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Abstract. We develop a formal adjoint theory for retarded linear functional differential equa-
tions in Banach spaces and establish the existence and smoothness of center manifolds for nonlinearly
perturbed equations. The hypotheses imposed here are significantly weaker than those that usually
appear in the literature referring to semigroups for abstract functional differential equations, and the
smoothness of the center manifolds for nonlinear perturbed equations is derived from our general
results on the smoothness of center manifolds for maps in infinite-dimensional Banach spaces.
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1. Introduction. We consider the autonomous linear functional differential equa-
tions (FDEs) of retarded type,

(1.1) u(t) = Aru(t) + Lug), u(t) € X,
and the nonlinearly perturbed systems
(1.2) w(t) = Aru(t) + L(ug) + F(uy),

where X is a Banach space, r > 0, C := C([-r,0];X) is the Banach space of
continuous mappings from [—r,0] to X with the sup norm, u; € C is defined by
ug(@) = u(t +0) for t € R and § € [-r,0], L : C — X is a bounded linear
operator, Ar : D(Ar) C X — X is the infinitesimal generator of a compact Cp-
semigroup of linear operators on X, and F is a sufficiently smooth nonlinear map
with F'(0) =0, DF(0) = 0.

In the last two decades, there has been an increasing interest in retarded FDEs
in Banach spaces. Typically, these equations depend on both spatial and temporal
variables, with the time-dependence involving discrete or distributed delays. Such
equations arise from a variety of situations in population dynamics and take the
abstract form (1.1) or (1.2), where a diffusion term dAv(t,z) with d = (dy,...,d,) €
R™ defines Apu(t) = dAwv(t,x) for u(t)(x) := v(t,z),z € R™. See Wu [21] for more
details.
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The purpose of the present work is to establish two necessary technical tools—a
formal adjoint theory for equations of type (1.1) and the existence and smoothness
of center manifolds for nonlinearly perturbed equation (1.2)—in order to develop a
normal form theory on invariant manifolds of (1.2).

Several extensions of the formal adjoint and invariant manifold theory for FDEs
in R™ (see Hale [8]) to infinite-dimensional Banach spaces have been developed in
different frameworks. Related to our present work is the paper of Travis and Webb
[18], where the authors initiated a formal adjoint theory for linear equations of the
form (1.1); other related work includes Arino and Sanchez [1], Huang [9], Nakagiri
[13], Schumacher [15], Shin and Naito [16], Wu [21], and Yamamoto and Nakagiri
[22], to mention a few. We should particularly remark that a quite complete theory
has also been developed for FDEs in Banach spaces of type (1.1) and (1.2) regarding
duality, formal adjoint theory, and invariant manifolds (cf., e.g., Memory [12], Lin,
So, and Wu [11], Wu [21], and Faria [5]) under some quite severe constraints. In
fact, assume that the eigenvectors of Ar form a basis for X in the following sense: if
i, k € N, are the eigenvalues of A7 with associated eigenvectors Ok, k € N, then every
x € X is written in a unique way as x = ), . Tk, where xz € span{fi}, k € N, with
Arx =) oy HeTr. Assume also that L(pB) € span{f} for all ¢ € C([—r,0];R) and
all eigenvectors ;. Then it is possible to decompose the characteristic equation of the
abstract FDE into a sequence of characteristic equations in R. This decomposition
yields a decomposition of (1.1) into a sequence of scalar FDEs, to which the standard
formal adjoint theory for FDEs in R™ of Hale [8] can be applied (see [11], [12], [21],
and other references therein). A slightly weaker hypothesis was considered in [5], as
follows. In addition to the assumption that the eigenvectors of Ap fqrm a basis for
X, suppose now that the set of eigenvalues of Ay can be written as {y;* : k € N, i), =
1,...,p}; for each k € N, let By be the generalized eigenspace for Ar associated
with the block of eigenvalues {4}* : iy, = 1,...,px}, and assume that L(By) C B,
where By, = {¢ € C : ¢(0) € By, for § € [—r,0]}. This means that the eigenvalues of
Ar can be organized by blocks in such a way that L does not mix the modes of the
generalized eigenspaces associated with the eigenvalues in each block. Under these
conditions, (1.1) is decomposed into a sequence of FDEs in finite-dimensional spaces
(whose dimensions are now equal to the dimensions of the generalized eigenspaces By
associated with each block {u{* : i = 1,...,px}), and again one can apply the adjoint
theory for FDEs in R™. However, these hypotheses impose severe restrictions on the
applicability of the approach to a wide range of problems arising from population
dynamics. For instance, even if A7 is an n-dimensional elliptic operator with n > 1,
it is unknown whether the eigenfunctions of At form a basis of X. Moreover, the above
assumption that the linear operator L does not mix the modes of the eigenfunction
spaces of the operator Ar is not realistic, for this almost implies that the operator L
is a scalar multiplication.

Our goal is to develop a complete formal adjoint theory and center manifold theory
without the aforementioned restrictions. The main sources of inspiration for our work
on adjoint theory presented here are the work of Travis and Webb [18] for (1.1) and the
work of Arino and Sanchez [1] for equations of the form () = L(u;), with L : C — X
being a bounded linear operator. More specifically, Travis and Webb [18] set the basis
for an adjoint theory by introducing an adequate bilinear form ({-,-)), which serves
as the formal duality between C and its dual C*, as well as an adequate definition
of formal adjoint equation for (1.1). However, their theory was not completed in the
following sense: in order to set a suitable framework to construct normal forms for
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perturbed FDE (1.2), a formal adjoint theory should eventually provide an analytic
formula for the decomposition of the phase space C' by a nonempty finite set A of
characteristic values for (1.1). Here, we present results that enable us to decompose
C by A as the direct sum C = P®(Q, where P is the generalized eigenspace associated
with A and @ = {¢ € C : {{(¢,)) = 0 for all b € P*}, where P* is the generalized
eigenspace associated with A for the formal adjoint equation.

Since we deal with infinite-dimensional Banach spaces X, rather than finite-
dimensional ones, our main difficulty is to use the formal duality to relate the gen-
eralized eigenspaces of the infinitesimal generator for the semigroup induced by the
solutions of (1.1) with the generalized eigenspaces of its formal adjoint. Without hav-
ing to impose further hypotheses on X or on the operators Ar and L, we succeeded
in expressing the kernel and range for these generalized eigenspaces in terms of the
kernel and range for some auxiliary operators. (This is a generalization of the oper-
ators introduced by Hale [8] for the case X = R™.) It turns out that these auxiliary
operators are crucial for deriving the decomposition C' = P & @ by a nonempty fi-
nite set A of characteristic eigenvalues because, as we shall prove, they have compact
resolvents and closed ranges.

For the sake of exposition, we include some definitions and results from [18].
But we should emphasize that some results about duality in [18] were proven under
stronger hypotheses than the ones assumed in this paper. Namely, in the present
work the Banach space X is not required to be reflexive; also in [18, Propositions
4.14 and 4.15], some conditions on the characteristic operator were imposed in order
to derive some results, such as that the point spectra for the infinitesimal generator
of the semigroup defined by the mild solutions of (1.1) and for its formal adjoint
coincide. Our techniques and results on formal adjoints are different from those in
[1] for equations of type u(t) = L(u;) (i.e., where Ar is absent). In [1] the authors
considered only elements in A that are not in the essential spectrum, so that their
auxiliary operators are Fredholm operators, while in the present paper we prove that
the corresponding auxiliary operators have compact resolvents and closed ranges (two
key points in establishing a Fredholm alternative result) from which the decomposition
C = P Q is deduced. Also, potential applications of the results in the present paper
are much different from those of [1]. For instance, as we have already mentioned, (1.1)
includes reaction-diffusion equations with delays as special cases.

As mentioned above, our second goal is to obtain the existence and smoothness
of the center manifold. We notice that center manifolds are of particular interest in
applications since the qualitative behavior of the solutions of a nonlinear equation in a
neighborhood of an equilibrium can be described by the flow on these manifolds. See,
for example, Carr [3]. See also Vanderbauwhede and van Gils [20], Vanderbauwhede
and Tooss [19], and Diekmann et al. [4] for the theory of center manifolds for FDEs in
R™. As already observed in the aforementioned papers, the phase space for FDE (1.2)
is a Banach space which does not admit a smooth cut-off function, and thus it is a very
challenging task to obtain the smoothness of center manifolds. Such a difficult issue
was addressed for FDEs in R™ by Vanderbauwhede and van Gils [20], and the details
are presented by Diekmann et al. [4]. In the recent work of Krisztin, Walther, and Wu
[10], the existence and C'-smoothness of various invariant manifolds for C''-maps in
general Banach spaces were established. Here we utilize some of the ideas in [10] and
prove general C*-smoothness for C*-maps, with k being an arbitrary positive integer,
and we apply this general smoothness result for maps to obtain the existence and C*-
smoothness of center manifolds for the semiflow generated by (1.2). Such a general
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smoothness result is necessary for the normal form theory to be developed later, as
the normal forms usually involve Taylor series expansions of various nonlinear maps
involved in the center manifold reduction.

Although our final goal is to use formal adjoints and center manifolds as basic
tools to develop a normal form theory for equations in the form (1.2), we note that
the results presented here are important by themselves, and a decomposition of the
phase space for linear equations and center manifolds for semilinear equations could
be applied in different frameworks of qualitative theory for FDEs.

The paper is organized as follows. In section 2, some definitions and results
are recalled, most of them from [18]. Sections 3 and 4 address a complete formal
adjoint theory for FDEs (1.1): the auxiliary operators are introduced in section 3,
and we derive some important properties of their spectra and resolvents; in section 4,
a Fredholm alternative result is presented, and the phase space C' is decomposed by a
nonempty finite set A of characteristic eigenvalues of (1.1) by using the formal adjoint
equation. Section 5 develops general results for the smoothness of center-stable and
center-unstable manifolds for maps in Banach spaces, and section 6 applies these
results to obtain the existence and regularity of center manifolds for perturbed FDE
(1.2) at the zero equilibrium.

Because of space limitations, other important properties of the center manifold,
such as the local invariance and attractivity, will be studied in a separate paper.

We now list notation that will be used throughout the paper. For a given Ba-
nach space X and for a linear operator A from its domain in X to X, we shall use
D(A), R(A), and N(A) to denote the domain, range, and kernel of A, respectively.
The spectrum, point spectrum, and resolvent of A are considered as subsets of C and
are denoted by o(A), op(A), and p(A), respectively. If A € op(A), then M (A) is
the generalized eigenspace associated with .

2. Preliminary results and definitions. Consider
(2.1) u(t) = Apu(t) + L(ug), t>0, u(t)eX,

where X is a Banach space over the field C, r > 0, C := C([-r,0]; X) is the Banach
space of continuous mappings from [—r,0] to X with the sup norm, L : C — X is
a bounded linear operator, and Ay : D(Ar) C X — X is linear. As usual, u; € C
denotes the shifted restriction of w to [t — r,t], i.e., ut(0) = u(t + 0) for —r < 6§ < 0.
We require the following assumptions:

(H1) A generates a Cy-semigroup of linear operators {T'(t)}+>0 on X, with ||T'(¢)||

< Me*t (t > 0) for some M > 1, w € R.
(H2) T'(¢) is a compact operator for each ¢ > 0.
For u € C([—r,00); X), w is said to be a mild solution of (2.1) with initial condition

@ € C if it satisfies

(2.2) { Z[()t):zT(t)so(O) + o T(t — s)L(ug)ds, >0,

(See, e.g., [23, p. 75] for the definition of integral used here.) It is known that the
initial value problem (2.2) has a unique solution denoted by u(¢)(t),t € [—r,00).
Moreover, for the operators U(t),t > 0, given by

(2.3) Ut):C—C,  Ul)e =ulp),

from Propositions 2.4, 3.1, and 3.2 in Travis and Webb [18], we have the following
proposition.
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PROPOSITION 2.1. Assume (H1). Then {U(t)}i>0 is a Cy-semigroup of bounded
linear operators on C'. Its infinitesimal generator Ay : C — C is given by

Ayp = ¢,
D(Ay) ={p e C:¢p € C,p(0) € D(Ar),$(0) = Arp(0) + L(p)}-

Moreover, if (H2) holds, then U(t) is a compact operator for each t > r.

Since {U(t)}+>0 is eventually compact (i.e., there exists g > 0 such that U(t) is
a compact operator for every t > ty), from Greiner [7, p. 209] the next result follows.

PROPOSITION 2.2. Assume (H1), (H2) and let Ay be defined by (2.4). Then we
have the following:

(i) o(Ay) = op(Ay) and every A € o(Ay) is a pole of finite order of the resolvent

RN\ Ay) = (M - Au)™h

(ii) for each A € o(Ay), the generalized eigenspace M y(Ay) is finite-dimensional;

(iii) for each a € R, the set {\ € o(Ay) : ReX > a} is finite.

From the general theory of Cp-semigroups and compact operators, we also con-
clude the following.

PROPOSITION 2.3. Assume (H1), (H2) and let A € C. If A € o(Ay), then the
ascent and descent of Ay — A are both equal to m, where m is the order of \ as a
pole of the resolvent R(\; Ay). Furthermore,

(2.4)

(2.5) C = N[(Ay — A\I)™"] & R[(Ay — AXI)™],

where N[(Ay — AN)™] = Mx(Ay) and R[(Ay — AI)™] is a closed subspace of C.

Proof. The first part follows directly from Theorem V.10.1 of Taylor and Lay
[17, p. 330]. Now, let k € N, t > r. Since U(t) is compact, N[(U(t) — uI)¥] is
finite-dimensional for p € o(U(t)). On the other hand, from the general theory of
Co-semigroups,

N[(U(t) — p)*] = GB N[(Ay — AD)*],  where S, = {\ € 0(Ay) : e = pu}.
AES,

Thus, for m the ascent of A\, N[(Ay —AI)™] = M (Ay) is finite-dimensional and The-
orem IV.5.10 of Taylor and Lay [17, p. 217] implies that R[(Ay —AI)™] is closed. 0

For A € C, we say that A\ is a characteristic value for (2.1) if A satisfies the
characteristic equation given by

(2.6) ANz =0, x € D(Ar) \ {0},
where A()N) : D(Ar) € X — X is defined by
(2.7) ANz = Arz + L(eMx) — Az, x € D(Ar),

and ez € C is given by (e*x)(0) = ez for § € [-r,0] and x € X. Tt is easy to see
that A € o(Ay) if and only if X is a characteristic value for (2.1), in which case

N(Ay = X) ={e*z:z € N(A\\)}.
Note also that for ¢ € C, the equation ¢ = (Ay — AI)p has a solution ¢ € D(Ay) if
and only if there is a b € D(Ar) satisfying the equation

(2.8) AN =1(0) — L ( / 0 e“e—@z/)(f)ds) :

0
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In this case, the solution ¢ of ¢ = (Ay — AI)yp is given by

0
(2.9) 0(0) = e*b + / MOy (&)de, 0 € [0

0
Here and throughout the remainder of this paper, for the sake of simplicity, we abuse
notation and write explicitly the value of ¢ € C at an arbitrary given 6 € [—r,0]

in the evaluation of L(y). Namely, L(foa 0= (€)d¢) should be understood as the

value of L acting on the mapping [—7,0] 3 6 — foe MOy (€)de € X.
We now assume that the linear operator L can be expressed in integral form by
means of a function of bounded variation:
(H3) There is 5 : [-r,0] — L(X, X) of bounded variation such that

0
L(p) = [ dn(0)e(0), pedC,

-Tr

where £(X, X) denotes the Banach space of bounded linear operators from
X into X.
Following Travis and Webb [18], we define the formal duality, the formal adjoint
operator of L, and the formal adjoint equation of (2.1) below.
Let X* be the dual of X and C* := C([0, r]; X*). The formal duality between C*
and C is the bilinear form ((-,-)) from C* x C' to the scalar field, defined by

0 0
(2.10) (o @) = (a(0), 9(0) — / / (a(€ — 0), dn(0)o(€))de

for a € C*, o € C, where (-,-) is the usual duality between X* and X. For f €
C([0,r;R) and u* € X*, we use fu* to denote f @ u* in C*, ie., (fu*)(s) = f(s)u*
for 0 < s < r. We remark that

0
(2.11) ((fu™, 0)) = (u”, F(0)p(0)) — <u*,L (/0 (e 9)w(§)d£>> :

To avoid possible confusion, throughout this paper we adopt the following nota-
tion: given a densely defined linear operator B in a Banach space, we denote by B*
the (true) adjoint of B, also called the dual of B; and by *B we denote the formal
adjoint of B relative to the formal duality ((,-)) defined above, in a sense that will
soon be more clearly defined. The formal adjoint operator *L of L is given by

0
(2.12) L0 —s X*, *L(a):/ dn* (0)a(—0),

-

where 1*(0) is the adjoint of 1(#). Since 7 is of bounded variation, its adjoint operator
n*: [-r,0] — L£(X*, X*) is also of bounded variation. For (2.1), the formal adjoint
equation is defined as

(2.13) a(t) = —Ara(t) — *L(at), t <0,

where A% is the adjoint of Ar and o € C* is given by af(s) = a(t + s) for s € [0,7].
Consider the mild solution (1)) for (2.13) with initial condition ¢ € C*, i.e., the
solution of the integral equation

{ a(t) = T*(—t)y(0) + [ T*(s — t)*L(a®)ds, t <0,
a%(¢) = 9.
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As for (2.1), equation (2.13) generates a Cy-semigroup of linear operators {*U(t)}1>0
on C* defined by *U (t)1 = a~t(3)), whose infinitesimal generator *Ay is given by

*AUOZ = —q,
(2.14) D(Ay) = {a € C* - é € O, a(0) € D(A3), —a(0) = Aba(0) + *L(a)}

and has the following properties (see Travis and Webb [18]):

(2.15) (("Ava, ¢)) = ((a, Auy))  for a € D("Av), ¢ € D(Av),

(2.16) (o, 9)) =0 for a € N("Ay — ul), p € N(Ay — AI), with X # p.

Note that (2.15) justifies the designation of *Ay as the formal adjoint of Ay, since its
behavior relative to the formal duality ((-,-)) is similar to the behavior of the (true)
adjoint of an operator relative to the usual duality between a Banach space and its
dual.

3. The point spectrum of *Ay. The classic (formal) adjoint theory for FDEs
in R™ will now be generalized to FDEs in Banach spaces, completing the theory
initiated by Travis and Webb [18] and following the ideas of Arino and Sanchez [1],
Busenberg and Huang [2], and Huang [9].

Similarly to what is done in section 7.3 of Hale [8] (see also [1]), we introduce
some auxiliary operators that allow us to express the null space and range for (Ay —
A)™, A € C,m € N, in terms of the null space and range of those auxiliary operators.
For A € C,j € Ny, m € N, we define the following linear operators:

. ) J
(3.1) Li:X —X, Li(z)=1L (96*‘%) ,

5!
AN Li-T 13 U A
0 AN Li-1 ... L}?
L8 (DA™ — X, L = : : S
0 0 AN LY -1
(3.2) 0 0 0 AW

_ L( [ oo =0 ! ¢(§)d§)

33  R"MC—xm R =| L( I 6A(0f§):(9 - g)w(g)df)

0(0) = L{ f > O-Ou(e)de)

With the definitions above, it is clear that A(\) = Eg\l) = Ar + LY — M. Moreover,
from (2.8) and (2.9) it follows that ¢ € R(Ay—AI) if and only if there exists b € D(Ar)
such that A(A)b = R\ ().

As in [1] and [8], we can carry out direct computations to obtain an explicit
characterization of the spaces N[(Ay — AI)™], R[(Auv — AI)™], m € N. So we state
the following proposition without a proof.
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PROPOSITION 3.1. Assume (H1), (H2) and let A € C,m € N. Then
(i) ¢ € N[(Ay — AI)™] if and only if

m—1 . Ug
J
p0) =3 i'ewuj, 0el-r0,  with ) e veemy,
=0 . Um—1

(i) ¥ € R[(Ay — A)™] if and only if RV (1) € R(L™).
From the definition of *L in (2.12), one can see that

CL(fu*),u) = {u”, L(fu))

for u* € X*,u € X, f € C([0,7];R), where fe C([—r,0];R) is given by f(@) = f(-9)
for 6 € [—r,0]. Therefore, the adjoint (L3)* of L} (j € Np, A € C) is given by

. —0)
(3.4) (L) w* ="L ((ﬁ)e—,\eu*) , ut e X"

Similar to Proposition 3.1, we have an explicit characterization of N[(*Ay —AI)™].
PROPOSITION 3.2. Assume (H1)-(H3). For m € N, X € C,

m—1 i
a € N[(*Ay — AX)™]  if and only if a(s) = Z (_?)j e Mgk s € [0,7],
=0

. m—j—1>
J¢

with (x5, ..., a%,_ )T € N(L™)*). In particular, a € N(*Ay — M) if and only if

a(s) = e x*, s € [0,7], with z* € N(AN)*).
Proof. We have

AN 0 0
(LY*—T AN 0
(ﬁg\m))* _ (L3)* (L) -1 0 7
Ly @ -1 Ay

with (LJ)\)* given by (3.4). Using this and direct computations in the same spirit as
in section 7.3 in Hale [8], we can complete the verification of Proposition 3.2. d

Now, we want to present a Fredholm alternative result relative to the formal
adjoint. The following lemmas will establish some properties of the operators £g\m)
that will play an important role in this setting.

LEMMA 3.3. Assume (H1), (H2) and let A € C. Then X € p(Ay) if and only if
0 € p(A(N).

Proof. For A € C, it has been shown in section 2 that A € p(Ay) if and only if
N(A(N)) = {0}. On the other hand, A(\) = Ap + LY — A, where Ar generates a
compact Cp-semigroup of bounded linear operators and LY — AT is linear and bounded.
Hence, A()) is also the infinitesimal generator of a compact Cy-semigroup (see Propo-
sition II1.1.4 of Pazy [14, p. 79]). From the note in p. 51 of the same book, it follows
that 0 € p(A(A)) if and only if 0 is not an eigenvalue of A()), or, equivalently, if and
only if N(A(N)) = {0}. O
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LEMMA 3.4. Assume (H1), (H2) and let A € C and m € N. Then

(1) if p € p(A(N)), then p € p(Eg\m)) and (E(Am) — pI)~Y is a compact operator;

(i) R(Ef\m)) is a closed subspace of X™.

Proof. The proof of (i) is given by induction. For m =1, LE\U = A(X). We have
already observed that A()) is the infinitesimal generator of a compact Cp-semigroup.

Hence, for u € p(A(N)) the resolvent [A(X) — ul]~! is compact (see Theorem 11.3.3
of Pazy [14, p. 48]).

We now consider A € C, u € p(A(X)) and suppose that (i) is true for m. Since

Ly
E(m) —ul

I I3 ,

L1
0 AN) —pl
Ly
E(m)* Ifl 7£(m)7 Ifl A()\) — 171
(L0 )t = (L = pd) (LY — ) 2 (A(A) = pI)
LLoT
o (AA) = pl)~t

exists and is bounded. Now, let (y,) C X™,(z,) C X be bounded sequences. The

compactness of the operators (Ef\m) —ul)~t and (A(X) — puI)~! implies that there are
subsequences (Y, ), (zn, ) such that

([,g\m) —ul) Yy, —mwe XM, (AN — pul) 2, —zeX.

k
Then (LE\mH) — puI)~ (Y"k) converges, proving that (Ef\mﬂ) — uI)~t is a compact
ng
operator.
To prove (ii), let (x,) C [D(A7)]™, Eg\m)xn —y € X™. For p € p(AN),u#0,
I e

_ 1, .m 1 A(m 1, .om _
L e~ ) 1] o = (6 = D) (7 i) M

The space R[ﬁ + (ﬁg\m) — uI)71 is closed, because (Cg\m) — uI)~1 is compact (see
Theorem V.7.8 of Taylor and Lay [17, p. 300]). Thus, there exists x € X™ such that

L m) -1 [I (m) .
—(LY" =) ry=|—+ (LY —pl T,
u( A ) p (£ )

ie., Eg\m)x =y€ R(Eg\m)). O

The characterization of the point spectrum of *Ay relies on the next lemma.
LEMMA 3.5. Assume (H1)—(H3). Consider A € C,m € N. Then

dim N(£{™) = dim N((£{™)).
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Proof. We may assume that A € oc(Ay), i.e., 0 € o(A(N)) (cf. Lemma 3.3). For
€ p(A(N)), then p € p(ﬁgm)) by Lemma 3.4, and we conclude that

ey = 8 (e =+ 1),
Ny = (160 -+ 1))

Since EE\m) is densely defined, we also conclude that p € p((ﬁf\m))*) and [(L:(Am) -
pl)~* = [(Cg\m))* — pI]™! (cf. Lemma 1.10.2 of Pazy [14, p. 38]). It remains to
be proved that N((ﬁg\m) —ul)~t+ ﬁ) and N([(Lg\m) —ul)7F + ﬁ) have the same
dimension. Since (ﬁg\m) — pI)~! is a compact operator, so is its adjoint [(Eg\m) -
wul)™1]*, and the result now follows from Theorem V.7.14 of Taylor and Lay [17,
p. 303]. d

As an immediate and most relevant consequence of this lemma, we can now derive
the following result.

PROPOSITION 3.6. Assume (H1)-(H3). Then

(i) op(Av) = op(*Av);

(ii) dim N[(Ay — AI)™] =dim N[(*Ay — A\I)™],m € N;

(iii) the ascent of Ay — M and *Ay — A are equal.

Proof. Propositions 3.1 and 3.2 and Lemma 3.5 imply (ii), from which (i) and
(i) follow. a

Remark 3.1. We note that (i) of Proposition 3.6 was proven in Proposition 4.14
of Travis and Webb [18] under the additional hypothesis N(A(X)) # {0} if and only
if N(A(V)") # {0},

Remark 3.2. In the literature dealing with adjoint semigroups for FDEs in Banach
spaces (cf., e.g., Nakagiri [13] and Travis and Webb [18, p. 412]), it is often assumed
that the Banach space X is reflexive in order to have nice properties for adjoint
semigroups. Here, we are able to develop the adjoint theory without imposing such
a condition. Of course, if this condition holds, further properties for *Ay and *U(t)
are obtained. For example, if the Banach space X is reflexive, then the adjoint A%
of Arp is the infinitesimal generator of the adjoint Co-semigroup {T'(¢)*}+>o (cf. Pazy
[14, p. 39]). For ¢t > 0, T(¢) is a compact operator, and hence its adjoint T'(t)* is
also compact. Since (H1) and (H2) are fulfilled with Ap,T(t) replaced by A%, T'(¢)*,
respectively, the conclusions of Propositions 2.1, 2.2, and 2.3 hold for *Ay,*U (¢) (¢ > 0)
instead of Ay, U(t) (¢ > 0). In particular, op(*Ay) = o(*Ay).

Remark 3.3. In Arino and Sanchez [1], a formal adjoint theory was established
for equations of the form w(t) = L(u), where L : C — X is a bounded linear
operator. Since A = 0, the Cy-semigroup {U(¢) }:>0 associated with the solutions of
this equation is not eventually compact in general. For this reason, in [1] the authors
restricted their study to eigenvalues of the infinitesimal generator that are not in
the essential spectrum. With this restriction, the corresponding operators Ef\m) are
Fredholm operators, instead of having compact resolvent. However, for our purposes
and in view of applications, it is more interesting to consider equations of type (2.1)
rather than 4(t) = L(uy), and in this situation no restrictions on the eigenvalues have
to be assumed.

4. Decomposition of the phase space by using the formal adjoint the-
ory. In this section, we always assume (H1)—(H3). The Fredholm alternative is stated
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in the next result.

PROPOSITION 4.1. Consider A € o(Ay) and m € N. Then ¢ € R[(Ay — A\I)™] if
and only if ({a,¥)) =0 for all « € N[(*Ay — AI)™]. In particular, ¥ € R(Ay — )
if and only if

(e u*, ) =0 for all u* € N(A(N)*).
Proof. Since R(E(Am)) is closed (Lemma 3.4), we have
R(L3™) = N((£5™))
Thus, Proposition 3.1 implies that
¢ € R[(Ay — AI)™] if and only if (Y*, R\™ (¢)) = 0

for all Y* € N((Eg\m))*). For Y* = (y&,...,y5H_1)T € (X*)™, from (2.11) and (3.3)
we have

R W)
m—1 9 _iq
- ; —o =™ .
- Z <%‘>L (/0 e 5)(mj1);w(€)d€> > + (Ym—1,9(0))

-5 (),

and the result follows from Proposition 3.2. 0

We note that the above result was established in Proposition 4.15 of Travis and
Webb [18] only for the particular situation m = 1 and with the additional hypothesis
that A(\) has a closed range. In Proposition 4.1, the most important case is the case
m equal to the ascent of Ayy — AI. For A € 0(Ay), denote by M (Ay) and M (*Ay)
the generalized eigenspaces for Ay and *Ay associated with A, respectively.

PROPOSITION 4.2. Let A € o(Ay) and m be the ascent of Ay — A. Then
C = My(Av) @ Qx, with Mx(Ay) = N[(Ay — A\)™], Mx(*Ay) = N[(*Ay — AI)™],

and

(4.1) Qrx={Y e C: ({a,¥)) =0 foralla € M\(*Ap)}.

Proof. From Proposition 3.6, m is also the ascent of *Ay — AI. On the other
hand, Proposition 4.1 implies that ¢ € R[(Ay — AI)™] if and only if ({(a, 1)) = 0 for
all @« € M,(*Ay). Decomposition (2.5) is therefore written as C = M (Ay) & Qx,
with Q@ = R[(Ay — AI)™] defined by (4.1). 0

LEMMA 4.3. For A\, u € 0(Ay), A # u, and m,r € N,

({a,0)) =0 forall o € N[(*Ay —AI)™] and ¢ € N[(Ay — ul)"].

Proof. This lemma generalizes formula (2.16) for m € N. It relies on the identity
(2.15) and is easily verified by using arguments as in Lemma 9 of Arino and Sanchez
[1], so we omit the details here. |

Let A € 0(Ay) and choose bases

(P/\:(Qolw"agopx)u \II/\:(wla"wpr)T
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of M\(Ay) and M (*Ay), respectively, where py = dim M (Ay) = dim M (*Ap).
Define a py X p) matrix

((Wx, @) = [((¥i, 05))]ij=1,....px-

Suppose that ((¥,®))c = 0 for some constant vector ¢ = (c1,...,¢p,)%. Then,
({a,c101 + - + cpappy)) = 0 for all & € My (*Ay), and Proposition 4.2 implies
that c1o1 + -+ ¢pop, € Qx N M(Ay) = {0} for @ as in (4.1). This shows that
({(Ty, ®y)) is nonsingular. Therefore, we can always choose bases Wy, @, such that

(42) <<\I/)\,(I),\>> :IPM N = dim M)\(AU)

If the bases are normalized in such a way that (4.2) is fulfilled, then there is a py X py
constant matrix By, with o(B,) = {\}, that satisfies simultaneously

(43) (b)\:(I)AB)\ and —\:'[/)\:B)\\I/)\.
Furthermore,
(4.4) U(t) = ®peB, t>0.

We are now in the position to decompose C' by a finite set of characteristic
eigenvalues of (2.1), using the formal duality ((-,-)). Consider a nonempty finite set
A= {)\1,...,)\3} C O'(AU) and define &, = ((I))\l,.‘.,q))\s),\I’A = (\I/,\U..‘,\I/)\S)T,
where ®,,, ¥, are bases of the generalized eigenspaces My, (Ay), My, (*Av), re-
spectively, such that (4.2) holds (j = 1,...,s). From Lemma 4.3, it follows that
((Up,Pp)) =1, where p=py, +--- +Dpa,-

PROPOSITION 4.4. Assume (H1)-(H3), let A = {\1,..., s} C o(Ay), define

Py = My, (Ay) @ - @ My, (Ay),
Py =My, ("Av) © - -- & My, ("Av),

and consider bases ®p, ¥y for Py, Pf such that ((Up, ®p)) = I,, p=dim Py. Then
there exists a subspace Q of C, invariant under Ay and U(t), t > 0, such that

(4.5) C =Py ®Qn
with
(4.6) Qar={p e C : ((¥a,p)) =0},

where ((Ua, @) = ({((Tx,,0)),..., (U, 0))T. Moreover, ¢ € C is written ac-
cording to decomposition (4.6) as ¢ = @p, + ¢g,, where pp, = PA((¥a,p)) and
©Qa € Q-

5. Center manifolds for maps in general Banach spaces: Smoothness.
We start with the following general results on smooth center-stable manifolds for
maps.

THEOREM 5.1. Let f : U — E be a C'-map on an open subset U of a Banach
space E over R, with a fized point p. Let L = Df(p) and assume that E has the
following decomposition:

E=E;®E.®E,,
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where Es is a closed subspace, E. and E,, are finite-dimensional, L(E,) C Es, L(E,) C
E., and L(E,) C E,. We further assume that

os =o(L|g, : Es — Es) is contained in a compact subset of {z € C: |z| <1}

and

o.=0(L|g, : E. — E.) C S,
oyw=0(L|g, : B, — E,) C{z€C:|z| > 1}.

Let B, = Es @ E.. Then

(i) there exist open neighborhoods Ns. of 0 in Eg., Ny of 0 in E,, N of p in
U, and a C*-map w : Ny. — E, with w(0) = 0, Dw(0) = 0, and w(Ns.) C N, so
that the shifted graph W = p + {z + w(z) : z € Ny} satisfies f(WNN) C W and
ﬁ?7,020.](._71(p + Nsc + Nu) - W;

(ii) if f is C*-smooth for an integer k > 2, then so is w.

Part (i) was proved in [10]. Our argument for the general smoothness in (ii), given
below, will be based on the following general C''-smoothness result for fixed points of
contractions depending on a parameter developed in [10].

LEMMA 5.2. Let Y, A be Banach spaces over R and let an open set P C A, a map
h:YxP =Y, and a constant k € [0,1) be given with |h(y,p) —h(§,p)| < kly—7| for
ally,y inY and all p € P. Consider a conver subset M CY and a map ®: P — M
so that for every p € P, ®(p) is the unique fixed point of h(-,p) :' Y — Y. Suppose
the following hold:

(i) the restriction ho = h|pmxp has a partial derivative Dohg : M x P — L(A,Y)
and the map Dshg is continuous;

(ii) there are a Banach space Y1 over R and a continuous injective linear map
j:Y — Y7 so that the map k = j o hy is continuously differentiable with respect to' Y
in the sense that there is a continuous map A : M x P — L(Y, Y1) so that for every
(y,p) € M x P and every ¢* > 0, there exists 6 > 0 with |k(,p) — k(y, p) — A(y, p) (i —
)| < €5 —y| for all j € M with | — y| < 6;

(iii) there exist maps hY) : M x P — L(Y,Y) and hgl) : M x P — L(Y1,Y1) such
that

Ay, p)g = jh Oy, )5 = 1" (y,p)j§ on M x PxY

and
nH Y,p)| < K, h(l) y,p)| <k onM X P;
1

(iv) the map (y,p) € M x P — jo hM(y,p) € L(Y, Y1) is continuous.
Then the map jo ® : P — Y, is Cl-smooth and

D(j o ®)(p) = " (@(p).p) o D(j 0 ®)(p) + j © Daho(®(p),p) for all p € P,

For a given positive integer k and for given Banach spaces Yi,...,Y; and Y,
let £F) (Y] x --- x Y, Y) be the Banach space of all continuous k-linear maps from
Y1 X+ x Y toY, equipped with the operator norm. If Y; = Y; for all 1 <i <k, we
write £ (Y1,Y) for LF) (Y] x --- x Y3,Y). Also, we will denote the kth derivative
of a given map by D* if it exists.

We now briefly recall some results and associated notation in [10] as a preparation
for the proof of Theorem 5.1. Set b = infyc,, |A|,a = sup,¢,. [A| and fix € > 0 with
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a+e<l<l+e<(1+ek <b—e Let P, P., P, denote the projections of E onto
FE, along E. & E,, onto E. along Fs; & E,, and onto F, along E. & FEs, respectively.
Whenever convenient, we shall use abbreviations like

xS:PSw7 xc:ch7 .Tu:Puil', Psc:Ps+PC7 Tey = Te + Ty

There exists a norm | - | on E which is equivalent to the originally given one and
satisfies
|z =[] + [ze| + |zl
|LPsx| < (a+ €)|Psz,
|LP.z| < (1+ ¢€)|P.x|,
ILPua| > (b— €| Pusl

for all x € E.

Set V= U — p. Consider the transformed map ¢* : z € V — f(z+p)—p € E
with fixed point 0 and Dg*(0) = L. Define r* : V. — E as the nonlinear part of g*
by r*(z) = ¢*(x) — Lz, and then extend r* to a map r : E — E by r(z) = 0 for all
x € E\V. Finally, let g = L +r.

To construct small Lipschitz continuous modifications of g which are smooth on
strips containing the center-unstable space E.,, we fix a norm | - |s, on E., which
is C*°-smooth on E., \ {0}. The norm || - || : z € E — max{|zs|, |Tculcu} € R is
equivalent to |- |. For 6 > 0, set E(6) = {z € E : ||z|| < §}. Choose a C*°-function
p: R — R with p([0,00)) C[0,1],p(t) =1 for 0 <t <1, p(t) =0 for t > 2. For every
6 >0, define rs : E — FE by

',I:C’LL cu ‘/L.S
a’nd set 96 L Trs.

Fix 6o > 0 so that E(36y) C V and that 7|z3s,) is C*-smooth and all Ith deriva-
tives, 1 < [ < k, of r|g(ss,) are bounded. Observing that for every 6 € (0,6q) the

|$cu‘cu

restriction 75|{zep:|z,|<s} 1S given by p(==E<t)r(x), it follows that 7s|{zcp:|z,| <5} 1S
C*-smooth and that the restriction of rs to {z € E;|z,| < £} has all Ith derivatives
bounded, 1 <[ < k.

It was shown in [10] that there exist 61 € (0,8p) and a nondecreasing function
A :[0,61] — [0,1] with limg g+ A(6) = 0 = A(0) so that for each ¢ € (0,61] and for all
x,yin E, |rs(x)] < 6X(6) and |rs(x) — rs(y)| < A(6)|z — y).

For n > 0, let E,, denote the Banach space of all sequences x = (2,)§° € EN with

sup |a:j|7fj < 00
N

je
and norm
[Ixly = sup [a;]n~7.
JEN
Consider
Tpy1 = Ly + fr, formn >0,
- [t

for given z € Eqe, ¢ = (fn)y € En, and n € (1 +¢,b—¢).
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Let Lye = L|g., : Esc — Esc. It was shown in [10] that for fixed z € Eq,1 + € <
n<b—e and ¢ € E,, if x € E, satisfies (5.1), then

n—1 [e%s}
Ty = Z L9 P f — ZLZ*-FlPufj + L.z forn>1
=0 j=n
and
o = %2 — ZL;]_lpuf]
j=0

In particular, given z € E,. and ¢ = (f;)§° € E,, there is at most one solution of
(5.1) in E,,. Let

K:{x€E":x€E,forsomene (1+eb—e}—E"

be given by
n—1 ] 0o )
(K¢)p = LE 7 'Pof; =Y Ly 77'Pyf; forn>1
j=0 j=n
and
e .
(K@)o=—> L7 ' P, f;.
j=0
Also, let

1 n 1
n—1—¢ b—e—n

c(n) =

Then the linear map K, : E, — E, given by K, ¢ = K¢ is continuous with |K,| <
c¢(n). Furthermore, for every n € (1 +¢€,b—¢€), z € Ey, and ¢ € E,, the sequence
x = K,¢+ (L7.2)§° € E, solves (5.1).

Consider the substitution operator

Rs : EN — EN by Rs(x) = (rs(zn))g°  for x = (x,) € EN.

For every n € (14+¢€,b—¢), choose 6, € (0,61] with A(6,)c(n) < 1.Let n € (1+¢€,b—¢)

and 6 € (0,6,). It was shown in [10] that Rs(E,) C E,, and the induced map

Yon : En 3 x — Rs(x) € E, is Lipschitz continuous with a Lipschitz constant A(6).
Therefore, for every z € Ey. and x = (z,)3° € E,, the properties

Tp+1 = g&(l’,n) for all n Z O, R‘;cxo =z

are equivalent to the fixed point equation x = Ts,(x, z), where the map Ty, : E, X
Es. — L, is given by

Tsn(x. 2) = K (50 (X)) + (LLe2)5°.

Ty (X, 2) = Ty (X", 2)|n < c(mAB)[x — X[y
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for all x, x* € E,, and for all z € Ej,, there is exactly one fixed point xs,(z) € E,, of
the contraction Ty, (-, z) : E, — E, for every z € E,.. Moreover, Ps.(xs,(2))o = z.
In summary, x € E, is a trajectory of gs with Ps.xg = z if and only if x = xs,(%).

It was shown in [10] that the map xs, : 2 € Esc — Xsn(2) € E,, is Lipschitz
continuous, and thus ws, : 2 € Esc — Pu(Xsn(2))o € Ey is Lipschitz continuous. To
obtain the differentiability of ws,, [10] proved the following important properties: if
0 <6< b, and A\(6) < %, then for every z € E,. with |Pyz| < £ and for all
integers j > 0,

(52 1P (xon(2)il < 5.

We can now give the following proof.

Proof of Theorem 5.1. We divide the long proof into several steps. The first step
concerns the proof of the C''-smoothness. Except for the last remark, all results in
Step 1 belong to [10].

Step 1. Fix 1,7, so that 1 + e <n <7 <7 with 7 € (n*,b—¢), and fix § > 0 so
that

(1—-a—¢)?

0 < Oy, A(6) < 5 ,

k:= sup A(6)e(n) < 1.
n€n,7)

Let

1)
P:{ersc:|xs|<2}.

P is an open set in the Banach space A = E..
Recall that 75| (e gz, (<5} is CF-smooth and sup{|D'rs(z)]| : |zs| < 6} < A(6). It
was shown in [10] that for any 7 € (n, 7], the linear map

~ ~ oo ~ oo oo 6 .
AD(y) 1 BN 5 % = (;)5° — (D'rs(z))50 € BN, x = (2))5°, |Pexj| < 30 JEN,

1

reiy from the convex set

induces a continuous map A
) .
M= XEEU:\Pij|<§f0rallj€N C E,

into L(E,, Ej).

Let Y = E,,h = Ts,|yxp. It is important to keep in mind that xs,(P) C M.
Define ® : P — M by ®(z) = xs,(2); we have h(®(p),p) = ®(p) for all p € P. The
map ho = h|yxp is given by

hO(Xv Z) = Tﬁn(Xv Z) = K(Ré(X)) + (Li;cz)go’
so for every (x,z) € M x P the derivative Dohg(x, 2z) exists and is given by
D2hO(X7'Z)2 = (L-icé)gc € E77'

This derivative is constant on M x P and therefore is continuous.



Downloaded 11/20/15 to 130.63.174.91. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SMOOTH CENTER MANIFOLDS FOR MAPS AND ABSTRACT FDEs 189
Set Y7 = F5 and define jz, : Y — Y7 by
Jim(X) = X
Then jg, is continuous and injective, and the map k = jz, o hg is given by
k(x, 2) = Ts, (x; 2) = Ki(7s; (X)) + (L.2)5°-

It was shown in [10] that the map A : M x P 3 (x,2) — Kjo0 Argim(x) € L(Y, Y1) is

continuous, and each AS}S)(X)7 X € M, defines elements

AN () e L(Y,Y)  with |JAD) (x)] < A(8)

5N TsMMN
and
AN () € LY, Y1) with [AD) ()] < A9).
Define
MM xP— L(Y,Y) by h(x,2) =K, 0 AL (x)
and

WY M x P— £(Y1,v1) by BV (x,2) = Kq0 AYL(y).

rsmn

It was shown in [10] that

max{|h® (x, 2)|, 1" (x, 2)|} < max{e(n), (i) }A©S) =

and all other conditions in Lemma 5.2 are satisfied. Therefore, js, 0 ® = ji, o (Xsn|P)
is C''-smooth and j;, 0 ® = Xs;|p- Moreover, D' (ji, o ®) satisfies

D (jigy 0 ®)(2) = Kj 0 A1 (®(2)) 0 D (jzy 0 @) (2) + jan 0 (LI )5°,  z€P.

Tsnm
The final remark of this step is essential for the general smoothness to be proved

in later steps. Recall that for any 7 € [, 7], K o Ari)ﬁﬁ( (2)) € L(E5, Ej;) and

K50 A (8(2)) | 2(m,.5,) < c(MAE) < 5 < 1.

rsnmn

Therefore, Ky o AT?W( (2)) € L(E5, E5) is a uniform contraction and the map

Ko AV (®(2))L + jgy o (L),  z€P, LeL(A Ey),

Tsnn

has a unique fixed point \Ilg)(z) in L(A, Ez). Since js, o \117(71)(2) € L(A, E5), the
uniqueness of a fixed point in L£(A, Ej) implies

In particular,

D' (im0 ®)(2) = O (2) = jzy 0 W (2),  z€P.
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Step 2. We now assume k > 2. For any given integer [ with 1 <[ < k, consider
the operator Ag&) given by

AV x) = (D < >< ;7~-~7wé>>8°7

X = (1’3)07 i%;) 1<i<l.

Note that A&? with [ = 1 was introduced in Step 1. The operators Ag&) with 1 <
< k are the substitution operators of D'rs; they can be regarded as the Nemytskii
operators induced by D'rs in the appropriate spaces.

As 7"5|{zeE;\z5|§g} has all lth derivatives bounded, 1 <1 < k, we can show that

AD () (Eyra X+ X Eyri) C Epryteiy xXeM, 1<r <L

We are going to use induction on p with 1 < p < k. (Note that for the remainder
of this proof, p is not the fixed point of f.) The strategy is to show that the order
of the smoothness of jz, 0 ® : P — Ej is increased by at least one as 7 passes nPL,
from (n,7?~1] to (n?~%,nP], and to construct higher order derivatives inductively.

Suppose 1 < p < k and suppose that for all integers ¢ with 1 < ¢ < p and for all
7 € [n?, 7], the mapping jz, o ® : P — Ej is C9-smooth with

(i) DU(jqy 0 ) = jin © Ui;

(i) U\ (2) € L@(A, E,q) as the unique solution of

F=KAD(®(2)F + Hy(z), FelL9DANEy.), z€P

with Hy(2)z = (L1.2)3°, 2 € A, and for ¢ > 2,

q(2) = > KAL) (®(2) (T (2),..., Wi (2);

2<1<q,1<i<L1<r; <Lri+-411=q

(iii) jpy 0 U : P — L@(A, E;) being continuous.

We want to show that the above statement is true for ¢ = p + 1.

Step 3. Fix 7 € [pP*1,7] and let X = LP)(A, E;). For F € LP)(A,E,») and
z € P, let

H(F,z) = KAY(D(2))F + Hy(2).

By the induction hypotheses in Step 2 and the estimates in Step 1, for any n* € [nP, 7],
F e LP)(A E,),z € P, we have H(F,2) € E,» and
|H(F,2) — H(F,2)| < c(f)AO)|F — F| <k|F - F|, F,FeLlLP(AE,:).

Therefore, H(-, z) has a unique fixed point in £ (A, E, ). Note also that for n* = n?
this fixed point is given by \Ilgp)(z). From now on, we restrict H : X x P — X and

let N = £(p)(A,Enp), HO = H|N><p.
Step 4. Let e; : EN — E be given by
e((2)F) =2,  (z)5° € BV

Define &; = ejo® : P — E and \Ilgllj)(z)é = e 0\117(71)( Zfor 1 <1 <p,ze€P,
and Z € A. We claim that ®; is C'-smooth and D®;(z)z = \Ilélj)(z)é In fact,
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P; = e;0P = ¢j0j5P, and thus ®; is C'-smooth since j;, o ¢ is. Moreover,
D(Jﬁn o} <I>) = me o \11511)7 and thus

¢j(jan ¥ (2)2) = €;D(jin © ®)(2)2.
This shows that \IIEIIJ)(Z)E =D;(z)z.

Step 5. We now prove that for any fixed F' € £®) (A, E,») and 7 > nP*!, the
mapping P 3 z — KA%) (®(2))F € LP)(A, E;) has a derivative, which is given by
KAP (®(2)) (WM (2)-, F), and the map

P x LO(A, EByp) 3 (2, F) = KAD (9(2)) (Y1 (2), F) € L(A, LP (A, Ey))

is continuous.
Let

6
|Dl’l“5|oo = sup {Dlr5(z)|;z €E, |z < 2} .
Note that for 1 <1 <k, |D'rs|s < 00.
For any z; € A with 1 <i <p, let
Fi(z1,...,2p) = €j(F(z1,..., %))

Then for z,z € P we have

ﬁ_j|D1r5(<I)j(2))Fj (21,25 2p) — Dlrg(fbj(z))Fj (21,5 2p)

— D?rs(®;(2)) (8 (2)(2 = 2), Fy(21, -, )]
<779 Drs(®5(2)) = Dlrs(@;(2)) — Drs(®5(2)) 0L (2)(2 = 2) [P Fl|za] -+ [z,

Therefore, for any € > 0 there exists an integer Jy > 0 so that if 7 > Jy and if
|Z — z| <1, then
7D rs(®5(2))Fj (21, .-, 2p) — DUrs(®5(2) Fj(21, -, 2)
— D?ry(®;(2)) (U (2) (2 — 2), Fy(z1,. ., 2))|
< () 920D s o | F| + (70 7) T [D?rs]oon’ [0S (2) (2 = 2)||F[]]21] -+ |2
< el lsl
AS 75| (e Esjz, <o} 18 CF-smooth, k > 2, ®; : P — E is C*'-smooth and D®(z)z =

\117(71]) (2)Z for z € P and Z € A. For any € > 0, there exists § > 0 so that when Z € P
and |Z — z| < 8, then for 0 < j < Jy we have

ﬁjn—pj €
|F|4+1c¢(n)+1°

|Drs(®;(2)) — Drs(®;(2)) — Drs(®;(2) 0L (2)(2 - 2)| <

and hence
ﬁ7j|D1r5((pj(g))Fj(zla ceey ZP) - Dng((I)j(Z))Fj(Zl, [ ZP)
— D?rs(D;(2) (V) (2)(2 = 2), Fy (21, 2)|
- ﬁjn*m‘ €
[F|+1e(n)+1

EARREA

1| F [z 2]
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Therefore,

[KAL (P(2))F — KAL) ((2))F — KAR (2(2)) (W) (2) (2 — 2), F)

< c(n) sup 779D rs(®,(2))Fj(21, - - -, 2p)
2 €A,]2;|<1,1<i<p,j>0

— Drs(@(2)) Fy (21, ..., 2p) — D*rs(@5(2)) (P (2) (= 2), Fy (21, -, 2p)|

< c(7)

€
<e.
i +1°

This proves the differentiability.
We now prove that the map

Px N> (2,F) — KAD(2(2))(¥V (2)-, F) € LA, LP) (A, E)) = LPT(A, E;)
is continuous. Fix (z,F) € P x N. Then for any (%, F) € P x N, we have

[KARH(@(2) (TP (2), F) = KA (2(2) (T (2)-, F)
< [KAR (2 (

< NP (E) F) — A(2)(@ )W) (2), F)
+ [KAD (@(2) (U (2), F) = KAD (2(2)) (¥ (2)-, F)]
and
[KARD (@(2) (P (2)-, F) = KAD (2(2)) (¥ (2)-, F)]
= en R o [KAR ((2)) (L) (2)zp41, F 21, -, 2p))
— KA (®(2)) (U (2)2p41, F (21, - )| 5
= ziGA,lzi|S§ull?1§i§p+1|K Al A (@(2) (v )( )zpt1, Fz1,-- -5 %))
— AR (@()) () (2)zpr1, Flz1, - 2))]ly-
Moreover,

AR (TN (2)zpa1, (21, 2p)) = AR (R(2)) (L) (2)2ps1, F 21, -, 2)

= supi) D25 (@(2)) (P (2)2pi1, (21, 7))
J

— D?rs(®;(2) (U (2) 21, Fj (21, ., 2)].

Note that for any n* € (n,7], the mapping j,«, o \Ilg,l) : P — E,- is continuous.
Fix n* € (n, ;5). There exists 61 > 0 so that if Z € P and |2 — 2| < é1, then

‘jn*nolpg;l)( Z) = jn nO‘I’ ( <1
Therefore, n* _]|\P,(71J)(2)—\P,(7§)(z)| < 1lforall j € N. In particular, |\IJ§71])(2)—\IJ%)(Z)| <
n* for all j € N.

Find an integer Jy > 0 so that if j > Jy, then

€

2(c(n*) + D(IF|+ 1)

D?rync (j) 2 [0 ()] + ()] <
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Therefore, for j > Jy, we have

7791 D2rs(@(2)) (D (2)2ps1, B (21, 29)) — D2rs(@5(2)) (P (2)2ps1, Fy (21, -, 2)]
< [D?rsloei 2 210 ()| + 071 | |21 - |2l 2|

S\
n 1 *J1| T
< |Drs|oe (n) 2 |0 ()] + 0] 2] 2pal.

For 0 < j < Jp, as &; = ¢;® and \Ilglj) = ejjn*n\IJ%) are continuous, we can find

82 > 0 so that when Z € P and |Z — z| < 02, we have

1D (@, () (U E) 2, B a1 2) = Doy () (LD () By o)
= 2(c(q) + D)(|F] + 1) |Fllza] - lzpal.

Therefore, if | — F| < 1 and |2 — z| < min{6;, 8}, we have
[ KA (@(2) (W) (2)-, F) = KA (9()) (¥ (2)-, F)]

< o(ff) s

a7 7 ~\ . a4\ < ac
20e(n)+1) 2
In a similar fashion, we get

KAL) (2(2)) () (2), F) kAR (2(2)) (¥ (2), F)]

= sup KA (U (2)2p 41, (F = F)(21,- ., )|,
2 €A,]2i|<1,1<i<p+1

< (1) sup 779 [D?rs o™ WD (2) 0P| F = Fl|z1] -+ | 241 ]
zi€A,]2i|<1,1<i<p+1,5>0

c()| Drs|oc| WSV ()| F — F.

Therefore, if |Z— z| < min{é1, 62} and if |F—F| < min{1, SR ITE ¢ I‘I’“)(Z)H-l}’ then

|KA(1)( (%), F) — KA%)(Q(z)~,F)| < e. This completes the proof of the required
continuity.

For the sake of later reference, let us summarize the main idea of the arguments
involved in this step. To estimate

[KAQ (R(2)F — KAL) (2(2)F — KAD (2(2) (P (2)(2 - 2), F)|

in the proof of the differentiability of the mapping P > z +— KA%)((P(Z))F €
£®) (A, Ej), we used the definition of the operator norm for multilinear operators

KA%)((I)(Z))F and the definition of the norm in Ej; and were led to the estimation of
the expression

ﬁ7j|[D17’5(q) ( ))F](Zla sy R ) - DlT(S(@j(Z))Fj(Zla ) ZP)
1
= DPrs(®;(2)) () (2) (2 = 2), Fy (21, )|
for each given nonnegative integer j. The above term can be made arbitrarily small

if j is sufficiently large, thanks to the choice of 7 > nP*! (the essential gradient of
the proof). When j is restricted to a finite set, the smallness of the above expression
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follows from the continuity of the involved operators and mappings. Similar arguments
were used to estimate

|KAR ((2)(WM(2)-, F) — KAL) (B(2))((V (2)-, F)|
in the proof of the continuity of the map
Px N3 (2,F)— KAD (@) (T (2)-, F) € LA, LP) (A, Ey)).

Step 6. Let 2 <1 <p, 1 <r; <l withr;+---+ 7 = p. For any integer j > 0,
z€ A, and 2, € A" let

V0 (2)2, = ey (W (2)5,).

Then for z,z € A we have

‘KAS?((D(Z))(\I/;“)(E), LW (2) = KAD (D(2)) (0 (2), ..., Bl (2))

l

=Y KAD(@(2)(T((2), ..., B (2) (2 = 2),..., B (2))

k=1

KA (@) (W) (2) (2 = 2), U (2), ..., U(2))

n

< (7)) sup 779 | Dlrs(@(2) (W (2)2,, ..., 0 (2)5,,)
Zp; EATI |20, | <1,1<i<p,5>0

— Dlrs(®;(2) (W0 (2) 20y, ..., UV (2)5,,)
!

=3 Dlrs(@ () (W (2)20, - BTV () (2 - 2,2, WD (2)2,)
k=1

=DM hrs(@5(2)) (3 (2) (2 = 2), W ()2, U ()30

Now we can use the fact that |Dlr5\OO < oo for 1 <1 < p, and the induction hypothesis
implies that the mapping

P32 00 (2) € LUV (A, Eyp)

is differentiable, and we apply an argument similar to that for the first part of Step
5 to show that for any 2 < [ < p, 1 < r; < [l with ry + .-+ r;, = p, the map
P>z KAY ((I)(z))(\llg,”)(z), s \Ils,”)(z)) € LWP(A, Ey) is differentiable and the
derivative is given by

ZKA(Z \p(h (2),..., 0D () W) ()

n n

+KA5@+1>( (2)) (T (2), W) (2), ..., 0l (2)).
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The continuity of the above derivative, with respect to z € P, can also be verified by
using an argument similar to that for the second part of Step 5 and by noting that
the induction hypothesis implies that the mapping

P3ze 0l () e LAV, By

is continuous.
Step 7. Let 7) be given so that /4 € (7,7]. Define the continuous linear injective
map J : X — X7 = LP)(A, E;) by

J(L)(z1, .-y 2p) = JaaL(z1, ..., 2p), 21,...,2p €A, LeX.
Then
JHo(F,z) = js KAD (®(2))F + jag Hp(2),  z€P, FeLP(AE).
Let A: P — L(X,X;) be given by
(A(2)F)(z1,. .., 2p) = §ai K0 Ar (®(2))F(21,...,2p), 2€P, FeX, x1,...,2, €A

Again, we can use arguments similar to those in Step 5 (see the remarks at the end
of Step 5) to show that A is continuous. Moreover, we have

JHo(F,z) — JHy(F,z) = A(z)(F - F), zeP, F,FeN.

Note that for any n* > n, KA%) (®(z)) induces a bounded linear map from £®) (A, E,.)
into itself by

Que (L) (21, -, 2p) = Ky AL L (®(2))L(21,- ., 2)

and
|Qn| < c(n™)A(0).

Define HY : P — £(X, X) and HY : P — £(X1, X1) by

HY () =Q;, HM(:)=Q;,  zeP
Clearly, we have for F' € X the following:
A(2)F = jaa KAL) (B(2)) F
= jai@aF = JH" (2)F
= QajgiF = H{" (2)JF
and

IHD(2)] < e(@A@) < w,  |HP(2)] < e(DAE) < .

Moreover, the mapping

P>z JoHY(2) = jom 0 Qq = Jpn KAL)

T 11

(®(2)) = A € L(X, X1)
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is continuous. Therefore, by Lemma 5.2, the map jﬁno\Il%p) = s oj;mo\Ilg,p) P — X
is C'-smooth and

D(jn 0 UP)(2) = KA (D(2))D(jiagz 0 UP)) + jas 0 DoHo(VP), 2),  z € P.

Step 8. We now prove that the mapping js,0® : P — Ej is CP*1l.smooth. Indeed,
as ) > Pt > P ja, 0 ®: P — Ej is CP-smooth and

DP(jipy 0 ®) = jay 0 \1/5,@.

Since iy 0\117(7’7) is C''-smooth, we conclude that jz,0® is CP*1-smooth and DPT(jy, 0
@) = D(jsy 0 \I/%p)). Let Hyy1(2) = DaHo(Vh(2), 2) and let \I'%pﬂ)(z) be the unique
fixed point of the contraction
LA, Eypin) 3 F = Ky AL o (9(2))F + Hy1(2) € LD (A, B );

then DPT1(jz, 0 @) = jﬁ,,\IIS,pH). This proves all conclusions in the case of p + 1.

Therefore, we have proved that for a fixed 77 > n* the mapping jz, 0 ® : P — E,x
is C*-smooth, and hence Xs;|p = Jan® is C* smooth. Consequently, ws;|p = Py o
eoXs,| P is C*-smooth. O

Similarly, we have the following center-unstable manifold theorem.

THEOREM 5.3. Let f : U — E be a C'-map on an open subset U of a Banach

space E over R, with a fized point p. Let L = Df(p) and assume that E has the
following decomposition:

E=E,¢oE.®E,,

where Ey is a closed subspace, E. and E,, are finite-dimensional, L(Es) C Es, L(E.) C
E., and L(E,) C E,. We further assume that

os =o0(L|g, : Es — Es) is contained in a compact subset of {z € C: |z| < 1}

and

o.=0(Llp, : E. — E,) C S¢,
oy, =0(Llg, : B, — E,) C{z€C:|z] >1}.

Let E., = FE, ® E.. Then

(i) there exist open neighborhoods Ne, of 0 in E,, Ns of 0 in Es, N of p in
U, and a C*-map w : Ney — Eg with w(0) = 0, Dw(0) = 0, and w(N.,) C Ns so
that the shifted graph W = p+ {z + w(z) : z € Ng} satisfies f(WNN) C W and
{x € E; there exists a trajectory (z,,)° . of f in p+ Ny + Nswith zg = 2} C W;

(ii) if f is C*-smooth for an integer k > 2, then so is w.

We can now state the following smoothness theorem for center manifolds in gen-
eral Banach spaces.

THEOREM 5.4. Let f : U — E be a C'-map on an open subset U of a Banach
space E over R, with a fized point p. Let L = Df(p) and assume that E has the
following decomposition:

E=E;®E.®E,,
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where Es is a closed subspace, E. and E,, are finite-dimensional, L(E,) C Es, L(E,) C
E., and L(E,) C E,. We further assume that

os =0(L|g, : Es — Es) is contained in a compact subset of {z € C: |z| < 1}

and
g. =0(L|p, : Ec — E.) C S¢,
o, =0(L|g, : B, — E,) C{z€C:|z| >1}.

Let By, = E; ® E.. Then

(i) there exist open neighborhoods N. of 0 in E., Ng, of 0 in Eg,, N of p in U,
and a Ct-map w : N, — E,, with w(0) = 0, Dw(0) = 0, and w(N.) C Ng, so that
the shifted graph W = p+ {z + w(z) : z € N} satisfies f(W N N) C W, and if there
exists (), such that x, = f(xp—1) and x, € p+ N.+ Ny, for every integer n,
then xg € W;

(ii) if f is C*-smooth for an integer k > 2, then so is w.

Proof. Without loss of generality, we may assume p = 0. By Theorem 5.1, there
exist convex open neighborhoods N, of 0 in E. + Es, Ny of 0 in E,, N of 0 in U,
and a C*-map (k = 1 in case of (i) and k > 2 in case of (ii)) Wes : Nes — B, with

Wes(0) = 0, Dw.5(0) = 0;
{Ecs(Ncs) C Nu;
and such that the graph

Wcs - {ch + {Dcs(zcs) 1 Zes € Nas}

satisfies
F(Wes NN C W
and
(5.3) M2 of " (Nes + Nu) C W

By Theorem 5.3, there exist open neighborhoods ﬁcu of 0 in FE. & E,, ]\AfS of
0 in Es, N of 0 in U, and a C*-map (k = 1 in case (i) and k > 2 in case (ii))
Wey, : New — Es with

and the graph

Wcu = {Zcu + ﬁ}cu(zcu) D Zey € j\}cu}

satisfies
FWeu N N) C W,
and
(5.4) z € /Wcu if there exists {2,}0___ C N, + N,

such that 2,11 = f(z,) for n < —1 and that zg = 2.
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Choose open neighborhoods N7 of 0 in E., N} of 0 in E,, NF of 0 in E., N* of
0 in E such that
N*CcNn ]\7;
N} 4+ NI C Ngg;
NY+ N} C Ney;
ze € Nf,zs € NXif z € f(N*);
2c € NX zy € NFif z € f(N*);
Wes(2e + 25) € NY if z. € N and z; € N}

Define
Wc*s = {ch + {Ecs(zcs) 1Rcs = Zct 25 € Nc* + NS*},
W;u = {Zcu + 7:U\cu(zcu) Ry = Zct 2y € NC* + ]\7:;}7

and
W*=WrnWwg,.
For z € W*, we have

2= Ze+ 25 + Wes(2e + 25)

=2+ 2y + Wen(2e + 20)
with z. € N}, zs € N, and z,, € N;;. Therefore,
2s = Wew (2e + 24) = Wen (26 + Wes(ze + 25))-
Consider the equation
(5.5) zs = Weu(Ze + Wes (2 + 25))-

As both @, and @, are C*-smooth and D, (0) = 0, Dw.s(0) = 0, the implicit

function theorem implies that there are open neighborhoods N, of 0 in N} and N of

0in N7 and a Ck—map ws : N. — N; such that for every z. € Ny equation (5.5) has

the unique solution zs = ws(2.). It is easy to verify that ws(0) = 0 and Dw,(0) = 0.
We now define w. : N, — E; & E, by

We(2e) = Ws(2c) + Wes(2ze + ws(2c)),  2e € Ne.
Clearly, w, is C*-smooth, w.(0) = 0, Dw.(0) = 0, and
we(Ne) C Ns + Ny,
with
N, = N].
Let
We = {ze +we(zc) : 2c € Ne}

We prove that if there exists {z,}°2 __ C N.+ N + N, such that z,41 = f(2,) for

n € Z, then z = zp € W,.. In fact, (5.3) and (5.4) imply that z € Ww N Wcs. As
2 € No C N}, z, € N, C N}, and 2, € N, = N, we have z € W* and

20 = Z¢+ 25 + ﬁjcs('zc + Zs) =Zc+ 2y + {U\cu(zc + Zu)a
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from which it follows that
Zs :@cu('zc"—@cs(zc"'zs))a Zs ENS; Ze ENC'

Therefore, we must have z; = ws(2.) and z, = Wes(2e + ws(z:)). This shows that
z e We.

Other properties in Theorem 5.4 are straightforward consequences of Theorems 5.1
and 5.3. O

6. Center manifolds for nonlinear FDEs in Banach spaces. We now start
to consider semilinear FDEs

(6.1) u(t) = Apu(t) + L(u) + F(uy),

where we assume A, L are as in the previous sections, and, in particular, that (H1)—
(H3) are satisfied. We also assume that F : V; — X is a C*-mapping (k > 1) from a
neighborhood V; of 0 € C' into X with F'(0) =0 and DF(0) = 0.

Fix w > r. Using the arguments of Fitzgibbon [6] (see also Theorems 2.1 and 2.2
in Chapter 2 of Wu [21]), we can find an open neighborhood V5 C V; of 0 in C such
that for any ¢ € V5 there exists a unique continuous function u? : [~r,w] — X such
that ug = ¢ and

for ¢t € [0,w]. Define f : Vo — C by

f(¢) =ul for ¢ € Vb.

As w > r, we can show that f is compact (using the argument in Travis and Webb
[18]; see also Theorem 1.8 of Chapter 2 of Wu [21]). The next lemma shows that
there exists an open neighborhood V C V5 of 0 in C such that f = f|v 'V —-C1is
C*-smooth and

Df(0)=U(w):C —C.

LEMMA 6.1. There exists an open neighborhood V- C Vo of 0 in C' such that for
each t € [0,w], uf is C*-smooth with respect to ¢ € V.. Moreover, for each ¢ € C,
Dyu® ()1 satisfies the linear variational equation

(6.2) { fo): . T()p(0) + fy T(t = 5)[L(vs) + DF (ug)vs]ds,

In particular, Df(0) = U(w).

Proof. We are going to apply the same argument as that for Theorem 4.1 in Hale
8] based on [8, Lemma 4.2, p. 46]. Let F/(¢) = L(¢) + F(¢). Fix x € Va. There exist
M > 0,6 >0, and N > 0 such that

IT@®)| <M fort € [0,1];
Bs(x) € Vo with Bs(x) = {¢ € C: [[¢ — x| < 6};
[F($)] < N, |[DF(¢)] < N for ¢ € Bs(x).-
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Now choose € € (0,1) and 8 € (0,1) so that

5.

/6 < 2 , P
SUDPg o c[—r,0],J0—0'|<e IX(0) = X(0")] < §;
sup;efo.q |T(H)x(0) — x(0)| < §;

€< %
Let
K(e,8) ={y € O([~7,¢|; X) :yo =0, [[y:|| < B for t € [0, €]}

Clearly, K (e, 3) is a closed subset of the Banach space Cy([—r,¢€]) = {z € C([-r,¢€]; X) :
z(s) =0 for s € [-r,0]} equipped with the supremum norm.

For each ¢ € C, define ¢ : [—r,00) — X by ¢o = ¢ and ¢(t) = T(t)$(0) for t > 0.
Now, for fixed ¢ € B__s () define A(¢) on K (e, 3) by

8(1+ M)

agwt = { BT IPQ 480 ye Ko, eelod

Clearly, A(¢)y € C([—r,€]; X). Moreover, since for s € [0, €], ||ys|| < 8, and

Hq;s*XHSH(rgs*)st‘i»”Xs*XH
<l = xll+ sup [|T(s)[[|$(0) — x(0)]

s€[0,€]

+ sup IX(0 4 s) — x(0)]
0€[—r,0],s€[0,€],s+60€[—7,0]

+ sup IT'(s + 6)x(0) — x(0)]
0c[—r,0],s€[0,€],5+6>0

+ sup Ix(8) — x(0)]
0c[—r,0],s€[0,€],s+60>0

6 6 6 6
< (14 M)||¢— S hoo< -
S@+Mlle-xll+g+g+5 <3

we have
lys + 60 —xll < B+ <8
and hence
|F(ys + ¢s)| < N for s € [0, 6.
This implies that
|A(¢)y(t)] < MNe < 3 for t € [0, €.

So, A(d)y € K (e, 8) and A($)K (e, ) € K(e, B).
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Moreover, using ||DF()|| < N for all ¢ € Bs(x), for 4,5 € K(e,3) and t € [0, €]
we have

|A(®)y(t) — A(P)9(t)]
/O T(t — 8)[F(ys + 6s) — F(ils + b5)ds]

< MNe sup |lys — 9s||

<

s€0,t]
< MNe sup ]Iy(S) —3(s)]
se|—r,€e
< sup ly(s) = 9(s)l.
se|—r,e

As 8 < 1, we conclude that for each ¢ € B__ s (x), the mapping A(¢) : K(¢,3) —

S(1+M)
K (e, 3) is a contraction. By Lemma 4.2 of Hale [8], for each fixed ¢ € BS(li}W) (x),
A(¢) has a unique fixed point y(¢) € K (e, 8) which is continuous in ¢.
Note that B__s () is the closure of the open set BS(I«’{S»M) (x) and A(¢)y has a

8(I+M)
continuous kth derivative with respect to (¢,y) € B (x) x K%e, 3), where

5
B(1+ M)

K°(e,8) = {y € K(e.0) : |lyel| < 5 for t € [0, €]}

is open in Cy([—7,€]) and K(e,3) = KO9(e, 3). Therefore, by Lemma 4.2 in Hale [8],
y(¢) is C*-smooth with respect to ¢ € BS(liI\l) (x), and hence uf = ¢y + (y(®)):

is CF-smooth in ¢ € B__s _(x) for each fixed t € [0,¢]. A standard continuation

8(1+M)

argument then leads to the C*-smoothness of u(¢) with respect to ¢ for t € [0,w].
The remaining part of the lemma can be easily verified. 0
Let

Y, ={A€op(Ay) : ReX < 0},
Yu = {)\ S (TP(AU) : ReX > O},
Ye = {)\ S JP(AU) : Re) = 0},

and assume Y. # (). We know that ¥, U X, is a finite set.

Let
C* = @ Mi(Av),
AEX
c' = @ Ma(Av),
AEX,
Ce = P Mi(Ap).
PYSIIN

C?, C", and C° are realified generalized eigenspaces associated with Y, 3, and X,
respectively. Then C* and C°¢ are finitely dimensional and

C=C*qC"aC".

Recall that C*,C*, and C* are called the stable, unstable, and center subspaces of the
Co-semigroup {U (¢)}1>o0.
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We can now state the main result of this section.
THEOREM 6.2. There exist open neighborhoods N, of 0 in C¢, Ns of 0 in C*, N“
of 0 in C*, and a C*-map w. : N, — C* & C* such that
(i) we(0) = 0, Dw.(0) = 0, w.(N.) C Ng + Ny;
(ii) for any ¢ € V, if there exists a continuous mapping u® : R — X such that

0 =0,

u®(t) = T(t — s)u®(s) + / T(t — 0)[L(ug) + F(uf)]do

fort,s € R witht > s, anduf € Ng+ N, + N, forallt € R, thenuf e W, fort € R,
where

We = {dc + we(de) : ¢ € Nej-
Proof. Recall that f:V — C is C*-smooth, f(0) =0, Df(0) = U(w), and
C=CaC"qC*,
|c=) is a compact subset of {z € C: |z| < 1},

C“) - S(é7
low) C{z € C:|z| > 1}.

Q

Q
NN N

)
w)
)

See Chapter IV.2 in Diekmann et al. [4].

By Theorem 5.4, there exist open neighborhoods N, of 0 in C¢ N of 0 in C%,
N, of 0 in C*, and a C*-map w : N, — C* @& C" such that w.(0) = 0, Dw.(0) = 0,
and w.(N.) C N5 + N,,. Moreover, for W, = {¢. + we(¢pe) : ¢ € N}, if there exists
(¢™)>°, such that ¢" = f(¢"~!) and ¢™ € N, + Ny, for n € Z, then ¢* € W...

Fix ¢ € V such that condition (ii) of this theorem is satisfied. Then for any fixed
teR, ul € Ny+ N, + N, CV, and if we let

O =l nez,

then ¢"*t! = f(¢") for n € Z and ¢" € N, + Ny + N, for all n € Z. Therefore, the
result in the last step implies that ¢° = uf € W.. This completes the proof. 0
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