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In this paper, we derive a lattice model for a single species in a one-dimensional patchy
environment with infinite number of patches connected locally by diffusion. Under the
assumption that the death and diffusion rates of the mature population are age independent,
we show that the dynamics of the mature population is governed by a lattice delay
differential equation with global interactions. We study the well-posedness of the initial-
value problem and obtain the existence of monotone travelling waves for wave speeds
c > c∗. We show that the minimal wave speedc∗ is also the asymptotic speed of
propagation, which depends on the maturation period and the diffusion rate of mature
population monotonically.
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1. Introduction

One of the recently developed continuous models for the dynamics of a single-species
population involving age structures and spatial diffusion is given by

∂

∂t
u(t, a, x) + ∂

∂a
u(t, a, x) = D̄(a)

∂2

∂x2
u(t, a, x) − d̄(a)u(t, a, x), x ∈ R, t > 0,

(1.1)

whereu(t, a, x) is the population density (at timet , agea and spatial locationx) per unit
age and per unit spatial length,̄D(a) is the diffusion coefficient accounting for spatial
dispersion and̄d(a) is the death rate at agea � 0. See Metz & Diekmann (1986) and So
et al. (2001).

The total mature population per unit spatial length at timet and locationx is given by

w(t, x) =
∫ ∞

r
u(t, a, x) da,

wherer is the length of maturation period. The equation forw can be derived using (1.1)
as

∂

∂t
w(t, x) = u(t, r, x) + D̄m

∂2

∂x2
w(t, x) − d̄mw(t, x), x ∈ R, t > 0, (1.2)
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410 P. WENG ET AL.

assuming thatD̄(a) = D̄m and d̄(a) = d̄m are constants whena � r and assuming
u(t, ∞, x) = 0. The functionu(t, r, x) can be obtained by Fourier transform (see Soet al.,
2001 for the derivation) and is given by

u(t, r, x) = 1√
4πᾱ

e− ∫ r
0 d̄(z) dz

∫ ∞

−∞
b(w(t − r, y))e− (x−y)2

4ᾱ dy, (1.3)

whereᾱ = ∫ r
0 D̄(z) dz, andb : R+ := [0,∞) → R+ is the birth rate.

Equation (1.2) with (1.3) and

b(w) = pwe−aw w � 0, (1.4)

was studied by Soet al. (2001), where it was shown that if 1< µp/dm � e, then there
exist monotone travelling waves connecting two spatially homogeneous equilibria

w0 = 0 and w+ = 1

a
ln

µp

dm
, (1.5)

whereµ = exp{− ∫ r
0 d̄(z) dz}.

The expression ofu(t, r, x) in (1.3) involves an infinite integral which can be
interpreted as a weighted spatial averaging ofw over the entire spatial domain to account
for the non-local interaction, and such a weight satisfies, for every fixedx ∈ R,

1√
4πᾱ

∫ ∞

−∞
e− (x−y)2

4ᾱ dy = 1. (1.6)

It should be mentioned that the idea of weighted spatial averaging in a model with spatial
diffusion and time delay was first introduced by Britton (1990) and further developed in
Gourley & Britton (1996) and Gourley (2000).

In this paper, we develop a discrete analogue of model (1.1). Namely, we consider
a single-species population with two age classes distributed over a patchy environment
consisting of all integer nodes of a one-dimensional lattice. We consider only local
interaction through spatial dispersal among adjacent patches. Nevertheless, due to this
dispersal of the immature population during the maturation period we show that the
dynamics of the mature population is governed by a lattice delay differential system with
global interactions. It seems that this is the first time such a lattice system is rigorously
derived and the global interaction term with delay adds new difficulties to the qualitative
study of the model.

We perhaps should emphasize that by a ‘patch’, we do not necessarily mean a ‘water-
surrounded’ island. In fact, the environment favoured by blowfly and their larvae (sheep
farms, etc.) might be considered patchy. We refer to Wilcox (1980) and DeAngeliset al.
(1986) for a long list of ecological scenarios with patch environment.

In Section 2, we derive the lattice system rigorously and prove some of the properties
of the system of delay lattice differential equations. In Section 3, we prove the existence of
monotone travelling waves which connect the trivial equilibrium 0 and a positive spatially
homogeneous equilibriumw+ under the assumption that the birth functionb is monotone
in [0, w+]. The classical monotone iteration technique is used in the analysis, with the
construction of a pair of upper and lower solutions of the associated characteristic equation
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ASYMPTOTIC SPEED OF PROPAGATION OF WAVE FRONTS 411

at the trivial equilibrium. Analysis of the characteristic equation also provides the value of
the minimal wave speedc∗ whose biological significance will be illustrated in Section
5, where we show that the minimal wave speedc∗ is in fact the asymptotic speed of
propagation. Our analysis is a discrete analog of those employed in Diekmann (1978,
1979) and Thieme (1979), which is extended here to handle the global interaction with
delay. In Section 4, we discuss the isotropic property of the solutions to the associated
Cauchy initial-value problem.

Finally, we mention that more details on other models of population dynamics with
interaction between patches and the existence of travelling waves can be found in Smith
& Thieme (1991), Soet al. (2000, 2001), Wu (1996), Wu & Zou (2001) and references
therein, while discussions on asymptotic speed can be found in Aronson (1977), Aronson &
Weinberger (1975, 1978), Diekmann (1978, 1979), Thieme (1979) and Weinberger (1978).

2. Model derivation

Let u j (t, a) denote the density of the population of the species of thej th patch at time
t � 0 and agea � 0. Using D(a) andd(a) to denote the diffusion rate and death rate
of the population at agea, and assuming the patches are located at the integer nodes
of a one-dimensional lattice and assuming spatial diffusion occurs only at the nearest
neighbourhood and is proportional to the difference of the densities of the population at
adjacent patches, we obtain the following model:

∂

∂t
u j (t, a) + ∂

∂a
u j (t, a) = D(a)[u j+1(t, a) + u j−1(t, a) − 2u j (t, a)] − d(a)u j (t, a),

t > 0, j ∈ Z := {0,±1,±2, . . . }.
(2.1)

It is natural to assume that

u j (t, ∞) = 0 for t � 0, j ∈ Z.

Clearly,

w j (t) =
∫ ∞

r
u j (t, a) da

is the total mature population at thej th patch. From (2.1), we obtain

dw j (t)

dt
=

∫ ∞

r

∂

∂t
u j (t, a) da

=
∫ ∞

r

{
− ∂

∂a
u j (t, a) + D(a)[u j+1(t, a) + u j−1(t, a) − 2u j (t, a)]

−d(a)u j (t, a)

}
da.

(2.2)

Assuming that the diffusion coefficient and the death rate of mature population are age
independent, i.e.

Dm = D(a), dm = d(a) for a ∈ [r, ∞)
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412 P. WENG ET AL.

are constants, we obtain from (2.2) and (2.1) that

dw j (t)

dt
= u j (t, r) + Dm[w j+1(t) + w j−1(t) − 2w j (t)] − dmw j (t) for t > 0. (2.3)

In order to obtain a closed system forw j , we need to evaluateu j (t, r). For fixeds � 0, let

V s
j (t) = u j (t, t − s) for s � t � s + r . (2.4)

Since only the mature population can reproduce, we have

V s
j (s) = u j (s, 0) = b(w j (s)),

whereb : R+ → R+ is the birth function. From (2.1),

d

dt
V s

j (t) = ∂

∂t
u j (t, a)|a=t−s + ∂

∂a
u j (t, a)|a=t−s

= D(t − s)[V s
j+1(t) + V s

j−1(t) − 2V s
j (t)] − d(t − s)V s

j (t). (2.5)

Note that the grid functionV s
j (t) can be viewed as the discrete spectral of a

periodic function vs(t, ω) by discrete Fourier transform (see Goldberg (1965) and
Titchmarsh (1962)):

vs(t, ω) = 1√
2π

∞∑
j=−∞

e−i( jω)V s
j (t), (2.6)

V s
j (t) = 1√

2π

∫ π

−π

ei( jω)vs(t, ω) dω, (2.7)

where i is the imaginary unit. Applying the discrete Fourier transform (2.6) to (2.5) yields

∂

∂t
vs(t, ω) = [D(t − s)(eiω + e−iω − 2)− d(t − s)]vs(t, ω)

= [−4D(t − s) sin2(
ω

2
) − d(t − s)]vs(t, ω). (2.8)

This equation can be solved easily as

vs(t, ω) = e−4 sin2( ω
2 )

∫ t
s D(z−s) dz−∫ t

s d(z−s) dzvs(s, ω)·
Using the inverse discrete Fourier transform (2.7) we obtain

V s
j (t) = 1√

2π
e− ∫ t

s d(z−s) dz
∫ π

−π

ei( jω)−4αs sin2( ω
2 )vs

s (ω) dω,

whereαs = ∫ t
s D(z − s) dz. Noting thatV s

j (s) = u j (s, 0) = b(w j (s)), by (2.6), we obtain

vs(s, ω) = 1√
2π

∞∑
k=−∞

e−i(kω)b(wk(s)).
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ASYMPTOTIC SPEED OF PROPAGATION OF WAVE FRONTS 413

Hence,

V s
j (t) = 1

2π
e− ∫ t

s d(z−s) dz
∞∑

k=−∞
b(wk(s))

∫ π

−π

ei[( j−k)ω]−4αs sin2( ω
2 ) dω. (2.9)

Let

s = t − r, µ = e− ∫ r
0 d(z) dz, α =

∫ r

0
D(z) dz.

Then (2.9) yields

u j (t, r) = µ

2π

∞∑
k=−∞

βα( j − k)b(wk(t − r)), (2.10)

where

βα(l) =
∫ π

−π

ei(lω)−4α sin2( ω
2 ) dω = 2e−ν

∫ π

0
cos(lω)eν cosω dω (ν := 2α),

(2.11)

for anyl ∈ Z. The following lemma describes the properties ofβα(l).

LEMMA 2.1 Letβα(l) be given in (2.11). Then

(i) βα(l) = βα(|l|) for l ∈ Z, that is,βα(l) is an isotropic function for anyα � 0;

(ii) 1
2π

∑∞
l=−∞ βα(l) = 1;

(iii) βα(l) � 0 if α = 0 andl ∈ Z; βα(l) > 0 if α > 0 andl ∈ Z.

Proof. The conclusion of (i) is obvious. Now we show conclusion (ii). Define

gα(ω) = e−4α sin2( ω
2 ), aα

l = 1

π

∫ π

−π

cos(lω)gα(ω) dω.

Noting thatgα(ω) is an even function ofω, we know thataα
l , l = 0,1,2, . . . , are the

coefficients of the Fourier series ofgα(ω) andaα
l = aα−l , thus we obtain

1

2π

∞∑
k=−∞

βα(l) = aα
0

2
+

∞∑
l=1

aα
l

= aα
0

2
+

∞∑
l=1

aα
l cos(l · 0)

= gα(0) = 1

by using the Fourier convergence theorem. This proves (ii).
Whenα = 0, thenβα(0) = 1 andβα(l) = 0 for l = ±1,±2, . . . . The conclusion of

(iii) clearly holds. Whenα > 0, the conclusion (iii) is equivalent to

fl(ν) :=
∫ π

0
cos(lω)eν cosω dω > 0 for ν > 0, l ∈ No := {0,1,2, . . . } (2.12)

by using the isotropic property offl .
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414 P. WENG ET AL.

A simple differentiation procedure and applications of triangle identities yield, for any
integerm � 1, the following:

d fl(ν)

dν
= ∫ π

0 cos(lω) cosω eν cosω dω = 1
2[ fl+1(ν) + fl−1(ν)],

d2 fl(ν)

dν2
= 1

4
[ fl+2(ν) + 2 fl(ν) + fl−2(ν)],

d3 fl(ν)

dν3
= 1

8
[ fl+3(ν) + 3 fl+1(ν) + 3 fl−1(ν) + fl−3(ν)],

···
dm fl(ν)

dνm
= 1

m

[
fl+m(ν) + m fl+m−2(ν) + m(m − 1)

2
fl+m−4(ν) + · · ·

+m(m − 1) · · · (m − k + 1)

k
fl+m−2k(ν) + · · · + m fl−m+2(ν) + fl−m(ν)

]
.

(2.13)

Therefore,

f0(0) = π, fl(0) = 0, l �= 0 andl ∈ No,

f ′
1(0) = π

2
, f ′

l (0) = 0, l �= 1 andl ∈ No,

f ′′
2 (0) = π

4
, f ′′

0 (0) = π

4
, f ′′

l (0) = 0, l �= 0,2 andl ∈ No,

f (3)
3 (0) = π

8
, f (3)

1 (0) = π

8
, f (3)

l (0) = 0, l �= 1,3 andl ∈ No,

and in general, form, n ∈ No,

f (m)
m (0) = π

2m
, f (m)

m−2(0) = mπ

2m
, . . . , f (m)

0 (0) = m(m − 1) · · · (m − n + 1)π

2mn! ,

f (m)
l (0) = 0, l �= 0,2, . . . , m and l ∈ No, if m = 2n;

f (m)
m (0) = π

2m
, f (m)

m−2(0) = mπ

2m
, . . . , f (m)

1 (0) = m(m − 1) · · · (m − n + 1)π

2mn! ,

f (m)
l (0) = 0, l �= 1,3, . . . , m and l ∈ No, if m = 2n + 1.

(2.14)

Let

νl = sup{ν̄ | ν ∈ (0, ν̄), fl(ν) > 0}.

We want to show thatνl = ∞ for l ∈ No.
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ASYMPTOTIC SPEED OF PROPAGATION OF WAVE FRONTS 415

Since

f0(ν) =
∫ π

0
eν cosω dω > 0 for ν > 0,

f1(ν) =
∫ π

0
cosω eν cosω dω =

∫ π
2

0
cosω eν cosω dω +

∫ π

π
2

cosω eν cosω dω

=
∫ π

2

0
cosω eν cosω dω −

∫ π
2

0
cosω e−ν cosω dω > 0 for ν > 0,

(2.15)

we know thatν0 = ∞ andν1 = ∞. By (2.14), we obtain

f2(0) = 0, f (2n−1)
2 (0) = 0, f (2n)

2 (0) > 0 for n ∈ N := {1,2, . . . },

which implies f (m)
2 (ν) > 0 and is strictly increasing in a right neighbourhood ofν = 0 for

anym ∈ No. Thusν2 > 0. We claim thatν2 = ∞. Otherwise,ν2 < ∞ and

f2(ν) > 0 for ν ∈ (0, ν2), f2(ν2) = 0, f ′
2(ν2) � 0.

According to the property off ′
2 near zero, there existsa1 ∈ (0, ν2) such thatf ′

2(a1) = 0.
But

f ′
2(a1) =

∫ π

0
cos(2ω)cosω ea1 cosω dω.

Note that cos(2ω)is symmetric aboutω = π
2 , and cosω is symmetric about the point

(π
2 , 0). Thus, cos(2ω)cosω is symmetric about the point(π

2 , 0). On the other hand,
ea1 cosω is strictly decreasing on[0, π]. Consequently, it is impossible to havef ′

2(a1) = 0.
Therefore,ν2 = ∞ must hold.

Wenow considerf3(ν). We havefrom (2.14) that

f3(0) = f ′
3(0) = f ′′

3 (0) = 0, f (2n−1)
3 (0) > 0, f (2n)(0) = 0 for n � 2.

Similarly, we derive that

f (m)
3 (ν) > 0 for smallν > 0 andm � 2,

and consequently,
f ′
3(ν) > 0, f3(ν) > 0 for smallν > 0.

If ν3 �= ∞, then there isa2 ∈ (0, ν3) such that

f ′
3(a2) =

∫ π

0
cos(3ω)cosω ea2 cosω dω = 0.

But again cos(3ω) is symmetric about the point(π
2 , 0), and thus a similar argument as

above shows thatf ′
3(a2) = 0 is impossible. Therefore,ν3 = ∞.

Continuing the above procedure, we can obtainνm = ∞ for m ∈ No. This completes
the proof. �
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416 P. WENG ET AL.

3. Existence of travelling waves

In this section, we assume that the birth functionb : R+ → R+ satisfies the following
properties:
(Hb): b is continuous and

(i) b(0) = 0, b′(0) > dm
µ

, b(w) � b′(0)w for w ∈ R+;

(ii) b is non-decreasing on[0, K ], andµb(w) = dmw has a unique solutionw+ ∈
(0, K ].

Note thatµ = exp(− ∫ r
0 d̄(z) dz) and henceb′(0) > dm/µ holds only when

∫ r
0 d̄(z) dz

is sufficiently small. In the case this term is large (this is particularly true if the maturation
time is too long), then system (2.3) will not have a non-zero equilibrium and we suspect
that every solution of (2.3) converges to zero, though this has not been verified yet.

A travelling wave of (2.3) is a solution of (2.3) of the form

w j (t) = φ(s), (3.1)

wheres = j + ct andc > 0 is the wave speed. Substituting (3.1) into (2.3) yields

c
dφ(s)

ds
= Dm[φ(s + 1)+ φ(s − 1)− 2φ(s)] − dmφ(s)

+ µ

2π

∞∑
l=−∞

βα(l)b(φ(s + l − cr)). (3.2)

Denoting the characteristic equation of (3.2) atw0 := 0 by ∆(λ,c, w0) = 0, we have

∆(λ, c, w0) ≡ −cλ + Dm(eλ + e−λ − 2)− dm + b′(0)µ

2π

( ∞∑
l=−∞

βα(l)eλl

)
e−λcr , (3.3)

which can be simplified as follows. Let

S(α) = 1

2π

∞∑
l=−∞

βα(l)eλl = 1

π

∫ π

0

( ∞∑
l=−∞

eλl cos(lω)

)
e−4α sin2( ω

2 ) dω, (3.4)

then

dS(α)

dα
= 1

π

∞∑
l=−∞

eλl
∫ π

0
cos(lω)

[
−4 sin2

(ω

2

)]
e−4α sin2( ω

2 ) dω

= 2

π

∞∑
l=−∞

eλl
∫ π

0
cos(lω)(cosω − 1)e−4α sin2( ω

2 ) dω

= 1

π

∞∑
l=−∞

eλl
∫ π

0
{cos[(l + 1)ω] + cos[(l − 1)ω] − 2 cos(lω)}e−4α sin2( ω

2 ) dω

= S(α)
(
e−λ + eλ − 2

) ·
SinceS(0) = 1,

S(α) = exp{[e−λ + eλ − 2]α} = e2(coshλ−1)α. (3.5)
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ASYMPTOTIC SPEED OF PROPAGATION OF WAVE FRONTS 417

Thus, we obtain
1

2π

∞∑
l=−∞

βα(l)eλl = e2(coshλ−1)α. (3.6)

Therefore, we have

∆(λ, c, w0) = b′(0)µe2α(coshλ−1)−λcr − cλ + Dm(eλ + e−λ − 2)− dm .

Differentiating with respect toλ, we obtain

∂

∂λ
∆(λ, c, w0) = b′(0)µ(2αsinhλ − cr)e2α(coshλ−1)−λcr − c + Dm(eλ − e−λ),

and

∂2

∂λ2
∆(λ, c, w0) = b′(0)µ(2αsinhλ − cr)2e2α(coshλ−1)−λcr

+b′(0)µ(2αcoshλ)e2α(coshλ−1)−λcr + Dm(eλ + e−λ).

Since ∂2

∂λ2 ∆(λ, c, w0) > 0 for λ ∈ R, the graph of∆(λ, c, w0) as a function ofλ ∈ R is
convex. Furthermore, it can be easily verified that

lim
λ→∞ ∆(λ, c, w0) = +∞, ∆(0,c, w0) = b′(0)µ− dm > 0,

∂

∂λ
∆(λ, c, w0)|λ=0 = − (

b′(0)µr + 1
)

c < 0
(3.7)

when c > 0 and (Hb) holds. In addition, we can show that∆(λ, 0, w0) > 0 and
∆(λ, ∞, w0) < 0 for any givenλ, therefore we can make the following observations.

LEMMA 3.1 There exists a pair ofc∗ andλ∗ such that

(i) ∆(λ∗, c∗, w0) = 0, ∂
∂λ

∆(λ∗, c∗, w0) = 0;

(ii) for 0 < c < c∗ and anyλ > 0, ∆(λ, c, w0) > 0;

(iii) for any c > c∗, the equation∆(λ, c, w0) = 0 has two positive real roots 0< λ1 <

λ2, and there existsε0 > 0 such that for anyε ∈ (0, ε0) with

0 < λ1 < λ1 + ε < λ2,

we have
∆(λ1 + ε, c, w0) < 0. (3.8)

Wenow defineC = C(R, [0, K ]), and

S =
{

φ ∈ C : (i) φ(s) is non-decreasing fors ∈ R,

(ii) lim
s→−∞ φ(s) = w0, lim

s→∞ φ(s) = w+,

}

and an operator onC as

H(φ)(s) = µ

2π

∞∑
l=−∞

βα(l)b(φ(s + l − cr)), φ ∈ C, s ∈ R.

The following lemma summarizes some useful properties ofH .
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LEMMA 3.2 Assume thatb : R+ → R+ satisfies(Hb). Then we have

(i) if φ ∈ S, andφ(s) � 0 for s ∈ R, thenH(φ)(s) � 0 for s ∈ R;

(ii) if φ ∈ S, thenH(φ)(s) is non-decreasing fors ∈ R;

(iii) H(ψ)(s) � H(φ)(s) for s ∈ R provided thatψ, φ ∈ C andψ(s) � φ(s) � K for
s ∈ R.

Proof. If φ, ψ ∈ C andψ(s) � φ(s) � K for s ∈ R, then

ψ(s + l − cr) � φ(s + l − cr) � K for s ∈ R, l ∈ Z·
Therefore, by the positivity ofβα(l) and monotonicity ofb on [0, K ], we have

H(φ)(s) � H(ψ)(s) for s ∈ R.

This proves (iii). The proofs of (i) and (ii) are straightforward. �

DEFINITION 3.1 A function U ∈ C is called an upper solution of (3.2) if it is
differentiable almost everywhere (a.e.) and satisfies the inequality

cU ′(s) � Dm[U (s + 1)+ U (s − 1)− 2U (s)] − dmU (s) + H(U )(s) a.e. inR.

Similarly, a functionL ∈ C is called a lower solution of (3.2) if it is differentiable almost
everywhere and satisfies

cL ′(s) � Dm[L(s + 1)+ L(s − 1)− 2L(s)] − dm L(s) + H(L)(s) a.e. inR.

Suppose that

U (s) =
{

w+, s � 0,

eλ1sw+, s � 0,
(3.9)

and

L(s) =
{

0, s � 0,

ζ(1 − eεs)eλ1s, s � 0,
(3.10)

whereλ1, ε are given as in Lemma 3.1, andζ > 0 is chosen so thatL(s) � U (s) for
s ∈ R. Clearly, we have 0� L(s) � U (s) � w+ � K andL(s) �≡ 0 for s ∈ R.

LEMMA 3.3 U given by (3.9) andL given by (3.10) are a pair of upper and lower solutions
of (3.2).

Proof. If s � 0, then we have from (iii) of Lemma 3.2 and the fact that1
2π

∑∞
−∞ βα(l) = 1

and b(w) � b(w+) for w � w+ the following:

−c
dU (s)

ds
+ Dm[U (s + 1)+ U (s − 1)− 2U (s)] − dmU (s) + H(U )(s)

� 0 + Dm(w+ + w+ − 2w+) − dmw+ + b(w+)µ

2π

∞∑
−∞

βα(l) = 0.
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Note thatU (s) � eλ1sw+ for s ∈ R andb(φ) � b′(0)φ for φ � 0. Therefore, ifs � 0,
then

−c
dU (s)

ds
+ Dm[U (s + 1)+ U (s − 1)− 2U (s)] − dmU (s) + H(U )(s)

� −cλ1eλ1sw+ + Dmw+[eλ1(s+1) + eλ1(s−1) − 2eλ1s]

−dmw+eλ1s + b′(0)µ

2π

∞∑
−∞

βα(l)U (s + l − cr)

� eλ1sw+
{

−cλ1 + Dm[eλ1 + eλ1 − 2] − dm + b′(0)µ

2π

∞∑
−∞

βα(l)eλ1(l−cr)

}

= 0.

Hence,U is an upper solution of (3.2).
Note thatL(s) � 0 and thusH(L)(s) � 0 for s ∈ R. Therefore, fors � 0, we have

−c
dL(s)

ds
+ Dm[L(s + 1)+ L(s − 1)− 2L(s)] − dm L(s) + H(L)(s) � 0.

Note also thatζ(1 − eεs)eλ1s � 0 for s � 0 and

L(s) � ζ(1 − eεs)eλ1s =: h(s) for s ∈ R.

Therefore,
H(L)(s) � H(h)(s) for s ∈ R.

Consequently, ifs � 0, then

−c
dL(s)

ds
+ Dm[L(s + 1)+ L(s − 1)− 2L(s)] − dm L(s) + H(L)(s)

� −cλ1ζeλ1s + c(λ1 + ε)ζe(ε+λ1)s + Dm[ζ(1 − eε(s+1))eλ1(s+1)

+ζ(1 − eε(s−1))eλ1(s−1) − 2ζ(1 − eεs)eλ1s] − dmζ(1 − eεs)eλ1s + H(h)(s)

= eλ1s∆(λ1, c, w0) − ζ∆(λ1 + ε, c, w0)e(λ1+ε)s > 0.

Hence,L is a lower solution of (3.2). This completes the proof. �

Wenow consider the following equivalent form of (3.2):

dφ(s)

ds
+ δφ(s) = F(φ)(s), (3.11)

where

F(φ)(s) =
(

δ − dm

c
− 2Dm

c

)
φ(s) + Dm

c
[φ(s + 1)+ φ(s − 1)] + 1

c
H(φ)(s),

andδ > 0 is chosen so that

δ − dm

c
− 2Dm

c
> 0.
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Then,F(φ)(s) � F(ψ)(s) for s ∈ R provided thatφ(s) � ψ(s) for s ∈ R. Moreover,

F(w0) = δw0, F(w+) = δw+.

For bounded solutionsφ : R → R, (3.11) is equivalent to

φ(s) = e−δs
∫ s

−∞
eδt F(φ)(t) dt. (3.12)

It is thus natural to define an operatorT : S → C by

(T φ)(s) = e−δs
∫ s

−∞
eδt F(φ)(t) dt, φ ∈ S, t ∈ R. (3.13)

And it is straightforward to verify the following lemma.

LEMMA 3.4 The operatorT defined in (3.13) has the following properties:

(i) if φ ∈ S, thenT φ ∈ S;

(ii) if φ is an upper (a lower) solution of (3.2), thenφ(s) � (T φ)(s) (φ(s) � (T φ)(s))
for s ∈ R;

(iii) if φ(s) � ψ(s) for s ∈ R, then(T φ)(s) � (T ψ)(s) for s ∈ R ;

(iv) if φ is an upper (a lower) solution of (3.2), thenT φ is also an upper (a lower) solution
of (3.2).

We now construct a series of functions by the following iterative scheme:Un =
T Un−1, n � 1· with U0 = U . By Lemma 3.4, we have

w0 � L(s) � · · · � Un(s) � Un−1(s) � · · · � U (s) � w+.

Using Lebesgue’s dominated convergence theorem, we know that the limit function
U∗(s) = lim

n→∞ Un(s) exists and is a fixed point ofT . This gives a solution of (3.2).

Furthermore,U∗ lies in S and is non-decreasing, and satisfies

lim
s→−∞ U∗(s) = w0, lim

s→∞ U∗(s) = w+. (3.14)

Summarizing the above discussions, we obtain the following existence theorem of
travelling waves.

THEOREM 3.1 Assume thatb : R+ → R+ satisfies(Hb). Then there existsc∗ > 0, such
that for everyc > c∗, (2.3) has a monotone travelling wave solutionφ : R → R satisfying
the boundary condition

lim
s→−∞ φ(s) = w0, lim

s→∞ φ(s) = w+.
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FIG. 1. The graph ofc∗ = c∗(r) as a function ofr is a decreasing curve andx∗(r) → 0 whenr → 30, where
b′(0) = 2, di = 0·1, dm = 0·1, Di = 1, Dm = 1, α = r , µ = exp(−r).

REMARK 3.1 The value ofc∗ is given by Lemma 3.1. For reasons to be explained in
Section 5, it is important to know how its value depends on the parameters involved. This
can be easily achieved numerically using Maple. For example, let

b′(0) = 2, di = 0·1, Di = 1, α =
∫ r

0
Di da = r, µ = e− ∫ r

0 di da = e−r ,

dm = 0·1, and fixDm = 1. Then we can solve the system

∆(λ, c, w0) = 0,
∂

∂λ
∆(λ, c, w0) = 0 (3.15)

to obtain a functionc∗(r), and we find thatc∗ = c∗(r) is a decreasing function ofr � 0, as
shown in Fig. 1. Similarly, if we fixr = 2, and solve the system (3.15) forc∗ = c∗(Dm),
we find thatc∗ = c∗(Dm) is an increasing function ofDm , see Fig. 2.

4. Existence and isotropic properties of IVBs

In this section, we shall investigate the existence and isotropic properties of solutions for
the initial-value problem of model (2.3) withu j (t, r) defined in (2.10). For the convenience
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FIG. 2. The graph ofc∗ = c∗(Dm ) as a function ofDm is an increasing curve, whereb′(0) = 2, r = 2, di =
0·1, dm = 0·1, Di = 1, α = 2, µ = exp(−2).

of discussion, we first list some notation to be used:

BN = { j ∈ N | | j | � N , N ∈ N},
C+

K [−r, 0] = C([−r, 0], [0, K ]), C+
K [−r, T ) = C([−r, T ), [0, K ]),

w j (t) = w(t, j), j ∈ Z,

W (t) = W (t, ·) = {w j (t)} j∈Z,

suppW (t, ·) = { j | w(t, j) �= 0} is the support ofW (t, ·),
W (t) � V (t) if w j (t) � v j (t) for j ∈ Z,

W (t) 
 V (t) if W (t) � V (t) andw j (t) > v j (t) for j ∈ suppV (t, ·).

Also we sayW is isotropic on an intervalI if w j (t) = w− j (t) for j ∈ Z andt ∈ I .

In the remaining part of this paper, we assume that the birth functionb has the following
properties:
(H ′

b): b : R+ → R+ is continuous and

(i) b(0) = 0, b′(0) > dm
µ

, |b(w) − b(v)| � b′(0)|w − v| for w, v ∈ R+;

(ii) b is non-decreasing on[0, K ], andµb(w) = dmw has a unique solutionw+ ∈
(0, K ];

(iii) µb(w) > dmw for w ∈ (0, w+), andµb(w) < dmw for w ∈ (w+, ∞).

Clearly, the birth functionb(w) = pwe−aw in Nicholson’s blowfly model satisfies the
above assumptions, when the parameters are in appropriate ranges.
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The initial-value problem of (2.3) can be written as


w j (t) = e−δtw j (0)+
∫ t

0
e−δ(t−s){Dm[w j+1(s) + w j−1(s)]

+ µ

2π

∞∑
l=−∞

βα(l)b(wl+ j (s − r))} ds, j ∈ Z, t � 0,

w j (t) = wo
j (t), j ∈ Z, t ∈ [−r, 0],

(4.1)

whereδ = 2Dm +dm , and wo
j (t), t ∈ [−r, 0], j ∈ Z are given initial data. A simple change

of variable yields an equivalent form of (2.3) as

w j (t) = e−δtw j (0)+
∫ t

0
e−δs{Dm[w j+1(t − s) + w j−1(t − s)]

+ µ

2π

∞∑
l=−∞

βα(l)b(wl+ j (t − s − r))} ds, j ∈ Z, t � 0. (4.2)

The existence and isotropic properties of the solution to the initial-value problem is given
by the following theorem.

THEOREM 4.1 For any given function

W o = {wo
j } j∈Z, wo

j ∈ C+
K [−r, 0], j ∈ Z,

(4.1) has a unique solutionW (t) = {w j (t)} j∈Z with w j ∈ C+
K [−r, ∞). If W o is isotropic

on Z on [−r, 0], thenW is isotropic onR+.

Proof. For W o = {wo
j } j∈Z with wo

j ∈ C+
K [−r, 0] and for everyT ∈ (0,∞], define a set

ST = {W = {w j } j∈Z| w j ∈ C+
K [−r, T ), w j (t) = wo

j (t), t ∈ [−r, 0]}
and an operatorFT = {FT

j } j∈Z on ST , where for everyW ∈ ST , j ∈ Z,

FT
j [W ](t) =




e−δtw j (0)+
∫ t

0
e−δ(t−s){Dm[w j+1(s) + w j−1(s)]

+ µ

2π

∞∑
l=−∞

βα(l)b(wl+ j (s − r))} ds, j ∈ Z, t � 0,

wo
j (t), i ∈ Z, t ∈ [−r, 0]·

Clearly, for fixedT > 0, FT [W ](t) is continuous int ∈ [−r, T ). Note that ifW ∈ ST ,
then we have

0 � FT
j [W ](t) � e−δt K + [2Dm K + µb(K )]

∫ t

0
e−δ(t−s) ds

� e−δt K + 1

δ
[2Dm K + dm K ](1 − e−δt ) = K ,

for t ∈ [0,T ) and j ∈ Z. Therefore,FT (ST ) ⊆ ST .
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For anyW ∈ ST andλ > 0, define a norm as follows:

‖W‖λ := sup
t∈[0,T ), j∈Z

|w j (t)|e−λt .

For anyW, W̄ ∈ ST , let φ j (t) = w j (t) − w̄ j (t) andΦ(t) = {φ j (t)} j∈Z, then fort � 0 we
have

FT
j [W ](t) − FT

j [W̄ ](t)

=
∫ t

0
e−δ(t−s){Dm[φ j+1(s) + φ j−1(s)]

+ µ

2π

∞∑
l=−∞

βα(l)[b(wl+ j (s − r)) − b(w̄l+ j (s − r))]} ds,

=
∫ t

0
e−δ(t−s) Dm[φ j+1(s) + φ j−1(s)] ds

+




µ

2π

∞∑
l=−∞

βα(l)
∫ t−r

0
e−δ(t−s−r)[b(wl+ j (s)) − b(w̄l+ j (s))] ds, t − r > 0,

0, t − r � 0.

Whent − r > 0, using property (i) in(H ′
b), we have

|FT
j [W ](t) − FT

j [W̄ ](t)| �
∫ t

0
e−δ(t−s) Dm[|φ j+1(s)| + |φ j−1(s)|] ds

+µb′(0)

2π

∞∑
l=−∞

βα(l)
∫ t−r

0
e−δ(t−s−r)|φl+ j (s)| ds

which leads to

|FT
j [W ](t) − FT

j [W̄ ](t)|e−λt � Dm

∫ t

0
e−λse−λ(t−s)[|φ j+1(s)| + |φ j−1(s)|] ds

+µb′(0)

2π

∞∑
l=−∞

βα(l)
∫ t−r

0
e−λse−λ(t−s)|φl+ j (s)| ds.

Thus
‖FT [W ](t) − FT [W̄ ](t)‖λ

� 2Dm‖Φ‖λ

∫ t

0
e−λ(t−s) ds + µb′(0)‖Φ‖λ

∫ t−r

0
e−λ(t−s) ds

= 2Dm

λ
‖Φ‖λ(1 − e−λt ) + µb′(0)

λ
‖Φ‖λ(e

−λr − e−λt ).

(4.3)

Since

lim
λ→∞

2Dm

λ
(1 − e−λt ) + µb′(0)

λ
(e−λr − e−λt ) = 0 (4.4)

and ST is a Banach space with norm‖ · ‖λ, we have from (4.3) and (4.4) thatFT is a
contracting map and hence has a unique fixed pointW in ST if λ > 0 is sufficiently large.
This shows that a unique solution of (4.1) exists on[0,T ] for any T > 0, which leads to
the uniqueness and existence of solutionW to (4.1) on[0,∞).
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The isotropic property of the solution on[−r, ∞) starting from an isotropic initial data
W o on [−r, 0] can be verified by noting that the subspace ofSI

T of ST , consisting of all
elements which are isotropic on[−r, ∞), is closed andFT (SI

T ) ⊂ SI
T . �

5. Asymptotic speed of wave propagation

To start this section, we first rewrite∆(λ, c, 0) = 0 as

1 = 1

δ + λc

[
Dm(eλ + e−λ) + µb′(0)e2α(coshλ−1)−λcr

]
. (5.1)

Let

Lc(λ) = 1

δ + λc

[
Dm(eλ + e−λ) + µb′(0)e2α(coshλ−1)−λcr

]
,

then the minimum speed defined in Lemma 3.1 can also be written as

c∗ := inf{c > 0| Lc(λ) = 1 for someλ ∈ R+}·
Define

L̄c(λ) = 1

δ + λc

[
Dm(eλ + e−λ) + µb′(0)e2α(coshλ−1)

]
,

c̄∗ = inf{c > 0| L̄c(λ) = 1 for someλ ∈ R+},
∆̄(λ, c, 0) = Dm(eλ + e−λ) + µb′(0)e2α(coshλ−1) − δ − λc.

A similar analysis to that for Lemma 3.1 shows that there existsλ̄∗ ∈ R+ such that
∆̄(λ̄∗, c̄∗, 0) = 0 and(λ̄∗, c̄∗) is the solution of

∆̄(λ̄∗, c̄∗, 0) = 0,
∂

∂λ
∆̄(λ̄∗, c̄∗, 0) = 0. (5.2)

In the following, we will show thatc∗ is the asymptotic speed of wave propagation in the
sense that the solution of (4.1) satisfies

lim
t→∞ sup{wj (t)| | j | � ct} = 0 for c ∈ (c∗, ∞), (5.3)

lim inf
t→∞ min{w j (t)| | j | � ct} � w+ for c ∈ (0,c∗), (5.4)

if the initial function W o satisfies some biologically realistic conditions to be specified in
the following theorems.

THEOREM 5.1 Assume that

(i) W o = {wo
j } j∈Z, with wo

j ∈ C+
K [−r, 0] for j ∈ Z, is isotropic on[−r, 0], and there

exists an integer̄N ∈ N such that suppW o(t, ·) ⊆ BN̄ for t ∈ [−r, 0];
(ii) r > 0 is sufficiently small so that

e(δ+λ∗c̄∗)r − 1 − eδr � 0,

or
µb′(0)e2α(coshλ∗−1)[e(δ+λ∗c̄∗)r − 1 − eδr ] � Dm .
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Then for anyc > c∗, we have

lim
t→∞ sup{wj (t)| | j | � ct} = 0.

Proof. Define a sequence of maps by

W (n) = F∞[W (n−1)](t) for n ∈ N, t � −r, W (o)(t) = {w(o)
j (t)} j∈Z,

w
(o)
j (t) =

{
wo

j (t), t ∈ [−r, 0],
wo

j (0), t ∈ (0,∞).

ThenW (o) is isotropic and suppW (o)(t, ·) ⊂ BN̄ for t � −r . By an argument similar to
that for Theorem 4.1, we obtain the convergence of{W (n)} on [0,∞). Let

W (t) = lim
n→∞ W (n)(t), t ∈ [0,∞).

Then W is a solution of (4.1) with the isotropic property due to Lebesgue’s theorem of
dominated convergence.

Using the assumption onW (o), we can findM > 0 andN ∈ N such that

w
(o)
j (t)eλ j � MeλN for t � −r, j ∈ Z. (5.5)

Note thatLc(λ) < L̄c(λ) for any c > 0. In addition,L̄c(λ) and Lc(λ) are decreasing
functions ofc for anyλ > 0. As a result, we havec∗ < c̄∗. For anyc1 > c∗, there are two
possibilities:c1 > c̄∗ or c1 ∈ (c∗, c̄∗].
Case 1. c1 > c̄∗. Let c2 ∈ (c̄∗, c1), for t � 0, we have from (5.5) that

w
(1)
j (t)eλ( j−c2t)

= e−(δ+λc2)t
{
w

(o)
j (0)eλ j +

∫ t

0
Dm[w(o)

j+1(s)e
λ( j+1)e−λ + w

(o)
j−1(s)e

λ( j−1)eλ] ds

+ µ

2π

∞∑
l=−∞

βα(l)
∫ t

0
eδsb(w

(o)
l+ j (s − r))eλ( j+l)e−λl ds

}

� e−(δ+λc2)t
{

MeλN + Dm

∫ t

0
MeλN e(δ+λc2)s(e−λ + eλ) ds

+µb′(0)

2π
e2α(coshλ−1)MeλN

∫ t

0
e(δ+λc2)s ds

}

= e−(δ+λc2)t MeλN
{

1 + [Dm(e−λ + eλ) + µb′(0)e2α(coshλ−1)]
∫ t

0
e(δ+λc2)s ds

}
� MeλN [1 + L̄c2(λ)]·

(5.6)

By induction we obtain

w
(n)
j (t)eλ( j−c2t) � MeλN [1 + L̄c2(λ) + · · · + (L̄c2(λ))n]. (5.7)

Sincec2 > c̄∗, we can chooseλ > 0 such thatL̄c2(λ) < 1. For this choice ofλ, the right-
hand side of (5.7) is bounded from above uniformly forn. From (5.6) and the isotropic
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property ofW , we obtain that forj ∈ Z,

w j (t) � MeλN

1 − L̄c2(λ)
eλ(c2t− j),

for t � 0. Thus

w j (t) � MeλN

1 − L̄c2(λ)
eλ(c2t−| j |)·

Therefore, we have

sup{wj (t)| | j | � c1t} � MeλN

1 − L̄c2(λ)
eλ(c2−c1)t → 0 as t→ ∞

which leads to
lim

t→∞ sup{wj (t)| | j | � c1t} = 0, c1 > c̄∗.

Case 2.c1 ∈ (c∗, c̄∗]. By choosingc2 ∈ (c∗, c1) and an estimate similar to (5.6), we obtain,
for t � r , that

w
(1)
j (t)eλ( j−c2t) = e−(δ+λc2)t

{
w

(o)
j (0)eλ j

+
∫ t

0
Dmeδs[w(o)

j+1(s)e
λ( j+1)e−λ + w

(o)
j−1(s)e

λ( j−1)eλ] ds

+ µ

2π

∞∑
l=−∞

βα(l)
∫ r

0
eδsb(w

(o)
l+ j (s − r))eλ( j+l)e−λl ds

+ µ

2π

∞∑
l=−∞

∫ t

r
eδsb(w

(o)
l+ j (s − r))eλ( j+l)e−λl ds

}

� e−(δ+λc2)t
{

MeλN
[
1 + Dm

∫ t

0
e(δ+λc2)s(e−λ + eλ) ds

]

+µb′(0)e2α(coshλ−1)MeλN
∫ r

0
e(δ+λc2)s ds

+µb′(0)e2α(coshλ−1)−λc2r
∫ t

r
MeλN e(δ+λc2)s ds

}
� MeλN [1 + Lc2(λ)]

+ MeλN e−(δ+λc2)t

δ + λc2

{
µb′(0)e2α(coshλ−1)[e(δ+λc2)r − 1 − eδr ]

−Dm(e−λ + eλ)
}
.

(5.8)

Since the equation 1= Lc2(λ) has two positive solutionsλ1 < λ∗ < λ2, we can choose
λ ∈ (λ1, λ∗) so thatLc2(λ) < 1. By assumption (ii), we have

e(δ+λc2)r − 1 − eδr � e(δ+λ∗c̄∗)r − 1 − eδr � 0
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or
µb′(0)e2α(coshλ−1)[e(δ+λc2)r − 1 − eδr ] − Dm(e−λ + eλ)

� µb′(0)e2α(coshλ∗−1)[e(δ+λ∗c̄∗)r − 1 − eδr ] − Dm � 0,

and this, together with (5.8), leads to

w
(1)
j (t)eλ( j−c2t) � MeλN [1 + Lc2(λ)] for t � r .

Again by a similar argument and by induction, we have

w
(n)
j (t)eλ( j−c2t) � MeλN [1 + Lc2(λ) + · · · + (Lc2(λ))n] for t � r .

This shows
lim

t→∞ sup{wj (t)| | j | � c1t} = 0,

and completes the proof. �

In order to obtain (5.4), we follow the approaches used by Aronson (1977), Aronson
& Weiberger (1975, 1978), Diekmann (1979), Thieme (1979) and Weinberger (1978), to
develop a comparison principle and to construct a suitable sub-solution of (4.2).

For anyT > 0, we define a map onM∞ = {Φ = {φ j } j∈Z| φ j ∈ C+
K [−r, ∞)} by

ET = {ET
j } j∈Z,

where forΦ ∈ M∞, t � T, j ∈ Z,

ET
j [Φ](t) =

∫ T

0
e−δs{Dm[φ j+1(t − s) + φ j−1(t − s)]

+ µ

2π

∞∑
l=−∞

βα(l)b(φl+ j (t − s − τ))} ds.

LEMMA 5.1 Consider
ET [Φ](t) 
 Φ(t) for t � T, (5.9)

whereΦ ∈ M∞ satisfies

(i) for any t ′ > 0, there exists anN = N (t ′) ∈ N such that for anyt ∈ [0, t ′],
suppΦ(t, ·) ⊂ BN ;

(ii) if {(tn, jn)}∞n=1 ⊂ R+ × Z, jn ∈ suppΦ(tn, ·), and lim
n→∞(tn, jn) = (t0, j0), then

j0 ∈ suppΦ(t0, ·).
If there exists āt � 0 such that the solution of (4.2) satisfies

W (t̄ + t) 
 Φ(t) for t ∈ [0,T ],
then

W (t̄ + t) 
 Φ(t) for t ∈ [0,∞).

Proof. Let
t0 = sup{t� T | W (t̄ + t) 
 Φ(t)}.

If t0 < ∞, sinceW (t) is non-negative, there exists{(tn, jn)}∞n=1 such that
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(a) tn ↓ t0, n → ∞,

(b) jn ∈ suppΦ(tn, ·),
(c) w jn (t̄ + tn) � φ jn (tn).

Under assumption (i),{ jn} must be bounded. Thus,{ jn} is composed of finite integers and
hence contains a convergent sub-sequence, which is a constant sequence{ j0}. By (b) and
(c), we know thatj0 ∈ suppΦ(t0, ·) andw j0(t̄ + t0) � φ j0(t0).

Noting thatt0 � T andt̄ � 0, we obtain from the definition oft0 and (5.9) that

w j0(t̄ + t0) �
∫ T

0
e−δs

{
Dm[w j0+1(t̄ + t0 − s) + w j0−1(t̄ + t0 − s)]

+ µ

2π

∞∑
l=−∞

βα(l)b(w j0+l(t̄ + t0 − s − r))

}
ds

�
∫ T

0
e−δs

{
Dm[φ j0+1(t0 − s) + φ j0−1(t0 − s)]

+ µ

2π

∞∑
l=−∞

βα(l)b(φ j0+l(t0 − s − r))

}
ds

= ET
j0[Φ](t0) > φ j0(t0),

which is a contradiction. Therefore,t0 = ∞. This completes the proof. �

Defining Kc = Kc(h, T, N , λ) as

Kc(h, T, N , λ) =
∫ T

0
e−(δ+λc)s

{
Dm[e−λ + eλ] + µh

2π

∑
|l|�N

βα(l)eλl−λcr

}
ds

= 1 − e−(δ+λc)T

δ + λc

{
Dm[e−λ + eλ] + µh

2π

∑
|l|�N

βα(l)eλl−λcr

}
,

(5.10)

we have the following lemma.

LEMMA 5.2 For any c∈ (0,c∗), there existh ∈ (0,b′(0)),T > 0 andN ∈ N, such that

Kc(h, T, N , λ) > 1 for λ ∈ R. (5.11)

Proof. By the definition ofKc(h, T, N , λ), we have

Kc(h, T, N , −λ) � Kc(h, T, N , λ) for λ � 0.

Therefore, we only need to show that

Kc(h, T, N , λ) > 1 for λ � 0.

Weclaim that there existN0 > 0, λ0 > 0,h0 ∈ (0,b′(0)) andT0 > 0 such that

Kc(h, T, N , λ) > 1 for λ � λ0, N � N0, h � h0, andT � T0.

 at Y
ork U

niversity L
ibraries on January 21, 2016

http://im
am

at.oxfordjournals.org/
D

ow
nloaded from

 

http://imamat.oxfordjournals.org/


430 P. WENG ET AL.

In fact, since
1

2π

∞∑
l=−∞

βα(l)eλl = e2α(coshλ−1) � 1,

which holds uniformly forλ ∈ R, we can chooseN0 > 0 andh0 ∈ (0,b′(0)) (h0 can be
chosen arbitrarily), such that forN � N0 andh � h0, we have

µh

2π

∑
|l|�N

βα(l)eλl > 0.

Since

lim
λ→∞

eλ

λc∗ + δ
= ∞,

we can chooseT0 > 0 andλ0 > 0 such that forT � T0 andλ � λ0, we have

1 − e−(λc+δ)T � 1 − e−δT � 1 − e−δT0 > 0,

and
Dm

λc + δ
(1 − e−δT0)eλ � Dm

λ0c∗ + δ
(1 − e−δT0)eλ0 � 1.

Then forN � N0, T � T0, h � h0 andλ � λ0, we have

Kc(h, T, N , λ) >
Dm

λ0c∗ + δ
(1 − e−δT0)eλ0 � 1.

If (5.11) is not true, then there exist{hn}, {Tn}, {λn}, {Nn} satisfying hn ↑ b′(0),
Tn ↑ ∞, Nn ↑ ∞, {λn} ⊂ [0, λ0] and

Kc(hn, Tn, Nn, λn) � 1, n = 1,2, . . . .

Since{λn} is bounded, we can choose a sub-sequence{λnk } which has a finite limit, saȳλ.
By Fatou’s Lemma, we have

1 < Lc(λ̄) � lim inf
k→∞ Kc(hnk , Tnk , Nnk , λnk ) � 1,

which is impossible. This completes the proof. �
Wedefine a function with two parametersω, β as

q(y; ω, ζ ) =
{

e−ωy sin(ζy) for y ∈ [0, π
ζ
],

0 for y ∈ R/[0, π
ζ
].

Wehave the following lemma.

LEMMA 5.3 Letc ∈ (0,c∗). There existζ0 > 0, a continuous functioñω = ω̃(ζ ) defined
on [0, ζ0], and a positive numberδ1 ∈ (0,1) such that∫ T

0
e−δs

{
Dm[q(m + cs + 1)+ q(m + cs − 1)]

+µh

2π

∑
|l|�N

βα(l)q(m + l + cs + cr)

}
ds � q(m − δ1) (5.12)

for m ∈ Z, whereq(y) = q(y; ω̃(ζ ), ζ ).
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Proof. Define

L(λ) =
∫ T

0
e−δs

{
Dm[e−λ(cs+1) + eλ(cs−1)] + µh

2π

∑
|l|�N

βα(l)e−λ(l+cs+cr)

}
ds,

whereT, h, N are defined in Lemma 5.2. We can chooseN sufficiently large so that−N +
c∗(T + r) < 0. Using Lemma 5.2 we have

L(λ) = Kc(h, T, N , λ) > 1 for all λ ∈ R. (5.13)

Let λ = ω + iζ , we have

L(λ)|λ=ω+iζ = Re[L(λ)] + i Im[L(λ)],
where

Re[L(λ)] = Dm

∫ T

0
e−δs{e−ω(cs+1) cosζ(cs + 1)+ e−ω(cs−1) cosζ(cs − 1)}ds

+µh

2π

∑
|l|�N

βα(l)
∫ T

0
e−δse−ω(l+cs+cr) cosζ(l + cs + cr) ds,

Im[L(λ)] = −Dm

∫ T

0
e−δs{e−ω(cs+1) sinζ(cs + 1)+ e−ω(cs−1) sinζ(cs − 1)}ds

−µh

2π

∑
|l|�N

βα(l)
∫ T

0
e−δse−ω(l+cs+cr) sinζ(l + cs + cr) ds.

SinceL ′′(λ) > 0 and lim|λ|→∞ L(λ) = ∞, we conclude thatL(λ) can achieve its minimum,

say atλ = θ . Then we obtain

L ′(θ) = −Dm

∫ T

0
e−δs[(cs + 1)e−θ(cs+1) + (cs − 1)e−θ(cs−1)] ds

−µh

2π

∑
|l|�N

βα(l)
∫ T

0
e−δs(cs + l + cr)e−θ(cs+l+cr) ds = 0.

Wenow define a functionH = H(ω, ζ ) by{
H(ω, ζ ) = 1

ζ
Im[L(λ)] for ζ �= 0,

H(ω, 0) = lim
ζ→0

H(ω, ζ ) = L ′(ω).

ThenH(θ, 0) = 0 and
∂ H

∂ω
(θ, 0) = L ′′(θ) > 0.

The implicit function theorem implies that there existζ1 > 0 and a continuous function
ω̃ = ω̃(ζ ) defined on[0, ζ1] with ω̃(0) = θ such thatH(ω̃(ζ ), ζ ) = 0 for ζ ∈ [0, ζ1].
Hence, we have

Im[L(λ)]|λ=ω̃(ζ )+iζ = 0 for ζ ∈ [0, ζ1]. (5.14)
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By (5.13), we have
Re[L(ω + iζ )]|ω=θ,ζ=0 = L(θ) > 1.

Thus there existsζ2 > 0 such that

Re[L(ω̃(ζ ) + iζ )] > 1 for ζ ∈ [0, ζ2]. (5.15)

Let 0 < ζ � ζ0 := min
{
ζ1, ζ2,

π
N+c∗(T +r)

}
. For m ∈ [0, π

ζ
], |l| � N ands ∈ [0,T ], we

have

−π

ζ
< −N � l � m + l + cs + cr � m + l + c(T + r) � N + c∗(T + r) + π

ζ
� 2π

ζ
.

Since

sinζ(m + l + c(s + r)) < 0 for m + l + c(s + r) ∈
(

−π

ζ
, 0

)
∪

(
π

ζ
,

2π

ζ

)
, (5.16)

for m ∈ [0, π
ζ
], we havefrom (5.16) that

∫ T

0
e−δs{Dm[q(m + cs + 1)+ q(m + cs − 1)]

+µh

2π

∑
|l|�N

βα(l)q(m + l + cs + cr)} ds

� Dm

∫ T

0
e−δs

{
e−ω̃(ζ )(m+cs+1) sin(ζ(m + cs + 1))

+e−ω̃(ζ )(m+cs−1) sin(ζ(m + cs − 1))
}

ds

+µh

2π

∫ T

0
e−δs

∑
|l|�N

βα(l)e−ω̃(ζ )(m+l+cs+cr) sin(ζ(m + l + cs + cr)) ds.

(5.17)

Using sinζ(m + a) = sinζm cosζa + sinζa cosζm for any a, we obtain from (5.17),
(5.14) and (5.15) that∫ T

0
e−δs{Dm[q(m + cs + 1)+ q(m + cs − 1)]

+µh

2π

∑
|l|�N

βα(l)q(m + l + cs + cr)} ds

= e−ω̃(ζ )m sin(ζm)Re[L(λ)]|λ=ω̃(ζ )+iζ + e−ω̃(ζ )m cos(ζm)Im[L(λ)]|λ=ω̃(ζ )+iζ

� e−ω̃(ζ )m sin(ζm) = q(m).
(5.18)

We should emphasize that (5.18) is a strict inequality form ∈ (0, π
ζ
). On the other

hand, ifm = 0 or m = π
ζ

, (5.18) is a strict inequality by using (5.16) and (5.17). In fact, if
m = π

ζ
andl = N , we have

m + l + c(s + r) >
π

ζ
.
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Similarly, if m = 0 andl = −N , we have

m + l + c(s + r) < −N + c∗(T + r) < 0.

However, for both cases, we have

q(m + l + cs + sr) = 0 and sin(ζ(m+ l + cs + sr)) < 0,

and thus (5.17) is a strict inequality. Therefore, form ∈ [0, π
ζ
], we have

∫ T

0
e−δs

{
Dm[q(m + cs + 1) +q(m + cs − 1)]

+µh

2π

∑
|l|�N

βα(l)q(m + l + cs + cr)

}
ds > q(m).

(5.19)

Note that ifm �∈ [0, π
ζ
], we still have (5.19) sinceq(m) = 0 in this case. Thus we have

(5.19) form ∈ R. Inequality (5.12) follows immediately from the continuity consideration.
This completes the proof. �

Now we consider the following family of functions:

R(y; ω, ζ, γ ) : = max
η�−γ

q(y + η; ω, ζ )

=



M for y � γ + ρ,

q(y − γ ; ω, ζ ) for γ + ρ � y � γ + π
ζ
,

0 for y � γ + π
ζ
,

(5.20)

where

M = M(ω, ζ ) := max

{
q(y; ω, ζ )| 0 � y � π

ζ

}
, (5.21)

andρ = ρ(ω, ζ ) is the point where the above maximumM is achieved. The following
lemma gives a sub-solution of (4.2).

LEMMA 5.4 Letc ∈ (0,c∗) be given, then there existT > 0, ζ > 0, ω ∈ R, D > 0 and
σ0 > 0 such that for anyσ ∈ (0, σ0) and for anyt � T

ET [σΦ](t) 
 σΦ(t) for t � T, (5.22)

whereΦ(t) = {φ j (t)} j∈Z, φ j (t) = R(| j |; ω, ζ, D + ct).

Proof. Let h ∈ (0,b′(0)),T > 0, N > 0 be chosen such thatKc(h, T, N , λ) > 1 for all
λ ∈ R. According to Lemma 5.3, we can chooseζ > 0, ω = ω̃(ζ ) andδ1 ∈ (0,1) such
that (5.12) holds.

Let σh be the smallest positive root of the equationb(w) = hw. Thenb(w) > hw for
w ∈ (0, σh). Chooseσ0 ∈ (0, σh M−1), whereM is defined in (5.21). Letσ ∈ (0, σ0) and
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t � T , then

ET
j [σΦ](t) = σ

∫ T

0
e−σ s {

Dm[φ j+1(t − s) + φ j−1(t − s)]

+ µ

2π

∞∑
l=−∞

βα(l)b(φ j+l(t − s − r))

}
ds

� σ

∫ T

0
e−σ s {

Dm[φ j+1(t − s) + φ j−1(t − s)]

+ µ

2π

∑
|l|�N

βα(l)b(φ j+l(t − s − r))

}
ds. (5.23)

Wenow distinguish two cases.
Case (i) | j | � D + ρ + c(t − T ) − N . If |l| � N , s ∈ [0,T ], then

|l + j | � D + ρ + c(t − T ) � D + ρ + c(t − s)

and consequently

ET
j [σΦ](t) = σ

{
2Dmσ M + µ

2π

∞∑
l=−∞

βα(l)b(σ M)

} ∫ T

0
e−δs ds

> σ M Kc(h, T, N , 0) > σM · (5.24)

Case (ii)D + ρ + c(t − T ) − N � | j | � π
ζ

+ D + ct . If |l| � N andt � T , then

|l + j | = (l2 + 2L j + j2)
1
2 � | j | + l j

| j | + l2

2| j |
� | j | + l j

| j | + N 2

D + ρ − N
� | j | + l j

| j | + δ1,

providedD � N2

2δ1
− ρ + N . Sinceφ j (t) is decreasing with respect to| j |, we havefrom

 at Y
ork U

niversity L
ibraries on January 21, 2016

http://im
am

at.oxfordjournals.org/
D

ow
nloaded from

 

http://imamat.oxfordjournals.org/


ASYMPTOTIC SPEED OF PROPAGATION OF WAVE FRONTS 435

(5.23) that

ET
j [σΦ](t) � σ

∫ T

0
e−δs

{
Dm[ max

η�−D−c(t−s)
q(| j | + 1 + δ1 + η)

+ max
η�−D−c(t−s)

q(| j | − 1 + δ1 + η)]

+µh

2π

∑
|l|�N

βα(l) max
η�−D−c(t−s−r)

q(| j | + l + δ1 + η)

}
ds

= σ

∫ T

0
e−δs

{
Dm[ max

η�−D−ct
q(| j | + 1 + cs + δ1 + η)

+ max
η�−D−ct

q(| j | − 1 + cs + δ1 + η)]

+µh

2π

∑
|l|�N

βα(l) max
η�−D−ct

q(| j | + l + cs + cr + δ1 + η)

}
ds

� σ max
η�−D−ct

q(| j | + η).

Combining (i) and (ii), we obtain (5.22) and complete the proof. �

The following result is an easy observation from (4.1).

LEMMA 5.5 Assume thatW = {w j } j∈Z is a solution of (4.1), and assume that

(i) W o = {wo
j } j∈Z, with wo

j ∈ C+
K [−r, 0], is isotropic on[−r, 0];

(ii) there existsN1 ∈ N such that

suppW o(t, ·) ⊂ BN1 for t ∈ [−r, 0], and wo
j (0) > 0 for | j | � N1.

Then there existst0 > r such that

w j (t) > 0 for t ∈ [t0, ∞) and j ∈ N.

LEMMA 5.6 Let{Qn(t, N )} be defined byQ1(t, N ) ≡ a ∈ [0, w+), and

Qn+1(t, N ) = 1

δ
[2Dm Qn(t, N )+ µ

2π

∑
|l|�N

βα(l)b(Qn(t, N ))](1−e−δt ), n = 1,2, . . . .

(5.25)

Then for anyε > 0, there exist̄t(ε), N̄ (ε) andn̄(ε) such that for anyt � t̄(ε), N � N̄ (ε)

andn � n̄(ε),
Qn(t, N ) � w+ − ε.

Proof. First, we note that
2Dmw+ + µb(w+)

δ
= w+,
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and

0 < Q1(t, N ) < w+, 0 <
1

δ
(1 − e−δt ) < 1 and 0<

1

2π

∑
|l|�N

βα(l) < 1.

Therefore, we have by induction that 0< Qn(t, N ) � K for all n ∈ N, t � 0 andN ∈ N.
Let ε > 0. Since

2Dmw + µb(w) > (2Dm + dm)w for 0 < w < w+,

we have

sup

{
2Dmw + µb(w)

(2Dm + dm)w
| 0 < w � w+ − ε

}
> 1.

Chooseα(ε) < 1 so that

α(ε)[2Dmw + µb(w)] > (2Dm + dm)w for 0 < w � w+ − ε.

Define a sequence as follows:

M1 ≡ a, Mn+1 = α(ε)

δ
[2Dm Mn + µb(Mn)], n � 2.

Then we have the following observations:

(i) if 0 < Mn � w+ − ε, thenMn+1 � Mn ;

(ii) if Mn > w+ − ε, then

Mn+1 � α(ε)

δ
[2Dm(w+ − ε) + µb(w+ − ε)] � w+ − ε.

We now claim thatMn > w+ − ε for largen. If not, then using (ii) we can assume that
Mn � w+ − ε for all n. Then by (i) lim

n→∞ Mn = M < ∞ exists and we have

M = α(ε)

δ
[2Dm M + µb(M)],

which is impossible. Therefore, there isn̄(ε) > 0 such thatMn > w+ − ε for all n > n̄(ε).
Choosēt(ε) andN̄ (ε) such that

1

2π
(1 − e−δt̄(ε))

∑
|l|�N̄ (ε)

βα(l) � α(ε).

Then, for anyt � t̄(ε) andN � N̄ (ε), we haveQ1(t, N ) = a � M1 and

Qn+1(t, N ) � 1

δ
(1 − e−δt̄(ε))

[
2Dm Qn(t, N ) + µ

2π

∑
|l|�N̄ (ε)

βα(l)b(Qn(t, N ))

]

>
1

δ
α(ε)[2Dm Qn(t, N ) + µb(Qn(t, N ))].

Using the monotonicity ofb on [0, K ] and by induction, we obtainQn(t, N ) � Mn �
w+ − ε for all n > n̄(ε). This completes the proof. �
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THEOREM 5.2 Assume thatW o satisfies all conditions in Lemma 5.5. Then for anyc ∈
(0,c∗), we have

lim inf
t→∞ min{w j (t)| | j | � ct} � w+.

Proof. Fix c1 ∈ (0,c∗) and choosec2 ∈ (c1, c∗). According to Lemma 5.4, there exist
T > 0, ζ > 0, ω ∈ R, D > 0 andσ0 > 0 such that for anyσ ∈ (0, σ0) and anyt � T ,

ET [σΦ](t) 
 σΦ(t),

whereΦ(t) = {φ j (t)} j∈Z, φ j (t) := R(| j |; ω, ζ, D + c2T ). By Lemma 5.5, we can find
t0 > r so that

w j (t) > 0 for t ∈ [t0, t0 + T ], | j | � D + c2T + π

ζ
.

Then we can chooseσ1 ∈ (0, σ0) such that

σ1M < w+, w j (t0 + t) > σ1φ j (t) for t ∈ [0,T ]. (5.26)

Weinfer from the comparison principle (Lemma 5.1) that (5.26) holds fort � 0. Hence by
(5.20) and the definition ofφ j (t), we have

w j (t0 + t) � σ1M for t � 0, | j | � ρ + D + c2t . (5.27)

By (4.2), we obtain

w j (t0 + t) �
∫ t

0
e−δs{Dm[w j+1(t0 + t − s) + w j−1(t0 + t − s)]

+ µ

2π

∑
|l|�N

βα(l)b(wl+ j (t0 + t − s − r))} ds. (5.28)

Let a = σ1M = Q1(t, N ) and letQn(t, N ) be defined in Lemma 5.6. Then by induction
and using (5.27)–(5.28), we have

w j (t0 + t) � Qn(t, N ) for t � 0, | j | � ρ + D + c2t − nN .

Therefore, for anyε > 0 we can find̄t(ε), N̄ (ε) andn̄(ε) such that

w j (t) � w+ − ε for t � t0 + t̄(ε), | j | � ρ + D + c2(t − t0) − n̄(ε)N̄ (ε). (5.29)

Define

t1 = max

{
t0 + t̄(ε),

n̄(ε)N̄ (ε) + c2t0 − ρ − D

c2 − c1

}
.

Sincec2 > c1, we havefrom (5.29) that

w j (t) � w+ − ε for t � t1, | j | � c1t .

This completes the proof. �
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6. Conclusions and remarks

We derived a lattice model for a single species in a one-dimensional patchy environment
with infinite number of patches connected locally by diffusion, under the assumption that
the death and diffusion rates of the mature population are age independent. It was shown
that the dynamics of the mature population is governed by a lattice delay differential
equation with global interactions.

It was shown that the initial-value problem is well posed and that the model system
admits a family of monotone travelling waves with wave speedsc > c∗ under the technical
condition (Hb). It was established that the minimal wave speedc∗ coincides with the
asymptotic speed of propagation.

We numerically investigated the dependence of the minimal wave speed on the
maturation period and the diffusion rate of the mature population, and we illustrated that the
minimal wave speedc∗ as a function of the maturation periodr is a decreasing function that
approaches zero whenr is sufficiently large, andc∗ is a monotonically increasing function
of the diffusion rate of the mature population.

Many of the aforementioned results were obtained under the assumptionb′(0) >

dm/µ. This assumption holds only when
∫ r

0 d̄(z) dz is sufficiently small. In the case that
this term is large (this is particularly true if the maturation time is too long), then the model
system will not have a non-zero equilibrium and we suspect that every solution of the
model converges to zero, though this has not been verified yet.
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