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Travelling wavefronts of scalar reaction–di%usion
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Abstract

This paper deals with the existence of travelling wavefronts for scalar nonlinear reaction–
di%usion equations with and without delays in one-dimensional space. New iterative techniques
for a class of integral operators of Hammerstein type are established and applied to tackle the
existence of travelling wavefronts in a uni5ed way. Our results without delays only require the
functions involved to be continuous and satisfy a suitable monotonicity condition. Our results
with multiple delays employ the usual C1-assumption but generalize the well-known results.
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1. Introduction

The scalar nonlinear reaction–di%usion equation of the form

− D
@2u(t; x)

@x2
+

@u(t; x)
@t

= f(u(t; x)); t¿ 0; x∈R (1.1)

has been widely used to model the propagation phenomena which appear in biology,
chemistry and physics. For example, the Fisher equation, where f(u) = ku(1 − u),
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was proposed by Fisher [11] to model the advance of a mutant gene in an in5-
nite one-dimensional habitat. Eq. (1.1) with f(u) = kup(1 − uq) is also used in the
density-dependent di%usion–reaction models, see [24, Section 11.4]. Eq. (1.1) also
arises in logistic population growth models [24], autocatalytic chemical reaction [2,10],
branching Brownian motion processes [5], neurophysiology [32] and nuclear reactor
theory [8]. Recently, some generalizations of Eq. (1.1) are also used as mathematical
models for tumor encapsulation [26,30].
The existence of travelling wavefronts for Eq. (1.1) has been widely studied by

using phase-plane techniques, for example, in [2,7,9,34], where f is continuously dif-
ferentiable. Berestycki and Nirenberg [4] obtained results on the existence of travelling
wavefronts even for multidimensional problems, where f is Lipschitz continuous and
satis5es some other conditions. There are also results on a system of reaction–di%usion
equations (see [12,34,36]).
On the other hand, Schaaf [29] studied the existence of travelling wavefronts for the

reaction–di%usion equations with single delay of the form

− @2u(t; x)
@x2

+
@u(t; x)

@t
= F(u(t; x); u(t − r; x)); t¿ 0; x∈R: (1.2)

The main tool is the sub- and supersolution technique due to Atkinson and Reuter
[3]. Zou and Wu [35] studied the existence of travelling wavefronts for a system of
reaction–di%usion equations with single delay, where the well-known monotone itera-
tion techniques for elliptic systems with advanced arguments [21,25] are used.
In this paper, we study the existence of travelling wavefronts for Eq. (1.1) and for

the following reaction–di%usion equations with multiple delays:

− D
@2u(t; x)

@x2
+

@u(t; x)
@t

= F(u(t; x); u(t − r2; x); : : : ; u(t − rn; x)): (1.3)

For Eq. (1.1), we only require f to be continuous and satisfy a suitable monotonicity
condition. For Eq. (1.3), the usual C1-assumption together with other conditions are
imposed on F , but these conditions are weaker than those used in [29] even when
n=2. Mallet–Paret [22,23] studied the existence of travelling wavefronts for Eq. (1.3)
with D = 0 and ri ∈R. Some lattice di%erential equations can be changed into such
equations.
The main idea is to change the problems on travelling waves for both Eqs. (1.1)

and (1.3) into a 5xed point problem for a Hammerstein integral operator of the form

z(t) =
∫ ∞

−∞
k(t; s)((Fz)(s) + �z(s)) ds ≡ Az(t); t ∈R; (1.4)

where F : [u; v] ⊂ BC(R) → L∞ is a suitable map. (The symbols and the precise
de5nitions of concepts mentioned in the Introduction will be given later in this paper.)
A similar idea was 5rst used by Zou and Wu [36]. In applications, F is de5ned by
f or F . We establish a new iterative technique for the map A, which can be used to
treat the existence of travelling waves for Eqs. (1.1) and (1.3) in a uni5ed way. The
main diMculty in establishing the theory is that the map A may not be continuous and
it is not clear if A(Q) is compact in BC(R) for all bounded sets Q in [u; v]. Hence, the
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classical iterative techniques for compact maps in ordered Banach spaces (see [1,13])
cannot be used. To overcome the diMculty, we introduce and employ the so-called
M -continuity for F and show that the closure of Pb

aA(Q) is compact in C[a; b] for
each bounded subset Q, where Pb

a maps each element in BC(R) to its restriction to
[a; b]. These, together with Lebsegue’s dominated convergence theorem, enable us to
prove that the iterative sequences involved are convergent in some sense (see (3.5)).
To apply the theory to treat Eqs. (1.1) and (1.3), we construct two functions u and v
which satisfy u6Au and Av6 v and prove that the solutions of the map A are the
required travelling wavefronts.
In Section 2, we introduce a class of bounded, M -continuous and �-increasing maps

and provide examples of such maps. In Section 3, we establish the iterative techniques
and apply them to obtain the existence of solutions for second order functional dif-
ferential equations. In Section 4, we apply the new iterative techniques to treat the
existence of travelling wavefronts for Eq. (1.1). In the last section, we treat the exis-
tence of travelling wavefronts for Eq. (1.3) again using our new iterative techniques.

2. A class of nonlinear maps

We introduce a class of maps which are bounded, M -continuous and �-increasing
and provide several examples of such maps.
We denote by C(R) the space of all continuous real-valued functions de5ned on

R. Let BC(R)={x∈C(R) : sup{|x(t)|: t ∈R}¡∞} and BC2(R)={x∈BC(R): x′; x′′
∈BC(R)}. Then BC(R) and BC2(R) are Banach spaces with the norms ‖x‖
= sup{|x(t)|: t ∈R} and ‖x‖BC2(R) = max{‖x‖; ‖x′‖; ‖x′′‖}, respectively. We write
Lp = Lp(R).
The following lemma gives relations between BC(R) and C[a; b]. Its proof is straight-

forward and is omitted.

Lemma 2.1. (1) ‖x‖= sup{‖x‖C[a;b]: −∞¡a¡b¡∞} for each x∈BC(R).
(2) If {xn} ∪ {x} ⊂ BC(R) and ‖xn − x‖ → 0, then ‖xn − x‖C[a;b] → 0 for a; b∈R

with a¡b.
(3) If {xn} ∪ {x} ⊂ BC(R) and ‖xn − x‖C[a;b] → 0 for a; b∈R with a¡b, then

xn(t)→ x(t) for each t ∈R.

Remark 2.1. (i) The converse of (2) in Lemma 2.1 is false. For example; if xn(t) =
(1+e−t)−n and x(t) ≡ 0; then ‖xn−x‖C[a;b] =(1+e−b)−n → 0 for a; b∈R with a¡b.
However; ‖xn − x‖= 1 for each n∈N and {xn} does not converge to x in BC(R).
(ii) The converse of (3) in Lemma 2.1 is false. For example, let

xn(t) =




nt for t ∈ [0; 1=n];
2− nt for t ∈ [1=n; 2=n];
0 for t ∈ (−∞; 0) ∪ (2=n;∞)

and x(t) ≡ 0. Then xn(t)→ x(t) for each t ∈R. However, ‖xn − x‖C[0;1] = 1 for n¿ 3.
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If u; v∈L∞ and u(t)6 v(t) a.e. on R, we write u6 v. Let [u; v]={x∈BC(R): u6 x
6 v}. Recall that a map T : [u; v] → L∞ is said to be increasing if Tx6Ty for
x; y∈ [u; v] with x6y. Now, we introduce the concept of a �-increasing map.

De�nition 2.1. A map T : [u; v] → L∞ is said to be �-increasing if there exists �¿ 0
such that

Ty − Tx¿− �(y − x) for x; y∈ [u; v] with x6y:

It is easy to see that T is �-increasing if and only if T+�I is increasing. To establish
our iterative techniques, we introduce M -continuity of maps.

De�nition 2.2. A map T : [u; v] → L∞ is said to be M -continuous on [u; v] if {xn} ∪
{x} ⊂ [u; v] and ‖xn−x‖C[a;b] → 0 for all a; b∈R with a¡b imply (Txn)(t)→ (Tx)(t)
a.e on R.

Notation. Let R̂= {â: a∈R}; where â(t) ≡ a for t ∈R.
Now, we provide bounded, M -continuous and �-increasing maps.

Theorem 2.1. Assume that f :R× [#; $]→ R is bounded and satis9es Carath:eodory
conditions. Assume that there exists �¿ 0 such that

f(t; y)− f(t; x)¿− �(y − x) for x; y∈ [#; $] with x6y and all t ∈R:
Then the map F de9ned by Fx(t) = f(t; x(t)) maps [#̂; $̂] into L∞ and is bounded;
M -continuous and �-increasing.

Proof. Since f satis5es CarathPeodory conditions; f(t; x(t)) is measurable for x∈ [#̂; $̂]
and F is M -continuous. It is easy to see that Fx∈L∞ for x∈ [#̂; $̂] and F is
�-increasing.

As special cases of Theorem 2.1, we obtain the following.

Corollary 2.1. Assume that f∈C[#; $] and there exists �¿ 0 such that

f(y)− f(x)¿− �(y − x) for x; y∈ [#; $] with x6y: (2.1)

Then the map F de9ned by Fx(t)=f(x(t)) maps [#̂; $̂] into BC(R) and is bounded;
M -continuous and �-increasing.

Corollary 2.2. Assume that f : [#; $]→ R+ is continuous and satis9es (2:1) of Corol-
lary 2:1 and g : [#; $] → R+ is increasing and continuous. Then the map F de9ned
by Fx(t)= g(x(t))f(x(t)) maps [#̂; $̂] into BC(R) and is bounded; M -continuous and
�1-increasing; where �1 = �! and != sup{g(x): x∈ [#; $]}.

Proof. Let h(x) = g(x)f(x) for x∈ [#; $]. Then we have for x; y∈ [#; $] with x6y;

h(y)− h(x) = g(y)f(y)− g(x)f(x)¿ g(x)(f(y)− f(x))¿− �!(y − x):

The result follows from Corollary 2.1.



K.Q. Lan, J.H. Wu / Nonlinear Analysis: Real World Applications 4 (2003) 173–188 177

Corollary 2.3. If f∈C1[#; $]; then the map F de9ned by Fx(t)=f(x(t)) maps [#̂; $̂]
into BC(R) and is bounded; M -continuous and �-increasing; where � = ! if !1¿ 0
and �¿ 0 if !1 = 0 and !1 = sup{|f′(,)|: ,∈ [#; $]}.

Proof. Let x; y∈ [#̂; $̂] with x6y. Then f(y)−f(x)=f′(,)(y−x) for some ,∈ [x; y].
This implies f(y)−f(x)¿− �(y− x) and the result follows from Corollary 2.1.

By Corollaries 2.2 and 2.3, we obtain

Example 2.1. Let g : [0; 1] → R+ is continuous and increasing and f(x) = xp(1 −
xq)g(x) for x∈ [0; 1]; where p¿ 1; q¿ 0. Then the map F de5ned by Fx(t)=f(x(t))
maps [0̂; 1̂] into BC(R) and is bounded; M -continuous and �-increasing; where ! =
sup{g(x): x∈ (0; 1)} and

�=

{
!max{p; q} if p= 1;

!q if p¿ 1:

Let [#; $]n = {x = (x1; : : : ; xn)∈Rn: xi ∈ [#; $]; i = 1; : : : ; n}

Theorem 2.2. Assume that F : [#; $]n → R satis9es the following conditions:

(i) @F(:)=@xi is continuous on [#; $]n for i∈{1; : : : ; n}.
(ii) @F(u)=@xi¿ 0 for u∈ [#; $]n and 26 i6 n.

Then for each {r2; : : : ; rn} ⊂ R; the map F de9ned by

Fx(t) = F(x(t); x(t + r2); : : : ; x(t + rn))

maps [#̂; $̂] into BC(R) and is bounded; M -continuous and �-increasing; where �=!
if !¿ 0 and �¿ 0 if != 0 and != inf{@F(u)=@x1: u∈ [#; $]n}.

Proof. We only prove that F is �-increasing. Let x; y∈ [#̂; $̂] with x6y and let
z1(t)= ty(s)+ (1− t)x(s) for t ∈ [0; 1] and x1(s)= (x(s+ r2); : : : ; x(s+ rn)). By (i) and
(ii) we have

(Fy)(s)− (Fx)(s)¿ F(y(s); x1(s))− F(x(s); x1(s)) = w(s)(y(s)− x(s))

¿−�(y(s)− x(s));

where w(s) =
∫ 1
0 [@F(z1(t); x

1(s))=@u1] dt.

As an application of Theorem 2.2, we give

Example 2.2. Let q; pi¿ 1; i=2; : : : ; n; k ¿ 0 and F(x1; : : : ; xn)=k(1−xq1)x
p2
2 ; : : : ; xpn

n

for x = (x1; : : : ; xn)∈ [0; 1]n. Let ri ∈R and ri 
=0 for i = 2; : : : ; n. Then the map
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F de5ned by Fx(t) = k(1− xq(t))xp2 (t + r2); : : : ; xpn(t + rn) maps [0̂; 1̂] into BC(R)
and is bounded; M -continuous and �-increasing; where �= kq.

Theorem 2.3. Let c∈R and .¿ 0. De9ne a map G : [#̂; $̂]× R→ C[− .; 0] by

G(x; t)(s) = x(t + cs):

Assume that f :C[−.; 0]→ R is bounded and continuous and there exists �¿ 0 such
that

f(0)− f( )¿− �(0(0)−  (0)) for  ; 0∈C[− .; 0] with  60: (2.2)

Then the map F de9ned by (Fx)(t) = f(G(x; t)) maps [#̂; $̂] into BC(R) and is
bounded; M -continuous and �-increasing.

Proof. It is easy to verify that F : [#̂; $̂] → ∈BC(R) is bounded and M -continuous.
Let t ∈R and x; y∈ [#̂; $̂] with x6y. Let 0(s) = G(y; t)(s) = y(t + cs) and  (s) =
G(x; t)(s)=x(t+cs) for s∈ [−.; 0]. Then 0(s)6  (s) for s∈C[−.; 0] and 0(0)=y(t)
and  (0) = x(t). By (2.2); we have for t ∈R;

(Fy)(t)− (Fx)(t) = f(0)− f( )¿− �(0(0)−  (0)) =−�(y(t)− x(t)):

Hence, F is �-increasing.

Example 2.3. Let c∈R and .¿ 0. De5ne a map G : [0̂; 1̂] × R → C[ − .; 0] by
G(x; t)(s) = x(t + cs). Assume that f :C[ − .; 0] → R is de5ned by f(0) = (1 −
0(0))0(−.). Then the map F de5ned by (Fx)(t)=f(G(x; t)) maps [0̂; 1̂] into BC(R)
and is bounded; M -continuous and 1-increasing.

Proof. Let 0;  ∈C[ − .; 0] with 06  606 1. Then we have f(0) − f( )¿
−(0(0)− (0))0(−.)¿−(0(0)− (0)). The result follows from Theorem 2.3.

3. Existence of solutions of second order functional di$erential equations

In this section, we consider the existence of solutions of a second order functional
di%erential equation of the form

− Dz′′(t) + cz′(t) = (Fz)(t) a:e: on R; (3.1)

where D¿ 0; c∈R and F : [u; v] ⊂ BC(R)→ L∞.
By a solution to Eq. (3.1) we mean a function z ∈Y which satis5es Eq. (3.1), where

Y={x∈BC(R): x′; x′′ ∈L∞} is a Banach space with the norm ‖x‖Y=max{‖x‖; ‖x′‖L∞ ;
‖x′′‖L∞}.
Let �¿ 0. We write

31 =
c −

√
c2 + 4�D
2D

and 32 =
c +

√
c2 + 4�D
2D

:
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Then 31¡ 0¡32 and −D32i + c3i + �= 0; i = 1; 2. Let 4= D(32 − 31). We de5ne a
map k :R× R→ R+ by

k(t; s) = 4−1
{
e31(t−s) for s6 t;

e32(t−s) for s¿ t:

We consider the linear Hammerstein integral operator L :L∞ → Y de5ned by

Lz(t) =
∫ ∞

−∞
k(t; s)z(s) ds: (3.2)

The following result shows that L is a homoeomorphic map from L∞ to Y and from
BC(R) to BC2(R). Its proof follows from convergence theorem (see [27, Theorem 14,
p. 200]) and some calculations. We leave it to the reader.

Theorem 3.1. The map L de9ned in (3.2) maps L∞ onto Y and is linear; bounded
and one to one. Its inverse L−1 :Y → L∞ is de9ned by

L−1y(t) =−Dy′′(t) + cy′(t) + �y(t): (3.3)

Moreover; L maps BC(R) onto BC2(R) and is linear; bounded and one to one.

It is known that the linear integral operator Lz =
∫ b
a k(t; s)z(s) ds with a suitable

kernel k is compact in C[a; b]. We refer to [16–18] for such results. However, we
do not know if the map L de5ned in (3.2) is compact in BC(R). We introduce the
concept of G-compactness and show that the map L is G-compact. The concept of
G-compactness is suMcient for us to establish our iterative techniques.
We de5ne a map Pb

a :BC(R) → C[a; b] by Pb
a(x) = x|[a;b], where x|[a;b] denotes the

restriction of x to [a; b].

De�nition 3.1. A map T :L∞ → BC(R) is said to be G-compact if Pb
aT (B) is compact

in C[a; b] for all a; b∈R with a¡b and for every bounded B ⊂ L∞.

Theorem 3.2. The map L de9ned in (3.2) maps L∞ into BC(R) and is G-compact.

Proof. By Theorem 3.1 L maps L∞ into BC(R). Let B be a bounded subset in
L∞; that is; there exists m¿ 0 such that ‖x‖L∞ 6m for all x∈B. Then Pb

aL(B) is
uniformly bounded in C[a; b] since ‖Pb

aLz‖C[a;b]6m�−1. By [27; Theorem 14; p. 200];
we obtain limt→.

∫∞
−∞ |k(t; s) − k(.; s)| ds → 0 for each .∈ [a; b]. Using 5nite cover

theorem; we can show that for 6¿ 0 there exists 7¿ 0 such that whenever t; .∈ [a; b]
with |t − .|¡7;∫ ∞

−∞
|k(t; s)− k(.; s)| ds¡ 6=m:

This implies |Pb
aLz(t) − Pb

aLz(.)|6m
∫∞
−∞ |k(t; s) − k(.; s)| ds¡ 6. Hence; Pb

aL(B)

is equicontinuous and Pb
aL(B) is compact in C[a; b]. The result follows from

De5nition 3.1.
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Remark 3.1. Since Pb
a :BC(R) → C[a; b] and L :L∞ → BC(R) are continuous; it

follows from Theorem 3.2 that Pb
aL :L∞ → C[a; b] is compact.

Eq. (3.1) can be changed into a Hammerstein integral equation of the form

z(t) =
∫ ∞

−∞
k(t; s)((Fz)(s) + �z(s)) ds ≡ Az(t); t ∈R: (3.4)

The following result gives relations between Eqs. (3.1) and (3.4). Its proof follows
from Theorem 3.1 and omitted.

Lemma 3.1. (1) Let y∈Y and z ∈ [u; v]. Then y = Az if and only if

−Dy′′ + cy′ + �y =Fz + �z:

(2) z is a solution of Eq. (3.1) if and only if z ∈Y and z = Az.

Now, we are in a position to give our main result in this section.

Theorem 3.3. Assume that F : [u; v]→ L∞ is bounded; M -continuous and �-increasing
and A satis9es

(H) u6Au and Av6 v:

Then Eq. (3.1) has a maximal solution v∗ in [u; v] and a minimal solution u∗ in [u; v].
Moreover; for a; b∈R with a¡b.

‖un − u∗‖C[a;b] → 0 and ‖vn − v∗‖C[a;b] → 0; (3.5)

where un = Aun−1; vn = Avn−1 and

u= u06 u16 · · ·6 un6 · · ·6 vn6 · · ·6 v16 v0 = v: (3.6)

Proof. LetT=F+�I . ThenT : [u; v]→ L∞ is bounded; M -continuous and increasing.
By Theorem 3.2 and condition (H); A maps [u; v] into [u; v] and is increasing. By (3.6);
there exist u∗; v∗ ∈L∞ such that un(t) → u∗(t) and vn(t) → v∗(t) for each t ∈R. By
Theorem 3.2; Pb

aLT{un}= Pb
aA{un} is compact in C[a; b] for a; b∈R with a¡b. It

follows that there exists y∈C[a; b] such that ‖Aun − y‖C[a;b] → 0. Hence; we have
u∗(t)=y(t) for t ∈ [a; b] and thus; u∗ ∈BC(R). Since T is M -continuous and bounded;
it follows that for each t ∈R;

k(t; s)Tun(s)→ k(t; s)Tu∗(s) for s∈R
and |k(t; s))Tun(s)|6mk(t; s) for s∈R and some m¿ 0. It follows from Lebsegue’s
dominated theorem ([27; Theorem 5; p. 160]) that Aun(t)→ Au∗(t) for each t ∈R and
u∗ = Au∗. A similar argument shows that v∗ = Av∗. Let x∈ [u; v] be such that x = Ax.
Since A is increasing on [u; v]; it follows from u∗6 x6 v∗; that is; u∗ is a minimal
solution and v∗ is a maximal solution.

Remark 3.2. We remark that the map A need not be continuous. Moreover; we do not
know if the set A(Q) is compact for each bounded subset Q. Although the closure of
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Pb
aA(Q) is compact; the map Pb

aA may not be continuous; so Pb
aA may not be compact.

Hence; the classical iterative techniques for compact maps in ordered Banach spaces
(see; for example; [1;13]) cannot be applied to treat Theorem 3.3.

Corollary 3.1. Let u; v∈Y . Assume that F : [u; v] → L∞ is bounded; M -continuous
and �-increasing and satis9es

(H′) − Du′′ + cu′6Fu and Fv6− Dv′′ + cv′:

Then the results of Theorem 3:3 hold.

Proof. By (H′) we have L−1u6Fu+ �u and Fv+ �v6L−1v. Note that Ly¿ 0
for y¿ 0. By Theorem 3.1; we obtain

u=L(L−1u)6L(Fu+ �u) = Au and Av=L(Fv+ �v)6L(L−1v) = v:

The results follow from Theorem 3.3.

4. Travelling wavefronts of reaction–di$usion equations

In this section we consider the existence of travelling wavefronts for a reaction–
di%usion equation of the form

− D
@2u(t; x)

@x2
+

@u(t; x)
@t

= f(u(t; x)); t¿ 0; x∈R; (4.1)

where D¿ 0 is a 5xed constant.
We list the following conditions:

(C1) f : [0; 1]→ R is continuous:
(C2) There exists �¿ 0 such that

f(y)− f(x)¿− �(y − x) for x; y∈ [0; 1] with x6y:

(C3) f(8)¿ 0 for 8∈ (0; 1).
(C4) f(0) = f(1) = 0.

Eq. (4.1) has been widely studied when f∈C1[0; 1] (see [2,7,9,34]) and f is
Lipschitz continuous (see [4]). Here, we employ conditions (C1) and (C2). In addition
to the references mentioned above, condition (C3) was also employed, for example,
in [15,19,20,31,33]. Condition (C4) is a necessary condition for Eq. (4.1) to have
travelling wavefronts (see Lemma 4.1). Under conditions (C1)–(C4), we shall use our
theory developed in the above section to prove the existence of travelling wavefronts
and provide iterations to compute the travelling wavefronts.
Since we consider the existence of travelling wavefronts u(t; x) = z(x + ct) for

Eq. (4.1), we can write Eq. (4.1) in the form

− Dz′′(t) + cz′(t) = f(z(t)); t ∈R (4.2)

subject to the following boundary condition:

z(−∞) = 0 and z(∞) = 1: (4.3)
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By a travelling wavefront (with a wave speed c) to Eq. (4.1) we mean an increasing
function z ∈BC2(R) and a number c∈R which satisfy (4.2)–(4.3):
Eq. (4.2) can be changed into the following Hammerstein integral equation:

z(t) =
∫ ∞

−∞
k(t; s)(f(z(s)) + �z(s)) ds ≡ Az(t); t ∈R; (4.4)

where k is same as in Section 3.

Notation. Let 8− = limt→−∞ z(t) and 8+ = limt→∞ z(t).

Lemma 4.1. Under (C1) and (C2); if z ∈ [0̂; 1̂] is increasing and z = Az; then

f(8−) = f(8+) = 0:

Proof. Assume that f(8+)¿ 0. Since z is increasing; it follows from (C1) and (C2)
that there exists t1 ∈R such that f(z(t))+�z(t)¿f(z(t1))+�z(t1)¿ 0 for t¿ t1. This
implies∫ t

t1
e−31s(f(z(s)) + �z(s)) ds¿ (f(z(t1)) + �z(t1))

∫ t

t1
e−31s ds → ∞:

Noting that
∫ t1
−∞ e

−31s(f(z(s)) + �z(s)) ds¡∞, we have
limt→∞

∫ t

−∞
e−31s(f(z(s)) + �z(s)) ds=∞:

Applying L’Hospital’s rule and (C1) we obtain

lim
t→∞

∫ t
−∞ e

−31s(f(z(s)) + �z(s)) ds

e−31t
=−3−11 (f(8

+) + �8+):

Note that limt→∞
∫∞
t e−32s(f(z(s)) + �z(s)) ds= 0. Again using L’Hospital’s rule and

(C1), we have

lim
t→∞

∫∞
t e−32s(f(z(s)) + �z(s)) ds

e−32t
= 3−12 (f(8

+) + �8+):

Since z = Az, we obtain

8+ = lim
t→∞A(z(t)) = 4−1(3−12 − 3−11 )(f(8

+) + �8+) = �−1f(8+) + 8+:

This implies f(8+)= 0, which contradicts the hypothesis f(8+)¿ 0. Hence, we must
have f(8+) = 0. Similarly, we can prove that f(8−) = 0.

Let 9 = {z ∈ [0̂; 1̂]: z is increasing and satis5es 8− ¡ 1 and 8+¿ 0}.

Theorem 4.1. Assume that f satis9es (C1)–(C4) and there exist u∈ [0̂; 1̂] with u 
=0;
v∈9 with u6 v and c∈R such that u6Au and Av6 v. Then Eq. (4.1) has a
travelling wavefront v∗ in [u; v]. Moreover; for a; b∈R with a¡b.

‖vn − v∗‖C[a;b] → 0; (4.5)

where −Dv′′n + cv′n + �vn = f(vn−1) + �vn−1 (n∈N) and

u6 v∗6 · · ·6 vn6 · · ·6 v16 v0 = v: (4.6)
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Proof. We de5ne a map F : [u; v] → BC(R) by Fz(t) = f(z(t)). It follows from
Corollary 2.1 that F : [u; v]→ BC(R) is bounded; M -continuous and �-increasing. By
Theorem 3.3 there exists v∗ ∈ [u; v] such that (4.5) and (4.6) hold. Since Fv∗ ∈BC(R);
it follows from Theorem 3.1 that v∗=Av∗ ∈BC2(R). We prove that v1=Av is increasing.
Let r ¿ 0. By a change of variable; we have for t ∈R;

v1(t + r)− v1(t) = 4−1
[∫ t

−∞
e31(t−s)(f(v(s+ r)) + �v(s+ r)) ds

+
∫ ∞

t
e32(t−s)(f(v(s+ r)) + �v(s+ r)) ds

]
− v1(t)

=
∫ ∞

−∞
k(t; s)(f(v(s+ r))− f(v(s)) + �(v(s+ r)− v(s))) ds

¿ 0:

This implies that v1 is increasing. Using similar arguments; we can show that vn is
increasing for each n∈N. It follows that v∗(t+ r)¿ v∗(t) for t ∈R and r ¿ 0. Hence;
v∗ is increasing. By Lemma 4.1; f(8−) = f(8+) = 0; where limt→−∞ v∗(t) = 8− and
limt→∞v∗(t)=8+. It follows from (C3) and (C4) that 8−; 8+ ∈{0; 1}. Since u 
=0 and
u6 v∗; we have 8+¿ 0 and 8+ = 1. Since limt→−∞ v(t)¡ 1 and v∗6 v; it follows
that limt→−∞ v∗(t)¡ 1 and lim

t→−∞ v∗(t) = 0.

By an argument similar to that of Corollary 3.1, we obtain the following useful
result.

Corollary 4.1. Assume that f satis9es (C1)–(C4) and there exist u∈ [0̂; 1̂] ∩ Y with
u 
=0; v∈9 ∩ Y with u6 v and c∈R such that the following conditions hold:

(h1) −Du′′(t) + cu′(t)6f(u(t)) a.e. on R and
(h2) f(v(t))6− Dv′′(t) + cv′(t) a.e. on R;

then the results of Theorem 4:1 hold.

Now, we construct u and v and impose an additional condition on f such that (h1)
and (h2) in Corollary 4.1 hold for suitable c.
Let Vc(t) = (1 + e−ct=2D)−1 for t ∈R and

Uc(t) =

{
ect=D for t6 t0;

ect0=D for t¿ t0;

where t0 ∈ (−∞; 0) satis5es ect0=D(1 + e−ct0=2D)6 1.

Notation. Let M = sup{f(x)=x(1− x): x∈ (0; 1)}.
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Theorem 4.2. Assume that f satis9es (C1)–(C3) and M ¡∞. Then for each c¿
2
√
DM; Eq. (4.1) has a travelling wavefront v∗ in [u; v]; where u = Uc and v = Vc.

Moreover; (4.5) and (4.6) hold.

Proof. Since M ¡∞; it follows that f(0) = f(1) = 0 and (C4) holds. It is easy to
verify that u∈ [0̂; 1̂]∩ Y with u 
=0 and v∈9∩ Y with u6 v. By calculation; we have
−Du′′(t) + cu′(t) = 06f(u(t)) for t ∈R with t 
= t0 and

−Dv′′(t) + cv′(t) =
c
2D

( c
2
+

c
D
v(t)

)
v(t)(1− v(t))¿

c2

4D
v(t)(1− v(t))

¿Mv(t)(1− v(t))¿f(v(t)) for t ∈R:
The result follows from Corollary 4.1.

Corollary 4.2. Assume that f∈C1[0; 1] and satis9es (C3) and (C4). Then for each
c¿ 2

√
DM; Eq. (4.1) has a travelling wavefront v∗ in [u; v]; where u=Uc and v=Vc.

Moreover; (4.5) and (4.6) hold.

Proof. By the proof of Corollary 2.3; f satis5es (C2). By (C4); f′(0)=limx→0+ f(x)=x
and f′(1) = −limx→1− f(x)=(1 − x). This implies M ¡∞. The result follows from
Theorem 4.2.

Remark 4.1. When D=1; the 5rst part of Corollary 4.2 improves (b) of Theorem 4.15
in [9] (also see [2; Theorem 4.2]; [28; Theorem 1; p. 215] ); where f satis5es f′(0)¿ 0
and f′(1)¡ 0. However; (b) of Theorem 4.15 in [9] obtained a larger interval of wave
speeds [c∗;∞); where c∗ ∈ [2√f′(0); 2

√
<] and <=sup{f(x)=x: x∈ (0; 1)}. Our method

is completely di%erent from the phase-plane techniques used in [9]. The second part of
Corollary 4.2 is new and provides an iteration to compute the travelling wavefronts.

As applications of Theorem 4.2, we consider the existence of travelling wavefronts
for the following reaction–di%usion equation:

− D
@2u(t; x)

@x2
+

@u(t; x)
@t

= up(t; x)(1− uq(t; x))g(u(t; x)) t¿ 0; x∈R; (4.7)

where D¿ 0; p¿ 1; q¿ 0 and g : [0; 1]→ R is a function.
When g ≡ 1, travelling wavefronts for Eq. (4.7) was studied in [24, Sections 11.1–

11.3]. Moreover, some exact travelling wavefronts can be obtained (also see [6]).
Let

M1 =

{
g(1) if q∈ (0; 1];
g(1)q if q¿ 1:

Example 4.1. Assume that g : [0; 1] → R+ is increasing and continuous and satis5es
g(x)¿ 0 for x 
=0. Then for each c¿ 2

√
DM1; Eq. (4.7) has a travelling wavefront

v∗ in [u; v]. Moreover; (4.5) and (4.6) hold; where u=Uc; v=Vc; � is the same as in
Example 2.1 and f(x) = xp(1− xq)g(x).
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Proof. It is clear that f satis5es (C1) and (C3). By Corollaries 2.2 and 2.3; f satis5es
(C2) with � given in Example 2.1. Let h(x)=(1−xq)(1−x)−1 for x∈ (0; 1). If q∈ (0; 1];
then h is decreasing on (0; 1). Hence; h(x)6 limx→0+ h(x) = 1 for x∈ (0; 1). If q¿ 1;
then h is increasing. Hence; h(x)6 limx→1− h(x)=q for x∈ (0; 1). This implies M6M1

and the result follows from Theorem 4.2.

5. Travelling wavefronts of reaction–di$usion equations with multiple delays

In this section we consider the existence of travelling wavefronts of a reaction–
di%usion equation with multiple delays of the form

− D
@2u(t; x)

@x2
+

@u(t; x)
@t

= F(u(t; x); u(t − r2; x); : : : ; u(t − rn; x)); (5.1)

where D¿ 0; ri ¿ 0 for 26 i6 n and n¿ 2.
We always assume that F : [0; 1]n → R+ satis5es the following conditions.

(H1) @F(:)=@xi is continuous on [0; 1]n for each i∈{1; : : : ; n}.
(H2) @F(u)=@xi¿ 0 for u∈ [#; $]n and 26 i6 n.
(H3) F( Qx)¿ 0 for x∈ (0; 1), where Qx = (x; : : : ; x)∈Rn.
(H4) F( Q0) = F( Q1) = 0.

When n=2, the existence of travelling wavefronts for Eq. (5.1) was studied in [29],
where F satis5es some additional assumptions. We also refer to [14,35] for similar re-
sults. Here, even under weaker conditions than those used in [29] and even when n¿ 2,
we obtain that the existence of travelling wavefronts and provide iteration schemes to
compute the travelling wavefronts.
Since we consider the existence of travelling wavefronts u(t; x) = z(x + ct) for

Eq. (5.1), we can write Eq. (5.1) in the form

− Dz′′(t) + cz′(t) = F(z(t); z(t − cr2); : : : ; z(t − crn)); t ∈R (5.2)

subject to the boundary condition (4.3).
By a travelling wavefront (with a wave speed c) to Eq. (5.1) we mean an increasing

function z ∈BC2(R) and a number c∈R which satisfy (5.2) and (4.3).
We refer to Mallet–Paret [22,23] for the study of the existence of travelling wave-

fronts for Eq. (5.2) with D = 0 and ri ∈R.
Eq. (5.2) can be changed into the following Hammerstein integral equation

z(t) =
∫ ∞

−∞
k(t; s)((Fz)(s) + �z(s)) ds ≡ Az(t); t ∈R; (5.3)

where k is same as in Section 3 and F : [0̂; 1̂]→ BC(R) is de5ned by

Fz(t) = F(z(t); z(t − cr2); : : : ; z(t − crn)) for t ∈R:
As before, we write 8− = limt→−∞ z(t) and 8+ = limt→∞ z(t).
By a similar argument to that in Lemma 4.1, we obtain
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Lemma 5.1. Under (H1) and (H2); if z ∈ [0̂; 1̂] is increasing and z = Az; then

F(8−) = F(8+) = 0:

Proof. We outline the proof. Assume that F(8+)¿ 0. Since z is increasing and F is
continuous; there exists t1 ∈R such that F(z(t1)) + �z(t1)¿ 0. Let t0 = max{t1; t1 +
cr2; : : : ; t1 + crn}. Then z(t − cri)¿ z(t1) for t¿ t0. By the proof of Theorem 2.2; we
have for t¿ t0;

(Fz)(t)− F(z(t1)¿F(z(t); z(t1); : : : ; z(t1))− F(z(t1))¿− �(z(t)− z(t1)):

This implies (Fz)(t) + �z(t)¿F(z(t1)) + �z(t1) for t¿ t0. Hence; we obtain∫ t

t0
e−31s((Fz)(s)) + �z(s)) ds¿ (F(z(t1)) + �z(t1))

∫ t

t0
e−31s ds → ∞:

By a similar argument to that of Lemma 4.1, we must F(8+) = 0 and F(8−) = 0
and F(8−) = 0.

By an argument similar to that of Theorem 4.1, we obtain

Theorem 5.1. Assume that F satis9es (H1)–(H4) and there exist u∈ [0̂; 1̂] with u 
=0
v∈9 with u6 v and c∈R such that u6Au and Av6 v. Then Eq. (5.1) has a
travelling wavefront v∗ in [u; v]. Moreover; for a; b∈R with a¡b.

‖vn − v∗‖C[a;b] → 0; (5.4)

where −Dv′′n + cv′n + �vn =F(vn−1) + �vn−1 (n∈N) and

u6 v∗6 · · ·6 vn6 · · ·6 v16 v0 = v: (5.5)

As a special case of Theorem 5.1, we have

Corollary 5.1. Assume that (H1)–(H4) hold and there exist u∈ [0̂; 1̂] ∩ Y with u 
=0
and v∈9 ∩ Y with u6 v and c∈R such that the following conditions hold:

(i) −Du′′(t) + cu′(t)6F(u(t); u(t − cr2); : : : ; u(t − crn)) a.e. on R and
(ii) F(v(t); v(t − cr2); : : : ; v(t − crn))6− Dv′′(t) + cv′(t) a.e. on R.

Then the results of Theorem 4:1 hold.

Applying Corollary 5.1, we obtain the following result.

Theorem 5.2. Assume that F satis9es (H1)–(H3) and the following condition:

M ′:=sup
{

F( Qx)
x(1− x)

: x∈ (0; 1)
}

¡∞:

Then for each c¿ 2
√
DM ′; Eq. (5.1) has a travelling wavefront v∗ in [u; v]; where

u= Uc and v= Vc. Moreover; (5.4) and (5.5) hold.
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Proof. Since M ′ ¡∞; F( Q0) = F( Q1) = 0 and (H4) holds. By calculation; we have for
t ∈R with t 
= t0;

−Du′′(t) + cu′(t) = 06F(u(t); u(t − cr2); : : : ; u(t − crn)):

Hence; (i) of Corollary 5.1 holds. Note that

−Dv′′(t) + cv′(t)¿
c2

4D
v(t)(1− v(t))¿M ′v(t)(1− v(t))¿F(v(t)) for t ∈R:

By (H2); we have F(v(t))¿F(v(t); v(t − cr2); : : : ; v(t − crn)) for t ∈R. This implies
that (ii) of Corollary 5.1 holds. The results follow from Corollary 5.1.

Remark 5.1. The 5rst part of Theorem 5.2 improves (ii) of Theorem 2.7 in [29];
where D= 1; n= 2 and F satis5es extra conditions: F ∈C1; <(R2;R) and @F( Q0)=@x1 +
@F( Q0)=@x2¿ 0. But; Schaaf [29] obtained a minimal speed c∗. Our method is com-
pletely di%erent from the sub- and superlinear techniques due to Atkinson and Reuter
[3]; used in [29].

As applications of Theorem 5.2, we consider the existence of travelling wavefronts
of the following delay reaction–di%usion equation:

− D
@2u(t; x)

@x2
+

@u(t; x)
@t

= kup2 (t − r2; x); : : : ; upn(t − rn; x)(1− uq(t; x)); (5.6)

where D; k ¿ 0; q; pi¿ 1 and ri ¿ 0 (i = 2; : : : ; n).

Example 5.1. For each c¿ 2
√

Dkq; Eq. (5.6) has a travelling wavefront v∗ in [u; v];
where F(x)= k(1− xq1)x

p2
2 ; : : : ; xpn

n ; u=Uc and v=Vc. Moreover; (5.4) and (5.5) hold.

References

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM.
Rev. 18 (1976) 620–709.

[2] D.G. Aronson, H.F. Weinberger, Nonlinear di%usion in population genetics, combustion and nerve
propagation, in: Proceedings of the Tulane Program in Partial Di%erential Equations and Related Topics,
Lecture Notes in Mathematics, Vol. 446, Springer, Berlin, 1975, pp. 5–49.

[3] C. Atkinson, G.E. Reuter, Deterministic epidemic waves, Math. Proc. Cambridge Philos. Soc. 80 (1976)
315–330.

[4] H. Berestycki, L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. PoincarPe 9 (1992) 497–572.
[5] M.D. Bramson, Maximal displacement of branching Brownian motion, Comm. Pure Appl. Math. 31
(1978) 531–581.

[6] P.K. Brazhnik, J.J. Tyson, On traveling wave solutions of Fisher’s equation in two spatial dimensions,
SIAM J. Appl. Math. 60 (1999) 371–391.

[7] N.F. Britton, Reaction–Di%usion Equations and their Applications to Biology, Academic Press,
San Diego, 1986.

[8] J. Canosa, Di%usion in nonlinear multiplicative media, J. Math. Phys. 10 (1969) 1863–1868.
[9] P.C. Fife, Mathematical Aspects of Reacting and Di%using Systems, Lectures Notes in Biomathematics,
Vol. 28, Springer, Berlin, 1979.

[10] P.C. Fife, J.B. McLeod, The approach of solutions of nonlinear di%usion equations to travelling front
solutions, Arch. Rational Mech. Anal. 65 (1977) 335–361.

[11] R.A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937) 353–369.



188 K.Q. Lan, J.H. Wu / Nonlinear Analysis: Real World Applications 4 (2003) 173–188

[12] R.A. Gardner, Existence and stability of travelling wave solutions of competition models: a degree
theoretical approach, J. Di%erential Equations 44 (1982) 343–364.

[13] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988.
[14] K. Kobayashi, On the semilinear heat equations with time-lag, Hiroshima Math. J. 7 (1977) 59–472.
[15] A.N. Kolmogorov, I.G. Petrovskii, N.S. Piskunov, A study of the equation of di%usion with increase

in the quantity of matter, and its application to a biological problem, Bjul. Moskovskogo Gos. Univ.
1 (1937) 1–25.

[16] K.Q. Lan, Multiple positive solutions of Hammerstein integral equations with singularities, Di%erential
Equations Dynamic Systems 8 (2) (2000) 175–192.

[17] K.Q. Lan, Multiple positive solutions of semilinear di%erential equations with singularities, J. London
Math. Soc. 63 (2) (2001) 690–704.

[18] K.Q. Lan, J.R.L. Webb, Positive solutions of semilinear di%erential equations with singularities,
J. Di%erential Equations 148 (1998) 407–421.

[19] D.A. Larson, Transiet bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher
type, SIAM J. Appl. Math. 34 (1978) 93–103.

[20] K.S. Lau, On the nonlinear di%usion equation of Kolmogorov, Petrosky, and Piscounov, J. Di%erential
Equations 59 (1985) 44–70.

[21] A.W. Leung, Systems of Nonlinear Partial Di%erential Equations with Applications to Biology and
Engineering, Kluwer Academic Publishers, Dordrecht, 1989.

[22] J. Mallet-Paret, The Fredolm alternative for functional di%erential equations of mixed type, J. Dynamics
Di%erential Equations 11 (1999) 1–47.

[23] J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems,
J. Dynamics Di%erential Equations 11 (1999) 49–127.

[24] J.D. Murray, Mathematical Biology, Springer, New York, 1989.
[25] C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York, 1992.
[26] A.J. Perumpanani, J.A. Sherratt, J. Norbury, Mathematical modelling of capsule formation and

multinodularity in benign tumor growth, Nonlinearity 10 (1997) 1599–1614.
[27] M.M. Rao, Measure Theory and Integration, Wiley, New York, 1987.
[28] F. Rothe, Convergence to travelling fronts in semilinear parabolic equations, Proc. Roy. Soc. Edinburgh

Sect. A 80 (1978) 213–234.
[29] K.W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional di%erential

equations, Trans. Amer. Math. Soc. 302 (1987) 587–615.
[30] J.A. Sherratt, Traveling wave solutions of a mathematical model for tumor encapsulation, SIAM

J. Appl. Math. 60 (1999) 392–407.
[31] A.N. Stokes, On two types of moving front in quasilinear di%usion, Math. Biosci. 31 (1976) 307–315.
[32] Tuchwell, Introduction to Theoretical Neurobiology, Cambridge Studies in Mathematical Biology,

Vol. 8, Cambridge University Press, Cambridge, UK, 1988.
[33] K. Uchiyama, The behavior of solutions of some non-linear di%usion equations for large time, J. Math.

Kyoto Univ. 18 (1978) 453–508.
[34] A.I. Volpert, V.A. Volpert, V.A. Volpert, Traveling wave solutions of parabolic systems, Translations

of Mathematical Monographs, Vol. 140, American Mathematical Society, Providence, RI, 1994.
[35] X.F. Zou, J.H. Wu, Existence of traveling wave fronts in delayed reaction–di%usion systems via the

monotone iteration method, Proc. Amer. Math. Soc. 125 (1997) 2589–2598.
[36] X.F. Zou, J.H. Wu, Traveling wave fronts of reaction–di%usion systems with delay, J. Dynamics

Di%erential Equations 13 (2001) 651–687.


	Travelling wavefronts of scalar reaction--diffusion equations with and without delays
	Introduction
	A class of nonlinear maps
	Existence of solutions of second order functional differential equations
	Travelling wavefronts of reaction--diffusion equations
	Travelling wavefronts of reaction--diffusion equations with multiple delays
	References


