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Abstract

For a delay differential system where the nonlinearity is motivated by applications of neural
networks to spatiotemporal pattern association and can be regarded as a perturbation of a
step function, we obtain the existence, stability and limiting profile of a phase-locked periodic
solution using an approach very much similar to the asymptotic expansion of inner and outer
layers in the analytic method of singular perturbation theory.
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1. Introduction

The purpose of this paper is to develop a new approach, elementary and
constructive, for the existence of stable periodic solutions of general systems of delay
differential equations whose nonlinearities are motivated by additive models of
neural networks.

Much has been achieved for the study of periodic solutions of delay differential
equations. Among various developed methods are local/global Hopf bifurcation
theory, fixed point arguments, and general geometric approaches. Each of the above
methods has its own advantages and drawback: the local Hopf bifurcation (and
normal formal reduction) approach provides information about the existence,
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asymptotic form, direction and stability of the periodic solutions but the conclusion
remains valid only when the parameter is in a small neighborhood of the critical
value and the obtained periodic solutions are usually of small amplitudes; the global
Hopf bifurcation theory/fixed point theoretical argument may yield important
information about the global continuation of a branch of periodic solutions and thus
obtain the existence of periodic solutions of large amplitudes for a large range of
parameter values, but this approach seems to generate little information for the
stability; the general geometric approach does yield useful details of the periodic
solutions including the existence, domain of attraction and limiting profiles but the
nonlinearities are quite restrictive (much of the work available requires mono-
tonicity, for example). Listing even just a reasonable portion of related references is
clearly a challenging task, we refer interested readers to the two standard references
by Diekmann et al. [10] and Hale and Verduyn Lunnel [12], as well as some recent
work reported in [21,23,24,29].

In this paper, we develop an alternative method for the existence and stability of
periodic solutions for delay differential systems, motivated by the previous success of
Walther [36-38] for scalar delay differential equations with negative feedback. The
approach seems to be theoretically simple and straightforward, although the detailed
analysis may be complicated and is very much similar to the asymptotic expansion of
inner and outer layers in the analytic method of singular perturbation theory
involving slow and fast motions. This approach seems to have great potential for
applications as its requirements on the nonlinearity are minimal. This relaxation on
the requirement of the nonlinearity is particularly important for applications to
spatiotemporal pattern storage and recognition by delayed neural networks due to
the different choices of the signal function by different scientific communities and
due to the presence of noise in the signal transmission.

To be more precise, we consider the following bi-directional system:

Xi(t) = — pxi(t) + af (xi(1 = 7)) + bf (xi1 (1 = 7))+ (xia (1 = 7)),
i (mod) 3 (1.1)

as a special case of the general Hopfield network of neurons [17] describing the
computational performance of a network of neurons, where the positive constant t
was added by Marcus and Westervelt [26] to account for the finite switching speed of
neurons and for the finite propagation velocity of signals, >0 is the internal decay
rate, (a,b) describes the strength and characteristics of the self-feedback and
neighborhood interaction, and f : R— R is the so-called signal function. Commonly
used signal functions include step functions (describing the on-or-off characteristics
in the McCullon—Pitts model, see [27]), piecewise linear functions (widely used in
cellular neural networks, see [7,8]), and hyperbolic tangent and other sigmoid
functions (popular functions used in the literature with some physiological and
biological justifications, see [19,22,30]). The existence of noise adds further
complication (see [41]) and it is thus essential to know whether the qualitative
behaviours under investigation are independent of the choice of the signal function.
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We should also mention that in all of the aforementioned cases, the signal functions
do approach the step function when the neural gain (f7(0)) is large.

It is a simple corollary of a general convergence theorem due to Cohen and
Grossberg [9] and Hopfield [17] that, for a wide variety of signal functions, all
solutions of system (1.1) with instantaneous feedback (t = 0) are convergent to the
set of equilibria. This convergence result holds because the synaptic connection is
symmetric, and this convergence is essential for the network’s application to
associative memory and optimization. It is also well-known now that (see, for
example, [2,3,25,26,40,41]):

(1) in electronic implementations of analog neural networks, time delays are
present in the communication and response of neurons due to the finite
switching speed of amplifiers (neurons);

(i1) designing a network to operate more quickly increases the relative size of the
intrinsic delay; and

(iii) the interaction of this intrinsic delay with the neuron gain ( f7(0)) and the size
and connection topology of the network has significant impact on the existence
of oscillatory modes in continuous-time analog neural networks.

While this may impose significant challenging for circuit designers wishing to build
fast analog electronic networks, since the maximal operating speed of an electronic
network will be limited by the onset of delayed-induced instability [26], we also note
that Herz [14] argued that time delay, omnipresent in the brain, does not induce a
loss of the associative capabilities of neural networks as one might fear. On the
contrary, if properly included in the learning process, they provide a physical
structure to perform spatiotemporal computation at low architecture cost. See also
[11,13,15,16,20,33,35] for applications of delayed neural networks to spatiotemporal
association.

Our work here is related to the application of delayed neural networks to
spatiotemporal pattern storage and retrieval, where it is important to know when the
network does have periodic solutions, whether these periodic solutions are stable and
what the patterns of these periodic solutions and their domains of attraction are. To
answer the aforementioned questions, we first note that system (1.1) has some special
solutions which are described by certain sub-systems. For example, the so-called
synchronized solutions, those satisfying x; = x, = x3, are clearly described by the
scalar delay differential equation

x1(t) = —px1(8) + (@ +2b)f (x:1(t — 1))

whose global dynamics is one of lasting interests, and the mirror-reflecting symmetric
solutions satisfying x, = x3 are characterized by the system of two coupled delay
differential equations

{xl(z) = —pux1 (1) + af (x1(t — 7)) + 2bf (x2(t — 7)),
X2(1) = —pxa(t) + bf (x1(t — 7)) + (a + b)f (x2(1 — 7)),
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some special forms of the above sub-system have been recently investigated in
[1,4-6,31,34]. It seems however that the dynamics of the full system (1.1) is much
richer than that of a scalar equation or a system of two coupled equations. For
example, the work of Wu et al. [42] shows the coexistence of 8 branches of periodic
solutions simultaneously bifurcated from an equilibrium, among which two (phased-
locked periodic solutions) can be stable. Their work is based on the local Hopf
bifurcation theory and normal form calculations, and thus the obtained stable
periodic solutions are of small amplitudes. In the recent work of Huang and Wu [18],
the global symmetric Hopf bifurcation theory developed in [40] was applied to
investigate the global continuations of the above 8 branches and to obtain the global
existence of periodic solutions of large amplitudes. Unfortunately, the approach in
[18] does not yield any information about the stability properties of the periodic
solutions.

In this paper, we are constructing stable phase-locked periodic solutions from a
completely different point of view. Namely, we first start with the explicit
construction of a phase-locked periodic solution for system (1.1) with step signal
function given by

J(x) =

1 if x>0
{ if x>0, (12)

~1 if x<0,

and secondly we try to construct a completely continuous returning map defined in a
convex closed set near the constructed phase-locked periodic orbit and then we show
stable fixed points of the returning map exist and give rise to stable phase-locked
periodic orbits for system (1.1) with a general nonlinear signal function sufficiently
close to (1.2). The periodic solutions obtained in this way are stable and with large
amplitudes and thus can be easily observed in numerical simulations. This approach
also has great advantage in applications as the nonlinearity can be a very general
Lipschitz map close to the step function (1.2).

We can now describe our main results in details. First of all, we assume that a<0
and >0, and thus the network has the feature of inhibitory self-feedback and
excitatory interaction. System (1.1) seems to be the smallest size of a network with
the aforementioned structure, and it is hoped that our detailed study of system (1.1)
can shed some light on the global dynamics of a general large scale network of
neurons (see [28]).

Letting /=1 %= put, d=4, b :ﬁ and then dropping the hat, we can rewrite

(1.1) as : '
X1 (1) = —wxa (1) +arf (xi(t = 1)) + br[f(x3(2 = 1)) +f (x2(t = 1)),
Xz(l) = —‘L'XZ(Z) + arf(xz(t — 1)) +br[f(x1(t — 1)) +f(X3(Z — ]))], (13)
X3(1) = —wx3(1) +atf (x3(1 = 1)) + br[f (xa(r = 1)) +f (x1 (2 = 1))].
Let

2= {@: (¢17¢2’¢3); ¢iEC([—1,0]), i= 1’2’3}
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be equipped with the usual super-norm || - ||. For any given ®€X and t> — 1, define
X(t,®) = (x1(t, @), x2(t, ), x2(¢, P)) as the solution of (1.3) such that x;(z,P) =
¢,;(t) for te[—1,0] and i = 1,2, 3. Furthermore, for any given >0, we define the
mapping X,: 2 -2 by

X,(2)(0) = X,(0,9) = X(t+0,P) for ¢eX and 0e[-1,0].

We start with the signal function (1.2). We need to introduce the candidates for
each component of the initial functions whose solutions will be eventually periodic.
For this purpose, for given constants o, ¢3, ¢, with >0, ¢; >0 and ¢3 <0, we define
subsets Qy,Q,, Q3= C([—1,0]) as follows:

Q) ={¢eC([~1,0]); $(0)>0 for O[—1,0) and $(0) = 0},
@ ={¢eC([-1,0]);¢(0) <0, Oe[-1,~a), ¢(-a) =0,
$(0)>0, 0e(-2,0),$(0) = 2},

Q3 ={¢peC([-1,0]); ¢(0) <0, 0e[-1,0),¢(0) = c3}.
Let

Ky = {(i,j,k); 1<i,j,k<3 and i,j, k are distinct integers}.
For any given (i, ], k) € K3, define

Z(ij, k) ={® = ($1, 5, d3)€Z; ¢;eQ, ¢, dres},
and let

S(iyj k) = {PeZ; —dex(i),k)}.

Much of the calculations in Section 2 is about finding o, ¢; and ¢3 so that for any
given (i,j, k)€ K3, we have

X, 200, ), k)= 27 (k,i,j), Xu:2 (i,j,k)—>2(k,i,j). (1.4)
It turns out that if

—a-+2b T

k= =e' —e2, (L.5)

—a
then (1.4) holds provided (a, ¢2,¢3) are chosen so that
3 =—e " [2b(ezm —e') —ae”(e” —1)],

= e72w[2b(er _ em) _|_aem(1 _ em)}
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and o€ (1/2,1) is the unique number such that
h(o7,a,b) = 3 4 c2e™™ 4 a[l + ™™ — 2e172%)] = 0.
For the above given ¢,, ¢c3 and o, we then have
Xoy: Z(i,j, k)= Z(J, k, i),
and hence
Koo : Z(i,j, k) > 2(i,], k). (1.6)

Since f(x) depends only on the sign of x, we can easily see that if @, PeX(1,2,3),
then X (¢, ®) = X (¢, P) for all £>0. This, together with (1.6), then yields

Theorem A. Assume that a<0 and b>0 satisfy (1.5). Then
(i) For any ®,%eX(1,2,3), X(t,®) = X(¢t, V) for all t=0.

(i) Let P(t) = X (1, ®) for t=0 and for a given ®€ X(1,2,3). Then P(t + 60) = P(¢)
for all t=0, and P is phased-locked in the sense

pl(t):p2(t+2a)v PZ(t):P3(t+2°‘)a p3([):Pl(t+2a)v 1=0,
and satisfies the following additional symmetry property:

pl(l) = —P3(Z+°‘): pZ(Z) = _pl(t+ O(), p3(l) = —Pz(t‘f'“)a t=0.

Our next step is to construct phase-locked periodic solutions in a small
neighborhood of P‘H,O] for f close to the step function. We first introduce the

restriction for the nonlinearity. Let
N(M,B,e) ={f:R->R; f is continuous and odd, |f(x)|<M
for xeR, |f(x) — l|<e if x=p}.
Note that f converges to the step function, except at zero, when f— 0 and ¢—0.

We also need to restrict the initial functions to a certain convex and closed
set containing P|[_1‘0] of the phase-locked periodic solution P constructed above.

Let (oo, 92,03, D, f) be given positive constants with 0<oc0<% and define
A(x, 62,63, D, B)
={®=(¢1,¢2,¢3) €
¢1(s)=p for se[-1,0],¢,(0) = B,
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¢, is nonincreasing on [—20, 0] and
¢1(1) = ¢1(s)< = D(t —s) for — o <s<1<0;
D, (s)< — B for se[—1, —a — o], P,(s) = for se[—a + a, 0],
¢, is nondecreasing on [—a — o, —o + 0] and
D2 (1) — Py (s)=D(t — s5) for — o — o <s<I< — o+ a,
|62(0) — 2] <;

¢3(s)< — f for s€[—1,0], |¢3(0) — 3] <3}

It is easy to prove that the set A(ag, 02,3, D, f§) is a closed and convex subset of the
Banach space 2.

For a fixed ®eA(ag, 32,03, D, ), if we let —ay = —a;(P) be the smallest o in
[—o — a9, —a + ap] so that ¢,(—o) = —f and let —op == —a(P) be the largest o in
[—a — g, —a + 0] so that ¢,(—oap) = B. Then oy >0, and

2B

o] — o x—
D

This observation turns out to be essential: while we cannot control the locations
where ¢, crosses + f5, we can control the distance of «; — oy by f.

Fix ®eA(x,d2,03,D,6) and let X = X(f,®) = (x1,x2,x3) be the solution
of (1.3) with a fixed feN(M,p,e). Let T=T(P)e(l —a—op,1) be the
first time where x3(7) = f (the existence will be established in Section 4). Then we
can show that

lo — T|<aznds + aszag + O(P, e) + 0(03, %),
1X1(T) + 2| <|an|ds + |aiz|ao + O(B, &) + 0(93, x0), (1.7)
|2 (T) + 3| <ai1202 + ands + axon + O(f, &) + 0(62, 03, o),

where a; are given explicitly in terms of {a,b,t}. To generate a self-returning
map by following the solution semiflow of (1.3), we then need to look at the
following nonnegative matrix

for which we can show that there exists t* >0 so that for every 7>1" there exist a
constant pe (0, 1) and a positive vector z = (21,22, z3)" €R® so that

Oz = pz.
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To obtain the above result, we need to establish the fact that «—1/2 as 7— o0, and
more precisely, we need the following asymptotic expansion, assuming that 4 =
ke "e(1,2), given by

1— 81(17200 _ A’le*m(A _ l) +A71(2 _ A)€73m + 0(67473{).

Fix z = (z1, 22, 23)T eR> as above. We can then show that there exists m* >0 such
that for each me (0, m*) there exist >0 and ¢* >0 so that if 0<ff< " and 0<e<e&*
and if (8,03, 00)" = m(z1,22,23)" then the solution X = X(¢,®) = (x1,x2,x3) of
system (1.3) with f'e N(M, f,¢) and @€ A(oy, 02,93, D, ) for a properly chosen D
satisfies

xi(t) = pi(?) + O(x, 02,03, B, ¢),  te[0,1] (1.8)
and

34+ 3+
'DOC(), |X](T)+Cz|< 4P

34+
o — T|< 5, |xQ(T)+C3|<Tp53. (1.9)

As a consequence, we obtain that the mapping F given by
F(¢) = ( ;pax(lpvx;p)|[T717T]v ©EA(O(0752’53’D’[3)

satisfies —F(®)e A(xg, 02,03, D, ). This, together with the symmetry of the
nonlinearity and the fact that 7>1/2 shows that F? is a completely continuous
self-returning map on A(wy, 02, 43, D, f), and hence has a fixed point which gives rise
to a phase-locked periodic solution since

F2(¢) = (xép,xgvx(lp)hf—l,f]
with some 7> 1. Therefore, we obtain

Theorem B. Let A =ke “e(1,2) and assume that t>1* so that there exist a
constant pe(0,1) and a positive vector z = (z1,22,23)" €R> such that Oz = pz.
Let 0<ag<min{o — 4,55%}. Then there exist m*>0 such that for each me(0,m")
there exist positive constants B* and & so that if 0<f<f* and 0<e<e* and if
(02,03,00)" = m(z1,22,23)" then system (1.3) with f e N(M, B, &) has a phase-locked
6P-periodic  solution Q= (q1,42,q3) with Q|_;g€A(x0,62,03,D,8) for a
suitable D and

qi(t+6P) = qi(t), qi(t) = qiy1(t+2P), imod (3), t>0.

Moreover, |P—o|<oy and the periodic solution so obtained satisfies q; — p;—0
uniformly as fB,e,m—0.
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As for the stability of Q, we need an exponential norm: for every & =
(¢, 05, ¢3) €2 and for a constant y>0 to be specified, let

ol = max{ _max el max o1}
i=1,23 | se[—1,—a+o) s€[—at0,0]

Clearly, the above-defined norm is equivalent to the super-norm. The goal is to

choose y>0 appropriately so that the fixed point of F? is asymptotically attractive

with respect to the above exponential norm. To be more concrete, let ocZQ and ole be as

defined above but with the supindex Q to denote the dependence on Q. Let w >0 be
given and define

Cow ={Pe;[|® - Ol <w}.

It is easy to show that for any >0 and >0 there exists w = w(f,#) such that if
PeCy,, then

$1(s)=p for se[—1, -,
$y(s)< —p for se[~1,—af —p),
$2(s)=p for se(—of + 1,0,
¢s(s)< — B for se[-1,0].

We need to impose a certain Lipschitz continuity on the nonlinearity in order to
achieve the required attractivity. Namely, for a fixed L., >0, we define

N(Loo, Lp, M, B,6) :={ S eN(M, B,e); [/ (x) =S W) S Loo |x = ¥, x,, €R;
/() =fWI<Lglx = |, %,y =B}

We then fix an element f from the above set. Much of the challenging to obtain the
aforementioned attractivity of Q|_, as a fixed point of F? lies on the different

scales of growth rates of the difference x; — g; on the intervals FM :=[0,1 — ocIQ —

null — ocZQ +#,1 —n] and on the intervals SM = [1 — ole —-n,1- oc2Q + 7). On FM,
the contraction is easy as f(x;(t — 1)) — f(¢i(t — 1)) is bounded by a small Lipschitz
constant Lg (multiplied by ||® — Qy||,) but the contraction on SM is very difficult
since f(x;(t — 1)) — f(q:(t — 1)) is bounded only by the global Lipschitz constant L,
(multiplied by ||® — Oy||,) and this global Lipschitz constant L., goes to infinity as
B —0. Consequently, we need to choose y >0 very carefully so that the corresponding
exponential norm compensates the expansion due to the fast growth of x; — ¢; on
FM , while keeping the contraction on SM. In this spirit, our analysis is very much
similar to the asymptotic expansion of inner and outer layers in the analytic theory
of singularly perturbed systems.
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It turns out that y = I'"'(zx)e'”, with T = T(QJ_, ), suits the above purpose,
where I'(t)e(1,e"?7-1). In particular, we can show that if 4 = ke "e(1,2), 1>1*
and if 0<op<min{o — 1,152} then there exist m™ >0 such that for each me (0, m™)
there exist f* and ¢* so that if 0<f<f* and O<e<e* and if (52,63,a0)T =

m(zy, z2, 23)T then for a chosen nemin{%, —a 4 oo — o5 } and for every fixed @€ Cyp,
we have

X7 — Qrll <max{Bi. By, e~ +3(~a+ 2b)eLpe " (|@ — Qull.  (1.10)
and the constant
K =max{B), By,ye""" +3(—a+ 2b)tLge’" 1)}

is less than 1 if 7 is sufficiently large and Ly is sufficiently small. As a consequence, we
obtain

Theorem C. Assume all conditions in Theorem B are satisfied, and assume
0<ag<min{x — 3,152}, Then there exists T =1* so that for every fixed ©>1"* and

any T'(t)e(1,e" 2T D) there exist Ly>0, e €(0,5*) and &*€(0,¢*) so that if
Lgel0,Lp), pe(0,B7), ¢€(0,&™) and L p<I ' (1)e?®T=Y  then Q is asymptotically
stable.

We now comment about conditions so far assumed, listed below:

(H1) t>1*";

(H2) =2£2b — |k = ge", Ae(1,2);
(H3) 0<L/;<Lﬁ,

(H4) 86[078**)7 BG[O,ﬁ**);

(HS) L, p<I~ (x)erTD).

Conditions (H4) and (H5) are satisfied if the nonlinearity is close to the piecewise
linear function used in cellular neural networks, given by f(x) = 1 for x=f, f(x) =
—1 for x< — f and f(x) = x/p for xe[—f,]. Condition (H3) requires that the
Lipschitz constant of f to be small outside a neighborhood of the zero. Note that if
feN(M,p,e) then L,,>1 and hence, L, is surly large if f—0. This makes our
analysis very much similar to the asymptotic expansion of inner and outer layers in
the singular perturbation theory. In terms of the aforementioned convergence (to
equilibria) of all solutions of (1.1) with T = 0, to obtain a stable periodic solution, the
delay must be sufficiently large, so is condition (H1), though unfortunately our
method does not yield information about the minimal value of 7**. Certain
conditions on the ratio *“”b are necessary as well for the occurrence of stable phase-
locked periodic solutlons. Th1s is because if ¢ = 0 then system (1.3) is a cooperative
and irreducible functional differential equation in the sense of Smith [32] and thus
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system (1.3) does not have any stable periodic solution. On the other hand, if b is
small, system (1.3) is weakly coupled and hence stable phase-locked solutions are
unlikely.

We should mention that condition (H2), though natural as explained above, is
different from what one normally would get from the Hopf bifurcation theory. This
is because we deal with the existence of a stable phase-locked periodic solution from
a new viewpoint: the periodic solution is regarded as a perturbation of the periodic
solution of (1.3) with the step function which has an infinite jump (gain f”(0) = o).
It is not a bifurcation problem, but rather a persistence issue. Looking at this
condition from a bifurcation point of view, we can regard condition (H2) as the one
that guarantees not only the occurrence of a local Hopf bifurcation of periodic
solutions, but also the global continuation of this branch to infinity (continued as
7— o0) as well as the persistence of stability of the periodic solutions.

We conclude this long introduction with some remarks about potential future
development of the method. First of all, according to the work of Wu [40] and
Huang and Wu [18], as 7 increases, system (1.3) has multiple periodic solutions
including phase-locked solutions, mirror-reflecting waves and standing waves. Some
preliminary work of Wu [39], using a vector discrete valued Lyapunov functional,
shows that the dynamics of (1.3) is still regular and the global attractor is expected to
be the set of equilibria, the phase-locked, mirror-reflecting and standing wave
periodic solutions and their connecting orbits. The difficulty to obtain this result is to
describe the structure of all connecting orbits between various periodic orbits. It
should be possible to describe the connecting orbits of various periodic solutions for
system (1.3) when the nonlinearity f is a step function, and we hope our approach
can be used not only to obtain the mirror-reflecting waves and standing waves, but
also to describe the persistence of connecting orbits when £ is sufficiently close to the
step function.

2. Limiting profiles at infinite gain

In this section, we consider system (1.3) with the nonlinearity given by the step
function (1.2), and with a<0 and »>0. Our goal is to construct explicitly a phased-
locked periodic solution.

Let
c3 = —e 2b(e¥ — &) — ae™(e™ — 1)] (2.1)
and
ey = e 2b(e" — ™) + ae™(1 — e™)]. (2.2)
Define

h(O(, 1,4, b) =03+ CQei‘m + a[l +e ™ — Ze‘[(l*Z“)]_
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Then

h(o;t,a,b) =

Let

That is, 2b = (1
1h(ot"c a,b)
a k) ) )

So we have
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a[em+ Py T(1— 2<x]+2b[ T(1—a) +€(l 30()_em

— k)a. Then

_ e‘r(lfoc) 7 261(1721) + 67(1731) _ k[er(lfoz) + 61(17305) L

1
;h(l;r,a,b) =1-2e"+e T —k(l+e X —¢ —e )

Also, we have

=(1—e) — k(1 —¢)

=(1-e ™) +k(e" = 1)>0.

:efg(e% — 1) - ke_z(e% -1

= (e% — l)e’f[e%(e% — 1) —kJ.

Hence, Lh(;t,a,b) <0 if

k>e%(e% —1).

Note also for ae(1/2,1),

1 0 1
—1(1-30) = .
~ —e ah(oc, 7,4, b)
19 211 70 270 T(4a—1) T(a—1)
raoc[ -2+ 1 —k(e™+1—e —e )]

_ 26211 P k(2e2m _ 481(40171) _ er(otfl))

—e

—270

2‘[0{].

(2.3)

(2.4)
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=2e"(e™ — 1)+ k(4eT(4°‘_1) — 2% 4 em_l))
=2e"(e™ — 1)+ k[2ezw(2ef(2°‘_]) —-1)+ ef(“_l)]
>0.
Consequently, we have shown

Lemma 2.1. If(2.5) holds, then there exists one and only one o. = o(t,k)e(1/2,1) such
that

h(o;t,a,b) =0. (2.6)

We will also need the following technical preparation.
Lemma 2.2. ¢3<0<cs.
Proof. Using 2b = (1 — k)a, we get
¢y =ae e — & 4 ef — €™ — k(e" — e™)]
=ae *[(e" — &™) + k(e™ — €)]
>0
since a<0 and 1/2<a<1. Also, we have
3= —e Pale®™ — ¢ — k(¥ — ") — & + €7
— —ae [ — & + k(e — )]
<0.
This completes the proof. O
Let
2 ={® = (¢, 01, ¢3); ;€ C([-1,0]),i = 1,2,3}.
For any given @€ and > — 1, define X (z,9) = ( 1(t, @), x ( , ®), x,(t, D)) as the
solution of (1.3) such that x;(, QD) ¢;(t) for te[—1,0] and i = 1,2, 3. Furthermore,
for any given >0, we define the mapping X : Z—>Z by

X(®)(0) = X,(0,P) = X(t+0,P) for X and Oe[-1,0].
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We denote by ¢~ ¢ for given ¢, e C([—1,0]) if and only if

(a) sign ¢(0) = sign ¢(0) for all 0e[—1,0], except finitely many points;
$(0).

(b) ¢(0) = ¢(0)

We write @~ @ for @, deX with @ = (¢, ¢y, ¢;3) and & = (1, d2, b3), if p;~P;
for i=1,2,3. As f(x) depends on only the sign of xeR, we can easily show that

Lemma 2.3. If ®~®, then X (t,®) = X(t,P) for t=0.

We now introduce three essential subsets of C([—1,0]).

Definition 2.4. For the constants «,c3, c; determined in (2.1), (2.2) and (2.6), we

define subsets Q;, Q2,, 23 = C([—1,0]) as follows:
(i) @ consists of ¢pe C([—1,0]) satisfying
¢(0)>0 for 0e[—1,0) and ¢(0) = 0;

(i) Q, consists of ¢ e C([—1,0]) satisfying

<0, Oe[-1,—a),
=0, 0 =—u
0 ) )
$(0) >0, fe(—a,0),
=0, 0=0;

(iii) Q3 consists of ¢pe C([—1,0]) satisfying
<0, 0e[-1,0),
0
d)( ){=C3, 0=0.

Let
Q ={¢eC([-1,0]); —Pe;}

and

Ky ={(i,j,k); 1<i,j,k<3, and i,j,k are distinct integers}.

For any given (i,j, k) € K3, define

Z(i7j7k):{¢:(¢17¢25¢3)€Z; ¢ite7 ¢j6927 ¢ke'Q3}7

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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and let
27(i,j, k) ={®eX; —deX(ij k)}. (2.12)
It is clear that if @, &€ X(i,j, k), then ® ~d and hence, X (1, ®) = X (¢, ®) for 1>0.
Lemma 2.5. For any given (i,j,k)e K3, we have

X, 2., k)= = (ki ). (2.13)

Proof. By symmetry, we only need to show that X,(2(1,2,3))=27(3,1,2). Choose
¢ = (d)lv ¢2; ¢3)GZ(1,2, 3); that iS,

$P1EQ1, Py, e (2.14)
Let
¢7(0) = xi(0+0,®) fori=123. (2.15)

We want to show that —¢5eQ;, —¢] €y, —¢3€Q;. That is, we want to show that

$3(0)<0, 0e[—1,0) and ¢3(0) =0 (2.16)
and
>0, fel[-1,—a),
508 20 peao 1
=—c, 0=0
as well as
¢3(0)>0, 60e[-1,0) and ¢5(0) = —c3. (2.18)

(i) Verification of (2.16): For 0e[—1,—a], a +60<0, and hence it follows from
(2.14) and (2.9) that ¢5(0) = ¢5(x+ 0)<0. So, it suffices to prove

x3(t,®)<0 for t€[0,a) and x3(a, @) = 0. (2.19)
By (1.3), (2.14) and (2.7)~2.9), we obtain that
x3(t,®) =cze™ — (a—b)(1—e™)

=b(l —e™ ™), for te[0,1 —q],

2.20
* {b[l + e — 27T =1 for te (1 — o, 1]. (2:20)
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For 1e[0,1 — ), x3(¢, ) = cze ™ —a(l — e ™). So, we have
x3(0,P) = ¢3<0 (2.21)
and
X3(t, @) = —(a + ¢3)te " >0. (2.22)
For te(1 — o, 1], (2.20) yields
%3(1, @) = e [2be" ) — (a + ¢3)].
This, together with 5>0 and (2.22), yields x3(¢, @) >0 for 1[0, 1]. As x3(0, ) <0 by
(2.21), to obtain (2.19), we only need to prove x3(a, @) = 0. Note that o>1 — a. By
(2.20), x3(o, @) = 0 if and only if
3™ — (@ —b)(1 — e ™) + B[l + 7™ — 277271 = 0,

which is equivalent to (2.1). This verifies (2.16).
(ii) Verification of (2.17): Note that for 6e[—1,—a), o« + 0<0 and hence, (2.7)
gives ¢{(0) = ¢, (o + 0)>0 and ¢j(—a) = 0. To prove (2.17), it suffices to prove

x1(t,®)<0 for te[0,a) and x| (o, @) = —cs. (2.23)
By (1.3), (2.14) and (2.7)—(2.9), we obtain that

—b(l —e™™), for t€[0,1 —a],

t,®)=(a—b)(1—e™
0 @) =(a-b)(1—e )+{b[1+e”—2ef(”+“>], for te(1 —a,1].

(2.24)

For te[0,1 — o], by (2.24), x1(t,®) = (a — 2b)(1 — e™™). So, a<0 and b>0 imply
x1(t,®)<0 for t€[0,1 — ¢ (2.25)
and
x1(t,®) = t(a — 2b)e " <0. (2.26)
For te(l — a, 1], by (2.24), we have
%1(1,®) = e " [(a — 2b) + 2be" 1Y),

In the case where (a — 2b) + 2be™'=% <0, x; (¢, ®) is decreasing on [0, 1]; and in the
case where (a —2b) +2te"!"% >0, x;(¢t,®) is decreasing on [0,1—0o] and then
increasing on [1 — o, 1]. In both cases, (2.23) holds if x; (o, ®) = —c; since ¢; >0 by
Lemma 2.2. By (2.24), x| (o, ®) = —c; if and only if

e =—[(a—b)(1 —e™) +b(1 +e ™ —2e" 2D,
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which is equivalent to (2.2). This verifies (2.17).
(iii) Verification of (2.18). For 6e[—1,—a], we have a4+ 0<0 and o+ 60>0 —

1> —a due to a>1/2, and therefore, ¢5(6) = ¢,(o + 0) >0. So to prove (2.18), it
suffices to prove

x2(t,®)>0 for te[0,a) and xy(o, @) = —c3. (2.27)

By (1.3), (2.14) and (2.7)-(2.9), we obtain

w2t @) = e + { ;[T(Jlr ;e; —r)zef(?rlﬁgo l f:)ra];e n-ay. O
For 1€]0,1 — o], (2.28) gives
x(0,@) =¢,>0 (2.29)
and
Xo(t, @) = —1t(a+ cp)e ™. (2.30)
For te(1 — a, 1], (2.30) gives
%a(t, @) = te ™[~ (a + ¢2) + 2ae"1=Y)]. (2.31)

There are three possible cases:
(iiia) @ 4+ c2<0 and —(a + ¢2) + 2ae™'~*) >0. In this case, (2.30) and (2.31) yield
X (¢, @) >0 for te]0, 1]. Using (2.29), we conclude that (2.27) holds if

x2(o, @) = —c3. (2.32)

(iiib) a4+ ;<0 and —(a+ ¢3) + 2ae*!=%) <0. In this case, x,(t,®) achieves its
maximum at 1 — o, and its minimum at either 0 or . Thus, again, (2.27) holds if
(2.32) holds.

(iiic) @ + c2=0. As a<0, we have —(a + ¢3) + 2ae*' =% <0. Therefore, (2.30) and
(2.31) yield x,(z, ) <0 for t€[0, 1]. Using (2.29), we again know that (2.32) implies
(2.27).

In summary, we need only to verify (2.32). That is, by using (2.28), we need
to verify

34 e all e — 2T D] =0, (2.33)

This is exactly Ai(o;7,a,b) = 0. Consequently, the choice of a ensures (2.32). This
completes the proof. [
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Corollary 2.6. For any (i,j, k)€ Kz we have

X, 2 (i,j,k) > Z(k,ij). (2.34)
Proof. For any given ®€ X (i,j, k), we have —®e 2(i,j, k). Thus, by Lemma 2.5, we
have X,(—®)e2™ (k,i,j). That is,

—X,(—®)e2(k,i,j). (2.35)
As X(1,—®) = —X (¢, ) due to the symmetry of f, we obtain
X, (0,0)=X(a+0,0) = —X(a+0,—P) = —X,(0,-P), 0e[-1,0].

This, together with (2.35), yields X, (®)e 2 (k,i,j). This completes the proof. [

Corollary 2.7. We have, for any (i,j, k)€ K3, the following
XZac:Z(iajvk)_’Z(Lkv i) (236)
and

Koo : Z(i,j, k) > 2(i,], k). (2.37)

Proof. This is an immediate consequence of Lemma 2.5 and Corollary 2.6, using the
semigroup property of X. [

We can now state the main result of this section.

Theorem 2.8. Assume that a<0 and b>0 satisfy (2.5). Then

(i) For any ®,¥%eX(1,2,3), X(t,®) = X(¢, V) for all t>0.
(il) Let P(t) = X(t,®P) for t=0 and for a given ®e X(1,2,3). Then P(t + 60) = P(¢)
for all t=0, and P is phased-locked in the sense

pi(t) =pat+2a), pa(t) =ps(t+20), p3(t) =pi(t+20), 120,  (2.38)
and satisfies the following additional symmetry property:

pi(t)=—ps(t+a), pt)=—pi(t+a), ps(t)=-pat+a), 1=0. (2.39)

Proof. (i) is obvious since @ ~ ¥V if they are both elements in X(1,2,3), by Lemma
2.3. To prove (i), we note that if @eX(1,2,3) then X¢(P)e2(1,2,3) by Corollary
2.7. Therefore, @ ~ Xg,(®) and thus, X (7, ®) = X (¢, X, (P)). This shows that P(r) =
X (1, ®) is 6a-periodic. Note also that X, (®)e X2~ (3,1,2) and hence, by the symmetry
of f and Lemma 2.3, we get pi(¢) = —p3(t +a), pa(t) = —pi(t+ o) and p3(t) =
—pa(t + o) from which (2.39) follows. This completes the proof. [
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3. A 3 x 3 matrix and a closed convex set: preparation
Throughout the remaining part of this paper, we will use O(e) to denote a function
or a constant vector bounded by a constant multiple of |¢|, and o(¢) to denote a
function or a constant vector whose norm divided by |¢| goes to zero as |¢| -0, where
¢ 1s a vector in a certain Euclidean space.
We need the following asymptotic expansion, which clearly shows that o —1/2 as

T— 0.

Lemma 3.1. If A = ke "e(1,2), then as t— oo, we have the following:

=) =4 e (A= 1)+ 42— A)e ™™ + O(e*™). (3.1)

Proof. Eq. (2.6) which determines o can, by using (2.4), be written as
et — 28727:0( + 873170( _ Aew[er(l —20) — 1+ e T(1—4a) 7310(].
Therefore,

1 — er(172a) =t T(1—4a) 87311 _ Aflefm[efw _ 287211 + 67311]
— A" 1 7211[1461(1720:) —Ae™ — 1 427 — 7211]

=A'e A — 1) 4 A -1+ 2 —A)e ™ — e,
That is,
=1 +e ™ =4 [d— 14 (2 - A)e ™ — e,
from which it follows that

1— er(lfza) :A’le’zm[A — 1+ (2 _ A)eiw _ 67211][1 _ 2w + 0(874':&)]
— A" 1 7211[14 14+ (Z—A)eiw _e72w
_ (A _ l)e—2w _ (2 _ A)e—3w + O(e—4w>]

=A'e P (A - 1)+ A7 (2 — A)e T + O(e ™).

This completes the proof. [
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Let
(1=) 87211

= |— 2 _ 2 T(l—0o

ap =[—a+2b—2be ]—a+2b’
2b T(1-3a)
a3 =[—a+2b— 2bef“‘“)]j:7+2b 4 2172,
e—2m 2a

= (C ) _ ’E(]—S%)
a (62+a}—a—|—2b — ¢ ’
ay =(c2 +a) 2b 2ot(1-37) _ 16524 | 1407(1-22)

—a+2b —a+2b )
e*l’l}(

2= Cat2b)

1
a3y = (1 _ E) 61(1721)'

Recall that k = (a — 2b)/a implies that

—a 1 2b 1

a0 kK —avrm TR

Furthermore, note that

e +a=ae’'" 4 (—a+2b)e" 1) — (—a + 2b)e™™.

ap = [1 — (1 - %)ef(la)]ezw

1
_ |:1 _ er(lfoz) +ker(la):| e72w

Consequently,

_ [1 _ er(lfo() +A71€7W]€72w.
Therefore, since o — 1/2 as T— oo, we have

Lemma 3.2. If A = ke " €(1,2) then there exists t13>0 so that a;» <0 if 1>15.

Note that

api = {l — (1 — %) eT(l_“ﬂ 2bte™ 13 4 2pret1=20)

= 2b’L’€T(1_3“) _ (1 _ %) 81(2—406)217_[ + 2bT€T(1_2a)
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:2b,cer(1—3fx) + 2b,cer(l—2oc) |:1 _ (1 _ %) er(l—Zoc)}

>0

)

since 20> 1.
We also have

e 2a t(1-32)
—a-+2b —a-+2b

ay = [ae™ V™) + (—a+2b)e" ') — (—a + 2b)e™™]

_ 81(17405) _ 67311 7 161(1741) + %81(1730()

k k
:er(174a) 1— eT(*l“rC{) _7+gem
k
>0,

since 2¢"*>1 and a<1.
We note further, by using Lemma 3.1, that

ary = 2b‘[€f(173“) |:er(12a) e llcer(l2oc):|

+ g2b161(274a) + 216161(172“)

k
_ 2brer(2—5a) |:1 _ % o er(—l+a):|
+ 2181(17201) 2_kber(172oc) +a:|

1 1
_(_ - 7(2—50) L r(—1+a)
= a—|—2b)[<1 k)‘ce <1 e )

[ 1\1 1
+ 2181(17201) _(1 _ Z)Eer(lh) _ %:|:|

That is,

ary = (_a + 21))‘[6‘[(172&) |:<1 _ % _ er(l+o¢)> (1 o llc) 67(1731)

1 1 1
- _ 2 t(1=20) 2
* 2{1«(1 k)e k”

_ (761 + 2b)rer(172a)[er(1731) 7 672w

+ %(281(17200 _ Zer(lf&x) S 6721:1)
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+ p(81(17301) _ 281(17201))}

=(—a+ 2b)ref(l_4°‘) [ef(l‘“) -1
+ A71(2 fe T —2e ™ — 261(71+2a))
+ A2 (e7™ = 2)]

:(—a+2b)ref(l’4°‘)[er(l’“) +0(1)]>0 as - o0,

since e (1/2,1) and —a + 2b>0. Therefore, we have

Lemma 3.3. a13>0, ay >0. Moreover, if A = ke "€ (1,2) then there exists 13 >0 s0
that ay; >0 lf’E>’L’23.

In what follows, we assume that t>max{t,723} and 4 = ke “e(1,2). So the
following is a nonnegative matrix:

0 —ap ap

O=|e™ a» a3
_e™ _ 1y ,t(1-2a)

0 T(—a+2b) (I—7e

Lemma 3.4. There exists t*>max{tiy, 723} so that for every t>1* there exist a
constant p = p(1)€(0, 1) and a positive vector z = z(t) = (z1,22,23)" €R> so that

Oz = pz. (3.2)

Proof. Let (1) = det(Al — @), AeR. Then
1 T(1-20)
O<Ai=(1—+])e <1

and
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Moreover,
1 apn —ap3
h(l) =det| —e™ 1—an —an
0~ -1 —pet=
1 an —dap3
=det| 0 1—an+ape™ —ay—apne™
e t(1-2
_ { :
= (1 —day + alze_“") 1 — (1 — E) 81(1_2“)
_ —To ra
—r(—a+2b)(a23 +ape™™)
_ ! _
= (1 —day — alze_”‘) 1— (1 — —) et172)
L k -
e*‘[:% _
_ m(dzg + apze )
1
+ 2ape”™ |:1 — <1 — >eT(12a>:|.
k
Hence,

/’l(l) _ {1 _ 61(17401) |:1 _ er(flﬂx) %+%ew:|

o |:1 o er(lfa) _’_llcer(loc):| e3m} |:1 _ (1 _ llc) er(lZm):|
_ ™ er(172ot) 1 71 7 e‘t(*l“r&() 1 71 61(1731)
k k
1 1 1
2 T(1-2a) [ 1 —— T(1-20) _ °
+ Ze X X e X
+(1 _l 61(1741) +(1 71 er(1731) 1-1(1 71 er(172a)
k k k
1
+ 2ape™™ [1 — (1 _k> 67(12“)].

With straightforward calculations, we get

h(l) =1 81(1—201) _ 81(1—401) _,'_%[61(1—21) + er(]—4o<)]

+ 2ape™™ [1 — (l —%) er(l_w].
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Using k = Ae* and (3.1), we get

h(l)=1— ot(1-20) _ r(l—da) | 41 ,-2u +A71874m]
+ 267311[1 _ ol +A—lefm][1 _ pr(1-29) + Al
—ATN (A= 1)e7? + 4712 — A)e 7 + O(e™*)
_ et(lf4oc)+Aflef2m+Aflef4m
+ 261(1-4«)[_1 +er(—1+a¢) +A—le—r][1 _ o120 +A—le—2m]
_ o2 pr(1-49) +A_1(2 _ A)e‘3”‘ + O(e_4”‘)
+ 261(1—495)[_1 +er(—1+o<) +A—1e—f][1 _ ot1-20) +A—1e—2m]

2—-A4
A
+ 261(1—40:)[_1 +er(—1+u) +A—le—r][l _er(1—2fx) +A—le—2m]

:6;21:0([1 _ er(lfzo()} + 6’7310( + 0(674105)

2—-4
=—e

v —31a + 0(674”().

In the last equality, we used the fact that 1—e™(172%) = O(e=>*) from (3.1)
and the fact that | — 4o < — 2a. Therefore, /(1) >0 if 1 <A4 <2 and if 7 is sufficiently
large.

Consequently, there exists >0 so that if Ae(l,2) and t>7* then
there exists pe(Ay, 1) so that i(p) =0. Let z = (z;,22,23)" be an eigenvector
associated with the eigenvalue p of @ with z3>0. Substituting this to
the third equation of @z = pz and noting that p>A4;, we get z; >0. Substituting
this result to the first equation of @z = pz, we get z;>0. This completes
the proof. [

We now introduce the restriction for the nonlinearity. Let

N(M,p,e) ={f:R->R; f is continuous and odd,
[ f(X)|<M for xeR, |f(x)—1|<eif x=p}.
We also need to restrict the initial functions to a certain closed and

convex set containing the phase-locked periodic solution constructed in
the last section. Let (u,02,03,D,f) be given positive constants with 0<oy S%
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and define
A(ao, 02,03, D, B) ={@ = (¢, ),, p3) €2;
$1(s)= B for se[~1,0],¢,(0) = B,
¢, is nonincreasing on [—2u, 0] and
¢1(1) = ¢1(s)< — D(t —s) for — 209 <s<1<0;
Dr(8)< — P for se[—1, —o — o], p,(s) = p for se[—a + a,0],
¢, is nondecreasing on [—o — o, —a + 9] and
D,(1) — dy(s)=D(t — ) for —a—op<s<t< — o+ oy,
|$2(0) — 2| <03;
b3(5)< — B, for se[~1,0],[¢5(0) — 3] <03}

It is easy to prove that

Lemma 3.5. For fixed positive constants (o, 02,03, D, ) with 0<ag S%, the set
A(o, 02,03, D, B) is a closed and convex subset of the Banach space X equipped with
the usual super-norm.

4. Existence: singular perturbation

In this section, we consider the existence of phase-locked periodic solutions of
(1.3) with a general nonlinearity close to the step function (1.2). Our approach is to
choose sufficiently small (o, 0,,5;) along the eigenvector z of @ associated with
p€(0,1), and then choose appropriate D and sufficiently small § and ¢ so that the
solution of (1.3) through a given ®e€A(o,dr,d3,D,p) will return to
A(ag, 02,03, D, f), and thus the fixed points of such a returning map give rise the
phase-locked periodic solutions.

In what follows, we are going to fix fe N(M, f,¢) and @€ A(og, 52,03, D, f) with
0<ap<4. We also let —o;y :== —a;(®) be the smallest number in [—o — o9, —ot + %] 80
that ¢,(—ay) = —p and let —ay .= —op(P) be the largest number in [—o — o, —a +
o] so that ¢,(—on) = f.

Then oy >0, and, using ¢,(¢) — ¢, (s)=D(t — s) for all —o — ey <s<I< — o+ o
we get 23> D(a; — o) from which it follows that

2
24 _OQ\Bﬁ- (41)
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This observation turns out to be essential: while we cannot control the locations

where ¢, crosses + f5, we can control the distance of «; — oy by f.
We now estimate x;3 for the corresponding solution X (-, @). On [0, 1 — o], we have

X3 = —1x3 — at + r3(1),

3 (D)< (—a+ 2b)e,
and thus,
x3(1) = e "x3(0) —a[l —e ™|+ O(e) (4.2)
with
x3(1— o) = e ") x3(0) — a1l — e "] 4 O(e).
On [1 — oy, 1 — o], we have

X3 = —1x3 + (—a+ b)t +r3(1),
13(8)| < (—a+ b)te + btM,
x3() = e (1 — o) o+ (—a+ B)[1 = e 4 Oe) + r3(0),

75 (0] <M1 — e~ 1+20],
Using the above expression for x3(1 — o), we get
x3(1) =€ x3(0) — ae T[] — o717
+ (ma+ B[l = e 0 + 15 (1)
=e "[x3(0) 4 a] — ae 1)

+ (Cat Bl e 0() +13(0), 43)

In particular,
x3(1 =) =e 17 [x3(0) + a] — ae~" 1)
+ (—a+b)[1 —e ™2 4 O(e) + ri(1 — o).
On [l — ay, 1], we have

X3 = —1x3 4+ (—a + 2b)t + ri(1),



J. Wu | J. Differential Equations 194 (2003) 237-286 263

(0] (=a+2b)te = O(e),

x3(f) = e TRy (1 — o) + (—a + 2b)[1 — e =12 4 O(e).

Using the above expression for x3(1 — o), we get
x3(1) = e [x3(0) + a] — ae )
+ (—a+ b)e "R — T L O(g)
+ e TR (] —0y) 4 (—a + 2b)[1 — TR
=e [x3(0) +a] — ae” TN (—a 4 2b)[1 — TR
+ (ma+ b)) — ]+ O(e) + 13 (1), (44)
In particular,
|r3(£)| SBM[1 — e~ (172) o= 1),
We need to determine the first 7€ (1 — o, 1) such that
x3(T) = —p.
That is,
e T [x3(0) + a] — ae™*T=1%) 4 (—a 4 2b) — (—a + 2b)e " T~1+%)
+ (—a+b)[e7 (T 1H2) _o=e(T=1t20)] L O(g) + r3(T)
)
Note also that (2.1) implies that
—ae''7) 4 (a+ c3)e ™ + (a — 2b)e™ 172 = g — 2b.
Therefore,

a—2b _a—2b
a+c3 —ae'=1) — (—q +2b)erl-2) = [’

—TU

where

I'=a+c;—ae'"™ — (—a+2b)e"~
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Then
eI + x3(0) — ¢3 + a[em‘“)
_ er(l—ocg)] + (_a+b)[er(l—%2)

_ er(]—ul)]
+ (—a+2b)[€r(l_“) _er(l—oq)] +eTTr3(T)}

—(—a+2b) -+ O(¢).

That is,
e T[T+ x3(0) — c3 + e Tr3(T) + bA] = —f — (—a + 2b) + O(e),

where
A :261(1—1) _ er(l—cq) _ er(l—ag)
:261(]—41) _ er(l—a—ig—é) _ er(l—oc—o?o)
with
o =o+dy, o =o+dy+ 0.

Therefore, by the choice of «; and o, and by (4.1), we have
2
b (4.5)

|O~€0|<060, 0<5<3

Note that
aé — 216‘[(17&),
ddly Gy=6=0
OA
v= _ Te‘r(lfx)
90 |5,—s5—0
We get
(4.6)

A = 21" gy + 1" 1795 + o(ag, f),

where we used (4.5) to write o(ag, ) for o(dp, ). Then,

e—fT e — _ﬁ B (_a + 2b) + 0(8) _ —a + 2b
T+ x3(0) — 3 + e Try(T) + bA r
—p+ O(e)

T + x3(0) — ¢c3 + € Tr3(T) + bA
_ (=a+2b)[x3(0) = c3 + DA + e Tr3(T))]
T[T 4 x3(0) — ¢3 + e Tr3(T) + bA]
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and
|r3(T)|<bM1 — 7] |7 (T 1),
Hence,
T — e — O(B¢) %ﬁzb[xg(m ] +WA 1+ 0(83, 6, 0)
and
il T2 1 — et
= _aljg 2b bMII — e*"s]ef(lf“*i“)
_—at2

I bM (18)e" 1= + o(a, 0).

Consequently, using (4.1) and (4.6), we get

. _m —a-+2b
el —e ™ =0(B,¢) +T[X3(0) — 3]
b(—a+2b)
I
+ ;73* =+ 0(537 57 OCO)

[21e"1 79y + 171779

with

1< 2 pM (ao)e
Recall that
e Tle2)
we have
—a+2b  —a+2b e

r’ (—a+2b)er —a+2b
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from which it follows that

el e = O(pf,¢) + 0(93,0, )

o2 0 2brer(173a) .
T a0 el
brer(lfhz)
AL S 4.
ST 0+ 75 (4.7)

with

< bM1é o(1-3)
—a—+2b

73]

3

As there exists y between —to and —t7 such that
el — e ™ =e(—1T + 100)
=e "t(a—T)+ O(p,¢&,03,00,0)t( — T),
we get
(o — T) =0(p,¢) + 0(d3,9,%)

e~ 0 2b.[er(1729<) R
T 0 el

bfer(172oc)

5 ~k TO
7_‘1 b +rje
with

bMo 61(17201)
—a+2b '

|}7,'3*€T1| <

In other words, by (4.1) and (4.5) we have

lo — T|<O(B, &) + 0(03,20) + azdz + azog. (4.8)

Lemma 4.1. Assume all conditions in Lemma 3.4 hold and fix z = (z1, z2, 23)T eR? as
given in Lemma 3.4. Then there exist M3>0 and m3o>0 such that for each
me (0,m3) there exist s = Ps0(m) and &30 = e30(m) so that if 0<B<p;, and
O<e<esg and if((52,53,5x0)T = m(zl,22723)T, then
(1) |x3(0)| < M3 and x;3(t) = p3(t) + O(B, €, 03, 00) for all te[0,1];
(i) o — T|<37LT”0<0;
(iii) X3(£)=D; = —(c3+ a)te /2 for all te[0,1].
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Proof. Condition (i) follows from (2.20) and (4.2)—(4.4) directly.
Using (4.8), we get
oo = T|< O(B, 8) + 0(83,00) + m(azz> + az3z3)
< O(P,e) + o(m) + mpz;.

Choose m3 >0 so that if me (0,ms ) then o(m) + mpz; S%m(l + p)z3. Thus, we can
find B39 = B30(m) and &30 = e30(m) so that if 0<f<p;, and 0<e<eso and if

(52,53,0(0)T = m(21,22,23)T, then
1 1
oo = T|< Em(l +p)z3 +Zm(1 —p)z

_3+pmz _3+p
T4 T g

oo.

This proves (ii).
To prove (iii), we note that from (4.2)—(4.5), we get

—[x3(0) + aJte ™ + O(¢), t€[0,1 —ay],
%3(1) = { —[x3(0) + aJre ™ + bre "+ H) 4 O(e, B), te[l — oy, 1 — ),
—[x3(0) + alte ™ + bre " D[e"™ £ e ™| + O(e, f), te[l —ay,1].

Therefore, we can choose mj39, B30 = B30(m) and &30 = &30(m) so small that if
0<m<myp, 0<f<p3y and 0<e<esp then x;> — (c3 4 a)te™/2. This completes
the proof. [

We now consider the x;-component. On [0, 1 — o], we have

X1 = —tx1 + (a — 2b)t + r{(z)7

r} (£)| < (—a + 2b)re.
Therefore,
x1(2) = e "x1(0) + (a —2b)[1 — e ] + O(e) (4.9)
and in particular,
xi(1— o) = e (0) + (a — 2b)[1 — e *1=)] + O(e).
On [l — oy, 1 — o], we have

X1 = —1x1 + (@ — b)t +ri(1),
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13 (¢)| < (—a + b)te + btM,

w1 (1) = e Ty (1 — o) + (@ — B)[1 — e 1] 1 0(e) + 73(1),

[ (8)] <BMI[1 — e == 1+)],

Therefore, we have

xl(t) :efrtﬁ + (a . 2b)€71(171+a1)[1 _ efr(lfocl)]

4 (a—b)[1 — e+ ] £ O(e) + r1(1) (4.10)
and
(1= o) :e*T“*“Z)ﬁ —(—a+ 2b)€7f(aﬁaz) —(a— 2b)efr(l—az)
+ (a—b)[1 — e ] L 0(e) + (1 — m)
= )B4 (—q+2b)] +a— b — be ") 4+ O(e) + 71
with

[F2|<bM[1 — 7" 1=%)),
On [l — oy, 1], we have

X1 = —tx1 +at + (1),
(< (~a+2b)te = O(c),

x1(1) =e TRy (1 — o) + gl — e 071H%2)] 4 0(e)
—e B+ (—a+2b)] + (a — b)e TU7IF) _ pemrlizlrm)
+ a[l — e TR L O(e) 4 IR (4.11)
and hence
x1(t) =e [+ (—a +2b)] + a — 2be” 7147

+ b[zefr(t71+0() _otl=14m) e*‘r(tflJroq)]

4 0(8) +e*‘[([71+a3)’712.
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Therefore,
x1(T) =e T[B + (—a+2b)] +a — 2be " T1+2)
4 b T2 (179) _ grli=m) _ prli—a)]
4 O(e) + et 1Hm) 2
—e " (—a+2b) + a — 2be'

+ e Tp4 (e —e7™)(—a + 2b)

+ 2be" 172 — 2pem (T4 4 e TA

+ O(e) e "I 1Hm)p2,
Using (2.2), we get

x((T)+cy=e" TR+ (7T — e ™) [—a+2b — 2be"1 7]

+ b TA+ O(e) 4+ e T 14272,

Note that

|e—r(T—l+1z)’712‘ Sef(l_%{)bMTé + bM_E5|e‘c(l—2fx) _ er(l—T+a2) ]

Therefore, we obtain
x1(T) 4 c2 = O0(B, &) + 15 + [—a +2b — 2be™ 1D ][e T — 7™
+ be A+ bMrs|et! ) — gt
and
5| <bMtder1=2).
Using (4.6) and (4.7), we get

X](T) +C2 :O(ﬂ,S) +0(53,5,0€0) +f3

+ (—a+2b —2be"'7%) [x3(0) — ¢3] +

—a+2b
+ be ™ [2‘[61(1_“)0?0]
with

7y = 0(5).

o2 Zb,rer(l—}ac) R
—
—a+2b 0

269
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Therefore, we have from (4.5) that

|x1(T) + 2| < O(B, &) + 0(83,%0) + |a12|d3 + |ai3|xo. (4.12)

Lemma 4.2. Assume all conditions in Lemma 3.4 hold and fix z = (z1, 22, 23)T eR? as
given in Lemma 3.4. Then there exist M, >0 and m; g€ (0,ms¢) such that for each
me (0,m3) there exist f = f(m) 6(0,[33’0) and €10 = &10(m)e(0,e30) so that if
0<p<pByoand 0<e<ero and if (82,03,00)" = m(zy,22,23)" then
(@) [x1(1)| <My and x1(t) = p1(1) + O(o, 03, B, &) for all te0,1];
() |x1(T) + o <22 555
(iii) for the first de (0,1 — ay) such that x,(d) = —f, we have

%

and x\(t)< — p for all teld, 1];
(iv) %1(n< —3(—a+2b)e™™ = —D; on [0,1 — o — o).

Proof. Conclusion (i) follows from (2.24) and (4.9)—(4.11). The proof for (ii) is the
same as that for (ii) of Lemma 4.1, using (4.12).
To prove (iii) and (iv), we first note that on [0,1 — o], (4.9) implies that
X1 = —(—=a+2b)e ™ — e + O(e),

and hence if &9 and B, are small, then ;< —%(—a—i—Zb)e*’ and hence x; is
decreasing on [0, 1 — o;]. Using (4.9), we also get

x1(t) = e "B —(—a+2b)+ (—a+2b)e ™ + O(¢)
from which it follows that
—B=e¢Tp — (—a+2b) + (—a+2b)e ™ + O(e).

That is,

efrd _ —a-+ 2b — ﬁ + 0(8)

—a+2b+p
from which it follows that
w__ —a+t 2b+
—a+2b—p+ O(e)
=1+ 2 + OB, ¢).

—a—+2b
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Hence

2p
—a+2b

d:im<k+ +ﬁm&@):r 2 o).

(—a+2b)

Clearly, x;(f)< —p for te(d,1 —oy). On [l —oy, 1 — o], we have from (4.5)
and(4.10) that

x1(1) =€ B — (—a+ 2b)e 1 — ¢ 1=1] 1 O(s, B)
— (—a+2b)e’r(”1+‘“‘)[l o efr(lfle)] + O(S,ﬁ)

since |f5|<bhMtd and 1 — e " 1+1) <1 — ¢~ "(1=%) < ¢4, Finally, on [l — ay, 1]
have from the expression below (4.11) and (4.5) that

we

)

x1(2) = a(l — ™) + 2be (1 — %)) + O(B, &, o).

Therefore, if my 0,10 and f , are small, then x;(z)<f on [I — oy, 1]. This completes
the proof. [

Finally, we consider the x,-component. On [0, 1 — «;], we have

Xy = —1x7 — at + (1),

3 (£)] < (—a + 2b)re.
Therefore,
x2(t) =€ "x2(0) —a[l —e ] + O(¢)
=[x2(0) + ale™™ —a+ O(e), (4.14)
and hence,
xa(1 —ap) = [x2(0) + ale ™17 —a + O(e).
On [I — oy, 1 — o], we have

Xy = —1Xx + r%(t)7

[r3(£)| < O(e) + |altM.
Therefore,
xo(f) = e T xo (1 — o) + 12 (1) + OCe)

= [x2(0) + ale™™ — ae” 1) L O(e) + (1) (4.15)
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with

|2 (0)] <la|M[1 — e 1],
In particular, we have

xa(1 = o) = [x2(0) + ale ™1 7%) — qe™ =) 1 O(e) + 13,

Il < lalM[1 — et 720).
On [l — oy, 1], we have

X2 = —1x2 +at 4+ r3(1),

13 (£)| < (—a + 2b)te = O(e).
Hence,
xa() = e TR s (1 — 0p) + a1 — e " 712)] 1 O(e)
= " [x2(0) + a] — ae T 4 g[] — 7Tl
+ O(e) + e 1Hm)p
= "[x2(0) + a] + a — 2ae* '
4 a2et1720 _ gmilimlim) _pmt-14) | ()
4 el Trm)
Using (2.1), (2.2) and (2.6), we obtain

1-20)

—a—(a+c)e ™

¢3 = 2ae"
and hence (4.16) implies

X2(T) +e3=(ca+a)e™ —e™) + (x2(0) — c2)e™™"

+ a[zer(lfmx) _ er(lfoqu) _ er(lfocsz)]

(4.16)

+ e*’(T*H“Z)r; +0() =(ca+a) [e*TT — e P 4+ e x2(0) — 3]



J. Wu | J. Differential Equations 194 (2003) 237-286 273
+ a[zer(l—Zoc) _ er(]—fxl—T) _ er(l—xz—T)]

+ ;72* + 0(8) +0(527a07ﬁ7875375)

with
7= ef(]_z“)|a|M7:6.
Note that
2er(lf2<x) _ er(lfalfT) _ er(lfmsz)
_ 261(17200 _ er(lfocfa?ofT) _ et(l*d*&O*Tfts)
_ 281(1—29{) _ er(l—Zoc—&o-Hc—T) _ er(l—2ot—&;—5+c<—7")
= ef(l’za)h(&g,é,a -T7),
where
h(dg, 8,00 — T) = 2 — e ots=T) _ prl=do=o+a=T)
Therefore,
1o}
h(0,0,0) =2
8&0 ( y Vs ) T,
0
—n(0,0,0) =
85 ( ) ) ) T?
0
—1(0,0,0) = -2
and hence

26‘:(1721) _ e‘c(lfoqu) _ e‘r(lfocsz)
= 21”17 gy 4+ 1e" 1725 — 20”172 (00 — T) + 0(a9, 0,00 — T).

By (4.8), we get « — T = O(B, ¢, 93, 00) and, from the expression of 7(ox — T') above
(4.8), we get

261(1721) _ er(lfotlfT) _ er(lfazsz)

— 2161:(1—20()&0_'_1,81(1—21)5

—T0 Zbrer(l —20) . b_cer(l —20)

_ (1-2) | ¢ .
Zre WO )t bt —

+ 0(ﬁ78a53757a0)'

5+}73*8T0£
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This, together with (4.7), implies that

a2 O )t o

+ e x2(0) — 3] + 2tae’' "4 g

—270 2b T(1—30)
xz(T)+C3:(cz+a)[ ¢ ki ~]

a2y O m )+ g
+ O(P,&,0) + 0(62, 03, 0)

- auett £ et )

=an(x3(0) — c3] + e [x2(0) — 2] + axdo + O(B,¢)

+ 0(52,53,0(0). (417)

Lemma 4.3. Assume all conditions in Lemma 3.4 hold and fix z = (z1,22,23)" € R’ as
given in Lemma 3.4. Then there exist M>>0 and mye(0,m ) such that for each
me (0,may) there exist g = Pro(m)e(0,B) and 29 = e20(m)€(0,¢10) so that if

0<fB <Py and 0<e<ero and l'f(52,53,oto)T = m(Zl,Zz,Z3)T then

() [x2(2)| < M> and x>(t) = p>(t) + O(x, 02,03, B, ) for all te[0,1];
(D) [xy(T) + e3| <2 83;
(iii) xp(¢)=p for all te[0,T).

Proof. Conditions (i) and (iii) follow from (2.28) and (4.14)—(4.16), as well as the fact
that p,(r) attains its minimum on [0,o] at either 0 or «, and p>(0) = ¢, >0 and
pa(a) = —c3>0.

Using (4.17) and as a»» >0 and a3 >0, we get

|x2(T') + ¢3| <amds + e ™02 + axzag + O(B, &) + 0(92, 93, a0).

Therefore, we can get (ii) using the same argument as for (ii) of Lemma 4.1. This
completes the proof. [

We can now state the main existence result.

Theorem 4.4. Let A = ke™" € (1,2) and assume that t>7". Let 0 <og <min{o — §,5%

and fix z = (z1, 23, 23)Te R* as given in Lemma 3.4. Then there exist m* >0 such that
for each me (0, m*) there exist f* = p*(m) € (0, B, ] and & = &*(m) € (0,ey0] so that if
0<pB<p* and 0<e<e* and if (62,03,00)" =m(z1,22,23)" then system (1.3) with
feN(M,B,e) has a phase-locked periodic solution Q= (qi,q2,q93) of the
minimal period 6P with |P —a|<og and such that Q| _, o € A(%, 02,63, D, ) with
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D = min{D,, D>} and
qi(t+6P) = qi(1), qi(t) = qiy1 (1 +2P), imod (3), 1>0.
Furthermore, q; — p;— 0 uniformly as f,e,m—0.

Proof. Let X (®) = (x?,x?,x?) be a given solution of (1.3) with the initial condition
@ X. Define a mapping F on A(w, 42,03, D, f) by

F(®@) = (x3,x7,x9)|i7_1 7, PeA(20,02,03,D, ).

We claim that for D = min{D;, D} there exists f, o = B4(m)€(0, ) so that if
0<B<Pfap then —F(®)e A(x, 52,3, D, ). ' '

In fact, as oy <o —%, we have by Lemma 4.1 that T — 1 >0 — oy — 1= — o + .
Hence, by Lemma 4.3 we have —x?(s)< — p for all se[T — 1, T]. Moreover,

34+
| = x2(T) = (—e3)| = ¥2(T) + &3 <—F

03 <03.

Note also (iii) of Lemma 4.1 implies that x¥(¢)< — B for all 7€[0, T] and hence,
x?(s)< — B for all se [T — 1, T]. Furthermore, (iii) of Lemma 4.1 and o> 30 imply
—x2(1)< — Dy and T — 209> —309>0 and hence —x¥(T + 1) +x¥(T + )< —
D (t—s) for all —20p<s5<1<0.

Moreover, if se[—1, —a — o] then by Lemma 4.1,

T—1<T+s<T—0a—0y<0,

and hence —x?(T + 5)< — B. If s€[—a + 2, 0] then by Lemma 4.1, we have

3
T+s=2T —a+og=09 — Zpaoz -

Therefore, there exists i, = f40(m)€(0, f,) such that if 0<f<p,, then

1 - 1 -
75z Loy =Lz
28
>d = ey am T PO

Thus, by (iii) of Lemma 4.2, we have —x{ (¢ + s) > f. Finally, if se [—o — ag, —0 + 0]
then

—2op=—o—0ogta—oy<T+s<a+oy—oa+o=200<1—o—o,

and hence by the choice of ¢, and by (iv) of Lemma 4.2, we conclude that —x{ is
nondecreasing on [T — o — o9, T — o+ o) and —xP(T + 1) + xP(T +5)=D(t — 5)
for all —o — o <s<t< — a0+ 0 if D = min{Dy, D,}. This proves the claim.
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Using the symmetry property of f, we get F*(®)=—F(-F(®))e
A(a, 02,03, D, ). By the semigroup property, we have

F2(@) = (53,53, X)) 7129

where we note that 7 = T(¢) in the aforementioned arguments depends on & and

T(®) = T(®) + T(~F(X7(4)))-

Since 7>2(a — ) > 1, by (i) of Lemmas 4.1-4.3, we obtain a completely continuous
mapping F? from A(wg, 52,53, D, f) into A(ag, 93,83, D, B) N Xy with

Sy = {@ez; 2= max | (gi(s)|<M" = max{Ml,Mz,Ma}},
i=123s€e|-1,

and thus F? has a fixed point @. This gives a phase-locked periodic solution Q =

(¢1,92,43) of the minimal period 6P, where P =3 [T(®)+ T(—F(X7))]. The

property that ¢; — p; — 0 uniformly as f8, ¢, m — 0 follows from (i) of Lemmas 4.1-4.3.

This completes the proof with m* = mao, B* = Byo and & = 9. O

5. Stability: exponential norm

We start with the following

Lemma 5.1. Let O(t) = (q1(¢),42(¢),q3(t))" be a 6P periodic solution obtained in
Theorem 4.4, and let oc2Q and oc1Q be as defined in A(x, 02,03, D, ) but with the supindex
Q to denote the dependence on Q. Then there exists fis y € (0, Byo] so that if e (0, fs )
then

o o_ 2B
ay — oy *m+50(578),

—oc—oc0<—oc]Q<—oc2Q<—oc—|—oco.

Proof. Let T = T(Q|_, ) and recall that ¢3(T') = —f and

—(%7917 q2)|[T717T] GA(OC(), 527537Daﬁ)'

Applying (iii) of Lemma 4.1, we conclude that ¢t = T is the unique number in [0, 1] so
that ¢3(¢) = —f and there exists a unique &, € (7', 1) so that ¢3(d,) = 5. On the other
hand, using the property of phase-locking, we have ¢,(¢) = ¢3(t + 2P) for all reR

and with 2P = T(®) + T(—F(X$(¢))), and thus —f = qz(—ole) = q3(—ole +2P).
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Clearly,
0< —a1Q+2P<2(oc—a0) —atog=o0—ay<l

and therefore, —ocIQ + 2P = T which implies

poc0<oc+oc0.

34
ol = T(~F(X{4))) <o+
This implies that
B(1) = g3(t + T(D) + af).

Using the same argument as that of (iii) of Lemma 4.2 but for —(g3, ¢2, q1)|[T_17T] we
get

2p

N
" t(—a + 2b)

+ OB, ).

Note that g3(—af + 2P) = g2(—of) = f, we then have 3@, = 2P — o2 and hence

2p

+ PO(B, ).

Furthermore, we have

_3+pa_ 2p
4 7 1(—a+2b)

oczQ:T—o?z—FT(—F(X?@)))Zoc — PO(P, &) >0 — oy

as long as f is sufficiently small. This completes the proof. [

For every @ = (¢, ¢,, ) €2 and for y>0 to be specified later, let

||a>|1=max{ max  7e|gi(s), max ]e”|¢,-<s>}.

i=1,2,3 | se[—1,—atoy) s€[—ato,0

Clearly, the above defined norm is equivalent to the super-norm.
Let >0 be given and define

CQ,(U = {¢€Z; ||¢ - Q0H1<w}
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Lemma 5.2. For any >0 and n>0 there exists o = o(f,n) such that if e Cg ., then
bi(s)=p  for se[-1,—n],
$2(8)< = for se[~1,~of —n),
$2(5)=p for se(~af +1,0),

P3()< — B for se[-1,0].

Proof. This is obvious from Lemmas 4.1-4.3. O

From now on, we fix #>0, w=w(f,n) and ®eCy,. We also fix T =
T(Ql(_1)>0. We write X® = (x1,x2,x3).

We also need to impose a certain Lipschitz continuity on the nonlinearity.
Namely, for a fixed L., >0 we define

N(Lw7Lﬁ7M7ﬁ78) = {fEN(M,,B,S); |f(x) 7f(y)‘<LCO
|f(x) = fW)I<Lglx = yl, x, y= B}

Choose f in the above set. Consider se[—1,—T7]. Since T>o — oy by Lemma 4.1, we
get

xiy‘7x7y7EIR

s<—T< — (a0 — o) = —ot+ %
and
0=2T+s=2T—-1z0—0y— 1= —a+a

as long as

Therefore, if se[—1, —T] then
9% |x/(T +5) — qi(T + 5)| =y~ T T |x,(T + 5) — qi(T +5)|
<ye M@= Qll,, sel-1,-T). (52)
We next consider €0, 1 — ole —n]. For i =1,2,3, we have
t—1< —ole—ng — o+ 0

and

Xi —qi = —t(xi — q;) + Ry (1),
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with

3
[Ri(1)| < (—a+2b)tLy Y |xi(t = 1) = qi(t = 1)
i=1

= (—a+2b)tLger ™Y Ze Dixi(t = 1) — qi(t = 1))
i1
< 3(—a+2b)tLget 7| — Q..
Therefore, we get
[xi(1) = qi(1)| < e |xi(0) — ¢i(0)]
+ 3(—a+2b)tLgy 7@ — O], /0 =9 gel1-9) g
< e |xi(0) = qi(0)| + 3¢ (—a+ 2b)te Ly M| @ — Qoll..  (5.3)
In particular, if 7+ s€[0,1 — a2 — 5] then
e*|xi(T +5) — qi(T + )|
e e T (T + 5) — qi(T + 9))|
< ¢;(0) = qi(0)] + 3™ (—a + 2b)re" Ly~ !||@ — Qo
<e |® — O], + 3(—a+2b)re Ty gl |0 — Q.. (5.4)
Therefore, if se[—T, —o + o], then by Lemma 4.1
0<s+T< —a+oy+ T<200<1 —a—ap — <1 —oc?—n

provided

n<-. (5.5)
Hence,
7€ [xi(T +5) = (T + 9]
<90 — Qull, + 3(—a+ 2)eLye ][0 — Qy L. (5.6)
Furthermore, using (5.4), we get for se[—a 4oy, —7T + 1 — oclg — 7], that

(T +5) = qi(T +5)| <[ +3(=a+2b)tLge™ "y ][0 = Qoll.. (5.7)
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Now, we look at the interval [1 — a2 — 5,1 — o2 + 5] where we have
—0— 0y < —ole—nét— I< —oc2Q+n< — o+ o
provided
I’[<I]’11H{*O!+OC()+OCZQ,O(+OCQ*(ZIQ}. (5.8)
Therefore,
Xi— i = —t(xi — qi) + Rai(1),
where for i = 1, 3,
[Roil< (ma+b)elgllxi(t = 1) —qi(t = D] + [xs(r = 1) — g3 (£ = 1)]]
(1 =1) = g = 1)

< 2(=a+b)tLpe "y |0 — Qoll, + brLo ey — Oy,

+ btL,,

=Ky — Ooll,

with
Ki =Kz =2(—a+b)tLg+ btL, (5.9)
and
|Rop|< —atLoo|xa(t — 1) — g2t — 1)
+ brLpllxi(t = 1) —qu(t = 1)| + [x3(t = 1) — g3(t = 1)]]

< —aLy ey |0 = Q| + 2btLye "y o — Oy,

= Ko7 | o — 0o,
with

K, = —atlL,, +2btLy. (5.10)
Therefore, for i = 1,2,3, we have

(1442
(1) — qi(D] < eI (1 — 0 — ) — gi(1 —af — )]

t
N /1 ) efr(tfs)Kief(I*”y*lH(p — Qol|, ds.
—o =N
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Using (5.3) at 1 — ole —n, we get
xi(1) = qi(1)| < e”"|xi(0) — 4i(0))
+ 3¢ (—a+ 2b)re Ly ™| @ — Qoll,

+ Kie'e ™y (af — of +20)[|@ ~ Qoll.. (5.11)
So, if T+se[l — ozIQ —n,1 - erQ + 7] then, by Lemma 5.1 we have

e“Ixi(T +5) — qi(T +5)|
< T|xi(0) — gi(0)] + 3(—a + 2b)1e" T Ly ™| @ — Qo

2p
m+ﬁ0(ﬂa3) + 21|12 — Qoll,

<Ail|® = Ooll., (5.12)

4 I(ie‘t(lfT)yfl

where

A;i=e7T 4 3(—a+2b)re’ DLyt

2p

Kiet(1-T) 1
TR T i Ca s 2n)

+ BO(B,¢) + 2n|. (5.13)

Finally, we consider the interval [l — oczQ +n,1 — 5] where we have
Xi—qi = —t(xi — qi) + Ra(1)
with
[R(1) | <3(—a + 2b)eLye ' max{1,5~' }|& — Q..
Therefore,
|xi(2) — qi(1)]
<e (1 —af ) — i1 = of + )
‘

+ 3(—a+2b)rL,;/ e 9 ds max {1,y " }|® — Qoll,.  (5.14)

170(2Q+,1
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Using (5.11) at 1 — ocZQ + 15, we get
[xi(1) = qi(1)| < e |xi(0) — ¢:(0)]
+ 3¢ (—a+ 2b)re Ly | = Qull,
+ KieTe ™ (o —of +20)y7 (| — Qull,
+ 3(—a+2b)te’Lye ™ max{1,y""}||® — Qol|.. (5.15)
In particular, if T+ se[l — a2Q + 1,1 —y], then
e¥|xi(T+s) — qi(T + )]
<e ™ x;(0) — ¢i(0))]
+ 37 (—a+2b)te Ly~ !||@ — Qo
+ DKl —af +20)y7'(|@ — Ol
+ 3(—a+2b)re" "D Lymax{1,y " }|® — Qol|,

<B||® - Qll., (5.16)
where

Bi = eirT + 361(17”(—(1 + 2b)‘EL/;’))71

B 28 _
1(1-T) g 2 1 2| !
+e 1 T(_a+2b)+:80(:87‘c)+ ’7 /
+ 3(—a+2b)re’ "D Ly max{1,y7'}. (5.17)

Summarizing the above discussions, we obtain

Lemma 5.3. Let A = ke "€(1,2) and assume that 1>1*. Let 0<og<min{o — 1,152}
and fix z = (z1,22,23)" € R® as given in Lemma 3.4. Also let 0<p<Psg, O<e<e and
let (62,03,00) = m(z1,22,23). Then for the chosen nemin{}, —a + o + aQQ,oc +op —

ole} and for every fixed e Cq,, we have
|IX2 — Or||, <max{Bi, By,ye~" + 3(—a+2b)tLse’ " TY||@ — Qpl,.  (5.18)
Proof. This follows from (5.2), (5.6), (5.7),(5.12) and (5.16). O

With the above preparation, we can now state and prove the main stability
theorem:
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Theorem 5.4. There exists t™>=1t* so that for every fixed t>1t"* and every
[(t)e(1,e*Y) there exist Ly>0, [e(0,f50] and e+ e(0,6"] so that if
Lgel0,Lp), fe(0,57), 6€(0,6) and Lo, F<T ' (2)e* @™V, then Q is asymptotically
stable.

Proof. Let y = I'"'(1)e’” in Lemma 5.3. Then as long as t is sufficiently large then
»~1'<1. Hence

Bi=e " 4+ 321 (—q + 2b)tLy

2
1K s BB + 2

+ 3(—a+2b)re DL,
and in particular,

By =e T 43" 12D (—q 4 2b)tLg 4 3(—a + 2b)te” TV L,

4(—a+b) 2b
a2 Pt e

+ I'(1)e" 2D 2(—a+ b)tLy + btL., J[BO(B, ) + 2n]

+ I'(x)er172D)

and

By =e T 4 3¢" 12D (—q 4 2b)tLy 4 3(—a + 2b)te T L,

—2a 4b

L+ g
sy s T

+ I'(0)e"' 2D [—atL., + 2btLg][BO(B,€) + 21].

+ F(r)ef(l’zT)

Note also that
ye T 4 3(—a+2b)tLge’ T = 7 (0) + 3(—a + 2b)tLger T,
Note that T>a — 3%" oy and

1—2T<1—2<a—3:pa0)

3+p

=1-20+

xp.
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Therefore, there exists m** € (0,m*) so that if me (0,m™), then

1 — 2o

<min I« !
oy = mz3< — o — = .
0 3 4 2

Note also that 2b/(—a+2b)<1 and (-2a)/(—a+2b)=2/k—>0 as - .
Consequently, we can find t* >1* so that for every fixed t>17** there exist L;>0,
B €(0,Bso), and & e(0,e") so that if Lyel0,Lg), Be(0,5), ¢€(0,6™) and
BL., <I''(1)e"®T=1) then we can chose >0 sufficiently small so that

K = max{By, By,ye”"" 4+ 3(—a + 2b)tLge’ "D} <1. (5.19)

Using the similar argument for [|X¥ — Qr||.<K||® — Qo||,, we get for T =
T(—F(XT(qs)) that

Xfl’
1X3p — Qaell, = 1X;7 — X27||. <K||IX7 - Orl|. <K||® — Qul.,
and, in general, for n>2, that
1 X3 — Ourll. <K"||@ — Qo] —0

as n> oo. This, together with the continuity of the solution of (1.3) with respect to
the initial data on the interval [0,P], implies that [[X? — Q/||.—> as t— 0,
completing the proof. [
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