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Abstract-we consider a nonlinear discrete-time system 

4n + 1) = k(n) + g(y(n - k)), 

Y(n + 1) = Dy(n) - g(4n - k)), 
n E N, 

arising as a discrete-time network of two neurons with McCulloch-Pitts nonlinearity, where p E (0, l), 
k is a positive integer, and g is a signal transmission function with a threshold 6. We obtain a stable 
4(/c+ 1)-periodic orbit in some regions of the parameters (p, u), and we describe asymptotic behaviors 
of the system in other regions of (p, 0). @ 2003 Elsevier Science Ltd. All rights reserved. 
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. 1. INTRODUCTION 

Let 2 denote the set of all integers. For any a, b E 2 with a 5 b, define N(a) = {a, a + 1,. . . }, 
and N(a,b) = {a,a + 1,. . . , b}. Also, let N = N(0). In this paper, we consider the following 
nonlinear discrete-time system: 

4n + 1) = @x(n) + g(y(n - k)), 

~(n + 1) = F%(n) - g(x(n - k)), 
n E N, (1.1) 

where p E (0, l), k E N, and g : R 4 R is given by 

g(x) = 
{ 

-p, if z > u, 
p, if x 5 u, (1.2) 

for two parameters p > 0 and CT E R. 
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System (1.1) can be regarded as the discrete analog of the following artifical neural network of 
two neurons with delayed feedback: 

dx 
- = -P(t) + dY@ - T)), dt 
dy 
- = -PY(t) - gw - T)>, dt 

(1.3) 

where 2 and 2 are replaced by the forward difference x(n + 1) - x(n) and y(n + 1) - y(n), 
respectively. System (1.3) has found interesting applications in, for example, image processing 
of moving objects [1,2], and has been recently investigated (see [3] and references therein). In 
the discrete version (l.l), /? E (0,l) is the internal decay rate, g is the McCuIIoch-Pitts signal 
function with the threshold u and the synaptic weight p > 0, and k is the signal transmission 
delay. The different signs in front of g represent the Yrustrated” nature of the network, and 
describes the excitatory feedback from neuron y to x and the inhibitory feedback from neuron x 
to y. The case of mutually excitatory feedback was considered in [4]. For other discrete neural 
networks, we refer to [5,6]. 

By a solution of (l.l), we mean a sequence {(x(n), y(n))} of points in R2 that is defined for 
all n E N(-k) and satisfies (1.1) f or n E N. Let X denote the set of mappings from N( -k, 0) 
to R2. Clearly, for any @ = (+,$) E X, (1.1) h as a unique solution (x”(n), y’(n)) satisfying the 
initial conditions 

x@(i) = c)(i), y@(i) = T)(i), for i E N(-k,O). (1.4) 

Our goal is to determine the limiting behavior of (x’(n), y”(n)) as n + 00 for any % E X. In 
this paper, we concentrate on the case where 4 - u and II, - u have no sign changes on N(-k, 0). 
Namely, we consider those @ E X$1+ U X$*- U X;*+ U Xi’- = X,, where 

X$* = {a E X; Q = (d,$), 4 E R,f, and 1c, E Rz} , 

with 
R,f = (4; 4: N(-k,O) --) R and 4(i) -u > 0 for i E N(-k,O)) 

and 
R, = (4; 4: N(-k,O) -+Rand4(i)-aIOforiEN(-k,O)}. 

For a general background on difference equations, we refer to [7-91. 
The main results of this paper are as follows. 

THEOREM 1.1. Let ,8 E (0,1/2] and 1~1 < p(1 +/?2k+3 - 2@)/(1 -p)(l -P2k+3). Then there 
exists @e = (40, $0) E X,+1+ such that the solution (x*0(n), yQo(n)) of (1.1) with initial value @O 
is periodic with the minimal period 4(k + 1). Moreover, there exists a positive integer m such 
that for any @ = (4, $) E X,, 

,.h.h (x”(n + m) - x”O(n)) = 0 and J@m (y*(n + m) - y’O(n)) = 0. (1.5) 

THEOREM 1.2. Let @ = ($,$) E X,. Then, limn+oc (x+(n),y’(n)) = (P/P - PI, -P/O - P)) if 
u > p/(1 - P), and limn+oo W(n), y’(n)) = (-P/U - P), p/P - PII ifa < -p/O - 8. 

THEOREM 1.3. 

(i) Let (T = p/(1 - /3). Then lirnnWoo (x+(n), y*(n)) = (p/(1 -p), -p/(1 -p)) for @ E 
X0+,+ u X;,+ U XT>-, and limn+oo (x+(n),~*(n)) = (p/(1 - P>, P/P -PI> for @ E X,+7-. 

(ii) Let u = -p/(1 - p). Then limn+a, (x+(n),y*(n)> = (-P/P - PI P/P - 8) for @ E 
X,+1+ u X$1- U X:1-, and lim,,, (x+(n),y@(n)) = (-p/(1 - PI, -P/U - PII for @ E 
x,-y+. 

Theorem 1.1 shows that if ]u] is sufficiently small, then system (1.1) has a stable periodic 
solution with minimal period 4(k + 1). Theorems 1.2 and 1.3 show that if 1~1 is large enough, 
then solutions of system (1.1) with initial data in X, converge to a single equilibria. 



Stable Periodic Orbits 937 

2. PROOFS OF MAIN RESULTS 
In the remaining part of this paper, for any s E N and a sequence {x(n)}~Etok, we define 

2, : N(-k, 0) 4 R by z,(n) = z(n + s) for all n E N(-k, 0). 
Assuming no E N, we first note that the discrete-time equation 

2(n) = px(n - 1) - p, n E N(nO + l), 

with initial condition z(ne) = a is given by 

z(n)= (a+&)/P-~“-&, nEN(nc+l); 

(2.1) 

(2.2) 

and that the solution of the discrete-time equation 

2(n) = @(n - 1) + p, n E N(n0 + l), (2.3) 

with initial condition z(ne) = a is given by 

z(n)= (a-&)@n-no+&j, nEN(no+l). 

For the sake of convenience, in the sequel, z(n) denotes z@(n), and y(n) denotes y@(n) when @ 
is given. 

PROOF OF THEOREM 1.1. We only consider the case where Cp = (4, $J) E X$3+ and 0 2 0. The 
other cases are similar. 

Since (ze,ye) = (4,+) E X:3+, we have, for n E N(l,k + l), 

x(n) = @r(n - 1) - p, 

y(n) = PY(~ - 1) + P. 
(2.5) 

By (2.2) and (2.4), we get 

x(n) = 4(o)+ & P” - &, > 
y(n) = 

( 
%w> -&)B”+&’ 

for n E N(l, k + 1). Let k(; be the least integer in N such that z(k,*) 5 cr. That is, 

cc (kc) 5 u and z(n) > (T, for n E N (0, k: - 1). 

Then, (2.5) and (2.6) hold for n E N(1, k,* + k). Let kl = k,* + k. Then (q, ykI) E X;>+. 
For n E N(kl + 1, kl + k + l), we have 

z(n) = /3z(n - 1) - p, 
y(n) = h(n - 1) - P, 

which implies that 

z(n) = 

(2.6) 

(2.7) 

(2.8) 
y(n) = y(h) + & pnBk’ - &’ 

> 
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Let k; be the least integer in N(kr + 1) such that y(k;) 5 6. That is, 

Y(W 50 and y(n) > g, for n E iv (kr, k; - 1). 

Then, (2.7) and (2.8) hold for n E N(kr + 1, k,* + k). Let k2 = k; + k. Then (zkzr ykz) E x,-p-. 
Forn~N(kz+l,kz+k+l),wehave 

x(n) = px(n - 1) + p, 

Y(n) = PYtn - 1) - P7 
(2.9) 

which implies that 

z(n) = z(kz) - -L) p-k2 f P 
1-P’ 

y(n) = 
(2.10) 

Let kz be the least integer in N(k2 + 1) such that x(k;) > g. That is, 

cc (k;) > d and z(n) 5 o, for n E N (kz, k,* - 1). 

Clearly, (2.9) and (2.10) hold for n E N(k2 + 1, k; +k). Let kS = kg + k. Then (Zk3, YkS) E X,+9-. 
ForncN(ks+l,ks+k+l),wehave 

z(n) = Px(n - 1) -t-p, 

Y(n) = PYtn - 1) + P, 
(2.11) 

which implies that 

z(n) = dk3) - &-) /y-k3 + -km 
1-P 

~(4 = y(h) - &) Fks + &. 
Let kz be the least integer in N(k3 + 1) such that y(k,*) > o. That is, 

Y(G) > B and y(n) I c, fornEN(ks,kz-1). 

(2.12) 

Then, equations (2.11) and (2.12) hold for n E N(k3 f 1, k$ + k). Denote kz + k by k4. Then 
(zkd, ykd) E x,+‘+. 

For n E N(k4 + 1, kq + k + l), we know (2.5) holds, and hence, 

x(n) = 

y(n) = 

From (2.12) and (2.10), we obtain 

z(k4) = 
( 

z(k;) - & pk4-le; + & 
> 

This yields 

z(k4 + 1) = z(h) + & 
> 

P - 6 < P(2P - 1) < () < B 
1-p -. 

(2.13) 

Let ks = k4 + k f 1. Then (zk,,yk5) E X,-y+. 
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For n E N(k5 + 1, k5 + k + l), (2.7) holds. Similarly, we get y(k5 + 1) < C. Let ks = k5 + k + 1. 
Then (Q,,, yks) E X,-9-. 

For n E N(ks -I- 1, ks + k + l), (2.9) holds. Moreover, 

Since 0 < p(l + p2k+3 - 2@/(1 - /3)(1- P2k+3), we get 

Z(k6 + 1) = 2(kg) - & p+ p 
> 1-P 

> ((u+&)P+l)-$$3+& 

> u. 

(2.14) 

Let k7 = k6 + k + 1. Then (z&, Yk,) E X,$9-. 
similarly, for ke = k7 + k + 1, we have (xks, yks) E X,$3+. In general, we can get, for i E N, 

x(n) = jh(n - 1) -p, 

y(n) = Pdn - 1) + P, 
n E N(k4 + 1 + 4i(k + l), k4 + (4i + l)(k + 1)); 

z(n) = @(n - 1) - p, 

y(n) = Py(n - 1) - P, 
n E N(k4 + 1 + (4i + l)(k + l), k4 + (4i + 2)(k + 1)); 

x(n) = Px(n - 1) + p, 

y(n) = Mn - 1) - P, 

z(n) = Ps(n - 1) + p, 

y(n) = PY(~ - 1) + P, 

n E ZV(k4 + 1 + (4i + 2)(k + l), k4 + (4i + 3)(k + 1)); 

n E N(k4 + 1 + (4i + 3)(k + l), k4 + 4(i + l)(k + 1)). 

nom now on, we denote 1 - p by CL Thus, 

for n E N(k4 + 1+ 4i(k + l), k4 + (4i + l)(k + 1)); 

2(n) = &k4) + !?) p-4 + 2pp”-k;4”(L+1) (;‘-$;;;;;;) _ t, 

y(n) = (y(k4) _ ;) pn-kr + Zpp”-k4-~+‘)(*+‘) (’ ; f@+$k;“> _ i, 

for n E N(k4 + 1 + (4i + l)(k + l), k4 + (4i + 2)(k + 1)); 

2(n) = @.(k4) + ;) p-k4 _ 2f@n-k4-r+2)(k+‘) (1 ‘I “:;;;z;“) + i, 

y(n) = (y(k4) _ i) p-k4 + 2~~“-k4-~1)(k+1) (’ ; f;;;:;“) _ i, 
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for 7z E N(Ic4 + 1+ (4i + 3)(k + l), k4 + 4(i + l)(k + 1)). 
Let @o = (40, $0) E X,+3+ with 

Then, 

do(O) = 
,, (1 _ P2(k+l)) 

a (1 + P2@+1)) ’ @o(O) = 
p (I+ /jW+l) _ 2/j’+) 

a (1 + p2@+1)) * 

2ppn-4i(ktl) p 
@%) = &((1+ ,/j2(ktl)) 

-- 
a' 

n E iv(4i(k + 1) + 1, (4i + l)(k: + 1)); 

y@O(n) = - 
2,,pn-(4i-l)(ktl) 

a (1 + @k-+1)) + :’ 

PO(n) = 
.@pn-4qktl) p 

-- 
a (1 +/32@+1)) (Y’ 

72 E N((4i + l)(lc + 1) + 1, (4i + 2)(k + 1)); 

&qn) = Y:;;;+;’ + P, 

yQo(n) = ;y+;;+;) - ip 
n E N((4i + 2)(k + 1) + 1, (4i + 3>(k + 1)); 

s@“(n) = - 
2,gn+W)(k+l) 
a! (1 + /32@+1)) +&, 

2,gn+i+3)(ktl) n E N((4i + 3)(/c + 1) + 1,4(i + l)(k + 1)). 

y”b) = - a (1 + @2(ktl)) 

Clearly, {x+0 (n), Ybo (4) is P eriodic with minimal period 4(k + l), and as j --) co, 

2(k4 +j)-z""(j) = @4) - 
P (1 - P2(k+1)) pj ~ 0 

’ . o! (1 + /P@+l)) 

Y(k4 + j) - Y@O(j) = Y(k4) - 

p (I+ pW+l) - 2pk+l) 

a (1 + p2@+1)) > 

pj --+o. 

Denote m = k4. This completes the proof. 

PROOF OF THEOREM 1.2. We only prove the case where u > p/(1 -p), the case where u < 
-p/(1 - p) is similar. 

In view of (l.l), we have 
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x(n) I 
n E N. 

y(n) L 

(2.15) 

Since p/(1 - /3) < c and p E (0, l), from (2.15), we conclude that there exists ml E N(1) such 
that z(n) < cr, y(n) < o for n E N(mr). Thus, 

z(n) = pz(n - 1) + p, 

y(n) = hdn - 1) - p3 
no N(m~+k+l). (2.16) 

Therefore, 

x(n) = 
( 

z(m1+ k) - & pn-m1-k + -l- 
1 1-P’ 

y(n) = 
( 

y(ml + k) + & pndrnlmk - p7 
> 1-P 

which implies that (z(n),y(n)) -+ (p/(1 - p), -p/(1 - p)) as n -+ 00. 

PROOF OF THEOREM 1.3. We prove (i) only; (ii) can be dealt with similarly. First, let Cp E X$1+. 
In this case, 

z(n) = pqn - 1) - p, 

y(n) = Py(n - 1) + P7 
n E N(l, k + 1). 

Similar to the proof of Theorem 1.1, we can get ki E N(k + 1) such that (zkl, yk,) E X,1+. And 
thus, 

x(n) = @r(n - 1) - p, 

y(n) = PY(n - 1) - P, 
no N(k~+l,kl+k+l); 

and that there is k2 E N(kr + k + 1) such that (Lr&, ykz) E X;>-. Therefore, 

x(n) = /33~(n - 1) + p, 

y(n) = Pdn - 1) - p, 
nE N(kQ+l,kz+k+l). 

so, 
z(n) = 

y(n) = 

(2.17) 

(2.18) 

By induction, z(n) 5 p/(1 -p) = g and y(n) I p/(1 -P) = 0, which implies (2.13) for n E 
N( k2 + 1). Therefore, Iimn+ar (4n),y(n)) = (P/P - PI1 -P/(1 - PI>. 

From the above argument, we see that the conclusion holds when @ E X,7+ U XT>-. 
Now consider + E X:1-. Then, for n E N(1, k + 1)) we have 

z(n) = /kr(n - 1) + p, 

y(n) = Py(n - 1) f P 
(2.19) 

z(n) = 
( 

4(O) - 5 P-t p, 
> 1-P 

y(n) = 
( 

$(O) - &) P” + -L 
1-P 

(2.20) 

Thus, @k+l,~k+l) E xr$-, and (2.19) holds for n E N(k + 2,2(k + 1)). By induction, we see 
that (2.19) and (2.20) hold for n E N. Therefore, limn--roo(x(n), y(n)) = (p/(1 - p), p/(1 - p)). 
This completes the proof of (i). 
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