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Abstract

We consider a single species structured population distributed in two identical patches con-
nected by spatial dispersal. Assuming that the maturation time for each individual is a random
variable with a gamma distribution and that the spatial dispersal rate is constant, we obtain from
a hyperbolic di2erential equation a system of six ordinary di2erential equations for the matured
populations and their moments. Our qualitative analysis and numerical simulations show that the
nonlinear interaction of birth process, the maturation delay and the spatial dispersal can lead
to a new mechanism for individual aggregation in the form of the existence of multiple stable
heterogeneous equilibria, even though the spatial dispersal is assumed to be proportional to the
population gradients with a constant rate.
? 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Population aggregation; Spatial heterogeneity; Maturation delay; Stability

1. Introduction

Aggregation and, more generally, heterogeneity have been important subjects in
theoretical biology (see [2,5–7,11,12,16] and references therein). In models involving
reaction di2erential equations or their discrete analogues where a di2usion term is used
to model the spatial movement of the population, aggregation is described by stable
heterogeneous solutions and this usually occurs when the di2usion coe?cient is density
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dependent (see [1–4,8] and references therein). We should mention that in the work
of Britton [2], it was observed that aggregation can occur in models of single species
population when it was assumed that individuals can move to obtain resources so that
intra-speciEc competition depends on a spatial average of the population in the whole
space.

In this paper, we show that there is another mechanism for spatial heterogeneity,
and in particular, for aggregation, due to the interplay of nonlinear birth functions,
maturation period, and spatial migration, and that this type of aggregation occurs even
though the migration rate is a constant.

Our starting point is a structured population model [10] described by a hyperbolic
di2erential equation. Following the work of So et al. [14,15], we consider a single
species population with two stages (mature and immature) and distributed over two
identical patches connected by spatial dispersal. We assume, however, that the matura-
tion times for individuals are not a Exed constant but rather a random variable with a
gamma distribution. Following the work of Smith [13] and using the linear chain trick
[9], we derive from this structured model a system of six ordinary di2erential equations
describing the evolution and interaction of the matured population (and their statisti-
cal moments) in two patches. We show that homogeneous equilibria can be found by
Ending zeros of a scalar function, and their stability properties can be analyzed by de-
scribing the locations of zeros of two polynomials of degree three. We also show that
stable spatially heterogeneous equilibria cannot take place through the mechanism of
pitchfolk bifurcation, and we construct some concrete examples and provide numerical
simulations to show that for certain classes of birth functions, when the delay (the
maturation period) is large and when the spatial migration rate reaches a certain level,
the system admits stable spatially heterogeneous equilibria.

This seems to suggest a new mechanism by which individuals in the population
aggregate at particular patch or cluster in space. It would be interesting to further our
investigation into the biological and even social consequences of this new mechanism
in issues such as insect swarming, Esh schooling and animal grouping.

The remaining part of this paper is organized as follows. In Section 2, we describe
our model and reduction in details. In Section 3, we investigate the existence and
stability of all possible spatially homogeneous equilibria. In Section 4, we provide
more detailed computer simulation for aggregation using two di2erent birth functions.
And we exam these equilibria in more detail by computing the equilibria and the
eigenvalues of the linearized system. In Section 5, we conclude with a brief discussion
and some comments for future work.

2. Model derivation

We start with a stage-structured population model [10]. Assume

U (t; a) = the population density at time t and age a;

m(t) = the total mature population;
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d= the death rate;

b(m) = the birth rate:

Then we have the conservation law

@U (t; a)
@t

+
@U (t; a)
@a

= −dU (t; a); t¿ 0; a¿ 0; (2.1)

U (t; 0) = b(m(t)): (2.2)

Now we assume that the population has only two stages: mature and immature and,
for the moment, we assume the maturation period is r. Then

m(t) =
∫ ∞

r
U (t; a) da; (2.3)

and from (2.1) and (2.2), we obtain (see [13–15]).

dm(t)
dt

= −dm(t) + e−�rb(m(t − r)); (2.4)

which is a scalar delay di2erential equation.
Note that in the above derivation, we have assumed that the maturation period r is

a constant. On the other hand, from biological point of view, species can reproduce at
various age. Therefore, it is more realistic to treat r as a random variable. This leads
to the following deEnition:

m(t) =
∫ ∞

0
U (t; a)P(a) da; (2.5)

where P(a) is the probability that an individual is matured at age a, and f(a) =P′(a)
is the probability density function. Throughout the remaining part of this paper, we
will use

f(a) = �2ae−�a; a¿ 0 (2.6)

for a positive constant �. This function gives the mean (average) maturation time 1=�
but allows randomness of the maturation process.

Using integration by parts and the linear chain trick [9], we obtain the following
system of ordinary di2erential equations:

dm(t)
dt

= −dm(a) + m(2)(t); (2.7)

dm(2)(t)
dt

= −dm(2)(a) + �m(3)(t) − �m(2)(t); (2.8)

dm(3)(t)
dt

= −dm(3)(a) + �b(m(t)) − �m(3)(t); (2.9)

where

m(2)(t) = �2
∫ ∞

0
U (t; a)ae−�a da; (2.10)
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m(3)(t) = �
∫ ∞

0
U (t; a)e−�a da: (2.11)

Now, we add the factor of spatial heterogeneity by considering the case where the
population is distributed in an environment containing n patches. Assuming that the
rate of migration from patch j to patch i is given by constants Dji¿ 0 and that Ui(t; a)
is the population density of patch i at time t and age a, we obtain

@Ui(t; a)
@t

+
@Ui(t; a)
@a

= −dUi(t; a) +
n∑
j=1

DjiUj(t; a) −
n∑
j=1

DijUi(t; a): (2.12)

Therefore, for the mature populations

mi(t) =
∫ ∞

0
Ui(t; a)P(a) da; 16 i6 n; (2.13)

we can apply integration by parts and the linear chain trick to obtain the following
reduced system of ordinary di2erential equations:

dmi(t)
dt

= −dmi(a) +
∑

Djimj(t) −
∑

Dijmi(t) + m(2)
i (t); (2.14)

dm(2)
i (t)
dt

= −dm(2)
i (a) +

∑
Djim

(2)
j (t)

−
∑

Dijm
(2)
i (t) + �m(3)

i (t) − �m(2)
i (t); (2.15)

dm(3)
i (t)
dt

= −dm(3)
i (a) +

∑
Djim

(3)
j (t)

−
∑

Dijm
(3)
i (t) + �b(mi(t)) − �m(3)

i (t); (2.16)

where

m(2)
i (t) = �2

∫ ∞

0
Ui(t; a)ae−�a da; (2.17)

m(3)
i (t) = �

∫ ∞

0
Ui(t; a)e−�a da: (2.18)

In what follows, we will consider the case of identical patches (that is, the migration
rate Dji is independent of the patches involved). We hope to address the mechanisms by
which spatial heterogeneous stable patterns may form due to the dynamical interaction
of the rates of death, birth, migration and maturation. It should be mentioned that a
delay di2erential system was derived in So et al. [4,15] when the maturation period
is assumed to be a constant. In their work, various bifurcations of stable synchronized
(homogeneous) oscillations and unstable phase-locked oscillations were studied. Our
focus here is the mechanism towards stable heterogeneous solutions.
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3. Stability analysis of homogeneous equilibria

We shall concentrate on the special case where n= 2, D12 = D21 = D. In this case,
equilibria are given by the following set of six equations

m1 =
1

d+ D
m(2)

1 +
D

d+ D
m2; (3.1)

m2 =
1

d+ D
m(2)

2 +
D

d+ D
m1; (3.2)

m(2)
1 =

�
d+ D + �

m(3)
1 +

D
d+ D + �

m(2)
2 ; (3.3)

m(2)
2 =

�
d+ D + �

m(3)
2 +

D
d+ D + �

m(2)
1 ; (3.4)

m(3)
1 =

�
d+ D + �

b(m1) +
D

d+ D + �
m(3)

2 ; (3.5)

m(3)
2 =

�
d+ D + �

b(m2) +
D

d+ D + �
m(3)

1 : (3.6)

An equilibrium is homogeneous if m1 = m2, m(2)
1 = m(2)

2 and m(3)
1 = m(3)

2 . Clearly, a
homogeneous equilibrium is given by solving

m1 =
1
d
m(2)

1 ; m(2)
1 =

�
d+ �

m(3)
1 ; m(3)

1 =
�

d+ �
b(m1) (3.7)

and this leads to

b(m1) =
d(d+ �)2

�2 m1: (3.8)

Obviously (and naturally), this equilibrium is independent of the migration rate D.
Clearly, m1 =0 is a solution of (3.8) if b(0)=0. Whether other solutions exist depends
on the choice of birth functions.

We now consider the stability of a given homogeneous equilibrium m̃∗ = (m∗
1 ; m

∗
2 ;

m∗
1

(2); m∗
2

(2); m∗
1

(3); m∗
2

(3))T. Assume that the linearized system at m̃∗ is ˙̃m=Am̃ with m̃=
(m1; m2; m

(2)
1 ; m

(2)
2 ; m

(3)
1 ; m

(3)
2 )T. Then the eigenvalues of A are given by

− dx1 + D(x2 − x1) + x3 = �x1; (3.9)

− dx2 + D(x1 − x2) + x4 = �x2; (3.10)

− dx3 + D(x4 − x3) + �(x5 − x3) = �x3; (3.11)

− dx4 + D(x3 − x4) + �(x6 − x4) = �x4; (3.12)
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− dx5 + D(x6 − x5) + �(b∗x1 − x5) = �x5; (3.13)

− dx6 + D(x5 − x6) + �(b∗x2 − x6) = �x6; (3.14)

where b∗ = b′(m∗
1).

Considering the di2erences of (3:9)− (3:10), (3:11)− (3:12) and (3:13)− (3:14), we
obtain

x3 − x4 = (�+ 2D + d)(x1 − x2); (3.15)

�(x5 − x6) = (�+ 2D + d+ �)(x3 − x4); (3.16)

�b∗(x1 − x2) = (�+ 2D + d+ �)(x5 − x6): (3.17)

With a simple substitution, we have

(�+ 2D + d+ �)2(�+ 2D + d) = �2b∗ (3.18)

provided that (x1 − x2)2 + (x3 − x4)2 + (x5 − x6)2 �= 0.
Similarly, by considering the additions of (3:9)+(3:10), (3:11)+(3:12) and (3:13)+

(3:14), we obtain

x3 + x4 = (�+ d)(x1 + x2); (3.19)

�(x5 + x6) = (�+ d+ �)(x3 + x4); (3.20)

�b∗(x1 + x2) = (�+ d+ �)(x5 + x6): (3.21)

This leads to

(�+ d+ �)2(�+ d) = �2b∗ (3.22)

provided that (x1 + x2)2 + (x3 + x4)2 + (x5 + x6)2 �= 0.
Thus, we can now state the following result about homogeneous equilibria:

Theorem 3.1. Let m̃∗ = (m∗
1 ; m

∗
2 ; m

∗
1

(2); m∗
2

(2); m∗
1

(3); m∗
2

(3))T be an equilibrium of (2.14)
–(2.16) with n= 2; D12 = D21 = D¿ 0. Then

(i) m̃∗ is homogeneous; if and only if m∗
1 ; m

∗
1

(2); and m∗
1

(3) are given by (3.7);
(ii) If m̃∗ is homogeneous and set b∗ = b′(m∗

1); then

(a) � is an eigenvalue of the linearization of m̃∗; if and only if � satis;es either
(3.18) or (3.22);

(b) If � satis;es (3.18) but not (3.22); then the associated eigenvectors are het-
erogeneous and are constant multipliers of Ṽd = (1;−1; �+ 2D+ d;−(�+ 2D+
d); �b∗(�+2D+d+�);−�b∗(�+2D+d+�))T; if � satis;es (3.22) but not (3.18);
then the associated eigenvectors are homogeneous and are constant multipliers
of Ṽd = (1; 1; �+ d; �+ d; (�+ d+ �)(�+ d)�−1;−(�+ d+ �)(�+ d)�−1)T;

(c) Under the generic condition; (d + �)2d �= �2b∗; m̃∗ is asymptotically stable; if
and only if (d+ �)2d¿�2b∗.
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Proof. (i) and (ii) (a); (b) have been veriEed above and (ii) (c) is a direct application
of the Routh–Hurwitz Criteria. The Routh–Hurwitz Criteria states that all roots of a
real polynomial �3 +a1�2 +a2�+a3 = 0 have negative real parts if and only if a1¿ 0;
a3¿ 0 and a1a2¿a3. On the other hand; (3.18) and (3.22) can be rewritten as

�3 + (3d∗ + 2�)�2 + [(d∗ + �)2 + 2d∗(d∗ + �)]�+ (d∗ + �)2d∗ − �2b∗ = 0;

where d∗ = d for (3.22) and d∗ = d+ 2D for (3.18). In this case; a1 = 3d∗ + 2�¿ 0;
a1a2 = (3d∗ + 2�)(d∗ +�)(3d∗ +�)¿ (d∗ +�)2d∗¿a3. Therefore; the roots will have
negative real parts if and only if a3 = (d∗ + �)2d∗ − �2b∗¿ 0. Note that (d+ �)2d−
�2b∗¿ 0 implies (d+ 2D + �)2(d+ 2D) − �2b∗¿ 0 and (ii) (c) follows.

As a Enal remark of this section, which serves as a motivation for the numerical
simulation in the next section, we emphasize that a stable heterogeneous equilibrium
cannot occur through the mechanism of pitchfolk bifurcation. To see this, we note that
in order for a pitchfolk bifurcation of spatially heterogeneous equilibrium to occur,
�= 0 must be a zero of (3.18) for a certain value of D. However, if (3.22) holds for
some D¿ 0 then �2b∗¿d(d+�)2 from which and Theorem 3.1 we conclude that m̃∗

must be unstable even under spatially homogeneous perturbation. Therefore, even if a
pitchfolk bifurcation of spatially heterogeneous equilibria may occur, these equilibria
must be unstable. In summary, to obtain stable spatially heterogeneous equilibria, we
must have a non-trivial birth function and the occurrence of heterogeneous equilibria
can only take place though a non-pitchfolk bifurcation mechanism.

We conclude this section with several numerical simulation using a birth function
b1(a) = ca2 exp(−ka). This function increases monotonically before reaching the peak,
then decays almost exponentially to zero. Depending on the values of c and k, this
birth function may intersect with the right-hand side of (3.8) g(a) = d(d + �)2a=�2

once, twice, or three times, which corresponds to the cases of having one, two, and
three homogeneous equilibria. In the following computations, we set d= 0:1, �= 1=30,
D = 1=300, k = 0:85 and c = 16. These values are chosen so that three homogeneous
equilibria exist, which can be computed numerically using (3.8) as m1=m2=0, 0:10978,
and 4:47076. In Fig. 1a, this birth function is plotted with g(a) = d(d + �)2a=�2.
Obviously, this birth function intersects with g(a) at a= 0. From the Egure, it is also
clear that the function b1(a) intersects with g(a) at a ≈ 4:5.

We now solve the system of six equations (2.14)–(2.16) using Matlab and a built-in
ODE solver ode23 1 for 06 t6 2000. Several di2erent initial population distributions
for the two patches are used, ranging from 0.001 to 10. Note that the total population
is non-dimensionalized so that only the relative sizes of the two patches are of sig-
niEcance. The migration rate is set to be D = 1=300. In all the cases, the asymptotic
steady state has been reached at t = 2000. Fig. 1b show the phase plots of m1 and m2

with squares indicating the initial states and circles for the Enal states. The numerical

1 Matlab built-in solver ode23 uses the Runge–Kutta method of order 2 or 3. There is no particular reason
for choosing this solver over others, such as ode45, Runge–Kutta method of order 4 or 5, or ode15s, a
linear multi-step integrator. We have experimented with all the methods, but the results are not a2ected by
the choice of methods.
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Fig. 1. Simulation of the two-patch population dynamics. (a). Birth function b1(a) = 16a2 exp(−0:85a)
(solid-line) and y=d(d+�)2a=�2 (broken-line); (b). Phase plots of m1 and m2 with initial total populations
for the two patches varying from 0.001 to 10. The initial stages (t= 0) are indicated by the squares and the
Enal stage (t = 2000) are denoted by the circles.

simulations indicate that there are two asymptotically stable equilibria: m∗
1 = m∗

2 = 0
and m∗

1 = m∗
2 = 4:47076.

It is straightforward to verify that the eigenvalues of the linearized system, given by
(3.18) and (3.22), are −d, −(d+2D), −(d+�), and −(d+2D+�) for m∗

1 =m∗
2 =0. The

last two are repeated roots and all of the eigenvalues are negative, which indicates that
this equilibrium is asymptotically stable. For the other two homogeneous equilibria, we
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can compute the eigenvalues numerically and they are �= −0:204 ± i0:129, −0:198 ±
i0:129, 0:0222 and 0:0289 for m∗

1 =m∗
2 =0:10978; and �=−0:0548± i0:127, −0:0481±

i0:127, −0:277 and −0:0548 for m∗
1 = m∗

2 = 4:47076. Clearly, the Erst equilibrium
is unstable while the second one is asymptotically stable. This explains why the Erst
equilibrium was not observed by the simulation.

Finally, we remark that it is easy to observe that heterogeneous does not occur for
this case. The questions that remain, then, are whether an example of a heterogeneous
equilibrium can be observed for a di2erent birth function, and whether there are any
other ways by which such a desynchronization=aggregation phenomena may be realized.

4. Heterogeneous equilibria

We Erst present numerical simulations where stable heterogeneous and homogeneous
equilibria co-exist. The Erst computation is similar to the one in the previous section,
using the same birth function b1(a) with c=4 while the values of the other parameters
remain unchanged. The results are plotted in Fig. 2. It can be seen from Fig. 2a that
there exist three homogeneous equilibria. However, only two of them are stable, cf.
Fig. 2b. Furthermore, there appear to be a pair of heterogeneous equilibria, indicated
by the phase plots of m1 and m2 in Fig. 2b. Note the problem is symmetric and only
the results of m2(0)¿m1(0) are presented.

Similar to our discussion in the previous discussion, the values of the homogeneous
equilibria, computed using (3.8), are m∗

1 = m∗
2=0, 0.76905, 1.70730. The eigenvalues

of these equilibria can be computed using (3.18) and (3.22). All the eigenvalues have
negative real parts except for m∗

1 =m∗
2 = 0:76905, which explains why this equilibrium

was not observed by the simulation.
To compute the heterogeneous equilibria, the following equations can be derived

from (3.1) to (3.6):

b(m1) + b(m2) =
d(d+ �)2

�2 (m1 + m2); (4.1)

b(m1) − b(m2) =
(d+ 2D)(d+ 2D + �)2

�2 (m1 − m2): (4.2)

Obviously (3.7) is a special case of (4.1) and (4.2) with m1 =m2. Since the system is
nonlinear, one normally seeks the solutions numerically. We will not attempt to End
all the solutions here. Instead, we verify that (m∗

1 , m∗
2) = (0:14834; 1:2283), which is

the heterogeneous equilibrium observed by the simulation, satisEes (4.1) and (4.2).
We also note that it is not the only heterogeneous solution. For example, (m∗

1 ; m
∗
2) =

(0:53400; 1:4568) is also a solution. 2

2 The solutions are obtained using fsolve in Maple, which solves the system of nonlinear equations
numerically. The user has the option to set the range where a particular solution belongs to. This solution
was obtained when the default range is used.
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Fig. 2. Simulation of the two-patch population dynamics. (a). Birth function b1(a) = 4a2 exp(−0:85a)
(solid-line) and y = d(d + �)2a=�2 (broken-line); (b). Phase plots of m1 and m2 with initial total pop-
ulations for the two patches varying from 0.1 to 10. The initial stages (t = 0) are indicated by the squares
and the Enal stage (t = 2000) are denoted by the circles.

Next, we note that the linear stability of the heterogeneous equilibria m̃∗ is deter-
mined by �, which satisEes the following equations:

− dx1 + D(x2 − x1) + x3 = �x1; (4.3)

− dx2 + D(x1 − x2) + x4 = �x2; (4.4)

− dx3 + D(x4 − x3) + �(x5 − x3) = �x3; (4.5)
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− dx4 + D(x3 − x4) + �(x6 − x4) = �x4; (4.6)

− dx5 + D(x6 − x5) + �(b∗1x1 − x5) = �x5; (4.7)

− dx6 + D(x5 − x6) + �(b∗2x2 − x6) = �x6; (4.8)

where b∗1 = b′(m∗
1) and b∗2 = b′(m∗

2). This leads to

[b∗1 − P1(�)][b∗2 − P2(�)] + [b∗1 − P2(�)][b∗2 − P1(�)] = 0; (4.9)

where

P1(�) =
1
�2 (�+ d+ 2D)(�+ d+ � + 2D)2;

P2(�) =
1
�2 (�+ d)(�+ d+ �)2:

We note that (3.18) and (3.22) are special cases of (4.9) when b∗1 = b∗2 .
Using (4.9), we can compute all six eigenvalues of the heterogeneous equilibrium

m∗
1 =0:14834 and m∗

2 =1:28295. The values given by Maple are �=−0:18661±i0:10282,
−0:17730± i0:088699, −0:022016, −0:0034974. Clearly, the real parts of all the eigen-
values are negative. Thus, this heterogeneous equilibrium is asymptotically stable. The
eigenvalues of the heterogeneous equilibrium m∗

1 = 0:53400 and m∗
2 = 1:4568 can be

computed similarly as � = −0:19263 ± i0:11357, −0:18217 ± i0:097167, −0:012292,
0:0085669. This equilibrium is unstable due to the existence of a positive real eigen-
value, which explains why it is not observed in the simulation.

Our second example is based on a more complicated birth function b2(a) = ca[(a−
a0)(a − a1)(a − a2) + a3] exp(−kx). Compared to the Erst birth function, this new
function has more features. For example, b2(a) can intersect with g(a) four times.
Thus, there may exist four homogeneous equilibria, depending on the values of the
parameters c and ai.

The results of several simulations are presented in Fig. 3. The death rate d, migration
rate D and delay parameter � are set to be the same as in the Erst example. The birth
function b2(a) with c= 2, a0 = 0:1, a1 = 0:5, and a2 = a3 = 1 is plotted in Fig. 3a. Four
homogeneous equilibria exist and their values are m∗

1 =m∗
2=0, 0.29521, 2.1743, 6.6572,

obtained using (3.8). The number of heterogeneous equilibria is unknown and they can
be obtained by solving (4.1) and (4.2) numerically. In Fig. 3b, the phase plots of m1

and m2 are presented for several initial populations of the two patches. It is easily
observed that both stable homogeneous and heterogeneous equilibria exist, and the
initial condition determines to which equilibrium a solution approaches. Note that the
stability of the equilibria (both homogeneous and heterogeneous) can be determined by
calculating the eigenvalues using (4.9). For homogeneous equilibria, all the eigenvalues
have negative real parts except for m∗

1 = m∗
2 = 2:1743, which is not observed by the

simulation. For heterogeneous equilibria, the eigenvalues for m∗
1 = 0:58525 and m∗

2 =
2:2675 are �=−0:20983±i0:14443, −0:16633±i0:068281, −0:044012, 0:043004. Since
the last eigenvalue has positive real part, this equilibrium is unstable and not observable
by simulation. On the other hand, the eigenvalues for m∗

1 = 1:0188 and m∗
2 = 6:4542

are, �=−0:16864± i0:072182, −0:058796± i0:11382, −0:039392, −0:25908. Clearly,
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Fig. 3. Simulation of the two-patch population dynamics. (a). Birth function b2(a) = 2a[(a− 0:1)
(a− 0:5)(a− 1) + 1] exp(−0:85a) (solid-line) and y = d(d+ �)2a=�2 (broken-line); (b). Phase plots of m1
and m2 with initial total populations for the two patches varying from 0.1 to 10. The initial stages (t = 0)
are indicated by the squares and the Enal stage (t = 2000) are denoted by the circles.

all the eigenvalues have negative real parts. Therefore, it is asymptotically stable and
is observable by simulation.

Our Enal set of simulations is presented in Fig. 4. The main purpose is to explore the
dynamic interaction of the death rate d, migration rate D, and delay rate �. Using birth
function b2(a) with the same set of parameters, we compute the time history of mature
populations of the two patches by changing � and D with all the other parameters
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Fig. 4. Time history of mature populations m1 (solid-lines) and m2 (broken-lines), using birth function b2(a)
with d=0:1 and m2 =2m1 initially: (a). �=1=25 and D=1=300; (b). �=1=30 and D=1=300; (c). �=1=35
and D = 1=300; (d). � = 1=35 and D = 1=100.

unchanged. The e2ect of the delay rate and migration rate on the Enal (asymptotic)
steady states is clear.

5. Conclusion

In this paper we have shown that a new mechanism exists for individual aggrega-
tion of population in a two-patch system. Using linear stability analysis and numerical
simulation, we have shown that stable heterogeneous equilibria may exist through non-
linear dynamic interaction of birth, death, maturation delay and spatial migration. Same
principle should apply to an ecosystem consisting of a large number of patches and
work is currently under way to generalize the results to multi-patch systems.
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