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In this paper, we derive a lattice model for a single species in a one-dimensional patchy
environment with infinite number of patches connected locally by diffusion. Under the
assumption that the death and diffusion rates of the mature population are age independent,
we show that the dynamics of the mature population is governed by a lattice delay
differential equation with global interactions. We study the well-posedness of the initial-
value problem and obtain the existence of monotone travelling waves for wave speeds
C > C4. We show that the minimal wave speey is also the asymptotic speed of
propagation, which depends on the maturation period and the diffusion rate of mature
population monotonically.
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1. Introduction

One of the recently developed continuous models for the dynamics of a single-species
population involving age structures and spatial diffusion is given by
0 0 D ” d R 0
ﬁu(t, a, x) + Eu(t, a, x) = (a)ﬁu(t, a, x) —d@u(,a,x), xeR,t>0,
1.1)
whereu(t, a, x) is the population density (at tinte agea and spatial locatiox) per unit
age and per unit spatial lengtB,(a) is the diffusion coefficient accounting for spatial
dispersion andl(a) is the death rate at age> 0. See Metz & Diekmann (1986) and So
et al. (2001).
The total mature population per unit spatial length at tiraed locatiorx is given by

o
w(t, x):/ u(t, a, x) da,
r

wherer is the length of maturation period. The equationdocan be derived using (1.1)
as
] - 92 _
—w(t, X) =u(t,r,X) + Dp—w(t, X) —dnhw(,x), xeR,t>0, 1.2)
ot ax2
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assuming thaD(a) = Dy, andd(a) = dm are constants whea > r and assuming
u(t, oo, x) = 0. The functioru(t, r, x) can be obtained by Fourier transform (seesfa .,
2001 for the derivation) and is given by

x=y)?

uct,r, x) = %e‘fé d@) dz/oo b(w(t —r,y)e @ dy, (1.3)

4o _

wherea = [ D(2) dz, andb : R} := [0,00) — Ry is the birth rate.
Equation (1.2) with (1.3) and

b(w) = pwe™® w >0, 1.4)

was gudied by Soet al. (2001), where it was shown that if & up/dy < e, then there
exist monotone travelling waves connecting two spatially homogeneous equilibria
1 up
0 +
=0 and ==In—, 15
w w 2" G (1.5)

wherep = exp{— [3 d(2) dz}.

The expression olu(t,r, x) in (1.3) involves an infinite integral which can be
interpreted as a weighted spatial averagingyadver the entire spatial domain to account
for the non-local interaction, and such a weight satisfies, for every fixedR,

! /OO e gy = 1. (1.6)
NZE=

It should be mentioned that the idea of weighted spatial averaging in a model with spatial
diffusion and time delay was first introduced by Britton (1990) and further developed in
Gourley & Britton (1996) and Gourley (2000).

In this paper, we develop a discrete analogue of model (1.1). Namely, we consider
a dngle-species population with two age classes distributed over a patchy environment
consisting of all integer nodes of a one-dimensional lattice. We consider only local
interaction through spatial dispersal among adjacent patches. Nevertheless, due to this
dispersal of the immature population during the maturation period we show that the
dynamics of the mature population is governed by a lattice delay differential system with
global interactions. It seems that this is the first time such a lattice system is rigorously
derived and the global interaction term with delay adds new difficulties to the qualitative
study of the model.

We perhaps should emphasize that by a ‘patch’, we do not necessarily mean a ‘water-
surrounded’ island. In fact, the environment favoured by blowfly and their larvae (sheep
farms, etc.) might be considered patchy. We refer to Wilcox (1980) and DeAmyelis
(1986) for a long list of ecological scenarios with patch environment.

In Section 2, we derive the lattice system rigorously and prove some of the properties
of the system of delay lattice differential equations. In Section 3, we prove the existence of
monotone travelling waves which connect the trivial equilibrium 0 and a positive spatially
homogeneous equilibrium™ under the assumption that the birth functlwis monotone
in [0, wt]. The classical monotone iteration technique is used in the analysis, with the
construction of a pair of upper and lower solutions of the associated characteristic equation
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at the trivial equilibrium. Analysis of the characteristic equation also provides the value of
the minimal wave speed, whose biological significance will be illustrated in Section

5, where we show that the minimal wave spexdis in fact the asymptotic speed of
propagation. Our analysis is a discrete analog of those employed in Diekmann (1978,
1979) and Thieme (1979), which is extended here to handle the global interaction with
delay. In Section 4, we discuss the isotropic property of the solutions to the associated
Cauchy initial-value problem.

Finally, we mention that more details on other models of population dynamics with
interaction between patches and the existence of travelling waves can be found in Smith
& Thieme (1991), Scet al. (2000, 2001), Wu (1996), Wu & Zou (2001) and references
therein, while discussions on asymptotic speed can be found in Aronson (1977), Aronson &
Weinberger (1975, 1978), Diekmann (1978, 1979), Thieme (1979) and Weinberger (1978).

2. Model derivation

Let uj(t, a) denote the density of the population of the species ofjthepatch at time

t > 0 and agea > 0. UsingD(a) andd(a) to denote the diffusion rate and death rate

of the population at age, and assuming the patches are located at the integer nodes
of a one-dimensional lattice and assuming spatial diffusion occurs only at the nearest
neighbourhood and is proportional to the difference of the densities of the population at
adjacent patches, we obtain the following model:

d ]
ﬁUj(t, a) + a—an(t, a) = D@[uj4a(t, @) + uj_1(t, @) — 2uj(t, a)] — d(@uj(t, a),

t>0,jezZ:={0,£1,+2,...}.
(2.1)
It is natural to assume that

Uj(t,o0)=0 fort>0,jeZ.
Clearly,
o0
wj(t)=/ uj(t,a)da
r
is the total mature population at thénh patch. From (2.1), we obtain

dwj (t) *©9
ST _/r auj(t,a)da

=/ { - aiauj(t, a) + D@[uj41(t, @) + uj_1(t,a) — 2uj(t,a)] (2.2)
r

—d(a)uj(t,a)} da.

Assuming that the diffusion coefficient and the death rate of mature population are age
independent, i.e.

Dm=D(@), dn=d@ foraelr,oo)
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are constants, we obtain from (2.2) and (2.1) that

dwj (t)
dt

=Uj(t,r) + Dm[wjy1(t) + wj_1(t) — 2wj )] —dmwj®) fort > 0. (2.3)

In order to obtain a closed system foy, we need to evaluaig; (t, r). For fixeds > 0, let
Vjs(t)ZUj(t,t—S) fors <t <s+r. (2.4)

Since only the mature population can reproduce, we have

VP(s) = uj(s, 0) = b(wj(9)),

whereb : Ry — R is the birth function. From (2.1),

il a
,(t)— u,(t )la=t-s + —— 2 uj(t, @)la=t-s

= D(t s)[V (D) + VS 1) — 2v O] —dt — s)Vs(t) (2.5)

dt

Note that the grid functlonV (t) can be viewed as the discrete spectral of a
periodic function vS(t, w) by dlscrete Fourier transform (see Goldberg (1965) and
Titchmarsh (1962)):

t, E e '(Jw)V t 2.6

where i is the imaginary unit. Applylng the discrete Fourier transform (2.6) to (2.5) yields

%vs(t, w)=[D(t —s)(€° +e7 —2)—d(t — 5)vS(t, w)

— [—4D(t —3) sinz(%) —d(t — 9)]v5, o). (2.8)
This equation can be solved easily as
VS(t, @) = g4siP(%) /s D(z-9) dz—[; d(z—9) 92, (s, w)-
Using the inverse discrete Fourier transform (2.7) we obtain

1 t T 5w
V() = - g Jsd@-s)az el(]w)—4assm2(§)vs ») dw.
j ( ) ,—27[ . S( )

whereag = fst D(z— s) dz. Noting thathS(s) = uj (s, 0) = b(wj(9)), by (2.6), we obtain

e8]

vs(S, @) = \/% > e bu(s)).
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Hence,

1 0 T H i H w
Vjs(t) _ 2_e— fdz-s)dz Z b(wk(s)) gl(i—kwl—das sir?(%) do. (2.9)
T k=—00 -7
Let '
s=t—r, p=e bd@dw a:/ D(2) dz.
0

Then (2.9) yields

O :
uj(t,r) = k;mﬁau — K)b(wk(t — 1)), (2.10)
where
Bu(l) = /n dlo—dasi’($) g, — ogv /ﬂ cos{w)e’ % dw (v :=2a),
o ° (2.11)

for anyl € Z. The following lemma describes the propertieggfl).

LEMMA 2.1 LetB, () be givenin (2.11). Then
(i) B () = B, (I for | € Z, that is,B, (1) is an isotropic function for any > 0;
(i) 77 3o Bu) = 1;
(i) Bx() > 0ifa =0andl € Z; B,(1) > Oifa > O andl € Z.

Proof. The conclusion of (i) is obvious. Now we show conclusion (ii). Define

T

Ou (@) = —Aarsi(3), af = %f cosl{w) gy (w) dw.

-7

Noting thatg, (w) is an even function ofo, we know thata*,| = 0,1,2,..., are the
coefficients of the Fourier series gf (w) anda* = a%,, thus we obtain
l o ag o0
il (D) =2 o
> k_z: Bull) =~ +Zay
=—00 =1
ag o0
i o
_?JrZa1 cos( - 0)

1
=G0 =1

by using the Fourier convergence theorem. This proves (ii).
Whena = 0, thenB,(0) = 1 andB, (1) = 0 forl = +1,+2,.... The conclusion of
(iii) clearly holds. Whenx > 0, the conclusion (iii) is equivalent to

fiw) := / cos{w)e’®*dw >0 forv >0, e N°:={0,1,2,...} (2.12)
0

by using the isotropic property df.
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A simple differentiation procedure and applications of triangle identities yield, for any
integerm > 1, the following:

T _ 5 costo) cosw &5 do = 3 f14200) + fi-10)],
d? f 1
d\l}g") = Z[fiv20) +200) + fia)],
d3f 1
dl g‘)) = —[fix3(v) + 3fl11(v) + 3f_1(v) + fi_3(v)],
v 8
dmf 1 1
#ﬂﬁ") == [f.m(u) +Mmfim-2(v) + % fim-a(v) +---
—1).---(m—-k+1
+m(m ) k(m + 1) fiom—2k() + -+ mfi_mi2(v) + fl—m(”):| :
(2.13)
Therefore,

fo(0)=m, f(0)=0, | £ 0and e N°,

£(0) = % £/(0)=0, | #1andl € N°,
£/(0) = %, £(0) = %, f//(0)=0, | #0,2andl € N°,
120 = %, 130 = %, f®(©0)=0,1+#1,3and eN°,

and in general, fom, n € N°,

mim—-1)---(m—n+1L)x
2mn| ’

T mr
2_m, 2_m,..
f™©0)=0,1#0,2,...,mandl e N°, if m=2n;

f(0) = 5 fa(0) = O =

mm-1)---(m—-n+ 1w
2mn! ’

T mrm
fr%m)(O): 2_m’ 2_m"

f™@©)=0,1 £1,3,...,mand| € N°, ifm=2n+1.

0 =20 7™ 0) =

(2.14)
Let

v =supp | v e (0,v), fi(v) > 0}.

We want to show thaty = oo for | € N°.
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Since

g
fo(v) = / %% dy >0 forv >0,
0

b4 % b1
f1(v) = / cosw €' 0% dw = / cosw €’ %% dg + / cosw €” %% dw
0 0 z
z z
= / cosw e’ 0% g — / cosw €V dy >~ 0 forv > 0,
0 0

(2.15)
we know thatvg = co andv; = oco. By (2.14), we obtain

f200)=0, 2" P =0, £?©0) >0 forneN:={1,2,...},

which implies fz(m)(v) > 0 and is strictly increasing in a right neighbourhood a£ 0 for
anym € N°. Thusv, > 0. We claim that, = co. Otherwisey,; < oo and

fa(v) > 0forv e (0, v2), fa(v2) =0, fy(v2) <O.

According to the property of; near zero, there existg € (0, v2) such thatf (a;) = 0.
But

fo(aq) = / c0S(2w)cosw €105 dg,
0

Note that cos(2w)s symmetric aboutr = %, and cos» is symmetric about the point
%,0). Thus, cos(2wgosw is symmetric about the point%, 0). Onthe other hand,
€1 0% s strictly decreasing of0, ]. Consequently, it is impossible to havg(a;) = 0.
Thereforey, = oo must hold.
We now considerfz(v). We havefrom (2.14) that

f3(0) = f3(0) = f5(0) =0, f°"P©) >0, f@©0)=0 forn> 2.
Similarly, we derive that
fgfm)(v) >0 forsmally > 0andm > 2,

and consequently,
f3(v) > 0, fa(v) >0 forsmallv > 0.

If v3 # o0, then there is € (0, v3) such that
fi(ap) = / c0S(3w)cosw 2% dg = 0.
0

But again co8w) is symmetric about the point;, 0), and thus a similar argument as
above shows that;(az) = 0 is impossible. Thereforeg = oo.

Continuing the above procedure, we can obtain= oo for m € N°. This completes
the proof. O
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3. Existence of travelling waves

In this section, we assume that the birth function R, — R, satisfies the following
properties:
(Hp): bis continuous and

() b©)=0, b(©0)>%, bw) <bOwforweRy;
(i) b is non-decreasing of0, K], and ub(w) = dmw has a unique solutiom™ €
(0, K1].

Note that = exp(— /3 d(2) dz) and hencd' (0) > dm/u holds only wheny; d(z) dz
is sufficiently small. In the case this term is large (this is particularly true if the maturation
time is too long), then system (2.3) will not have a non-zero equilibrium and we suspect
that every solution of (2.3) converges to zero, though this has not been verified yet.

A travelling wave of (2.3) is a solution of (2.3) of the form

wj () = (9), (3.1)
wheres = j + ct andc > 0 is the wave speed. Substituting (3.1) into (2.3) yields
d
XS _ pulp(s+ 1)+ d(s— 1) - 26(6)] - dn(®)

ds
m 0
+Z|;wﬁa(l)b(¢(s+l —cr)). (3.2)

Denoting the characteristic equation of (3.2)&t:= 0 by A(x,c, w® = 0, we have

A, c,w®) = —ch+ D€t +€* —2) — dm + b O)u ( Z ﬂa(l)e’“) e (3.3)
27

l=—00

which can be simplified as follows. Let

S(a) = % > Buhe! = % /On ( e cos(a))) e 4SIP(3) gy, 3.4)
l=—00 |=—00
then
dS@ _ 1 <~ o 7 (2 (O\] o—asiii(%)
= == l;m& /c; cos{w) [—4S|n2 (E)] e 2 dw
_2 Z et /n coslw)(cosw — 1)e4@SIP($) g,
S P 0
= % Z e /n{cos[{ + D] + cos[{ — 1)w] — 2 coslw)}e2*SP($) dq)
|=—00 0
=S) (e +€ -2)-
SinceS(0) = 1,

S(a) = exp{[e ! + & — 2]a} = e?Cosh—De, (3.5)

9T0Z ‘Tz Alenuer uo saLeiq 1 AISBAIN 30 A e /B10°SUIN0 [0 X0 FeueL 1//:dny WoJy papeojumod


http://imamat.oxfordjournals.org/

ASYMPTOTIC SPEED OF PROPAGATION OF WAVE FRONTS 417

Thus, we obtain
o0
zi > Bahe! = Heoshbe, (3.6)
T

l=—00

Therefore, we have
AL, ¢, w®) = b (Q)pefeCosm=—D—ier _ c3 + Di(e* +€* —2) — dn.

Differentiating with respect ta, we obtain
0 .
S A6 c w0 = b'(0)u(2asinhi — cr)e?Cosm-—D—icr _ ¢4 p (e —e™),

and

2
a—A(K, ¢, w%) = b/ (0)(2asinhy, — cr)2el¥Coshh—1)—cr

a2
+b'(0) (2 coshi) 22 Cos—D—Acr | p b 4 g4,
Sinceaa—sz(A, c,w? > 0forx e R, the graph ofA(x, ¢, w%) as a function oft € R is
convex. Furthermore, it can be easily verified that

A|im A, c, w®) = 400, A, c, w®) =bO)u—dn >0,
—00

d 0 ’ (3.7

whenc > 0 and (Hp) holds. In addition, we can show that(x, 0, w® > 0 and
A(x, 0o, w% < 0 for any giveni, therefore we can make the following observations.
LEMMA 3.1 There exists a pair af, andx, such that

() A, c w®) =0, AR, ¢, w0 =0;

(i) for0 < ¢ < ¢, and anyr > 0, A(x, ¢, w% > 0;

(iii) for any ¢ > c,, the equatiom (%, ¢, w®) = 0 has two positive real roots @ 11 <
A2, and there existgy > 0 such that for any € (0, ¢) with

O< Xt <Ar+e <Ay

we have
A +e,c,w’ <0. (3.8)

We now defineC = C(R, [0, K1), and

S={¢eC:

(i) ¢(s) is non-decreasing f& € R,
(i) lim ¢(s)=w’ lim ¢(s)=w",

and an operator o8 as
_A N _
H(¢)(s) = o E Bu(Db(p(s+1 —cr)), ¢eC, seR.

l=—00

The following lemma summarizes some useful propertield of
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LEMMA 3.2 Assume thab : R, — R, satisfiesHp). Then we have
()if p € S, and¢(s) > 0fors € R, thenH (¢)(s) > 0fors e R;
(ii) if ¢ € S, thenH (¢)(sS) is non-decreasing f& € R;

(i) H()(s) < H(g)(s) for s € R provided thaty, ¢ € C andy(s) < ¢(s) < K for
seR.

Proof. If ¢,y € Candy(s) < ¢(s) < K fors € R, then
v+l —cr) <o+l —cr) <K forseR, |l eZ.
Therefore, by the positivity o8, (1) and monotonicity ob on [0, K], we have
H(¢)(s) 2 H¥)(s) forseR.

This proves (iii). The proofs of (i) and (ii) are straightforward. O

DEFINITION 3.1 A function U € C is called an upper solution of (3.2) if it is
differentiable almost everywhere (a.e.) and satisfies the inequality

cU’(s) > Dp[U(s+ 1) +U(s—1)—2U(s)] —dnU(s) + HU)(S) a.e.inR.

Similarly, a functionL € C is called a lower solution of (3.2) if it is differentiable almost
ewerywhere and satisfies

cL'(s) < Dm[L(s+ 1)+ L(s—1)—2L(S)] —dmL(S) + H(L)(s) a.e.inR.

Suppose that

+, s>0,
ueE = { 1wt s<0 3.9

and
0, s> 0,
He= { ((1-e%)ess, s<O,

whereiq, € are given as in Lemma 3.1, agd> 0 is chosen so thdt(s) < U(s) for
s e R. Clearly, we have & L(s) < U(s) < wt < K andL(s) #0forseR.

(3.10)

LEMMA 3.3 U given by (3.9) and. given by (3.10) are a pair of upper and lower solutions
of (3.2).

Proof. If s > 0, then we have from (iii) of Lemma 3.2 and the fact t@gtz‘f’oo Bo(H) =1
and b(w) < b(w™) for w < w the following:

du (s)

s

+ Dm[U(s+1)+U(s—1) —2U(s)] — dmU(s) + H(U)(s)

bwt)u &
< 04+ Dpwt +w™ —2w™) —dnw' + MZﬁa(l) =0.
2r &
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Note thatU (s) < 15w for s € R andb(¢) < b’ (0)¢ for ¢ > 0. Therefore, is < 0,
then

dL;(S) 4+ DU+ 1)+ U(s—1)— 2U(8)] — dmU(S) + HU)(®)
< —creSwt + Dpwt ettt 4 ghas—1) _ pglis)
b'(0) 11
~Omw* € 4+ —— ;,Ba(l)u (s+1—ar)
< @15t 1 —chy + D€t + € — 2] — dy + bOu > Ba(hehl—en
2r =~

= 0.

HenceU is an upper solution of (3.2).
Note thatL (s) > 0 and thusH (L)(s) > 0 for s € R. Therefore, fos > 0, we have

- % + Dm[L(s+ 1)+ L(s—1)—2L(S)] —dmL(s) + H(L)(s) =0

Note also that (1 — e)e*1S < 0 fors > 0 and
L(s) > c(1— eSS = h(s) forseR.

Therefore,
H(L)(s) > H(h)(s) forseR.
Consequently, i < 0, then
dL(S)
ds
—Ch1L€1S 4+ C(Aq 4 €)C€€HMS | Dpye(1 — e SHD)ghs+D

+ DmlL(s+ 1D+ L(s—1)—2L(s)] —dmL(s) + H(L)(s)

WV

+c(1— e D)D) _ 201 — €9)eM15] — dme (1 — €5)e*15 4+ H(h)(s)
= e1SAOM, ¢, w®) — CA(M + €, ¢, wO)et1tos 5 o,
Hence,L is a lower solution of (3.2). This completes the proof. O

We now consider the following equivalent form of (3.2):

% +8¢(s) = F(@)(9), (3.11)
where
F(g)(s) = <5 e —) o (S) + —[¢(S+ D+os—D]+ - H(¢)(S)
ands > 0 is chosen so that
dn 2Dm
-2~ ~°
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Then,F(¢)(s) > F(¥)(s) for s € R provided thatp(s) > v (s) for s € R. Moreover,
FwP® = sw?, Fwt) =sw.

Forbounded solution : R — R, (3.11) is equivalent to
H(s)=e / ) ELF(¢)(t) dt. (3.12)
—o0
It is thus natural to define an operafbr. S — C by
(TP)(s) = e—‘SS/S SR t)dt, ¢eS teR. (3.13)
—c0

And it is straightforward to verify the following lemma.
LEMMA 3.4 The operatofl defined in (3.13) has the following properties:
() if ¢ € S, thenTg € S;

(ii) if ¢ is an upper (a lower) solution of (3.2), thers) > (T@)(s) (@ (S) < (TP)(S))
forse R;

(iii) if ¢(s) = ¥(s)fors e R, then(T¢)(s) = (Ty)(s) forse R;

(iv) if ¢ is an upper (a lower) solution of (3.2), th&mw is also an upper (a lower) solution
of (3.2).

We now construct a series of functions by the following iterative schebhg: =
TUp—1,n > 1-with Ug = U. By Lemma 3.4, we have

w? <L(S) <+ <Un(s) <Up_1(9) <+ < U(s) < w.

Using Lebesgue’s dominated convergence theorem, we know that the limit function
U.(s) = nIim Un(s) exists and is a fixed point of . This gives a solution of (3.2).
— 00

FurthermorelJ, lies in Sand is non-decreasing, and satisfies

lim Uy (s) = w°
S——0

. lim Uy(s) = w™. (3.14)

S—>o0
Summarizing the above discussions, we obtain the following existence theorem of
travelling waves.

THEOREM 3.1 Assume thab : R, — R, satisfies(Hy). Then there exists, > 0, such
that for everyc > c,, (2.3) has a monotone travelling wave solutibnR — R satisfying
the boundary condition

0

lim ¢(s)=w, lim ¢(s)=w".
S——00 S—>o0
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FiG. 1. The graph oft, = c«(r) as a function of is a decreasing curve angl(r) — 0 whenr — 30, where
b0)=2d=01,dn=01Dj=1 Dm=1, a=r, u=exp-r).

REMARK 3.1 The value ofc, is given by Lemma 3.1. For reasons to be explained in
Section 5, it is important to know how its value depends on the parameters involved. This
can be easily achieved numerically using Maple. For example, let

r r
b(©)=2, d =01, D=1, a=/ Dida=r, pu=g hdda_gT
0
dm = 0-1, and fixDy, = 1. Then we can solve the system
0 0 0
A, c,w?) =0, a—AA(x,c,w y=0 (3.15)

to obtain a functiort, (r ), and we find that, = c,(r) is a decreasing function of> 0, as
shown in Fig. 1. Similarly, if we fix = 2, and solve the system (3.15) for = ¢, (D),
we find thatc, = c,.(Dm) is an increasing function ddp,, see Fig. 2.

4. Existence and isotropic properties of | VBs

In this section, we shall investigate the existence and isotropic properties of solutions for
the initial-value problem of model (2.3) with; (t, r) defined in (2.10). For the convenience
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45+
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Drn

FIG. 2. The graph oft. = c«(Dm) as a function oDy, is an increasing curve, whebé(0) = 2, r =2, d; =
01,dn=01,Dj =1, a =2, u=exp—2).

of discussion, we first list some notation to be used:

By ={i e N||JI<N,NeN}

C{l-r,0] =C([—r,01,[0,K]), C{[-r. T)=C(-r,T),[0,K]),
wjt) =w(,j), |eZ,

W(t) = W(t, 1) = {wj(Dl}jez,

suppW(t, -) = {j | w(t, j) # 0} is the support otV(t, -),

W(t) > V) if wjt) > vj(t)for j € Z,

W(t) > V() if W(t) > V() andwj(t) > vj(t) for j € suppV(t, -).

Also we sayW is isotropic on an intervall if wj(t) = w_j(t) for j € Z andt € I.

In the remaining part of this paper, we assume that the birth funbtha@s the following
properties:
(Hp):b: Ry — Ry is continuous and

@) b(0)=0, b0 > %’“, |b(w) — b(v)| < b'(0)|w— v| forw, v € Ry;
(i) b is non-decreasing of0, K], and ub(w) = dmw has a unique solution™ €
(O, KJ;

(i) ub(w) > dmw for w € (0, w), andub(w) < dmw for w € (w™, 0o).

Clearly, the birth functiorb(w) = pwe 3" in Nicholson’s blowfly model satisfies the
above assumptions, when the parameters are in appropriate ranges.
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The initial-value problem of (2.3) can be written as

t
wj(t) = e—5tw1(0)+/0 e N Dywj41(s) + wj—1(5)]

IR , (4.1)
+E|;mﬁa(|)b(wl+j(3—r))}dS jez, t>0,

wi®) = wdt). jez, tel-r0],

wheres = 2Dy +dm, and u%’(t),t € [—r, 0], ] € Z are given initial data. A simple change
of variable yields an equivalent form of (2.3) as

t
w) () = e tw;(0) + /O & {Dlwj 1t —9) + wj_1(t = 9)]

+% Y BuDb(wipjt —s—r)ids,  jeZ t>0. (42

l=—00

The existence and isotropic properties of the solution to the initial-value problem is given
by the following theorem.

THEOREM4.1 For any given function
WO = {wl}jez, wf e CEl-1,0], jeZ,

(4.1) has a unique solutioW(t) = {wj(t)}jez With wj CI[—r, 00). If WP is isotropic
onZ on[-r, 0], thenW is isotropic onR ;..

Proof. ForW° = {w?}jez with w‘j’ € C;(*[—r, 0] and for everyT € (0, o], define a set
St ={W = {wj}jez| wj € CL[-1, T), wj(t) = w?(t), t € [-r, 0]}

and an operatof T = {FjT}jez on Sy, where for everyW € Sr, j € Z,

t
et (0) + [ e N Dywj+1(s) + wj—1(5)]
0

T - 0 .
P IO +22 3 fulbluis -} jEZ, 120,

l=—00

w‘]-’(t), ieZ, te[-r,0]

Clearly, for fixedT > 0, FT[W](t) is continuous irt € [—r, T). Note that ifW e ST,
then we have

t
0< FjT[W](t) < e MK +[2DmK + ub(K)]/ e %9 gs
0
1
<edK + E[ZDmK +dnK]1 - =K,

fort € [0,T)andj € Z. ThereforeFT(Sr) € Sr.
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For anyW e Sy anda > 0, define a norm as follows:

W[, == sup |wj(t)e .
te[0,T),jeZ

For anyW, W € Sr, letgj(t) = wj(t) —wj(t) and &(t) = {¢j(1)}jez, then fort > 0 we
have

FIIWI® — F W1
t
= /0 e Dmipj1+1(S) + ¢j-1(9)]
+%I=Zooﬁa(l>[b(w|+,-(s—r>>—b<w|+j<s—r>>]}ds
t
- /0 eI Dhi21(5) + ¢j_1(9)] ds

O t—r
NE=DI0 fo e =S Db(uwy 1 (s) — b+ j ()]s, t—r1 >0,

l=—00

0, t—r <0.

Whent —r > 0, using property (i) inH/), we have

t
[FIWI®) — FIIWI®)] < /0 eI Dnllgj+1(9)] + Ipj-1(9)l1ds

ub'(0) & f“ s(t—sr)
+ (1 i d
o |=§7ooﬂ ) e 1+ (S)| ds

which leads to

_ t
IFf W1 — FIWI®Ie™ < Dm /0 e eI 41(9)] + 19j-1(9)] ds

b'(0) & =
+“2( X0 f e e Vg1 j(s)l ds.
T |=—00 0
Thus _
IFTIWI(t) - FTIWI®) |1
< 2Dl 2l / e =9 ds+ ub/ (0) 25 / e ™9 ds 4.3)
0 0 '
2D b’'(0
= Pgpa-ey + Ry - e,
Since b (0
lim =@ —e?) + “—()(e—“ —eMy=0 (4.4)
A—00 A A

and Sy is a Banach space with nortn- ||, we havefrom (4.3) and (4.4) thaE " is a
contracting map and hence has a unique fixed pain St if A > 0 is afficiently large.
This shows that a unique solution of (4.1) exists[0nT ] for any T > 0, which leads to
the unigueness and existence of solutidrio (4.1) on[0, o).
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The isotropic property of the solution ¢rr, oo) starting from an isotropic initial data
WP® on [—r, 0] can be verified by noting that the subspacesbfof Sr, consisting of all
elements which are isotropic ¢rr, c0), is closed and T (S}) C S . O

5. Asymptotic speed of wave propagation

To start this section, we first rewritd(x, c, 0) = 0 as

1= [Drn(e" + 67 + bl @)cos—bier ] (5.1)

5+ AC
Let
Lc()») =

d+AC [Dm(e}‘ +e )+ Mb’(())ezoz(coshxfl),mr] ,

then the minimum speed defined in Lemma 3.1 can also be written as

Ci:=inf{c > 0| Lc(A) =1 forsomer € Ry}

Define
I:c()t) =

—A / o (cosha—1)
5+AC[Dm(e’\+e )+ ub/ (0)& ]
¢, = inf{c > 0] Lc(x) = 1 for somex € Ry},

A(r, c,0) = Dm(e! + e ) 4 ub/(0)eCoshi-1) _ 5 _ ;¢
A similar analysis to that for Lemma 3.1 shows that there existse R, such that
A(Ay, Cy, 0) = 0 and()y, C,) is the solution of
I 9 -
A(}\.*,C*,O)Z O? B_A‘A()"*v 6*70)20' (5'2)

In the following, we will show that, is the asymptotic speed of wave propagation in the
sense that the solution of (4.1) satisfies

tIim sup{wj (O] 1j| > ct} =0 forc e (¢, 00), (5.3)
—00

Iitminf min{w; (V)| [j| <ct} > w™ force (0,c,), (5.4)
—00

if the initial function W° satisfies some biologically realistic conditions to be specified in
the following theorems.

THEOREM5.1 Assume that

(i) W° = {w?}jez, with wj-’ € CI[—r, 0] for j € Z, is isotropic on[—r, 0], and there
exists an integeN e N such that suppVe(t, -) By fort e [—r, 0];

(i) r > 0 is sufficiently small so that
B+AsCr _q _ & <0,

or
Mb/(o)ezol(COSh}x*—l)[e(ﬁ-‘r)x*(_:*)l' —1— eSr] g Dm
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Then for anyc > c,, we have
Jim sup{uj (O] ]| > ct} = 0.
Proof. Define a sequence of maps by

WM = FRWO-Dyt) forneN, t>—-r, WO() = {wﬁ‘”(t)}jez,
o
(0) _ wJ(t)9 te [_rv 0]5
wj () = { w2(0), t € (0,00).

ThenW© is isotropic and suppV©(t, -) ¢ By fort > —r. By an agument similar to
that for Theorem 4.1, we obtain the convergenc@&f™} on [0, co). Let

W) = lim W™ (t), t € [0, 00).

ThenW is a solution of (4.1) with the isotropic property due to Lebesgue’s theorem of
dominated convergence.
Using the assumption oW©, we can findVl > 0 andN < N such that

w® e <MeNfort > —r, j ez, (5.5)
Note thatLc(A) < Lc(A) for anyc > 0. In addition,L¢(1) and L¢(1) are decreasing
functions ofc for anyA > 0. As a result, we have, < C.. For anyc; > c,, there are two

possibilities:c; > C, orcy € (C,, Ci].
Casel.c; > C,. Letcy € (€4, C1), fort > 0, we have from (5.5) that

w}l)(t)ek(i*Czt)
. t . .
- e‘(‘3+“2)t{w1(0)(0)e‘\’+ /0 Dimlw(? ()€1 Ve + w(® (s)eiDet1ds
x t
" Sy © (o _ (J+) g2
+—2n|:§_oo: ﬂa(l)/o e‘?b(wlﬂ.(s ryeti+e ds}

t
e (Otreat {MéN + D f MeNedH s 4 ) ds
0

N

N nb'(0) 2 (Cost~1) \y AN / ' QB+1)s ds}
2 0

— ef(é+)~.C2)tMe2xN {1+ [Dm(ef)\. +e)\,) +Mb/(o)e2a(COSh)\.fl)]/

t

e(8+A02)S dS}
_ 0
< MeN[L+ L, W)

(5.6)
By induction we obtain

w007 < MEN[L+ Lo, () + -+ (Lo, ()", (5.7)

Sincec, > C,, we can choosg > 0 such thai:c2 (1) < 1. For this choice of, the right-
hand side of (5.7) is bounded from above uniformly forFrom (5.6) and the isotropic
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property ofW, we obtain that forj € Z,

N
wJ(t) < M?A (Czt—l)’
1-Le,(A)
fort > 0. Thus
N
wi () < _MEN i,
1-Le,(A)
Therefore, we have
. MeN
sup{u (O] |]| = et} < —— @, 0ast— oo
1-Le, ()

which leads to
Jim supfuj O] 1j] > cat) =0, ¢1 > G

Case2.c1 € (¢, Ci]. By choosinge, € (¢4, ¢1) and an estimate similar to (5.6), we obtain,
fort >r, that

wP e = g (et {w}‘”(O)e«\i

t . .
+ /0 Dim€’*[w? (s)e e + (¥ ()1 Vet ds

JTR r o | )
+Z|:2_:ooﬁa(l)/o eésb(wﬁj(s—r))e/\(m)e M gs
I 00

t
o= (B+rco)t {MéN [1+ Dm/ gO+he)s (g e’\)ds}
0

I+

t .
/ &Sp(w'?. (s —r))ethe ds}
r

N

+Mb/(0)e2a(coshk—1)MeAN /r e(8+A02)s ds
0

t
+Mb/(o)e2a(coshx—1)—xc2r / M eAN e(tH-XCz)S dS}

r

N

MeN[L+ Le,(1)]
MerNg—(@+rc)t

5+ ACo
—Dme™* + é)}.

{Mb’ (0)ePeCos—)rg(6+rc)r _ 1 _ &fr]

(5.8)
Since the equation % L, (1) has two positive solutions; < A, < A2, we can choose
A € (A1, Ay) SO thatle, (1) < 1. By assumption (i), we have

e(5+Acz)r —1- ear < e(8+A*C*)r —1— e5r < 0
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or
Mb/(o)eZa(COShA—l)[e(5+AC2)r —1— e(SI’] _ Dm(e—l + e}»)
< Mb/(o)eZOt(COSh)L*71)[e(5+)n*6*)r _1— eﬁl’] —Dm < 0,

and this, together with (5.8), leads to
w012 < MEN[1+ Le,()] fort >,
Again by a similar argument and by induction, we have
w007 < MEN[L+ Le,(W) + -+ + (L, W) fort >

This shows
lim supfuy ] [j] > eat) =0,

and completes the proof. O

In order to obtain (5.4), we follow the approaches used by Aronson (1977), Aronson
& Weiberger (1975, 1978), Diekmann (1979), Thieme (1979) and Weinberger (1978), to
develop a comparison principle and to construct a suitable sub-solution of (4.2).
ForanyT > 0, we define a map oNls, = {9 = {pj}jezl ¢} € CI[—r, 00)} by
ET =(E]}jez,

whereforé € Moo, t > T, € Z,

;
Ef[210) = /0 e **{Dmlgj+1(t —9) + ¢j_1(t — 9)]
w o0
+5 I;mﬂa(l)b(@ﬂ- (t—s—1)}ds.

LEMMA 5.1 Consider
ET[®]t) = &(t) fort>T, (5.9)

whered € My, satisfies

(i) for anyt’ > 0, there exists alN = N(t’) € N such that for anyt € [0,t’],
Supp€t, -) C Bn;
(ii) if {(tn, jn)}o21 € Ry x Z, jn € supp4ty, -), andniryo(tn, in) = (to, jo), then

Jo € suppdito. -).
If there exists & > 0 such that the solution of (4.2) satisfies
W +1t) - #(t) fort e[0,T],

then
W +1t) > &) fort [0, 00).

Proof. Let
to =sup{t> T|W({E +1t) = &(1)}).

If to < oo, sinceW(t) is non-negative, there existén, jn)};2; such that
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(a)tn J, to, n— oo,
(b) jn € supp &ty ),
(©) wj, (T + th) < ¢j, (tn).

Under assumption (i),jn} must be bounded. Thugj,} is composed of finite integers and

hence contains a convergent sub-sequence, which is a constant segerge (b) and
(c), we know thatjg € supp d&to, -) andwj, (t + to) < ¢j, (to).
Noting thatto > T andt > 0, we obtain from the definition af and (5.9) that

T
wij,(f+tg) > /c; e’s {Dm[Wjo+1(f+ to —S) + wj,—1(t +to — 9)]

TR _
+Z I;ooﬂa(l)b(wjo+| (t+to—s— r))} ds

> /OT g%s { Dml@jo+1(to — S) + ¢jo—1(to — 9)]
P
+5 l;ooﬂa(l)b((f’joﬂ (to—S— r))} ds
= E[[2](to) > ¢j(t0),
which is a contradiction. Therefor, = co. This completes the proof. d

DefiningK¢ = K¢(h, T, N, 1) as

27 i<

T
Kc(h, T, N, A = / ef((s+)uC)S {Dm[e)‘ + e?»] + M_h Z lga(l)eM)Vcr} ds
0

1— e @+r0T

- = —A I’L_h | —Acr
= e {Dm[e +&]+2n|||2<jNﬂa(l)é }

(5.10)
we have the following lemma.

LEMMA 5.2 Fa any ce (0,c,), there exish € (0,b'(0)), T > 0 andN < N, such that
Ke(h, T,N,A) >1 forieR. (5.11)
Proof. By the definition ofK¢(h, T, N, 1), we have
Ke(h, T,N, =) > K¢(h, T, N, 2) fora > 0.
Therefore, we only need to show that
Keth, T,N,2) >1 fora>0.
We claim that there exisig > 0, Ao > 0, hp € (0,b’(0)) and Ty > 0 such that

Ke(h, T,N,A) >1 fori > xg, N> Ng, h > hg, andT > Tp.
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In fact, since
1 o
2_ Z ﬂa(l)éhl — e2a(coshk—1) > 1’
T
|=—00

which holds uniformly forr € R, we can choos&ly > 0 andhg € (0, b'(0)) (hg can be
chosen arbitrarily), such that fé¢ > Ng andh > hg, we have

ph I
— B (He! > 0.
2r “§N

Since

lim = 00,

r—00 ACy + &

we can choos&g > 0 andig > 0 such that foll > Tg andi > g, we have
1-e eIl 51 9T > 1 g9,

and

Pm ety Pm g iTojgo s g
AC+ 6 AoCs + 6

ThenforN > Ng, T > Tp, h > hg andi > Ao, we have

D
Ke(h, T, N, &) > M _1-—e %Moo > 1.
AoCyx + 6

If (5.11) is not true, then there exighn}, {Tn}, {An}, {Nn} satisfyingh, 1 b’(0),
TI'] T o, Nn T oo, {)\n} C [05 )"0] and

Ke(hn, Tn, Np, Ap) <1, n=1,2,....

Since{in} is bounded, we can choose a sub-sequéhgg which has a finite limit, say.
By Fatou’s Lemma, we have

1< Lc() < liminf Ke(hnys Tags Nigs An) < 1,
k— o0

which is impossible. This completes the proof. O
We define a function with two parametets g as
. e Ysin(gy) foryel0, 7],
ay: @, &) = { 0 fory e R/[0,7].
We have the following lemma.

LEMMA 5.3 Letc € (0,c,). There existy > 0, a continuous functiod = @(¢) defined
on [0, ¢&], and a positive numbey € (0, 1) such that

.
/ g %s {Dm[q(m +cs+1)+qgm+cs—1)]
0

uh

+2n

Z Bo(Hg(m+1+cs+cr)} ds> q(m— 81) (5.12)
<N

form e Z, whereq(y) = q(y; @(¢), ¢).
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Proof. Define
T
L) :/ e5S{Dm[e)»(CS+l)+e?»(CS1)]+M_h Z ﬂa(|)efx(l+cs+cr) ds.
0
<N

whereT, h, N are defined in Lemma 5.2. We can chodssufficiently large so that N +
C«(T +r) < 0. Using Lemma 5.2 we have

L) = Ke(h, T,N, %) > 1 foralli e R. (5.13)
LetA = w +i¢, we have
LM r=wtic = Re[L(AW)] +iIm[L)],
where
.
RelL(A\)] = Dm/ e 3{e @+ cosr(cs + 1) + e Deosc(cs — 1)} ds
0
h T
+g— > ,Boz(l)/ g 98g=@(+05+0) cogr (| 4 cs 4 cr ) ds,
TN 0
.
Im[L(A)] = —Dm/ e (e St sing(cs + 1) + e Ysinz(cs — 1)} ds
0
h T
—g— > ﬂa(|)/ g e @+ sing(l + cs 4 cor) ds.
TN 0

SinceL”(1) > 0 andmlim L(A) = oo, we conclude thak (1) can achieve its minimum,
—00

say at. = 6. Then we obtain
T
L'(6) = —Dm /O e %[(cs + 1)e D ¢ (cs — 1)e ¥ Dids
puh T —8s —0(csH+cr) qo
“ox Z ﬁa(l)fo e >(cs+1 +cr)e ds=0.

<N

We now define a functioid = H(w, ¢) by

H,¢) = ;ImLG)]  forg #0,
H(w, 0) = ;”mo H(w, ) = L' (w).

ThenH(©, 0) = 0 and
oH
—(©6,00=L"®) > 0.
ow

The implicit function theorem implies that there exgst> 0 and a continuous function
» = @(¢) defined on[0, 1] with ®(0) = 0 such thatH (w(¢),¢) = 0 for¢ € [0, ¢1].
Hence, we have

IM[LMW)]l=a@)+ic =0 forg € [0, a1l (5.14)
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By (5.13), we have
RelL(w +i¢)]lw=p,c=0 = L(0) > 1.

Thus there exists, > 0 such that
RelL(@(¢) +i¢)] > 1 for¢ € [0, &2]. (5.15)

LetO< ¢ < ¢o:= min{gl, 2, N++(T+r)] Forme [0, %], |I| > Nands € [0, T], we
have

T T 27
—? <—-N<LI<m+Il+cs+ecr <m+|+c(T+r)<N+c*(T+r)+z<?.

Since
sinc(m+1+c(s+r)) <0 form+I|+c(s+r) € (—%,O) u (—, —) (5.16)

form € [0, ], we havefrom (5.16) that

:
/ e S(Dmlg(m+cs+ 1) +qm+cs — 1)]
0

uh

tor

3" Ba)a(m+1 +cs+cr))ds
<N

T ~
> Dm/ g %s {e‘w@)(m“s“) sin(Z(m+ cs+ 1))
0

4 @OmMies=1) gin (£ (m+ cs — 1))} ds

h (T -
+M—/ e %S Z B (e POMHACSHE) gin (¢ (m+ | + s+ cr)) ds.
27 Jo <N
(5.17)
Using sing(m + a) = singmcosza + singacos¢m for any a, we obtain from (5.17),
(5.14) and (5.15) that

;
/ e %{Dm[q(m +cs+ 1) + q(m+cs — 1)]
0

+M—h Z B(Hg(m+1 +cs+cr)}ds

G )
e *OMsinem)RelL (M1l=a)+ic + € Y™ cos@IMIL O)1l=ac)+ic

> e ®OMsin(zm) = q(m).
(5.18)
We should emphasize that (5.18) is a strict inequality rfore (O, %). On the other
hand, ifm=0orm= % (5.18) is a strict inequality by using (5.16) and (5.17). In fact, if

m= % andl = N, we have

v
m+Il+c(s+r) > E
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Similarly, if m = 0 andl = —N, we have
m+l+cs+r)<—N+c.(T+r)<0.
However, for both cases, we have
gm+Il+cs+sr)=0 and sin(C(m+| +cs+sr)) <0,

and thus (5.17) is a strict inequality. Therefore, fioe [0, Z], we have

.
/ e‘SS{Dm[q(m+cs+1) +q(m+cs—1)]
0

uh
+5 u%\l Boa(Ha(m+1 +cs+ cr)} ds > q(m).

(5.19)
Note that ifm ¢ [0, £], we still have (5.19) sincg(m) = 0 in this case. Thus we have

(5.19) form € R. Inequality (5.12) follows immediately from the continuity consideration.

This completes the proof. O

Now we consider the following family of functions:

Ry, w,¢,v): =nn>1§)>SQ(y+n;w,§)
" forysy+e. (5.20)
={ ay-rie.0) fory+p<y<y+7,
0 fory>y+Z,
where
M =M, ¢) = maX{q(y;w, OI0LyY< %} (5.21)

andp = p(w, ¢) is the point where the above maximuwh is achieved. The following
lemma gives a sub-solution of (4.2).

LEMMA 5.4 Letc € (0, c,) be given, then there exidt > 0,¢ > 0,w € R, D > 0 and
oo > 0 such that for any € (0, op) and foranyt > T

ET[oc®](t) = o &(t) fort>T, (5.22)

where®(t) = {¢j()}jez. ¢j(t) = R(Ij; @, ¢, D +cb).

Proof. Leth € (0,b/(0)), T > 0, N > 0 be chosen such th#stc(h, T, N, 1) > 1 for all
A € R. According to Lemma 5.3, we can choase- 0, w = @(¢) and$1 € (0,1) such
that (5.12) holds.

Let o, be the smallest positive root of the equattmiw) = hw. Thenb(w) > hw for
w € (0, on). Chooserg € (0, onM~1), whereM is defined in (5.21). Let € (0, op) and
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t > T, then

T
ET[G 21(t) = G/ € 7% {Dml¢j+1(t — ) + pj-1(t —9)]

Zi Z ﬁa(l>b<¢.+|<t—s—r)>} ds

f (Dl +1(t — §) + §j 1t — 9)]

+o- Z I)b(¢,+|(t—s—r))} (5.23)
<N

We now distinguish two cases.
Case()|j|l<D+p+ct—-T)—N.If|l| <N,se[0,T], then

+jl<D+p+ct—-T)<D+p+ct—y9)

and consequently

o] T
12 _
E]F[O' @](t) =0 2DmO'M + Z Izioo ﬁa(l)b(GM)} A e 8s ds

> ocMKc¢(h, T,N,0) > ocM- (5.24)
Case(i)D+p+ct—T)—N<|j| < %+ D +ct.If|l] < Nandt > T, then

. o lj 12
il =024+2Lj + )2 <j1+ = + —
il 2jl

[ I

N
<+ +7\|J|+—+81,
[l +p—N 1l

providedD > 5‘—; — p + N. Sincegj (t) is decreasing with respect 19|, we havefrom
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(5.23) that
T
E}[o@](t»o/ e IDml _ max q(jl+1+8+n)
0 n2—D—c(t-s)
ma jl—1+3
+n>7D7C>§tis)Q(IJI +01+n)]
+“—h > Bull) max  q(ljl+1+81+n) ¢ ds
2r < O >—D—c(t—s—r) 1
T
=a/ e %31 Dml _max q(j|+1+cs+81+n)
0 nz—D—ct
+ max q(jl—1+cs+d1+n)]
n>—D—ct
uh .
to “;N Bull) max Al +1+cs+cr +51+n)} ds
> j .
z0 n/ffg>jct qdjl+m
Combining (i) and (ii), we obtain (5.22) and complete the proof. O

The following result is an easy observation from (4.1).
LEMMA 5.5 Assume thaWW = {wj}jcz is a solution of (4.1), and assume that
(i) WO = {w¥}jez, with w? € C/[-r, 0], is isotropic orf{—r, OJ;
(ii) there existsN; € N such that

suppW°(t, -) C By, fort € [-r,0], and w‘j’(O) > 0for|j| < Ni.

Then there existy > r such that
wj(t) > 0fort € [tg,00) and j € N.

LEMMA 5.6 Let{Qn(t, N)} be defined byQ1(t, N) = a € [0, wT), and

1
Qn+1(t, N) = g[ZDan(t, N)+2i Z Ba(HD(Qn(t, NDI(1—€Y), n=1,2,....
<N
(5.25)
Then for anye > 0, there exist(¢), N(e) andf(e) such that for any > t(e), N > N(e)
andn > n(e),
Qn(t,N) > wt —e.

Proof. First, we note that
2Dmw ™ + pub(w™) n
= w ,
1)
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and
+ 1 -5t 1
0< Qit,N) <w™t, 0< 3(1—e y<1 and 0< — Z Bu() < 1.
<N

Therefore, we have by induction thatOQp(t, N) < K foralln € N,t > 0 andN € N.
Lete > 0. Since

2Dmw + ub(w) > @Dm+dn)w for0<w < w™,

we have
S { 2Dmw + ub(w)

0 <wt — 1.
(2Dm+dm)w| <w<<w e}>

Chooseax(¢) < 1 so that
a(e)[2Dmw + ub(w)] > 2Dm +dm)w for0 < w < wh —e.
Define a sequence as follows:
a(€)
1)
Then we have the following observations:
(i) if Mp > wt — ¢, then

a(e)
s

Mi=a, Mpp1= [2DmMp + ub(Mp)], n> 2.

Mni1 > ——[2Dm(w™ —€) + ubw™ — €)1 > w* —e.

We now claim thatM, > w™ — ¢ for largen. If not, then using (ii) we can assume that
Mn < wt — e forall n. Then by (i)n lim Mp, = M < oo exists and we have
—00

M= ?[ZDmM + ub(M)],

which is impossible. Therefore, therefig) > 0 such thatM, > wt —eforalln > n(e).
Choosd(e) andN (¢) such that

1 —si(e)
A=)} ) > o),
[<N(e)
Then, for anyt > t(e) andN > N(e), we haveQi(t, N) = a > My and

1 _
Qnta(t, N) 25(1—8at(e))[ZDan(t,N)Jr% > ﬁa(')b(Qn(t»N))]

1 <N
> ga(f)[szQn(t, N) + ub(Qn(t, N)I.

Using the monotonicity ob on [0, K] and by induction, we obtai@n(t, N) > M, >
wT — e for all n > fA(e). This completes the proof. 0
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THEOREM5.2 Assume thatV® satisfies all conditions in Lemma 5.5. Then for any
(0, cy), we have

liminf min{w; )] [j| < ct} > wt.

t—o0

Proof. Fix c; € (0,c,) and choose, € (ci, c,). According to Lemma 5.4, there exist
T>0,¢>0,weR,D > 0andog > 0 such that for anyg € (0, op) andanyt > T,

ET[oc®](t) = o D(1),

where@(t) = {¢j(1)}jez, dj () := R(|jl; @, ¢, D + c;T). By Lemma 5.5, we can find
to > r so that

wjt) >0 fortelto,to+TI, |j| < D+czT+%.

Then we can choosg, € (0, ap) such that
oM <wh, wjlto+1t) > o19j(t) fort e[0,T]. (5.26)

We infer from the comparison principle (Lemma 5.1) that (5.26) hold$ for0. Hence by
(5.20) and the definition afj (t), we have

wjto+1t) > oM fort >0, |j| < p+ D +cat. (5.27)

By (4.2), we obtain

t
Wi+ > [ &P Dnlwjato+t—9) +wj sto+t -]
0

Ll

+2n

3" Balhb(wiyj(to+t —S—r)}ds (5.28)

<N

Leta = o1M = Q1(t, N) and letQn(t, N) be defined in Lemma 5.6. Then by induction
and using (5.27)—(5.28), we have

wj(to+1t) > Qn(t,N) fort >0,]j| <p+ D+cot—nN.
Therefore, for any > 0 we can find(¢), N(e) andfi(e) such that
wit) =wt —e fort >to+1i(e), |j| < p+D+cat —tg) —A(e)N(). (5.29)

Define

A(e)N(e) + Catg — p — D}

t1 = maxitg + f(e),
1 {o—l—(e) o

Sincec, > c1, we havefrom (5.29) that
wit) >wh —e fort >ty |j| < cat.

This completes the proof. O
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6. Conclusionsand remarks

We derived a lattice model for a single species in a one-dimensional patchy environment
with infinite number of patches connected locally by diffusion, under the assumption that
the death and diffusion rates of the mature population are age independent. It was shown
that the dynamics of the mature population is governed by a lattice delay differential
equation with global interactions.

It was shown that the initial-value problem is well posed and that the model system
admits a family of monotone travelling waves with wave speedsc, under the technical
condition (Hp). It was established that the minimal wave spegdoincides with the
asymptotic speed of propagation.

We numerically investigated the dependence of the minimal wave speed on the
maturation period and the diffusion rate of the mature population, and we illustrated that the
minimal wave speed, as a function of the maturation perioés a decreasing function that
approaches zero wheris sufficiently large, and, is a monotonically increasing function
of the diffusion rate of the mature population.

Many of the aforementioned results were obtained under the assunipt®n >
dm/w. This assumption holds only Whgflé d(z) dz is sufficiently small. In the case that
this term is large (this is particularly true if the maturation time is too long), then the model
system will not have a non-zero equilibrium and we suspect that every solution of the
model converges to zero, though this has not been verified yet.
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