,3), SPω)

is spanned by ε∗1 − ε∗3 and ε∗2 − ε∗4.
Third, for x =

∑4
i=1 xiε

∗
i , we have

ρx =

(
−1

2
x1 +

√
3

2
x2

)
ε∗1 +

(
−
√
3

2
x1 − 1

2
x2

)
ε∗2

+

(
−1

2
x3 −

√
3

2
x4

)
ε∗3 +

(√
3

2
x3 − 1

2
x4

)
ε∗4.

On the other hand, we have

cos
(
βk

(
t ± ω

3

))
= cos

(
βk t ± 2π

3

)
= −1

2
cos(βk t)∓

√
3

2
sin(βk t),

sin
(
βk

(
t ± ω

3

))
= sin

(
βk t ± 2π

3

)
= ±

√
3

2
cos(βk t)− 1

2
sin(βk t).

This, together with the expression of each ε∗i and x =
∑4

i=1 xiε
∗
i , leads to

x
(
t± ω

3

)

=

(
−1

2
x1 ±

√
3

2
x2

)
ε∗1 +

(
∓
√
3

2
x1 − 1

2
x2

)
ε∗2

+

(
−1

2
x3 ±

√
3

2
x4

)
ε∗3 +

(
∓
√
3

2
x3 − 1

2
x4

)
ε∗4.

Thus x ∈ Fix(Σ±
ρ , SPω), i.e., ρx(t± ω

3 ) = x(t), if and only if




− 1

2
x1 +

√
3

2
x2 = −1

2
x1 ∓

√
3

2
x2,

−
√
3

2
x1 − 1

2
x2 = ±

√
3

2
x1 − 1

2
x2,

− 1

2
x3 −

√
3

2
x4 = −1

2
x3 ∓

√
3

2
x4,

√
3

2
x3 − 1

2
x4 = ±

√
3

2
x3 − 1

2
x4.
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848 LIHONG HUANG AND JIANHONG WU

That is, ρx(t) = x(t+ ω
3 ) if and only if x3 = x4 = 0, and ρx(t) = x(t− ω

3 ) if and only
if x1 = x2 = 0. Therefore, Fix(Σ−

ρ , SPω) is spanned by ε∗1 and ε∗2, and Fix(Σ
+
ρ , SPω)

is spanned by ε∗3 and ε∗4. This completes the proof.
We can now apply Lemma 2.1 to obtain the following main result of this section.
Theorem 2.9. Assume that (H1) is satisfied. Then, near τ = τk for each k ≥ 1,

system (1.1) has eight distinct branches of periodic solutions bifurcated from the trivial
solution x = 0. More precisely, we have the following.

(i) There exist εm0 > 0 and δm0 > 0 such that, for each θ ∈ [0, 2π], α ∈ (0, εm0 ),
system (1.1) with τ = τk + τm(α, θ) has a periodic solution xm = xm(t;α, θ)
with period ωm(α, θ) such that

xm2 (t;α, θ) = xm3 (t;α, θ),

xm(t;α, θ) = αcos(βk t + θ)

(
1,−1

2
,−1

2

)T

+ o(|α|) as α→ 0.

The mapping (xm, τm, ωm) : (0, εm)×[0, 2π] → C(R;R3)×R×R is C1-smooth,
and

ωm(0, θ) =
2π

βk
, τm(0, θ) = 0.

Furthermore, if |τ − τk| < δm0 and |ω − 2π
βk

| < δm0 , then every ω-periodic

solution of (1.1) satisfying x2(t) = x3(t) and supt∈R |x(t)| < δm0 must be
given by xm(t;α, θ) for some α ∈ (0, εm0 ) and θ ∈ [0, 2π). Similar results hold
when we replace (2, 3) by (1, 2) or (1, 3).

(ii) There exist εs0 > 0 and δs0 > 0 such that, for each θ ∈ [0, 2π], α ∈ (0, εs0),
system (1.1) with τ = τk + τ s(α, θ) has a periodic solution xs = xs(t;α, θ)
with period ωs = ωs(α, θ) such that

xs1(t) = xs1

(
t− ωs

2

)
, xs2(t) = xs3

(
t− ωs

2

)
, xs3(t) = xs3(t+ ωs),

xs(t;α, θ) = αcos(βk t + θ)

(
0,−

√
3

2
,−

√
3

2

)T

+ o(|α|) as α→ 0.

The mapping (xs, τs, ωs) : (0, εs0)× [0, 2π] → C(R;R3)×R×R is C1-smooth,
and

ωs(0, θ) =
2π

βk
, τs(0, θ) = 0.

Furthermore, if |τ−τk| < δs0 and |ω− 2π
βk

| < δs0, then every ω-periodic solution

of (1.1) satisfying x1(t) = x1(t− ω
2 ), x2(t) = x3(t− ω

2 ), and supt∈R |x(t)| < δs0
must be given by xs(t;α, θ) for some α ∈ (0, εs0) and θ ∈ [0, 2π). Similar
results hold when we replace (1, 2, 3) by (2, 1, 3) or (3, 2, 1).

(iii) There exist εd0 > 0 and δd0 > 0 such that, for each θ ∈ [0, 2π], α ∈ (0, εd0),
system (1.1) with τ = τk + τd(α, θ) has a periodic solution xd = xd(t;α, θ)
with period ωd = ωd(α, θ) such that

xd1(t) = xd2

(
t± ωd

3

)
, xd2(t) = xd3

(
t± ωd

3

)
,

xd(t;α, θ) = α

(
cos(βkt + θ), cos

(
βkt + θ ∓ 2π

3

)
, cos

(
βkt + θ ∓ 4π

3

))T
+ o(|α|)
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NONLINEAR WAVES IN NETWORKS OF NEURONS 849

as α→ 0. The mapping (xd, τd, ωd) : (0, εd0)× [0, 2π] → C(R;R3)× R × R is
C1-smooth, and

ωd(0, θ) =
2π

βk
, τd(0, θ) = 0.

Furthermore, if |τ−τk| < δd0 and |ω− 2π
βk

| < δd0 , then every ω-periodic solution

of (1.1) satisfying x1(t) = x2(t± ω
3 ), x2(t) = x3(t± ω

3 ), and supt∈R |x(t)| < δd0
must be given by xd(t;α, θ) for some α ∈ (0, εd0) and θ ∈ [0, 2π). Similar
results hold when we replace (1, 2, 3) by (2, 1, 3) or (3, 2, 1).

We call periodic solutions in (i)–(iii) mirror-reflecting waves, standing waves, and
discrete waves, respectively. Note that Theorem 2.9 does not rule out the case in
which τ l(α, θ) ≤ 0 (l = m, s, d). In next section, we will use the global bifurcation
theory to rule out this case. In fact, we will show that all eight branches of waves are
supercritical and global; i.e., all eight branches of waves exist for τ > τk.

3. Global continuation of waves. We will need a general global symmetric
Hopf bifurcation theorem developed in [24]. Namely, we consider the one-parameter
family of retarded functional differential equations

ẋ(t) = τF (xt),(3.1)

where x ∈ R
n, τ ∈ (0,∞), and F : C([−τ, 0];Rn) → R

n is continuously differentiable
and completely continuous. Furthermore, we assume the following.

(A1) Γ := ZN for some integer N acts on R
n and F : C → R

n is Γ-equivariant.
(A2) For every x0 ∈ MΓ := {x ∈ R

n; γx = x for γ ∈ Γ, F (x̄) = 0}, where x̄ ∈ C
is the constant mapping with the constant value x ∈ R

n, detDF̂ (x0) �= 0, where F̂
is the C1 mapping from R

n into R
n, induced by F according to F̂ (x) = F (x̄) for

x ∈ R
n.

(A3) For every τ0 > 0 and x0 ∈ MΓ such that the generator A(τ0, x0) of the
linearized system of (3.1) with τ = τ0 at x = x0 has a pair of purely imaginary
eigenvalues ±iβ0, there exist positive constants b, c, and δ such that (i) the only
possible eigenvalue u + iv of A(τ0, x0) with (u, v) ∈ ∂Ω is iβ0, where Ω := (0, b) ×
(β0 − c, β0 + c); (ii) for (τ, β) ∈ [τ0 − δ, τ0 + δ]× [β0 − c, β0 + c], iβ is an eigenvalue of
A(τ, x0) if and only if τ = τ0, β = β0.

(A4) M∗ := {(τ, x, β) ∈ (0,∞)×MΓ × (0,∞);±iβ are eigenvalues of A(τ, x)} is
a discrete set.

Note that the action of Γ on R
n induces an action on C

n = R
n+iRn, with respect

to which we have the isotypical decomposition

C
n = C

n
0 ⊕ C

n
1 ⊕ · · · ⊕ C

n
j ⊕ · · · ,

where C
n
j , j ≥ 0, is the direct sum of all one-dimensional Γ-irreducible subspaces V of

C
n such that the restricted action Γ on V is isomorphic to the Γ-action on C defined

by ρ · z = ρjz for the generator ρ ∈ ZN ≤ S1 and for z ∈ C. Let

∆x0(τ, λ) := λIn − τDφF (x̄0)(e
λ·In)(3.2)

for τ > 0, x0 ∈ MΓ, and λ ∈ C. By assumption (A1), we have ∆x0(τ, λ)C
n
j ⊂ C

n
j for

j ≥ 0 and for λ ∈ C. Put

∆x0,j(τ, λ) = ∆x0
(τ, λ)|Cn

j
, j ≥ 0.(3.3)
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850 LIHONG HUANG AND JIANHONG WU

Clearly, ∆x0
(τ, λ) is analytic in λ ∈ C and continuous in τ > 0. So, under assumption

(A3), we may assume that det∆x0(τ0 ± δ, u + iv) �= 0 for (u, v) ∈ ∂Ω. Therefore,
det∆x0,j(τ0± δ, u+ iv) �= 0 for (u, v) ∈ ∂Ω and for j ≥ 0. Consequently, the following
integers are well defined:

cj(x0, τ0, β0) = degB(det∆x0,j(τ0 − δ, ·),Ω)− degB(det∆x0,j(τ0 + δ, ·),Ω),(3.4)

where degB is the Brouwer degree. Let

ε(x0) = (−1)nsigndetDF̂ (x0).(3.5)

We have the following global symmetric Hopf bifurcation theorem due to [24].
Lemma 3.1. Assume that (A1)–(A4) are satisfied and cj(x0, τ0, β0) �= 0 for some

integer j ≥ 0 and some (τ0, x0, β0) ∈ (0,∞)×MΓ × (0,∞). Let Sj denote the closure
in [0,∞)× C(R;Rn)× [0,∞) of the set of all (τ, z, β) ∈ [0,∞)× C(R;Rn)× R \M∗

such that x(t) := z( β2π t) is a 2π
β -periodic solution of (3.1) with ρx(t) = x(t − 2π

β
j
N )

for t ∈ R. Then Sj �= ∅, and, for every bounded connected component Ej of Sj,
(Γ× S1)Ej ∩M∗ is finite and ∑

(τ,x,β)∈(Γ×S1)Ej∩M∗
ε(x)cj(x, τ, β) = 0;(3.6)

here a set E ⊂ (0,∞)× C(R;Rn)× (0,∞) is bounded if

sup

{
1

τ
+ τ +

1

β
+ β + sup

t∈R

|x(t)|; (τ, x, β) ∈ E
}
<∞.

We now begin to apply the above result to discuss the global continuation of wave
solutions of system (1.1). We need the following assumptions.

(H2) supy∈R |h′(y)| < 1.
(H3) g′(x) > 0 for all x ∈ R.
Proposition 3.2. Assume that (H1)–(H3) are satisfied. Then system (1.1) has

no nonconstant 1-periodic solution.
Proof. By way of contradiction, let x be a nonconstant periodic solution of system

(1.1) with xi(t) = xi(t − 1) for all t ∈ R and i = 1, 2, 3. Then we obtain a system of
ordinary differential equations


1
τ ẋ1(t) = −x1(t) + h(x1(t)) + 2g(x1(t))− g(x2(t))− g(x3(t)),
1
τ ẋ2(t) = −x2(t) + h(x2(t)) + 2g(x2(t))− g(x1(t))− g(x3(t)),
1
τ ẋ3(t) = −x3(t) + h(x3(t)) + 2g(x3(t))− g(x2(t))− g(x1(t)).

(3.7)

Note that the above equation is exactly the model equation for the Hopfield net [20]
of three identical neurons with self-feedback, and thus

V (x1, x2, x3)

= −1

2

∑
1≤i<j≤3

[g(xi)− g(xj)]
2 +

3∑
k=1

∫ xk

0

[s− h(s)]g′(s)ds

= g(x1)g(x2) + g(x2)g(x3) + g(x3)g(x1)

− g2(x1)− g2(x2)− g2(x3)

+

∫ x1

0

[s− h(s)]g′(s)ds+
∫ x2

0

[s− h(s)]g′(s)ds+
∫ x3

0

[s− h(s)]g′(s)ds
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NONLINEAR WAVES IN NETWORKS OF NEURONS 851

is the so-called energy function. For such an energy function, we have

V̇(15)(x1, x2, x3)

= g′(x1)ẋ1[g(x2) + g(x3)− 2g(x1) + x1 − h(x1)]

+ g′(x2)ẋ2[g(x1) + g(x3)− 2g(x2) + x2 − h(x2)]

+ g′(x3)ẋ3[g(x1) + g(x2)− 2g(x3) + x3 − h(x3)]

= −τ
3∑
i=1

g′(xi)(ẋi)2 ≤ 0

and

V̇(15)(x1, x2, x3) = 0 if and only if ẋ1 = ẋ2 = ẋ3 = 0.

The LaSalle invariance principle [27] then implies that every solution of (3.6) converges
to an equilibrium as t→ ∞. In particular, every 1-periodic solution of (1.1) must be
constant. This completes the proof.

Proposition 3.3. Under assumptions (H1)–(H3), system (1.1) has no noncon-
stant 2-periodic solution.

Proof. Assume that x(t) is a 2-periodic solution. Let x4(t) = x1(t − 1), x5(t) =
x2(t− 1), and x6(t) = x3(t− 1). Then we obtain



εẋ1 = −x1 + h(x4)− g(x5)− g(x6) + 2g(x4),

εẋ2 = −x2 + h(x5)− g(x4)− g(x6) + 2g(x5),

εẋ3 = −x3 + h(x6)− g(x4)− g(x5) + 2g(x6),

εẋ4 = −x4 + h(x1)− g(x2)− g(x3) + 2g(x1),

εẋ5 = −x5 + h(x2)− g(x1)− g(x3) + 2g(x2),

εẋ6 = −x6 + h(x3)− g(x1)− g(x2) + 2g(x3).

Then 


1

τ
[x1 − x4]′ = −[x1 − x4] + [h(x4)− h(x1)]

+ [g(x2)− g(x5) + g(x3)− g(x6)− 2(g(x1)− g(x4))],

1

τ
[x2 − x5]′ = −[x2 − x5] + [h(x5)− h(x2)]

+ [g(x1)− g(x4) + g(x3)− g(x6)− 2(g(x2)− g(x5))],

1

τ
[x3 − x6]′ = −[x3 − x6] + [h(x6)− h(x3)]

+ [g(x1)− g(x4) + g(x2)− g(x5)− 2(g(x3)− g(x6))].

Let D+ denote the upper right Dini derivative; then


1

τ
D+|x1 − x4| ≤ −|x1 − x4| − 2|g(x1)− g(x4)|+ |h(x1)− h(x4)|

+ |g(x2)− g(x5)|+ |g(x3)− g(x6)|,
1

τ
D+|x2 − x5| ≤ −|x2 − x5| − 2|g(x2)− g(x5)|+ |h(x2)− h(x5)|

+ |g(x1)− g(x4)|+ |g(x3)− g(x6)|,
1

τ
D+|x3 − x6| ≤ −|x3 − x6| − 2|g(x3)− g(x6)|+ |h(x3)− h(x6)|

+ |g(x1)− g(x4)|+ |g(x2)− g(x5)|.
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852 LIHONG HUANG AND JIANHONG WU

Therefore,

1

τ
D+[|x1 − x4|+ |x2 − x5|+ |x3 − x6|]

≤ −[|x1 − x4|+ |x2 − x5|+ |x3 − x6|]
+ |h(x1)− h(x4)|+ |h(x2)− h(x5)|+ |h(x3)− h(x6)|

≤ −
[
1− sup

θ∈R

|h′(θ)|
]
[|x1 − x4|+ |x2 − x5|+ |x3 − x6|].

This implies that

|x1(t)− x4(t)|+ |x2(t)− x5(t)|+ |x3(t)− x6(t)| → 0 as t→ ∞.

Therefore, for a 2-periodic solution x of (1), we must have x1(t) = x1(t− 1), x2(t) =
x2(t− 1), and x3(t) = x3(t− 1). So Proposition 3.2 can be applied to conclude that
x must be constant. This completes the proof.

It remains to obtain a priori bounds for the norm of periodic solutions of (1.1).
We need the following assumption.

(H4) supy∈R[|h(y)|+ |g(y)|] <∞.
Proposition 3.4. Assume (H1)–(H4) are satisfied. Then there exists M =

M(h, g) > 0 such that |x1(t)| + |x2(t)| + |x3(t)| ≤ M for all t ∈ R and for every
periodic solution x of (1.1).

Proof. Let t∗ ∈ R and j ∈ {1, 2, 3} be given so that |xj(t∗)| = maxt∈R max1≤i≤3 |xi(t)|.
Then ẋj(t

∗) = 0. That is,

xj(t
∗) = h(xj(t

∗ − 1))− [g(xj−1(t
∗ − 1)) + g(xj+1(t

∗ − 1))− 2g(xj(t
∗ − 1))],

from which it follows that

|xj(t∗)| ≤ sup
y∈R

|h(y)|+ 4 sup
y∈R

|g(y)| := M

3
<∞.

This completes the proof.
We now apply Lemma 3.1 to investigate the global continuation of standing,

mirror-reflecting, and discrete waves.
First, note that near τ = τk system (1.1) has two bifurcations of discrete waves

satisfying xi−1(t) = xi(t± ω
3 ), where ω is a period. To look at the global continuation

of such local bifurcations, we regard system (1.1) as a functional differential equation
equivariant with respect to the action of Γ = Z3, where the action is the cyclic
permutation. We have

MΓ = {x ∈ R
3; γx = x for γ ∈ Γ, F (x̄) = 0}

= {x ∈ R
3;x1 = x2 = x3 and x1 = h(x1)} = {0}

under assumption (H2). Clearly, (A1) and (A2) are satisfied.
Under assumption (H1), the discussions in the last section show that

M∗ = {(τk, 0, βk); k ≥ 1}.
Therefore, M∗ is discrete in R

3.
Using Proposition 2.4 (ii), for a fixed integer k, we can choose positive constants

b, c, and δ so that the only possible eigenvalue u+ iv of A(τk) with (u, v) ∈ ∂Ω is iβk,
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NONLINEAR WAVES IN NETWORKS OF NEURONS 853

where Ω = (0, b)× (βk− c, βk+ c), and if (τ, β) ∈ [τk− δ, τk+ δ]× [βk− c, βk+ c], then
iβ is an eigenvalue of A(τ) if and only if τ = τk and β = βk. Then, using Proposition
2.4 (i), we can conclude that the analytic function pτ (λ) := λ+ τ −γτe−λ has no zero
in Ω̄ for τ = τk ± δ. Also, by Propositions 2.4 and 2.6, the above b, c, and δ can be
chosen so that, for the analytic function

qτ (λ) = λ+ τ − (γ + 3β)τe−λ,

we have that qτk−δ has no zero in Ω̄, while qτk+δ has exactly one zero in Ω̄, and this
zero is simple and is in the interior of Ω̄. Therefore,

degB(qτk−δ,Ω) = 0,

and

degB(qτk+δ,Ω) = 1.

With respect to the complexification of the above (Γ = Z3)-action in R
3, we have

the isotypical decomposition

C
3 = C

3
0 ⊕ C

3
1 ⊕ C

3
2,

where

C
3
j = {(1, ei 2π3 j , ei 4π3 j)x; x ∈ C}.

We have shown that

∆0,j := ∆0(τ, λ)|C3
j
= ∆(τ, λ)|C3

j

=

{
λ+ τ − γτe−λ if j = 0,
λ+ τ − (γ + 3β)τe−λ if j = 1, 2.

Therefore, from the above discussions, we get

c0(0, τk, βk) = degB(pτk−δ,Ω)− degB(pτk+δ,Ω) = 0,

and, for j = 1, 2,

cj(0, τk, βk) = degB(qτk−δ,Ω)− degB(qτk+δ,Ω) = −1.

Let Sj , j = 1, 2, denote the closure in [0,∞)× C(R;R3)× [0,∞) of the set of all

triples (τ, z, β) /∈ M∗ such that x(t) := z( β2π t) is a
2π
β -periodic solution of (1.1) with

xk+1(t) = xk(t− 2π
β
j
3 ) for t ∈ R and k = 1, 2, 3(mod 3). Then Lemma 3.1 implies that

Sj must have a nonempty connected component Ej passing through (τk, 0, βk), and
this component must be unbounded in the sense that

sup
(τ,x,β)∈Ej

{
τ +

1

τ
+ β +

1

β
+ sup

t∈R

|z(t)|
}

= ∞,

for otherwise, the summation (3.6) must hold, and this is clearly impossible as cj(0, τk, βk)
has the same sign for all positive integers k.

D
ow

nl
oa

de
d 

01
/2

1/
16

 to
 1

30
.6

3.
17

4.
89

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



854 LIHONG HUANG AND JIANHONG WU

The projection of Ej onto the space C(R;R3) is bounded due to Proposition 3.4.
Near τk, (ii) of Proposition 2.4 shows that, for (τ, z, β) ∈ Ej , we have

2π

β
∈
(

2π

2kπ
,

2π

2kπ − π
2

)
⊂
(
1

k
,

1

k − 1
4

)
⊂
(
1

k
,
4

3

)
⊂
(
1

k
, 2

)
.

On the other hand, Propositions 3.2 and 3.3 imply that the projection of Ej onto the
β-plane can never reach the lines 2π

β = 1
k (note that (1.1) has no 1

k -periodic solution

as it does not have a 1-periodic solution) and 2π
β = 2. Therefore, the projection of Ej

onto the β-plane always satisfies π < β < 2kπ.
On the other hand, the result of [28] shows that there exists α∗ > 0 such that

any period p of a periodic solution of (1.2) must satisfy p ≥ α∗. Consequently, for

(τ, z, β) ∈ Ej , we must have τ 2π
β ≥ α∗. That is, τ ≥ βα∗

2π > α∗
2 for every τ ∈ I, the

projection of Ej onto the τ -axis which must be an interval. Therefore, I must be
unbounded from above. Clearly, I contains τk. This proves the following.

Theorem 3.5. For each τ > τk, system (1.1) always has two discrete waves
satisfying xj+1(t) = xj(t ± ω

3 ) for t ∈ R and j(mod 3), where ω is a period of x(t)
and 1

k < ω < 2.
Let us now consider the global continuation of mirror-reflecting waves and stand-

ing waves. For this purpose, we consider (1.1) as a functional differential equation
equivariant with respect to the action of Γ = Z2 on R

3 defined by

ρ


x1

x2

x3


 =


x1

x3

x2


 , xi ∈ R, i = 1, 2, 3, Z2 = 〈ρ〉.

In this case,

MΓ = {x ∈ R
3; x2 = x3, xi = h(xi)− g(xi−1)− g(xi+1) + 2g(xi), i(mod 3)}.

The structure of MΓ is explicitly described in the following proposition under the
following assumption.

(H5) yh′′(y) < 0 and yg′′(y) < 0 for y �= 0.
Proposition 3.6. Under (H1)–(H5), the system of equations

xi = h(xi)− g(xi−1)− g(xi+1) + 2g(xi), i(mod 3),(3.8)

and

x2 = x3(3.9)

for x = (x1, x2, x3)
T has exactly three solutions. They are

(0, 0, 0)T , (z−, y+, y+)T , (z+, y−, y−)T ,

where y+ > 0, y− < 0, z+ > 0, z− < 0 are the unique solutions of{
y± − h(y±) = u±,
z∓ − h(z∓) = −2u±(3.10)

and u+ > 0 and u− < 0 are the unique positive and negative solutions of

u+ g[G−1(−2u)]− g[G−1(u)] = 0(3.11)
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NONLINEAR WAVES IN NETWORKS OF NEURONS 855

with G : R → R being given by the equation

G(θ) = θ − h(θ), θ ∈ R.(3.12)

In other words,

MΓ = {(0, 0, 0)T , (z−, y+, y+)T , (z+, y−, y−)T }.

Proof. Under assumption (H2), G : R → R defined by (3.12) is an increasing
function. Define

u = G(y), v = G(z).(3.13)

Then x = (x1, x2, x3)
T with x1 = z and x2 = x3 = y satisfies (3.8) if and only if

u = g[G−1(u)]− g[G−1(v)](3.14)

and

v = −2u.(3.15)

In other words, (u, v) is given by v = −2u and u = g[G−1(u)]− g[G−1(−2u)]. Let

H(u) = u+ g[G−1(−2u)]− g[G−1(u)], u ∈ R.

Then

H(0) = 0, H(±∞) = ±∞.

Note that

H ′(u) = 1 + g′[G−1(−2u)](G−1)′(−2u)(−2)− g′[G−1(u)](G−1)′(u)

= 1− 2g′[G−1(−2u)](G−1)′(−2u)− g′[G−1(u)](G−1)′(u).

Implicitly differentiating F (θ) = θ − h(θ), we get

(G−1)′(θ) =
1

1− h′[G−1(θ)]
.

Therefore,

H ′(u) = 1− 2g′[G−1(−2u)]

1− h′[G−1(−2u)]
− g′[G−1(u)]

1− h′[G−1(u)]
.

In particular, with h′(0) = γ and g′(0) = β and under assumption (H1), we have

H ′(0) = 1− 2β

1− γ
− β

1− γ
=

1− (γ + 3β)

1− γ
< 0.

Therefore, there must be u+ > 0 and u− < 0 such that H(u±) = 0.
It remains to show that there exists no other nonzero zero of H. By way of

contradiction, if there exists u∗ > 0 (the case in which u∗ < 0 can be dealt with
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856 LIHONG HUANG AND JIANHONG WU

similarly) such that H(u∗) = 0 and u∗ �= u+, then there must be θ > 0 so that
H ′′(θ) = 0. However, we have

H ′′(u) = −2g′′[G−1(−2u)][(G−1)′(−2u)]2(−2)

−2g′[G−1(−2u)](G−1)′′(−2u)(−2)

−g′′[G−1(u)][(G−1)′(u)]2 − g′[G−1(u)](G−1)′′(u)
= 4g′′[G−1(−2u)][(G−1)′(−2u)]2 + 4g′[G−1(−2u)](G−1)′′(−2u)

−g′′[G−1(u)][(G−1)′(u)]2 − g′[G−1(u)](G−1)′′(u).

Under assumption (H5), for u > 0 we have

g′′[G−1(−2u)] > 0, g′′[G−1(u)] < 0.

Therefore, H ′′(u) > 0 if we can show that

(G−1)′′(−2u) > 0 and (G−1)′′(u) < 0 for u > 0.(3.16)

The above holds by using (H5) since

(G−1)′′(u) =
h′′(G−1(u))(G−1)′(u)
[1− h′(G−1(u))]2

has the opposite sign from u. (Recall that G−1(u) has the same sign as u.)
This completes the proof.
To verify (A2) and (A4) in the case in which Γ = Z2, we need the following

condition.
(H6) h′(α) > 0, h′(α) + 3g′(α) < 1, where α = y±, z±.
The linearization of (1.1) at (z∗, y∗, y∗) with z∗ = z∓, y∗ = y± takes the form


1

τ
Ẋ1(t) =−X1(t) + h′1(z

∗)X1(t− 1)

− [g′(y∗)X2(t− 1) + g′(y∗)X3(t− 1)− 2g′(z∗)X1(t− 1)],

1

τ
Ẋ2(t) =−X2(t) + h′1(y

∗)X2(t− 1)

− [g′(y∗)X3(t− 1) + g′(z∗)X1(t− 1)− 2g′(y∗)X2(t− 1)],

1

τ
Ẋ3(t) =−X3(t) + h′1(y

∗)X3(t− 1)

− [g′(z∗)X1(t− 1) + g′(y∗)X2(t− 1)− 2g′(y∗)X3(t− 1)],

and the characteristic matrix becomes

∆(z∗,y∗,y∗)(τ, λ)

=


 A τg′(y∗)e−λ τg′(y∗)e−λ

τg′(z∗)e−λ B τg′(y∗)e−λ

τg′(z∗)e−λ τg′(y∗)e−λ B


 ,

where

A = λ+ τ − τ [h′(z∗) + 2g′(z∗)]e−λ,
B = λ+ τ − τ [h′(y∗) + 2g′(y∗)]e−λ.
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The isotypical decomposition of C
3 with respect to the above Γ = Z2 action is

C
3 = C

3
0 ⊕ C

3
1,

where

C
3
0 = {(x, y, y)T ;x, y ∈ C},

C
3
1 = {(0, z,−z)T ; z ∈ C}.

Therefore,

∆(z∗,y∗,y∗)(τ, λ)|C3
0
=

(
λ+ τ − τ [h′(z∗) + 2g′(z∗)]e−λ τg′(z∗)e−λ

2τg′(y∗)e−λ λ+ τ − τ [h′(y∗) + g′(y∗)]e−λ

)

and

∆(z∗,y∗,y∗)(τ, λ)|C3
1
= λ+ τ − τ [h′(y∗) + 3g′(y∗)]e−λτ .

It is already shown in the proof of Proposition 2.4 (i) that, under assumption (H6),
every zero of ∆(z∗,y∗,y∗)(τ, λ)|C3

1
has negative real part. Note that ∆(z∗,y∗,y∗)(τ, λ)|C3

0
is

the characteristic matrix for the following linear system of delay differential equations:{
1
τ u̇1(t) = −u1(t) + [h′(z∗) + 2g′(z∗)]u1(t− 1)− g′(z∗)u2(t− 1),
1
τ u̇2(t) = −u2(t) + [h′(y∗) + g′(y∗)]u2(t− 1)− 2g′(y∗)u1(t− 1).

(3.17)

Let V (u1, u2) = max{|u1|, |u2|}. For a given solution of (3.17), if at some t ≥ 0 we
have V (u1(t− 1), u2(t− 1)) ≤ V (u1(t), u2(t)) = |u1(t)|, then

1

τ
D+V (u1(t), u2(t))

≤ −|u1(t)|+ [h′(z∗) + 2g′(z∗)]|u1(t− 1)|+ g′(z∗)|u2(t− 1)|
≤ −|u1(t)|+ [h′(z∗) + 3g′(z∗)]|u1(t)|
= −[1− h′(z∗)− 3g′(z∗)]V (u1(t), u2(t)).

Similarly, for a given solution of (3.17), if at some t ≥ 0 we have V (u1(t−1), u2(t−1)) ≤
V (u1(t), u2(t)) = |u2(t)|, then

1

τ
D+V (u1(t), u2(t)) ≤ −[1− h′(y∗)− 3g′(y∗)]V (u1(t), u2(t)).

Therefore, using assumption (H6) and the Razumikhin-type LaSalle invariance princi-
ple in [27, 29], we can conclude that all solutions of (3.17) converge to zero as t→ ∞.
This shows that all zeros of det∆(z∗,y∗,y∗)(τ, λ)|C3

0
have negative real parts. In partic-

ular, det∆(z∗,y∗,y∗)(τ, 0)|C3
0
�= 0, and this determinant is exactly the determinant of

the derivative of the corresponding F at (z∗, y∗, y∗). This shows that (A2) is satisfied
and that (A3) is trivial.

Therefore, even in the case in which Γ = Z2, we have

M∗ = {(τk, 0, βk); k ≥ 1}.

Thus M∗ is discrete and (A4) holds. Using similar arguments as for Theorem 3.5, we
can get the following theorems.
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858 LIHONG HUANG AND JIANHONG WU

Theorem 3.7. For each τ > τk, k ≥ 1, system (1.1) has one standing wave
satisfying x1(t) = x1(t − ω

2 ) and x2(t) = x3(t − ω
2 ) for t ∈ R, where ω is a period of

x and 1
k < ω < 2.

Theorem 3.8. For each τ > τk, k ≥ 1, system (1.1) has one mirror-reflecting
wave satisfying x2(t) = x3(t) and xi(t) = xi(t + ω) for t ∈ R, i = 1, 2, 3, where
1
k < ω < 2.

Remark 1. Due to theD3-symmetry, Theorems 3.5–3.8 in fact imply the existence
of three standing waves, three mirror-reflecting waves, and two discrete waves for each
τ > τk. Note also that

τ1 < τ2 < τ3 < · · · .

The above results establish the existence of 3k standing waves, 3k mirror-reflecting
waves, and 2k discrete waves. It should be mentioned that, in the above theorems,
ω is not necessarily the minimal period, and several branches of waves may coincide
at some values of τ . In terms of the following five remarks, we can claim that for
τ > τ1, system (1.1) has three orbits of waves—one orbit of discrete waves, one
orbit of standing waves, and one orbit of mirror-reflecting waves—and only the last
two orbits may coincide through the mechanism of periodic doubling. Discounting
the above possible coincidence, system (1.1) has at least five wave solutions for each
τ > τ1.

Remark 2. A branch of nontrivial discrete waves and a branch of mirror-reflecting
waves cannot coincide at any value of τ , for otherwise there exists a nontrivial ω-
periodic solution x of (1.1) such that xi(t) = xi−1(t± ω

3 ) for i(mod 3) and xj(t) = xk(t)
for some j �= k. For simplicity, let x2(t) = x3(t). Then x2(t) = x3(t ± ω

3 ) implies
that ω

3 is also a period of x2 = x3, and thus x1(t) = x2(t ± ω
3 ) = x2(t)(= x3(t)). So

x must be spatially homogeneous. As supx∈R |h′(x)| < 1 implies that y = 0 is the
global attractor of the scalar equation y′(t) = −y(t) + h(y(t− τ)) for any τ ≥ 0 (see,
for example, [16]), we have x = 0, which is a contradiction.

Remark 3. A branch of nontrivial discrete waves and a branch of standing waves
cannot coincide at any value of τ , for otherwise there exists a nontrivial ω-periodic
solution x of (1.1) such that xi(t) = xi−1(t± ω

3 ) for i(mod 3) and, say, x1(t) = x1(t+
ω
2 ), x2(t) = x3(t+

ω
2 ). Then x2(t) = x3(t+

ω
3 ) = x3(t+

ω
2 ). (The other case in which

x2(t) = x3(t− ω
3 ) can be dealt similarly.) Therefore, ω6 is also a period of x3 (and thus

x2). Consequently, x2(t) = x3(t+
ω
3 ) = x3(t) and x1(t) = x2(t+

ω
3 ) = x2(t) = x3(t).

Again, x must be spatially homogeneous, and thus x = 0, which is a contradiction.
Remark 4. A branch of nontrivial discrete waves of the form xi(t) = xi−1(t− ω

3 )
and a branch of discrete waves of the form xi(t) = xi−1(t+

ω
3 ) for i(mod 3) and t ∈ R

cannot coincide at any value of τ . Again, this can be verified by way of contradiction.
Namely, if there is a discrete wave satisfying simultaneously xi(t) = xi−1(t +

ω
3 ) =

xi−1(t− ω
3 ) for i(mod 3), then 2ω

3 and ω are periods of x, and so is ω
3 . This, together

with xi(t) = xi−1(t − ω
3 ), implies that x is spatially homogeneous, and thus x = 0,

which is a contradiction.
Remark 5. As no nontrivial spatially homogeneous periodic solution exists, it is

clear that a branch of nontrivial mirror-reflecting waves satisfying xi(t) = xj(t) for
some i �= j and a branch of mirror-reflecting waves satisfying xl(t) = xm(t) for some
l �= m cannot coincide at any value of τ if (i, j) �= (l,m). Similarly, a branch of
nontrivial standing waves with xi(t) = xi(t+

ω
2 ), xj(t) = xk(t+

ω
2 ) for i �= j �= k and

a branch of nontrivial standing waves with xi∗(t) = xj∗(t +
ω
2 ), xj∗(t) = xk∗(t +

ω
2 )

for i∗ �= j∗ �= k∗ cannot coincide at any value of τ if (i, j, k) �= (i∗, j∗, k∗).
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Remark 6. Unfortunately, the above arguments cannot be extended to rule out
the possibility of the coincidence of a branch of nontrivial ω-periodic mirror-reflecting
waves with xi(t) = xj(t) for some i �= j and a branch of ω-periodic standing waves
with xi(t) = xj(t+

ω
2 ) for some i �= j. In fact, such a coincidence may occur at some

value of τ where periodic doubling happens: xi(t) = xi(t+
ω
2 ), i(mod 3), t ∈ R.
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