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Abstract. We develop a formal adjoint theory for retarded linear functional differential equa-
tions in Banach spaces and establish the existence and smoothness of center manifolds for nonlinearly
perturbed equations. The hypotheses imposed here are significantly weaker than those that usually
appear in the literature referring to semigroups for abstract functional differential equations, and the
smoothness of the center manifolds for nonlinear perturbed equations is derived from our general
results on the smoothness of center manifolds for maps in infinite-dimensional Banach spaces.
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1. Introduction. We consider the autonomous linear functional differential equa-
tions (FDEs) of retarded type,

u̇(t) = ATu(t) + L(ut), u(t) ∈ X,(1.1)

and the nonlinearly perturbed systems

u̇(t) = ATu(t) + L(ut) + F (ut),(1.2)

where X is a Banach space, r > 0, C := C([−r, 0];X) is the Banach space of
continuous mappings from [−r, 0] to X with the sup norm, ut ∈ C is defined by
ut(θ) = u(t + θ) for t ∈ R and θ ∈ [−r, 0], L : C −→ X is a bounded linear
operator, AT : D(AT ) ⊂ X −→ X is the infinitesimal generator of a compact C0-
semigroup of linear operators on X, and F is a sufficiently smooth nonlinear map
with F (0) = 0, DF (0) = 0.

In the last two decades, there has been an increasing interest in retarded FDEs
in Banach spaces. Typically, these equations depend on both spatial and temporal
variables, with the time-dependence involving discrete or distributed delays. Such
equations arise from a variety of situations in population dynamics and take the
abstract form (1.1) or (1.2), where a diffusion term d∆v(t, x) with d = (d1, . . . , dn) ∈
R
n defines ATu(t) = d∆v(t, x) for u(t)(x) := v(t, x), x ∈ R

n. See Wu [21] for more
details.
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174 TERESA FARIA, WENZHANG HUANG, AND JIANHONG WU

The purpose of the present work is to establish two necessary technical tools—a
formal adjoint theory for equations of type (1.1) and the existence and smoothness
of center manifolds for nonlinearly perturbed equation (1.2)—in order to develop a
normal form theory on invariant manifolds of (1.2).

Several extensions of the formal adjoint and invariant manifold theory for FDEs
in R

n (see Hale [8]) to infinite-dimensional Banach spaces have been developed in
different frameworks. Related to our present work is the paper of Travis and Webb
[18], where the authors initiated a formal adjoint theory for linear equations of the
form (1.1); other related work includes Arino and Sanchez [1], Huang [9], Nakagiri
[13], Schumacher [15], Shin and Naito [16], Wu [21], and Yamamoto and Nakagiri
[22], to mention a few. We should particularly remark that a quite complete theory
has also been developed for FDEs in Banach spaces of type (1.1) and (1.2) regarding
duality, formal adjoint theory, and invariant manifolds (cf., e.g., Memory [12], Lin,
So, and Wu [11], Wu [21], and Faria [5]) under some quite severe constraints. In
fact, assume that the eigenvectors of AT form a basis for X in the following sense: if
µk, k ∈ N, are the eigenvalues of AT with associated eigenvectors βk, k ∈ N, then every
x ∈ X is written in a unique way as x =

∑
k∈N

xk, where xk ∈ span{βk}, k ∈ N, with
ATx =

∑
k∈N

µkxk. Assume also that L(ϕβk) ∈ span{βk} for all ϕ ∈ C([−r, 0]; R) and
all eigenvectors βk. Then it is possible to decompose the characteristic equation of the
abstract FDE into a sequence of characteristic equations in R. This decomposition
yields a decomposition of (1.1) into a sequence of scalar FDEs, to which the standard
formal adjoint theory for FDEs in R

n of Hale [8] can be applied (see [11], [12], [21],
and other references therein). A slightly weaker hypothesis was considered in [5], as
follows. In addition to the assumption that the eigenvectors of AT form a basis for
X, suppose now that the set of eigenvalues of AT can be written as {µikk : k ∈ N, ik =
1, . . . , pk}; for each k ∈ N, let Bk be the generalized eigenspace for AT associated
with the block of eigenvalues {µikk : ik = 1, . . . , pk}, and assume that L(Bk) ⊂ Bk,
where Bk = {ϕ ∈ C : ϕ(θ) ∈ Bk for θ ∈ [−r, 0]}. This means that the eigenvalues of
AT can be organized by blocks in such a way that L does not mix the modes of the
generalized eigenspaces associated with the eigenvalues in each block. Under these
conditions, (1.1) is decomposed into a sequence of FDEs in finite-dimensional spaces
(whose dimensions are now equal to the dimensions of the generalized eigenspaces Bk

associated with each block {µikk : ik = 1, . . . , pk}), and again one can apply the adjoint
theory for FDEs in R

n. However, these hypotheses impose severe restrictions on the
applicability of the approach to a wide range of problems arising from population
dynamics. For instance, even if AT is an n-dimensional elliptic operator with n > 1,
it is unknown whether the eigenfunctions of AT form a basis of X. Moreover, the above
assumption that the linear operator L does not mix the modes of the eigenfunction
spaces of the operator AT is not realistic, for this almost implies that the operator L
is a scalar multiplication.

Our goal is to develop a complete formal adjoint theory and center manifold theory
without the aforementioned restrictions. The main sources of inspiration for our work
on adjoint theory presented here are the work of Travis and Webb [18] for (1.1) and the
work of Arino and Sanchez [1] for equations of the form u̇(t) = L(ut), with L : C −→ X
being a bounded linear operator. More specifically, Travis and Webb [18] set the basis
for an adjoint theory by introducing an adequate bilinear form 〈〈·, ·〉〉, which serves
as the formal duality between C and its dual C∗, as well as an adequate definition
of formal adjoint equation for (1.1). However, their theory was not completed in the
following sense: in order to set a suitable framework to construct normal forms for
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SMOOTH CENTER MANIFOLDS FOR MAPS AND ABSTRACT FDEs 175

perturbed FDE (1.2), a formal adjoint theory should eventually provide an analytic
formula for the decomposition of the phase space C by a nonempty finite set Λ of
characteristic values for (1.1). Here, we present results that enable us to decompose
C by Λ as the direct sum C = P⊕Q, where P is the generalized eigenspace associated
with Λ and Q = {ϕ ∈ C : 〈〈ψ,ϕ〉〉 = 0 for all ψ ∈ P ∗}, where P ∗ is the generalized
eigenspace associated with Λ for the formal adjoint equation.

Since we deal with infinite-dimensional Banach spaces X, rather than finite-
dimensional ones, our main difficulty is to use the formal duality to relate the gen-
eralized eigenspaces of the infinitesimal generator for the semigroup induced by the
solutions of (1.1) with the generalized eigenspaces of its formal adjoint. Without hav-
ing to impose further hypotheses on X or on the operators AT and L, we succeeded
in expressing the kernel and range for these generalized eigenspaces in terms of the
kernel and range for some auxiliary operators. (This is a generalization of the oper-
ators introduced by Hale [8] for the case X = R

n.) It turns out that these auxiliary
operators are crucial for deriving the decomposition C = P ⊕ Q by a nonempty fi-
nite set Λ of characteristic eigenvalues because, as we shall prove, they have compact
resolvents and closed ranges.

For the sake of exposition, we include some definitions and results from [18].
But we should emphasize that some results about duality in [18] were proven under
stronger hypotheses than the ones assumed in this paper. Namely, in the present
work the Banach space X is not required to be reflexive; also in [18, Propositions
4.14 and 4.15], some conditions on the characteristic operator were imposed in order
to derive some results, such as that the point spectra for the infinitesimal generator
of the semigroup defined by the mild solutions of (1.1) and for its formal adjoint
coincide. Our techniques and results on formal adjoints are different from those in
[1] for equations of type u̇(t) = L(ut) (i.e., where AT is absent). In [1] the authors
considered only elements in Λ that are not in the essential spectrum, so that their
auxiliary operators are Fredholm operators, while in the present paper we prove that
the corresponding auxiliary operators have compact resolvents and closed ranges (two
key points in establishing a Fredholm alternative result) from which the decomposition
C = P ⊕Q is deduced. Also, potential applications of the results in the present paper
are much different from those of [1]. For instance, as we have already mentioned, (1.1)
includes reaction-diffusion equations with delays as special cases.

As mentioned above, our second goal is to obtain the existence and smoothness
of the center manifold. We notice that center manifolds are of particular interest in
applications since the qualitative behavior of the solutions of a nonlinear equation in a
neighborhood of an equilibrium can be described by the flow on these manifolds. See,
for example, Carr [3]. See also Vanderbauwhede and van Gils [20], Vanderbauwhede
and Iooss [19], and Diekmann et al. [4] for the theory of center manifolds for FDEs in
R
n. As already observed in the aforementioned papers, the phase space for FDE (1.2)

is a Banach space which does not admit a smooth cut-off function, and thus it is a very
challenging task to obtain the smoothness of center manifolds. Such a difficult issue
was addressed for FDEs in R

n by Vanderbauwhede and van Gils [20], and the details
are presented by Diekmann et al. [4]. In the recent work of Krisztin, Walther, and Wu
[10], the existence and C1-smoothness of various invariant manifolds for C1-maps in
general Banach spaces were established. Here we utilize some of the ideas in [10] and
prove general Ck-smoothness for Ck-maps, with k being an arbitrary positive integer,
and we apply this general smoothness result for maps to obtain the existence and Ck-
smoothness of center manifolds for the semiflow generated by (1.2). Such a general
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176 TERESA FARIA, WENZHANG HUANG, AND JIANHONG WU

smoothness result is necessary for the normal form theory to be developed later, as
the normal forms usually involve Taylor series expansions of various nonlinear maps
involved in the center manifold reduction.

Although our final goal is to use formal adjoints and center manifolds as basic
tools to develop a normal form theory for equations in the form (1.2), we note that
the results presented here are important by themselves, and a decomposition of the
phase space for linear equations and center manifolds for semilinear equations could
be applied in different frameworks of qualitative theory for FDEs.

The paper is organized as follows. In section 2, some definitions and results
are recalled, most of them from [18]. Sections 3 and 4 address a complete formal
adjoint theory for FDEs (1.1): the auxiliary operators are introduced in section 3,
and we derive some important properties of their spectra and resolvents; in section 4,
a Fredholm alternative result is presented, and the phase space C is decomposed by a
nonempty finite set Λ of characteristic eigenvalues of (1.1) by using the formal adjoint
equation. Section 5 develops general results for the smoothness of center-stable and
center-unstable manifolds for maps in Banach spaces, and section 6 applies these
results to obtain the existence and regularity of center manifolds for perturbed FDE
(1.2) at the zero equilibrium.

Because of space limitations, other important properties of the center manifold,
such as the local invariance and attractivity, will be studied in a separate paper.

We now list notation that will be used throughout the paper. For a given Ba-
nach space X and for a linear operator A from its domain in X to X, we shall use
D(A), R(A), and N(A) to denote the domain, range, and kernel of A, respectively.
The spectrum, point spectrum, and resolvent of A are considered as subsets of C and
are denoted by σ(A), σP (A), and ρ(A), respectively. If λ ∈ σP (A), then Mλ(A) is
the generalized eigenspace associated with λ.

2. Preliminary results and definitions. Consider

u̇(t) = ATu(t) + L(ut), t ≥ 0, u(t) ∈ X,(2.1)

where X is a Banach space over the field C, r > 0, C := C([−r, 0];X) is the Banach
space of continuous mappings from [−r, 0] to X with the sup norm, L : C −→ X is
a bounded linear operator, and AT : D(AT ) ⊂ X −→ X is linear. As usual, ut ∈ C
denotes the shifted restriction of u to [t − r, t], i.e., ut(θ) = u(t + θ) for −r ≤ θ ≤ 0.
We require the following assumptions:

(H1) AT generates a C0-semigroup of linear operators {T (t)}t≥0 on X, with ‖T (t)‖
≤ Meωt (t ≥ 0) for some M ≥ 1, ω ∈ R.

(H2) T (t) is a compact operator for each t > 0.
For u ∈ C([−r,∞);X), u is said to be a mild solution of (2.1) with initial condition

ϕ ∈ C if it satisfies{
u(t) = T (t)ϕ(0) +

∫ t
0
T (t− s)L(us)ds, t ≥ 0,

u0 = ϕ.
(2.2)

(See, e.g., [23, p. 75] for the definition of integral used here.) It is known that the
initial value problem (2.2) has a unique solution denoted by u(ϕ)(t), t ∈ [−r,∞).
Moreover, for the operators U(t), t ≥ 0, given by

U(t) : C −→ C, U(t)ϕ = ut(ϕ),(2.3)

from Propositions 2.4, 3.1, and 3.2 in Travis and Webb [18], we have the following
proposition.
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SMOOTH CENTER MANIFOLDS FOR MAPS AND ABSTRACT FDEs 177

Proposition 2.1. Assume (H1). Then {U(t)}t≥0 is a C0-semigroup of bounded
linear operators on C. Its infinitesimal generator AU : C −→ C is given by

AUϕ = ϕ̇,

D(AU ) = {ϕ ∈ C : ϕ̇ ∈ C,ϕ(0) ∈ D(AT ), ϕ̇(0) = ATϕ(0) + L(ϕ)}.(2.4)

Moreover, if (H2) holds, then U(t) is a compact operator for each t > r.
Since {U(t)}t≥0 is eventually compact (i.e., there exists t0 > 0 such that U(t) is

a compact operator for every t > t0), from Greiner [7, p. 209] the next result follows.
Proposition 2.2. Assume (H1), (H2) and let AU be defined by (2.4). Then we

have the following:
(i) σ(AU ) = σP (AU ) and every λ ∈ σ(AU ) is a pole of finite order of the resolvent

R(λ;AU ) = (λI −AU )−1;
(ii) for each λ ∈ σ(AU ), the generalized eigenspace Mλ(AU ) is finite-dimensional;
(iii) for each α ∈ R, the set {λ ∈ σ(AU ) : Reλ ≥ α} is finite.
From the general theory of C0-semigroups and compact operators, we also con-

clude the following.
Proposition 2.3. Assume (H1), (H2) and let λ ∈ C. If λ ∈ σ(AU ), then the

ascent and descent of AU − λI are both equal to m, where m is the order of λ as a
pole of the resolvent R(λ;AU ). Furthermore,

C = N [(AU − λI)m] ⊕R[(AU − λI)m],(2.5)

where N [(AU − λI)m] = Mλ(AU ) and R[(AU − λI)m] is a closed subspace of C.
Proof. The first part follows directly from Theorem V.10.1 of Taylor and Lay

[17, p. 330]. Now, let k ∈ N, t > r. Since U(t) is compact, N [(U(t) − µI)k] is
finite-dimensional for µ ∈ σ(U(t)). On the other hand, from the general theory of
C0-semigroups,

N [(U(t) − µI)k] =
⊕
λ∈Sµ

N [(AU − λI)k], where Sµ = {λ ∈ σ(AU ) : eλt = µ}.

Thus, for m the ascent of λ, N [(AU−λI)m] = Mλ(AU ) is finite-dimensional and The-
orem IV.5.10 of Taylor and Lay [17, p. 217] implies that R[(AU−λI)m] is closed.

For λ ∈ C, we say that λ is a characteristic value for (2.1) if λ satisfies the
characteristic equation given by

∆(λ)x = 0, x ∈ D(AT ) \ {0},(2.6)

where ∆(λ) : D(AT ) ⊂ X −→ X is defined by

∆(λ)x := ATx + L(eλ·x) − λx, x ∈ D(AT ),(2.7)

and eλ·x ∈ C is given by (eλ·x)(θ) = eλθx for θ ∈ [−r, 0] and x ∈ X. It is easy to see
that λ ∈ σ(AU ) if and only if λ is a characteristic value for (2.1), in which case

N(AU − λI) = {eλ·x : x ∈ N(∆(λ))}.
Note also that for ψ ∈ C, the equation ψ = (AU − λI)ϕ has a solution ϕ ∈ D(AU ) if
and only if there is a b ∈ D(AT ) satisfying the equation

∆(λ)b = ψ(0) − L

(∫ θ

0

eλ(θ−ξ)ψ(ξ)dξ

)
.(2.8)
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178 TERESA FARIA, WENZHANG HUANG, AND JIANHONG WU

In this case, the solution ϕ of ψ = (AU − λI)ϕ is given by

ϕ(θ) = eλθb +

∫ θ

0

eλ(θ−ξ)ψ(ξ)dξ, θ ∈ [−r, 0].(2.9)

Here and throughout the remainder of this paper, for the sake of simplicity, we abuse
notation and write explicitly the value of ϕ ∈ C at an arbitrary given θ ∈ [−r, 0]

in the evaluation of L(ϕ). Namely, L(
∫ θ
0
eλ(θ−ξ)ψ(ξ)dξ) should be understood as the

value of L acting on the mapping [−r, 0] � θ �→ ∫ θ
0
eλ(θ−ξ)ψ(ξ)dξ ∈ X.

We now assume that the linear operator L can be expressed in integral form by
means of a function of bounded variation:

(H3) There is η : [−r, 0] −→ L(X,X) of bounded variation such that

L(ϕ) =

∫ 0

−r
dη(θ)ϕ(θ), ϕ ∈ C,

where L(X,X) denotes the Banach space of bounded linear operators from
X into X.

Following Travis and Webb [18], we define the formal duality, the formal adjoint
operator of L, and the formal adjoint equation of (2.1) below.

Let X∗ be the dual of X and C∗ := C([0, r];X∗). The formal duality between C∗

and C is the bilinear form 〈〈·, ·〉〉 from C∗ × C to the scalar field, defined by

〈〈α,ϕ〉〉 = 〈α(0), ϕ(0)〉 −
∫ 0

−r

∫ θ

0

〈α(ξ − θ), dη(θ)ϕ(ξ)〉dξ(2.10)

for α ∈ C∗, ϕ ∈ C, where 〈·, ·〉 is the usual duality between X∗ and X. For f ∈
C([0, r]; R) and u∗ ∈ X∗, we use fu∗ to denote f ⊗ u∗ in C∗, i.e., (fu∗)(s) = f(s)u∗

for 0 ≤ s ≤ r. We remark that

〈〈fu∗, ϕ〉〉 = 〈u∗, f(0)ϕ(0)〉 −
〈
u∗, L

(∫ θ

0

f(ξ − θ)ϕ(ξ)dξ

)〉
.(2.11)

To avoid possible confusion, throughout this paper we adopt the following nota-
tion: given a densely defined linear operator B in a Banach space, we denote by B∗

the (true) adjoint of B, also called the dual of B; and by ∗B we denote the formal
adjoint of B relative to the formal duality 〈〈·, ·〉〉 defined above, in a sense that will
soon be more clearly defined. The formal adjoint operator ∗L of L is given by

∗L : C∗ −→ X∗, ∗L(α) =

∫ 0

−r
dη∗(θ)α(−θ),(2.12)

where η∗(θ) is the adjoint of η(θ). Since η is of bounded variation, its adjoint operator
η∗ : [−r, 0] −→ L(X∗, X∗) is also of bounded variation. For (2.1), the formal adjoint
equation is defined as

α̇(t) = −A∗
Tα(t) − ∗L(αt), t ≤ 0,(2.13)

where A∗
T is the adjoint of AT and αt ∈ C∗ is given by αt(s) = α(t+ s) for s ∈ [0, r].

Consider the mild solution αt(ψ) for (2.13) with initial condition ψ ∈ C∗, i.e., the
solution of the integral equation{

α(t) = T ∗(−t)ψ(0) +
∫ t
0
T ∗(s− t)∗L(αs)ds, t ≤ 0,

α0(ψ) = ψ.
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SMOOTH CENTER MANIFOLDS FOR MAPS AND ABSTRACT FDEs 179

As for (2.1), equation (2.13) generates a C0-semigroup of linear operators {∗U(t)}t≥0

on C∗ defined by ∗U(t)ψ = α−t(ψ), whose infinitesimal generator ∗AU is given by

∗AUα = −α̇,
D(∗AU ) = {α ∈ C∗ : α̇ ∈ C∗, α(0) ∈ D(A∗

T ),−α̇(0) = A∗
Tα(0) + ∗L(α)}(2.14)

and has the following properties (see Travis and Webb [18]):

〈〈∗AUα,ϕ〉〉 = 〈〈α,AUϕ〉〉 for α ∈ D(∗AU ), ϕ ∈ D(AU ),(2.15)

〈〈α,ϕ〉〉 = 0 for α ∈ N(∗AU − µI), ϕ ∈ N(AU − λI), with λ �= µ.(2.16)

Note that (2.15) justifies the designation of ∗AU as the formal adjoint of AU , since its
behavior relative to the formal duality 〈〈·, ·〉〉 is similar to the behavior of the (true)
adjoint of an operator relative to the usual duality between a Banach space and its
dual.

3. The point spectrum of ∗AU . The classic (formal) adjoint theory for FDEs
in R

n will now be generalized to FDEs in Banach spaces, completing the theory
initiated by Travis and Webb [18] and following the ideas of Arino and Sanchez [1],
Busenberg and Huang [2], and Huang [9].

Similarly to what is done in section 7.3 of Hale [8] (see also [1]), we introduce
some auxiliary operators that allow us to express the null space and range for (AU −
λI)m, λ ∈ C,m ∈ N, in terms of the null space and range of those auxiliary operators.
For λ ∈ C, j ∈ N0,m ∈ N, we define the following linear operators:

Ljλ : X −→ X, Ljλ(x) = L

(
θj

j!
eλθx

)
,(3.1)

L(m)
λ : [D(AT )]m −→ Xm, L(m)

λ =


∆(λ) L1

λ − I L2
λ . . . Lm−1

λ

0 ∆(λ) L1
λ − I . . . Lm−2

λ
...

...
. . .

. . .
...

0 0 . . . ∆(λ) L1
λ − I

0 0 . . . 0 ∆(λ)

 ,

(3.2)

R(m)
λ : C −→ Xm, R(m)

λ (ψ) =


−L
( ∫ θ

0
eλ(θ−ξ) (θ−ξ)m−1

(m−1)! ψ(ξ)dξ
)

...
−L
( ∫ θ

0
eλ(θ−ξ)(θ − ξ)ψ(ξ)dξ

)
ψ(0) − L

( ∫ θ
0
eλ(θ−ξ)ψ(ξ)dξ

)

 .(3.3)

With the definitions above, it is clear that ∆(λ) = L(1)
λ = AT + L0

λ − λI. Moreover,
from (2.8) and (2.9) it follows that ψ ∈ R(AU−λI) if and only if there exists b ∈ D(AT )

such that ∆(λ)b = R(1)
λ (ψ).

As in [1] and [8], we can carry out direct computations to obtain an explicit
characterization of the spaces N [(AU − λI)m], R[(AU − λI)m], m ∈ N. So we state
the following proposition without a proof.
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180 TERESA FARIA, WENZHANG HUANG, AND JIANHONG WU

Proposition 3.1. Assume (H1), (H2) and let λ ∈ C,m ∈ N. Then
(i) ϕ ∈ N [(AU − λI)m] if and only if

ϕ(θ) =

m−1∑
j=0

θj

j!
eλθuj , θ ∈ [−r, 0], with

 u0
...

um−1

 ∈ N(L(m)
λ );

(ii) ψ ∈ R[(AU − λI)m] if and only if R(m)
λ (ψ) ∈ R(L(m)

λ ).
From the definition of ∗L in (2.12), one can see that

〈∗L(fu∗), u〉 = 〈u∗, L(f̂u)〉

for u∗ ∈ X∗, u ∈ X, f ∈ C([0, r]; R), where f̂ ∈ C([−r, 0]; R) is given by f̂(θ) := f(−θ)
for θ ∈ [−r, 0]. Therefore, the adjoint (Ljλ)∗ of Ljλ (j ∈ N0, λ ∈ C) is given by

(Ljλ)∗u∗ = ∗L
(

(−θ)j

j!
e−λθu∗

)
, u∗ ∈ X∗.(3.4)

Similar to Proposition 3.1, we have an explicit characterization of N [(∗AU−λI)m].
Proposition 3.2. Assume (H1)–(H3). For m ∈ N, λ ∈ C,

α ∈ N [(∗AU − λI)m] if and only if α(s) =

m−1∑
j=0

(−s)j
j!

e−λsx∗m−j−1, s ∈ [0, r],

with (x∗0, . . . , x
∗
m−1)T ∈ N((L(m)

λ )∗). In particular, α ∈ N(∗AU − λI) if and only if
α(s) = e−λsx∗, s ∈ [0, r], with x∗ ∈ N(∆(λ)∗).

Proof. We have

(L(m)
λ )∗ =


∆(λ)∗ 0 . . . 0

(L1
λ)∗ − I ∆(λ)∗ . . . 0
(L2

λ)∗ (L1
λ)∗ − I . . . 0

...
. . .

. . .
...

(Lm−1
λ )∗ . . . (L1

λ)∗ − I ∆(λ)∗

 ,

with (Ljλ)∗ given by (3.4). Using this and direct computations in the same spirit as
in section 7.3 in Hale [8], we can complete the verification of Proposition 3.2.

Now, we want to present a Fredholm alternative result relative to the formal

adjoint. The following lemmas will establish some properties of the operators L(m)
λ

that will play an important role in this setting.
Lemma 3.3. Assume (H1), (H2) and let λ ∈ C. Then λ ∈ ρ(AU ) if and only if

0 ∈ ρ(∆(λ)).
Proof. For λ ∈ C, it has been shown in section 2 that λ ∈ ρ(AU ) if and only if

N(∆(λ)) = {0}. On the other hand, ∆(λ) = AT + L0
λ − λI, where AT generates a

compact C0-semigroup of bounded linear operators and L0
λ−λI is linear and bounded.

Hence, ∆(λ) is also the infinitesimal generator of a compact C0-semigroup (see Propo-
sition III.1.4 of Pazy [14, p. 79]). From the note in p. 51 of the same book, it follows
that 0 ∈ ρ(∆(λ)) if and only if 0 is not an eigenvalue of ∆(λ), or, equivalently, if and
only if N(∆(λ)) = {0}.
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SMOOTH CENTER MANIFOLDS FOR MAPS AND ABSTRACT FDEs 181

Lemma 3.4. Assume (H1), (H2) and let λ ∈ C and m ∈ N. Then

(i) if µ ∈ ρ(∆(λ)), then µ ∈ ρ(L(m)
λ ) and (L(m)

λ − µI)−1 is a compact operator;

(ii) R(L(m)
λ ) is a closed subspace of Xm.

Proof. The proof of (i) is given by induction. For m = 1, L(1)
λ = ∆(λ). We have

already observed that ∆(λ) is the infinitesimal generator of a compact C0-semigroup.
Hence, for µ ∈ ρ(∆(λ)) the resolvent [∆(λ) − µI]−1 is compact (see Theorem II.3.3
of Pazy [14, p. 48]).

We now consider λ ∈ C, µ ∈ ρ(∆(λ)) and suppose that (i) is true for m. Since

L(m+1)
λ − µI =


L(m)
λ − µI


Lmλ

...
L2
λ

L1
λ − I


O ∆(λ) − µI

 ,

(L(m+1)
λ − µI)−1 =


(L(m)

λ − µI)−1 −(L(m)
λ − µI)−1


Lmλ

...
L2
λ

L1
λ − I

 (∆(λ) − µI)−1

O (∆(λ) − µI)−1


exists and is bounded. Now, let (yn) ⊂ Xm, (zn) ⊂ X be bounded sequences. The

compactness of the operators (L(m)
λ −µI)−1 and (∆(λ)−µI)−1 implies that there are

subsequences (ynk
), (znk

) such that

(L(m)
λ − µI)−1ynk

→ w ∈ Xm, (∆(λ) − µI)−1znk
→ x ∈ X.

Then (L(m+1)
λ − µI)−1 (ynk

znk
) converges, proving that (L(m+1)

λ − µI)−1 is a compact

operator.

To prove (ii), let (xn) ⊂ [D(AT )]m, L(m)
λ xn → y ∈ Xm. For µ ∈ ρ(∆(λ)), µ �= 0,[

I

µ
+ (L(m)

λ − µI)−1

]
xn =

1

µ
(L(m)

λ − µI)−1L(m)
λ xn → 1

µ
(L(m)

λ − µI)−1y.

The space R[ Iµ + (L(m)
λ − µI)−1] is closed, because (L(m)

λ − µI)−1 is compact (see

Theorem V.7.8 of Taylor and Lay [17, p. 300]). Thus, there exists x ∈ Xm such that

1

µ
(L(m)

λ − µI)−1y =

[
I

µ
+ (L(m)

λ − µI)−1

]
x,

i.e., L(m)
λ x = y ∈ R(L(m)

λ ).

The characterization of the point spectrum of ∗AU relies on the next lemma.

Lemma 3.5. Assume (H1)–(H3). Consider λ ∈ C,m ∈ N. Then

dim N(L(m)
λ ) = dim N((L(m)

λ )∗).
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182 TERESA FARIA, WENZHANG HUANG, AND JIANHONG WU

Proof. We may assume that λ ∈ σ(AU ), i.e., 0 ∈ σ(∆(λ)) (cf. Lemma 3.3). For

µ ∈ ρ(∆(λ)), then µ ∈ ρ(L(m)
λ ) by Lemma 3.4, and we conclude that

N(L(m)
λ ) = N

(
(L(m)

λ − µI)−1 +
I

µ

)
,

N((L(m)
λ )∗) = N

(
[(L(m)

λ )∗ − µI]−1 +
I

µ

)
.

Since L(m)
λ is densely defined, we also conclude that µ ∈ ρ((L(m)

λ )∗) and [(L(m)
λ −

µI)−1]∗ = [(L(m)
λ )∗ − µI]−1 (cf. Lemma I.10.2 of Pazy [14, p. 38]). It remains to

be proved that N((L(m)
λ − µI)−1 + I

µ ) and N([(L(m)
λ − µI)−1]∗ + I

µ ) have the same

dimension. Since (L(m)
λ − µI)−1 is a compact operator, so is its adjoint [(L(m)

λ −
µI)−1]∗, and the result now follows from Theorem V.7.14 of Taylor and Lay [17,
p. 303].

As an immediate and most relevant consequence of this lemma, we can now derive
the following result.

Proposition 3.6. Assume (H1)–(H3). Then
(i) σP (AU ) = σP (∗AU );
(ii) dim N [(AU − λI)m] = dim N [(∗AU − λI)m],m ∈ N;
(iii) the ascent of AU − λI and ∗AU − λI are equal.
Proof. Propositions 3.1 and 3.2 and Lemma 3.5 imply (ii), from which (i) and

(iii) follow.
Remark 3.1. We note that (i) of Proposition 3.6 was proven in Proposition 4.14

of Travis and Webb [18] under the additional hypothesis N(∆(λ)) �= {0} if and only
if N(∆(λ)∗) �= {0}.

Remark 3.2. In the literature dealing with adjoint semigroups for FDEs in Banach
spaces (cf., e.g., Nakagiri [13] and Travis and Webb [18, p. 412]), it is often assumed
that the Banach space X is reflexive in order to have nice properties for adjoint
semigroups. Here, we are able to develop the adjoint theory without imposing such
a condition. Of course, if this condition holds, further properties for ∗AU and ∗U(t)
are obtained. For example, if the Banach space X is reflexive, then the adjoint A∗

T

of AT is the infinitesimal generator of the adjoint C0-semigroup {T (t)∗}t≥0 (cf. Pazy
[14, p. 39]). For t > 0, T (t) is a compact operator, and hence its adjoint T (t)∗ is
also compact. Since (H1) and (H2) are fulfilled with AT , T (t) replaced by A∗

T , T (t)∗,
respectively, the conclusions of Propositions 2.1, 2.2, and 2.3 hold for ∗AU ,

∗U(t) (t > 0)
instead of AU , U(t) (t > 0). In particular, σP (∗AU ) = σ(∗AU ).

Remark 3.3. In Arino and Sanchez [1], a formal adjoint theory was established
for equations of the form u̇(t) = L(ut), where L : C −→ X is a bounded linear
operator. Since AT = 0, the C0-semigroup {U(t)}t≥0 associated with the solutions of
this equation is not eventually compact in general. For this reason, in [1] the authors
restricted their study to eigenvalues of the infinitesimal generator that are not in

the essential spectrum. With this restriction, the corresponding operators L(m)
λ are

Fredholm operators, instead of having compact resolvent. However, for our purposes
and in view of applications, it is more interesting to consider equations of type (2.1)
rather than u̇(t) = L(ut), and in this situation no restrictions on the eigenvalues have
to be assumed.

4. Decomposition of the phase space by using the formal adjoint the-
ory. In this section, we always assume (H1)–(H3). The Fredholm alternative is stated
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SMOOTH CENTER MANIFOLDS FOR MAPS AND ABSTRACT FDEs 183

in the next result.
Proposition 4.1. Consider λ ∈ σ(AU ) and m ∈ N. Then ψ ∈ R[(AU −λI)m] if

and only if 〈〈α, ψ〉〉 = 0 for all α ∈ N [(∗AU − λI)m]. In particular, ψ ∈ R(AU − λI)
if and only if

〈〈e−λ·u∗, ψ〉〉 = 0 for all u∗ ∈ N(∆(λ)∗).

Proof. Since R(L(m)
λ ) is closed (Lemma 3.4), we have

R(L(m)
λ ) = N((L(m)

λ )∗)⊥.

Thus, Proposition 3.1 implies that

ψ ∈ R[(AU − λI)m] if and only if 〈Y ∗,R(m)
λ (ψ)〉 = 0

for all Y ∗ ∈ N((L(m)
λ )∗). For Y ∗ = (y∗0 , . . . , y

∗
m−1)T ∈ (X∗)m, from (2.11) and (3.3)

we have

〈Y ∗,R(m)
λ (ψ)〉

= −
m−1∑
j=0

〈
y∗j , L

(∫ θ

0

eλ(θ−ξ) (θ − ξ)m−j−1

(m− j − 1)!
ψ(ξ)dξ

)〉
+ 〈y∗m−1, ψ(0)〉

=

m−1∑
j=0

〈〈
e−λs

(−s)m−j−1

(m− j − 1)!
y∗j , ψ

〉〉
,

and the result follows from Proposition 3.2.
We note that the above result was established in Proposition 4.15 of Travis and

Webb [18] only for the particular situation m = 1 and with the additional hypothesis
that ∆(λ) has a closed range. In Proposition 4.1, the most important case is the case
m equal to the ascent of AU −λI. For λ ∈ σ(AU ), denote by Mλ(AU ) and Mλ(∗AU )
the generalized eigenspaces for AU and ∗AU associated with λ, respectively.

Proposition 4.2. Let λ ∈ σ(AU ) and m be the ascent of AU − λI. Then
C = Mλ(AU ) ⊕Qλ, with Mλ(AU ) = N [(AU − λI)m], Mλ(∗AU ) = N [(∗AU − λI)m],
and

Qλ = {ψ ∈ C : 〈〈α, ψ〉〉 = 0 for all α ∈ Mλ(∗AU )}.(4.1)

Proof. From Proposition 3.6, m is also the ascent of ∗AU − λI. On the other
hand, Proposition 4.1 implies that ψ ∈ R[(AU − λI)m] if and only if 〈〈α, ψ〉〉 = 0 for
all α ∈ Mλ(∗AU ). Decomposition (2.5) is therefore written as C = Mλ(AU ) ⊕ Qλ,
with Qλ = R[(AU − λI)m] defined by (4.1).

Lemma 4.3. For λ, µ ∈ σ(AU ), λ �= µ, and m, r ∈ N,

〈〈α,ϕ〉〉 = 0 for all α ∈ N [(∗AU − λI)m] and ϕ ∈ N [(AU − µI)r].

Proof. This lemma generalizes formula (2.16) for m ∈ N. It relies on the identity
(2.15) and is easily verified by using arguments as in Lemma 9 of Arino and Sanchez
[1], so we omit the details here.

Let λ ∈ σ(AU ) and choose bases

Φλ = (ϕ1, . . . , ϕpλ), Ψλ = (ψ1, . . . , ψpλ)T
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184 TERESA FARIA, WENZHANG HUANG, AND JIANHONG WU

of Mλ(AU ) and Mλ(∗AU ), respectively, where pλ = dim Mλ(AU ) = dim Mλ(∗AU ).
Define a pλ × pλ matrix

〈〈Ψλ,Φλ〉〉 := [〈〈ψi, ϕj〉〉]i,j=1,...,pλ .

Suppose that 〈〈Ψ,Φ〉〉c = 0 for some constant vector c = (c1, . . . , cpλ)T . Then,
〈〈α, c1ϕ1 + · · · + cpλϕpλ〉〉 = 0 for all α ∈ Mλ(∗AU ), and Proposition 4.2 implies
that c1ϕ1 + · · · + cpλϕpλ ∈ Qλ ∩Mλ(AU ) = {0} for Qλ as in (4.1). This shows that
〈〈Ψλ,Φλ〉〉 is nonsingular. Therefore, we can always choose bases Ψλ,Φλ such that

〈〈Ψλ,Φλ〉〉 = Ipλ , pλ = dim Mλ(AU ).(4.2)

If the bases are normalized in such a way that (4.2) is fulfilled, then there is a pλ×pλ
constant matrix Bλ, with σ(Bλ) = {λ}, that satisfies simultaneously

Φ̇λ = ΦλBλ and − Ψ̇λ = BλΨλ.(4.3)

Furthermore,

U(t) = Φλe
Bλt, t > 0.(4.4)

We are now in the position to decompose C by a finite set of characteristic
eigenvalues of (2.1), using the formal duality 〈〈·, ·〉〉. Consider a nonempty finite set
Λ = {λ1, . . . , λs} ⊂ σ(AU ) and define ΦΛ = (Φλ1

, . . . ,Φλs),ΨΛ = (Ψλ1 , . . . ,Ψλs)T ,
where Φλj ,Ψλj are bases of the generalized eigenspaces Mλj (AU ),Mλj (∗AU ), re-
spectively, such that (4.2) holds (j = 1, . . . , s). From Lemma 4.3, it follows that
〈〈ΨΛ,ΦΛ〉〉 = Ip, where p = pλ1 + · · · + pλs .

Proposition 4.4. Assume (H1)–(H3), let Λ = {λ1, . . . , λs} ⊂ σ(AU ), define

PΛ = Mλ1(AU ) ⊕ · · · ⊕Mλs(AU ),

P ∗
Λ = Mλ1(∗AU ) ⊕ · · · ⊕Mλs

(∗AU ),

and consider bases ΦΛ,ΨΛ for PΛ, P
∗
Λ such that 〈〈ΨΛ,ΦΛ〉〉 = Ip, p = dim PΛ. Then

there exists a subspace QΛ of C, invariant under AU and U(t), t ≥ 0, such that

C = PΛ ⊕QΛ(4.5)

with

QΛ = {ϕ ∈ C : 〈〈ΨΛ, ϕ〉〉 = 0},(4.6)

where 〈〈ΨΛ, ϕ〉〉 := (〈〈Ψλ1 , ϕ〉〉, . . . , 〈〈Ψλs
, ϕ〉〉)T . Moreover, ϕ ∈ C is written ac-

cording to decomposition (4.6) as ϕ = ϕPΛ + ϕQΛ , where ϕPΛ = ΦΛ〈〈ΨΛ, ϕ〉〉 and
ϕQΛ

∈ QΛ.

5. Center manifolds for maps in general Banach spaces: Smoothness.
We start with the following general results on smooth center-stable manifolds for
maps.

Theorem 5.1. Let f : U → E be a C1-map on an open subset U of a Banach
space E over R, with a fixed point p. Let L = Df(p) and assume that E has the
following decomposition:

E = Es ⊕ Ec ⊕ Eu,
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where Es is a closed subspace, Ec and Eu are finite-dimensional, L(Es) ⊂ Es, L(Ec) ⊂
Ec, and L(Eu) ⊂ Eu. We further assume that

σs = σ(L|Es : Es → Es) is contained in a compact subset of {z ∈ C : |z| < 1}
and

σc =σ(L|Ec : Ec → Ec) ⊂ S1
C,

σu =σ(L|Eu
: Eu → Eu) ⊂ {z ∈ C : |z| > 1}.

Let Esc = Es ⊕ Ec. Then
(i) there exist open neighborhoods Nsc of 0 in Esc, Nu of 0 in Eu, N of p in

U , and a C1-map w : Nsc → Eu with w(0) = 0, Dw(0) = 0, and w(Nsc) ⊂ Nu so
that the shifted graph W = p + {z + w(z) : z ∈ Nsc} satisfies f(W ∩ N) ⊂ W and
∩∞
n=0f

−n(p + Nsc + Nu) ⊂ W ;
(ii) if f is Ck-smooth for an integer k ≥ 2, then so is w.
Part (i) was proved in [10]. Our argument for the general smoothness in (ii), given

below, will be based on the following general C1-smoothness result for fixed points of
contractions depending on a parameter developed in [10].

Lemma 5.2. Let Y,Λ be Banach spaces over R and let an open set P ⊂ Λ, a map
h : Y ×P → Y , and a constant κ ∈ [0, 1) be given with |h(y, p)−h(ỹ, p)| ≤ κ|y− ỹ| for
all y, ỹ in Y and all p ∈ P . Consider a convex subset M ⊂ Y and a map Φ : P → M
so that for every p ∈ P , Φ(p) is the unique fixed point of h(·, p) : Y → Y . Suppose
the following hold:

(i) the restriction h0 = h|M×P has a partial derivative D2h0 : M × P → L(Λ, Y )
and the map D2h0 is continuous;

(ii) there are a Banach space Y1 over R and a continuous injective linear map
j : Y → Y1 so that the map k = j ◦ h0 is continuously differentiable with respect to Y
in the sense that there is a continuous map A : M × P → L(Y, Y1) so that for every
(y, p) ∈ M×P and every ε∗ > 0, there exists δ̃ > 0 with |k(ỹ, p)−k(y, p)−A(y, p)(ỹ−
y)| ≤ ε∗|ỹ − y| for all ỹ ∈ M with |ỹ − y| ≤ δ̃;

(iii) there exist maps h(1) : M ×P → L(Y, Y ) and h
(1)
1 : M ×P → L(Y1, Y1) such

that

A(y, p)ŷ = jh(1)(y, p)ŷ = h
(1)
1 (y, p)jŷ on M × P × Y

and

|h(1)(y, p)| ≤ κ, |h(1)
1 (y, p)| ≤ κ on M × P ;

(iv) the map (y, p) ∈ M × P → j ◦ h(1)(y, p) ∈ L(Y, Y1) is continuous.
Then the map j ◦ Φ : P → Y1 is C1-smooth and

D(j ◦ Φ)(p) = h
(1)
1 (Φ(p), p) ◦D(j ◦ Φ)(p) + j ◦D2h0(Φ(p), p) for all p ∈ P.

For a given positive integer k and for given Banach spaces Y1, . . . , Yk and Y ,
let L(k)(Y1 × · · · × Yk, Y ) be the Banach space of all continuous k-linear maps from
Y1 × · · · × Yk to Y , equipped with the operator norm. If Yi = Y1 for all 1 ≤ i ≤ k, we
write L(k)(Y1, Y ) for L(k)(Y1 × · · · × Yk, Y ). Also, we will denote the kth derivative
of a given map by Dk if it exists.

We now briefly recall some results and associated notation in [10] as a preparation
for the proof of Theorem 5.1. Set b = infλ∈σu |λ|, a = supλ∈σs

|λ| and fix ε > 0 with
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a + ε < 1 < 1 + ε < (1 + ε)k < b− ε. Let Ps, Pc, Pu denote the projections of E onto
Es along Ec ⊕ Eu, onto Ec along Es ⊕ Eu, and onto Eu along Ec ⊕ Es, respectively.
Whenever convenient, we shall use abbreviations like

xs = Psx, xc = Pcx, xu = Pux, Psc = Ps + Pc, xcu = xc + xu.

There exists a norm | · | on E which is equivalent to the originally given one and
satisfies

|x| = |xs| + |xc| + |xu|,
|LPsx| ≤ (a + ε)|Psx|,
|LPcx| ≤ (1 + ε)|Pcx|,
|LPux| ≥ (b− ε)|Pux|

for all x ∈ E.
Set V = U − p. Consider the transformed map g∗ : x ∈ V → f(x + p) − p ∈ E

with fixed point 0 and Dg∗(0) = L. Define r∗ : V → E as the nonlinear part of g∗

by r∗(x) = g∗(x) − Lx, and then extend r∗ to a map r : E → E by r(x) = 0 for all
x ∈ E \ V . Finally, let g = L + r.

To construct small Lipschitz continuous modifications of g which are smooth on
strips containing the center-unstable space Ecu, we fix a norm | · |cu on Ecu which
is C∞-smooth on Ecu \ {0}. The norm || · || : x ∈ E → max{|xs|, |xcu|cu} ∈ R is
equivalent to | · |. For δ > 0, set E(δ) = {x ∈ E : ||x|| < δ}. Choose a C∞-function
ρ : R → R with ρ([0,∞)) ⊂ [0, 1], ρ(t) = 1 for 0 ≤ t ≤ 1, ρ(t) = 0 for t ≥ 2. For every
δ > 0, define rδ : E → E by

rδ(x) = ρ

( |xcu|cu
δ

)
ρ

( |xs|
δ

)
r(x)

and set gδ = L + rδ.
Fix δ0 > 0 so that E(3δ0) ⊂ V and that r|E(3δ0) is Ck-smooth and all lth deriva-

tives, 1 ≤ l ≤ k, of r|E(3δ0) are bounded. Observing that for every δ ∈ (0, δ0) the

restriction rδ|{x∈E:|xs|<δ} is given by ρ( |xcu|cu
δ )r(x), it follows that rδ|{x∈E:|xs|<δ} is

Ck-smooth and that the restriction of rδ to {x ∈ E; |xs| ≤ δ
2} has all lth derivatives

bounded, 1 ≤ l ≤ k.
It was shown in [10] that there exist δ1 ∈ (0, δ0) and a nondecreasing function

λ : [0, δ1] → [0, 1] with limδ→0+ λ(δ) = 0 = λ(0) so that for each δ ∈ (0, δ1] and for all
x, y in E, |rδ(x)| ≤ δλ(δ) and |rδ(x) − rδ(y)| ≤ λ(δ)|x− y|.

For η > 0, let Eη denote the Banach space of all sequences χ = (xn)∞0 ∈ EN with

sup
j∈N

|xj |η−j < ∞

and norm

||χ||η = sup
j∈N

|xj |η−j .

Consider {
xn+1 = Lxn + fn for n ≥ 0,
Pscx0 = z

(5.1)

for given z ∈ Esc, φ = (fn)∞0 ∈ Eη, and η ∈ (1 + ε, b− ε).
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SMOOTH CENTER MANIFOLDS FOR MAPS AND ABSTRACT FDEs 187

Let Lsc = L|Esc
: Esc → Esc. It was shown in [10] that for fixed z ∈ Esc, 1 + ε <

η < b− ε, and φ ∈ Eη, if χ ∈ Eη satisfies (5.1), then

xn =

n−1∑
j=0

Ln−j−1
sc Pscfj −

∞∑
j=n

Ln−j−1
u Pufj + Lnscz for n ≥ 1

and

x0 = z −
∞∑
j=0

L−j−1
u Pufj .

In particular, given z ∈ Esc and φ = (fj)
∞
0 ∈ Eη, there is at most one solution of

(5.1) in Eη. Let

K : {χ ∈ EN : χ ∈ Eη for some η ∈ (1 + ε,b − ε)} → EN

be given by

(Kφ)n =

n−1∑
j=0

Ln−j−1
sc Pscfj −

∞∑
j=n

Ln−j−1
u Pufj for n ≥ 1

and

(Kφ)0 = −
∞∑
j=0

L−j−1
u Pufj .

Also, let

c(η) =
1

η − 1 − ε
+

1

b− ε− η
.

Then the linear map Kη : Eη → Eη given by Kηφ = Kφ is continuous with |Kη| ≤
c(η). Furthermore, for every η ∈ (1 + ε, b − ε), z ∈ Esc, and φ ∈ Eη, the sequence
χ = Kηφ + (Lnscz)∞0 ∈ Eη solves (5.1).

Consider the substitution operator

Rδ : EN → EN by Rδ(χ) = (rδ(xn))∞0 for χ = (xn)∞0 ∈ EN.

For every η ∈ (1+ ε, b− ε), choose δη ∈ (0, δ1] with λ(δη)c(η) < 1. Let η ∈ (1+ ε, b− ε)
and δ ∈ (0, δη). It was shown in [10] that Rδ(Eη) ⊂ Eη, and the induced map
γδη : Eη � χ �→ Rδ(χ) ∈ Eη is Lipschitz continuous with a Lipschitz constant λ(δ).

Therefore, for every z ∈ Esc and χ = (xn)∞0 ∈ Eη the properties

xn+1 = gδ(xn) for all n ≥ 0, Pscx0 = z

are equivalent to the fixed point equation χ = Tδη(χ, z), where the map Tδη : Eη ×
Esc → Eη is given by

Tδη(χ, z) = Kη(γδη(χ)) + (Ljscz)∞0 .

As

|Tδη(χ, z) − Tδη(χ∗, z)|η ≤ c(η)λ(δ)|χ− χ∗|η
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188 TERESA FARIA, WENZHANG HUANG, AND JIANHONG WU

for all χ, χ∗ ∈ Eη and for all z ∈ Esc, there is exactly one fixed point χδη(z) ∈ Eη of
the contraction Tδη(·, z) : Eη → Eη for every z ∈ Esc. Moreover, Psc(χδη(z))0 = z.
In summary, χ ∈ Eη is a trajectory of gδ with Pscx0 = z if and only if χ = χδη(z).

It was shown in [10] that the map χδη : z ∈ Esc → χδη(z) ∈ Eη is Lipschitz
continuous, and thus wδη : z ∈ Esc → Pu(χδη(z))0 ∈ Eu is Lipschitz continuous. To
obtain the differentiability of wδη, [10] proved the following important properties: if

0 < δ < δη and λ(δ) < (1−a−ε)2
2 , then for every z ∈ Esc with |Psz| < δ

2 and for all
integers j ≥ 0,

|Ps(χδη(z))j | < δ

2
.(5.2)

We can now give the following proof.

Proof of Theorem 5.1. We divide the long proof into several steps. The first step
concerns the proof of the C1-smoothness. Except for the last remark, all results in
Step 1 belong to [10].

Step 1. Fix η, η̃, η so that 1 + ε < η < η̃ ≤ η with η ∈ (ηk, b− ε), and fix δ > 0 so
that

δ < δη, λ(δ) <
(1 − a− ε)2

2
, κ := sup

η̃∈[η,η̄]

λ(δ)c(η̃) < 1.

Let

P =

{
x ∈ Esc : |xs| < δ

2

}
.

P is an open set in the Banach space Λ = Esc.

Recall that rδ|{x∈E:|xs|<δ} is Ck-smooth and sup{|D1rδ(x)| : |xs| < δ} ≤ λ(δ). It
was shown in [10] that for any η̃ ∈ (η, η̄], the linear map

A(1)
rδ

(χ) : EN � χ̂ = (x̂j)
∞
0 �→ (D1rδ(xj)x̂j)

∞
0 ∈ EN, χ = (xj)

∞
0 , |Psxj | < δ

2
, j ∈ N,

induces a continuous map A
(1)
rδ η̃η

from the convex set

M =

{
χ ∈ Eη : |Psxj | < δ

2
for all j ∈ N

}
⊂ Eη

into L(Eη, Eη̃).

Let Y = Eη, h = Tδη|Y×P . It is important to keep in mind that χδη(P ) ⊂ M .
Define Φ : P → M by Φ(z) = χδη(z); we have h(Φ(p), p) = Φ(p) for all p ∈ P . The
map h0 = h|M×P is given by

h0(χ, z) = Tδη(χ, z) = K(Rδ(χ)) + (Ljscz)∞0 ,

so for every (χ, z) ∈ M × P the derivative D2h0(χ, z) exists and is given by

D2h0(χ, z)z̃ = (Ljscz̃)∞0 ∈ Eη.

This derivative is constant on M × P and therefore is continuous.

D
ow

nl
oa

de
d 

11
/2

0/
15

 to
 1

30
.6

3.
17

4.
91

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



SMOOTH CENTER MANIFOLDS FOR MAPS AND ABSTRACT FDEs 189

Set Y1 = Eη̃ and define jη̃η : Y → Y1 by

jη̃η(χ) = χ.

Then jη̃η is continuous and injective, and the map k = jη̃η ◦ h0 is given by

k(χ, z) = Tδη̃ (χ, z) = Kη̃(γδη̃ (χ)) + (Ljscz)∞0 .

It was shown in [10] that the map A : M × P � (χ, z) �→ Kη̃ ◦ Arδ η̃η(χ) ∈ L(Y, Y1) is

continuous, and each A
(1)
rδ (χ), χ ∈ M , defines elements

A(1)
rδηη

(χ) ∈ L(Y, Y ) with |A(1)
rδηη

(χ)| ≤ λ(δ)

and

A
(1)
rδ η̃η̃

(χ) ∈ L(Y1, Y1) with |A(1)
rδ η̃η̃

(χ)| ≤ λ(δ).

Define

h(1) : M × P → L(Y, Y ) by h(1)(χ, z) = Kη ◦A(1)
rδηη

(χ)

and

h
(1)
1 : M × P → L(Y1, Y1) by h

(1)
1 (χ, z) = Kη̃ ◦A(1)

rδ η̃η̃
(χ).

It was shown in [10] that

max{|h(1)(χ, z)|, |h(1)
1 (χ, z)|} ≤ max{c(η), c(η̃)}λ(δ) = κ,

and all other conditions in Lemma 5.2 are satisfied. Therefore, jη̃η ◦Φ = jη̃η ◦ (χδη|P )
is C1-smooth and jη̃η ◦ Φ = χδη̃ |P . Moreover, D1(jη̃η ◦ Φ) satisfies

D1(jη̃η ◦ Φ)(z) = Kη̃ ◦A(1)
rδ η̃η̃

(Φ(z)) ◦D1(jη̃η ◦ Φ)(z) + jη̃η ◦ (Ljsc·)∞0 , z ∈ P.

The final remark of this step is essential for the general smoothness to be proved

in later steps. Recall that for any η̃ ∈ [η, η̄], Kη̃ ◦A(1)
rδ η̃η̃

(Φ(z)) ∈ L(Eη̃, Eη̃) and

|Kη̃ ◦A(1)
rδ η̃η̃

(Φ(z))|L(Eη̃,Eη̃) ≤ c(η̃)λ(δ) ≤ κ < 1.

Therefore, Kη̃ ◦A(1)
rδ η̃η̃

(Φ(z)) ∈ L(Eη̃, Eη̃) is a uniform contraction and the map

Kη̃ ◦A(1)
rδ η̃η̃

(Φ(z))L + jη̃η ◦ (Ljsc·)∞0 , z ∈ P, L ∈ L(Λ, Eη̃),

has a unique fixed point Ψ
(1)
η̃ (z) in L(Λ, Eη̃). Since jη̃η ◦ Ψ

(1)
η (z) ∈ L(Λ, Eη̃), the

uniqueness of a fixed point in L(Λ, Eη̃) implies

Ψ
(1)
η̃ (z) = jη̃η ◦ Ψ(1)

η (z).

In particular,

D1(jη̃η ◦ Φ)(z) = Ψ
(1)
η̃ (z) = jη̃η ◦ Ψ(1)

η (z), z ∈ P.
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190 TERESA FARIA, WENZHANG HUANG, AND JIANHONG WU

Step 2. We now assume k ≥ 2. For any given integer l with 1 ≤ l ≤ k, consider

the operator A
(l)
rδ given by

A(l)
rδ

(χ)(χ1, . . . , χl) = (Dlrδ(xj)(x
1
j , . . . , x

l
j))

∞
0 ,

χ = (xj)
∞
0 , χi = (xij)

∞
0 ∈ EN, 1 ≤ i ≤ l.

Note that A
(l)
rδ with l = 1 was introduced in Step 1. The operators A

(l)
rδ with 1 ≤

l ≤ k are the substitution operators of Dlrδ; they can be regarded as the Nemytskii
operators induced by Dlrδ in the appropriate spaces.

As rδ|{z∈E;|zs|≤ δ
2} has all lth derivatives bounded, 1 ≤ l ≤ k, we can show that

A(l)
rδ

(χ)(Eηr1 × · · · ×Eηrl ) ⊂ Eηr1+···+rl , χ ∈ M, 1 ≤ ri ≤ l.

We are going to use induction on p with 1 ≤ p ≤ k. (Note that for the remainder
of this proof, p is not the fixed point of f .) The strategy is to show that the order
of the smoothness of jη̃η ◦ Φ : P → Eη̃ is increased by at least one as η̃ passes ηp−1,
from (η, ηp−1] to (ηp−1, ηp], and to construct higher order derivatives inductively.

Suppose 1 ≤ p < k and suppose that for all integers q with 1 ≤ q ≤ p and for all
η̃ ∈ [ηq, η̄], the mapping jη̃η ◦ Φ : P → Eη̃ is Cq-smooth with

(i) Dq(jη̃η ◦ Φ) = jη̃η ◦ Ψ
(q)
η ;

(ii) Ψ
(q)
η (z) ∈ L(q)(Λ, Eηq ) as the unique solution of

F = KA(1)
rδ

(Φ(z))F + Hq(z), F ∈ L(q)(Λ, Eηq ), z ∈ P,

with H1(z)z̃ = (Ljscz̃)∞0 , z̃ ∈ Λ, and for q ≥ 2,

Hq(z) =
∑

2≤l≤q,1≤i≤l,1≤ri≤l,r1+···+rl=q
KA(l)

rδ
(Φ(z))(Ψ(r1)

η (z), . . . ,Ψ(rl)
η (z));

(iii) jη̃η ◦ Ψ
(q)
η : P → L(q)(Λ, Eη̃) being continuous.

We want to show that the above statement is true for q = p + 1.
Step 3. Fix η̃ ∈ [ηp+1, η̄] and let X = L(p)(Λ, Eη̃). For F ∈ L(p)(Λ, Eηp) and

z ∈ P , let

H(F, z) = KA(1)
rδ

(Φ(z))F + Hp(z).

By the induction hypotheses in Step 2 and the estimates in Step 1, for any η∗ ∈ [ηp, η],
F ∈ L(p)(Λ, Eη∗), z ∈ P , we have H(F, z) ∈ Eη∗ and

|H(F̃ , z) −H(F, z)| ≤ c(η∗)λ(δ)|F̃ − F | ≤ κ|F̃ − F |, F̃ , F ∈ L(p)(Λ, Eη∗).

Therefore, H(·, z) has a unique fixed point in L(p)(Λ, Eη∗). Note also that for η∗ = ηp

this fixed point is given by Ψ
(p)
η (z). From now on, we restrict H : X × P → X and

let N = L(p)(Λ, Eηp), H0 = H|N×P .
Step 4. Let ej : EN → E be given by

ej((zi)
∞
0 ) = zj , (zi)

∞
0 ∈ EN.

Define Φj = ej ◦ Φ : P → E and Ψ
(l)
ηj (z)z̃ = ej ◦ Ψ

(l)
η (z)z̃ for 1 ≤ l ≤ p, z ∈ P ,

and z̃ ∈ Λ. We claim that Φj is C1-smooth and DΦj(z)z̃ = Ψ
(1)
ηj (z)z̃. In fact,
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SMOOTH CENTER MANIFOLDS FOR MAPS AND ABSTRACT FDEs 191

Φj = ej ◦ Φ = ej ◦ jη̃ηΦ, and thus Φj is C1-smooth since jη̃η ◦ Φ is. Moreover,

D(jη̃η ◦ Φ) = jη̃η ◦ Ψ
(1)
η , and thus

ej(jη̃ηΨ(1)
η (z)z̃) = ejD(jη̃η ◦ Φ)(z)z̃.

This shows that Ψ
(1)
ηj (z)z̃ = DΦj(z)z̃.

Step 5. We now prove that for any fixed F ∈ L(p)(Λ, Eηp) and η̃ > ηp+1, the

mapping P � z �→ KA
(1)
rδ (Φ(z))F ∈ L(p)(Λ, Eη̃) has a derivative, which is given by

KA
(2)
rδ (Φ(z))(Ψ

(1)
η (z)·, F ), and the map

P × L(p)(Λ, Eηp) � (z, F ) �→ KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)·, F ) ∈ L(Λ,L(p)(Λ, Eη̃))

is continuous.
Let

|Dlrδ|∞ = sup

{
|Dlrδ(z)|; z ∈ E, |zs| ≤ δ

2

}
.

Note that for 1 ≤ l ≤ k, |Dlrδ|∞ < ∞.
For any zi ∈ Λ with 1 ≤ i ≤ p, let

Fj(z1, . . . , zp) = ej(F (z1, . . . , zp)).

Then for z̃, z ∈ P we have

η̃−j |D1rδ(Φj(z̃))Fj(z1, . . . , zp) −D1rδ(Φj(z))Fj(z1, . . . , zp)

−D2rδ(Φj(z))(Ψ
(1)
ηj (z)(z̃ − z), Fj(z1, . . . , zp))|

≤ η̃−j |D1rδ(Φj(z̃)) −D1rδ(Φj(z)) −D2rδ(Φj(z))Ψ
(1)
ηj (z)(z̃ − z)|ηpj |F ||z1| · · · |zp|.

Therefore, for any ε > 0 there exists an integer J0 ≥ 0 so that if j ≥ J0 and if
|z̃ − z| ≤ 1, then

η̃−j |D1rδ(Φj(z̃))Fj(z1, . . . , zp) −D1rδ(Φj(z))Fj(z1, . . . , zp)

−D2rδ(Φj(z))(Ψ
(1)
ηj (z)(z̃ − z), Fj(z1, . . . , zp))|

≤ [(η̃η−p)−j2|D1rδ|∞|F | + (η̃η−p)−j |D2rδ|∞ηj |Ψ(1)
ηj (z)(z̃ − z)||F |]|z1| · · · |zp|

≤ ε

c(η̃) + 1
|z1| · · · |zp|.

As rδ|{x∈E;|xs|<δ} is Ck-smooth, k ≥ 2, Φi : P → E is C1-smooth and DΦj(z)z̃ =

Ψ
(1)
ηj (z)z̃ for z ∈ P and z̃ ∈ Λ. For any ε > 0, there exists δ > 0 so that when z̃ ∈ P

and |z̃ − z| < δ, then for 0 ≤ j ≤ J0 we have

|Drδ(Φj(z̃)) −Drδ(Φj(z)) −D2rδ(Φj(z))Ψ
(1)
ηj (z)(z̃ − z)| < η̃jη−pj

|F | + 1

ε

c(η̃) + 1
,

and hence

η̃−j |D1rδ(Φj(z̃))Fj(z1, . . . , zp) −D1rδ(Φj(z))Fj(z1, . . . , zp)

−D2rδ(Φj(z))(Ψ
(1)
ηj (z)(z̃ − z), Fj(z1, . . . , zp))|

< η̃−j
η̃jη−pj

|F | + 1

ε

c(η̃) + 1
ηpj |F ||z1| · · · |zp|

≤ ε

c(η̃) + 1
|z1| · · · |zp|.
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192 TERESA FARIA, WENZHANG HUANG, AND JIANHONG WU

Therefore,

|KA(1)
rδ

(Φ(z̃))F −KA(1)
rδ

(Φ(z))F −KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)(z̃ − z), F )|

≤ c(η̃) sup
zi∈Λ,|zi|≤1,1≤i≤p,j≥0

η̃−j |[D1rδ(Φj(z̃))Fj(z1, . . . , zp)

−D1rδ(Φj(z))Fj(z1, . . . , zp) −D2rδ(Φj(z))(Ψ
(1)
ηj (z)(z̃ − z), Fj(z1, . . . , zp))]|

< c(η̃)
ε

c(η̃) + 1
≤ ε.

This proves the differentiability.
We now prove that the map

P ×N � (z, F ) �→ KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)·, F ) ∈ L(Λ,L(p)(Λ, Eη̃)) = L(p+1)(Λ, Eη̃)

is continuous. Fix (z, F ) ∈ P ×N . Then for any (z̃, F̃ ) ∈ P ×N , we have

|KA(2)
rδ

(Φ(z̃))(Ψ(1)
η (z̃)·, F̃ ) −KA(2)

rδ
(Φ(z))(Ψ(1)

η (z)·, F )|
≤ |KA(2)

rδ
(Φ(z̃))(Ψ(1)

η (z̃)·, F̃ ) −KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)·, F̃ )|

+ |KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)·, F̃ ) −KA(2)

rδ
(Φ(z))(Ψ(1)

η (z)·, F )|
and

|KA(2)
rδ

(Φ(z̃))(Ψ(1)
η (z̃)·, F̃ ) −KA(2)

rδ
(Φ(z))(Ψ(1)

η (z)·, F̃ )|
= sup

zi∈Λ,|zi|≤1,1≤i≤p+1

|KA(2)
rδ

(Φ(z̃))(Ψ(1)
η (z̃)zp+1, F̃ (z1, . . . , zp))

−KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)zp+1, F̃ (z1, . . . , zp))|Eη̃

= sup
zi∈Λ,|zi|≤1,1≤i≤p+1

|Kη̃[A(2)
rδ

(Φ(z̃))(Ψ(1)
η (z̃)zp+1, F̃ (z1, . . . , zp))

−A(2)
rδ

(Φ(z))(Ψ(1)
η (z)zp+1, F̃ (z1, . . . , zp))]|Eη̃

.

Moreover,

|A(2)
rδ

(Φ(z̃))(Ψ(1)
η (z̃)zp+1, F̃ (z1, . . . , zp)) −A(2)

rδ
(Φ(z))(Ψ(1)

η (z)zp+1, F̃ (z1, . . . , zp))|Eη̃

= sup
j∈N

η̃−j |D2rδ(Φj(z̃))(Ψ
(1)
ηj (z̃)zp+1, F̃j(z1, . . . , zp))

−D2rδ(Φj(z))(Ψ
(1)
ηj (z)zp+1, F̃j(z1, . . . , zp))|.

Note that for any η∗ ∈ (η, η̄], the mapping jη∗η ◦ Ψ
(1)
η : P → Eη∗ is continuous.

Fix η∗ ∈ (η, η̃
ηp ). There exists δ1 > 0 so that if z̃ ∈ P and |z̃ − z| < δ1, then

|jη∗η ◦ Ψ(1)
η (z̃) − jη∗η ◦ Ψ(1)

η (z)| ≤ 1.

Therefore, η∗−j |Ψ(1)
ηj (z̃)−Ψ

(1)
ηj (z)| ≤ 1 for all j ∈ N. In particular, |Ψ(1)

ηj (z̃)−Ψ
(1)
ηj (z)| ≤

η∗j for all j ∈ N.
Find an integer J0 ≥ 0 so that if j ≥ J0, then

|D2rδ|∞
(
η̃

ηp

)−j
[2ηj |Ψ(1)

η (z)| + (η∗)j ] <
ε

2(c(η∗) + 1)(|F | + 1)
.
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Therefore, for j ≥ J0, we have

η̃−j |D2rδ(Φj(z̃))(Ψ(1)
η (z̃)zp+1, F̃j(z1, . . . , zp)) −D2rδ(Φj(z))(Ψ

(1)
ηj (z)zp+1, F̃j(z1, . . . , zp))|

≤ |D2rδ|∞η̃−j [2|Ψ(1)
ηj (z)| + η∗j ]ηpj |F̃ ||z1| · · · |zp||zp+1|

≤ |D2rδ|∞
(
η̃

ηp

)−j
[2ηj |Ψ(1)

η (z)| + η∗j ]|F̃ ||z1| · · · |zp+1|.

For 0 ≤ j ≤ J0, as Φj = ejΦ and Ψ
(1)
ηj = ejjη∗ηΨ

(1)
ηj are continuous, we can find

δ2 > 0 so that when z̃ ∈ P and |z̃ − z| < δ2, we have

η̃−j |D2rδ(Φj(z̃))(Ψ
(1)
ηj (z̃)zp+1, F̃j(z1, . . . , zp)) −D2rδ(Φj(z))(Ψ

(1)
ηj (z)zp+1, F̃j(z1, . . . , zp))|

<
ε

2(c(η̃) + 1)(|F | + 1)
|F̃ ||z1| · · · |zp+1|.

Therefore, if |F̃ − F | ≤ 1 and |z̃ − z| < min{δ1, δ2}, we have

|KA(2)
rδ

(Φ(z̃))(Ψ(1)
η (z̃)·, F̃ ) −KA(2)

rδ
(Φ(z))(Ψ(1)

η (z)·, F̃ )|
≤ c(η̃)

ε

2(c(η̃) + 1)
<

ε

2
.

In a similar fashion, we get

|KA(1)
rδ

(Φ(z))(Ψ(1)
η (z), F̃ )KA

(2)
rδ

(Φ(z))(Ψ(1)
η (z), F )|

= sup
zi∈Λ,|zi|≤1,1≤i≤p+1

|KA(2)
rδ

(Ψ(1)
η (z)zp+1, (F̃ − F )(z1, . . . , zp))|Eη̃

≤ c(η̃) sup
zi∈Λ,|zi|≤1,1≤i≤p+1,j≥0

η̃−j |D2rδ|∞η−j |Ψ(1)
η (z)|η−pj |F̃ − F ||z1| · · · |zp+1|

≤ c(η̃)|D2rδ|∞|Ψ(1)
η (z)||F̃ − F |.

Therefore, if |z̃−z| < min{δ1, δ2} and if |F̃−F | < min{1, ε
2c(η̃)|D2rδ|∞|Ψ(1)(z)|+1

}, then

|KA
(1)
rδ (Φ(z̃)·, F̃ ) −KA

(1)
rδ (Φ(z)·, F )| < ε. This completes the proof of the required

continuity.
For the sake of later reference, let us summarize the main idea of the arguments

involved in this step. To estimate

|KA(1)
rδ

(Φ(z̃))F −KA(1)
rδ

(Φ(z))F −KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)(z̃ − z), F )|

in the proof of the differentiability of the mapping P � z �→ KA
(1)
rδ (Φ(z))F ∈

L(p)(Λ, Eη̃), we used the definition of the operator norm for multilinear operators

KA
(1)
rδ (Φ(z))F and the definition of the norm in Eη̃ and were led to the estimation of

the expression

η̃−j |[D1rδ(Φj(z̃))Fj(z1, . . . , zp) −D1rδ(Φj(z))Fj(z1, . . . , zp)

−D2rδ(Φj(z))(Ψ
(1)
ηj (z)(z̃ − z), Fj(z1, . . . , zp))|

for each given nonnegative integer j. The above term can be made arbitrarily small
if j is sufficiently large, thanks to the choice of η̃ > ηp+1 (the essential gradient of
the proof). When j is restricted to a finite set, the smallness of the above expression
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194 TERESA FARIA, WENZHANG HUANG, AND JIANHONG WU

follows from the continuity of the involved operators and mappings. Similar arguments
were used to estimate

|KA(2)
rδ

(Φ(z̃))(Ψ(1)
η (z̃)·, F̃ ) −KA(2)

rδ
(Φ(z))(Ψ(1)

η (z)·, F )|

in the proof of the continuity of the map

P ×N � (z, F ) �→ KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)·, F ) ∈ L(Λ,L(p)(Λ, Eη̃)).

Step 6. Let 2 ≤ l ≤ p, 1 ≤ ri < l with r1 + · · · + rl = p. For any integer j ≥ 0,
z ∈ Λ, and ẑri ∈ Λri , let

Ψ
(ri)
ηj (z)ẑri = ej(Ψ

(ri)
η (z)ẑri).

Then for z, z̃ ∈ Λ we have∣∣∣∣∣KA(l)
rδ

(Φ(z̃))(Ψ(r1)
η (z̃), . . . ,Ψ(rl)

η (z̃)) −KA(l)
rδ

(Φ(z))(Ψ(r1)
η (z), . . . ,Ψ(rl)

η (z))

−
l∑

k=1

KA(l)
rδ

(Φ(z))(Ψ(r1)
η (z), . . . ,Ψ(rk+1)

η (z)(z̃ − z), . . . ,Ψ(rl)
η (z))

−KA(l+1)
rδ

(Φ(z))(Ψ(1)
η (z)(z̃ − z),Ψ(r1)

η (z), . . . ,Ψ(rl)
η (z))

∣∣∣∣∣
≤ c(η̃) sup

ẑri∈Λri ,|zri |≤1,1≤i≤p,j≥0

η̃−j
∣∣∣∣∣Dlrδ(Φj(z̃))(Ψ

(r1)
ηj (z̃)ẑr1 , . . . ,Ψ

(rl)
ηj (z̃)ẑrl)

−Dlrδ(Φj(z))(Ψ
(r1)
ηj (z)ẑr1 , . . . ,Ψ

(rl)
ηj (z)ẑrl)

−
l∑

k=1

Dlrδ(Φj(z))(Ψr1
ηj(z)ẑr1 . . . ,Ψ

(rk+1)
ηj (z)(z̃ − z, ẑrk), . . . ,Ψ

(rl)
ηj (z)zrl)

−Dl+1rδ(Φj(z))(Ψ
(1)
ηj (z)(z̃ − z),Ψ

(r1)
ηj (z)ẑr1 , . . . ,Ψ

(rl)
ηj (z)ẑrl)

∣∣∣∣∣ .
Now we can use the fact that |Dlrδ|∞ < ∞ for 1 ≤ l ≤ p, and the induction hypothesis
implies that the mapping

P � z �→ Ψ
(ri)
ηj (z) ∈ L(ri)(Λ, Eηri )

is differentiable, and we apply an argument similar to that for the first part of Step
5 to show that for any 2 ≤ l ≤ p, 1 ≤ ri < l with r1 + · · · + rl = p, the map

P � z �→ KA
(l)
rδ (Φ(z))(Ψ

(r1)
η (z), . . . ,Ψ

(rl)
η (z)) ∈ L(p)(Λ, Eη̃) is differentiable and the

derivative is given by

l∑
j=1

KA(l)
rδ

(Φ(z))(Ψ(r1)
η (z), . . . ,Ψ(rj+1)

η (z), . . . ,Ψ(rl)
η (z))

+ KA(l+1)
rδ

(Φ(z))(Ψ(1)
η (z),Ψ(r1)

η (z), . . . ,Ψ(rl)
η (z)).
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The continuity of the above derivative, with respect to z ∈ P , can also be verified by
using an argument similar to that for the second part of Step 5 and by noting that
the induction hypothesis implies that the mapping

P � z �→ Ψ
(ri+1)
ηj (z) ∈ L(ri+1)(Λ, Eηri )

is continuous.
Step 7. Let η̂ be given so that η̂ ∈ (η̃, η̄]. Define the continuous linear injective

map J : X → X1 = L(p)(Λ, Eη̂) by

J(L)(z1, . . . , zp) = jη̂η̃L(z1, . . . , zp), z1, . . . , zp ∈ Λ, L ∈ X.

Then

JH0(F, z) = jη̂η̃KA(1)
rδ

(Φ(z))F + jη̂ηHp(z), z ∈ P, F ∈ L(p)(Λ, Eηp).

Let A : P → L(X,X1) be given by

(A(z)F )(z1, . . . , zp) = jη̂η̃K◦Arδ(Φ(z))F (z1, . . . , zp), z ∈ P, F ∈ X, x1, . . . , zp ∈ Λ.

Again, we can use arguments similar to those in Step 5 (see the remarks at the end
of Step 5) to show that A is continuous. Moreover, we have

JH0(F̃ , z) − JH0(F, z) = A(z)(F̃ − F ), z ∈ P, F̃ , F ∈ N.

Note that for any η∗ ≥ η, KA
(1)
rδ (Φ(z)) induces a bounded linear map from L(p)(Λ, Eη∗)

into itself by

Qη∗(L)(z1, . . . , zp) = Kη∗A
(1)
rδη∗η∗(Φ(z))L(z1, . . . , zp)

and

|Qη∗ | ≤ c(η∗)λ(δ).

Define H(1) : P → L(X,X) and H
(1)
1 : P → L(X1, X1) by

H(1)(z) = Qη̃, H
(1)
1 (z) = Qη̂, z ∈ P.

Clearly, we have for F ∈ X the following:

A(z)F = jη̂η̃KA(1)
rδ

(Φ(z))F

= jη̂η̃Qη̃F = JH
(1)
1 (z)F

= Qη̂jη̂η̃F = H
(1)
1 (z)JF

and

|H(1)(z)| ≤ c(η̃)λ(δ) ≤ κ, |H(1)
1 (z)| ≤ c(η̂)λ(δ) ≤ κ.

Moreover, the mapping

P � z �→ J ◦H(1)(z) = jη̂η̃ ◦Qη̃ = Jη̂η̃Kη̃A
(1)
rδ η̃η̃

(Φ(z)) = A ∈ L(X,X1)
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196 TERESA FARIA, WENZHANG HUANG, AND JIANHONG WU

is continuous. Therefore, by Lemma 5.2, the map jη̂η ◦Ψ
(p)
η = jη̂η̃ ◦jη̃η ◦Ψ

(p)
η : P → X1

is C1-smooth and

D(jη̂η ◦ Ψ(p)
η )(z) = KA(1)

rδ
(Φ(z))D(jη̂η̃ ◦ Ψ(p)

η ) + jη̂η̃ ◦D2H0(Ψ(p)
η , z), z ∈ P.

Step 8. We now prove that the mapping jη̂η◦Φ : P → Eη̂ is Cp+1-smooth. Indeed,
as η̂ > ηp+1 > ηp, jη̂η ◦ Φ : P → Eη̂ is Cp-smooth and

Dp(jη̂η ◦ Φ) = jη̂η ◦ Ψ(p)
η .

Since jη̂η ◦Ψ
(p)
η is C1-smooth, we conclude that jη̂η ◦Φ is Cp+1-smooth and Dp+1(jη̂η ◦

Φ) = D(jη̂η ◦ Ψ
(p)
η ). Let Hp+1(z) = D2H0(Ψp

η(z), z) and let Ψ
(p+1)
η (z) be the unique

fixed point of the contraction

L(p+1)(Λ, Eηp+1) � F �→ Kηp+1A
(1)
rδηp+1ηp+1(Φ(z))F + Hp+1(z) ∈ L(p+1)(Λ, Eηp+1);

then Dp+1(jη̂η ◦ Φ) = jη̂ηΨ
(p+1)
η . This proves all conclusions in the case of p + 1.

Therefore, we have proved that for a fixed η̃ > ηk the mapping jη̃η ◦Φ : P → Eηk

is Ck-smooth, and hence χδη̃ |P = jη̃ηΦ is Ck smooth. Consequently, wδη̃ |P = Pu ◦
e0χδη̃ |P is Ck-smooth.

Similarly, we have the following center-unstable manifold theorem.
Theorem 5.3. Let f : U → E be a C1-map on an open subset U of a Banach

space E over R, with a fixed point p. Let L = Df(p) and assume that E has the
following decomposition:

E = Es ⊕ Ec ⊕ Eu,

where Es is a closed subspace, Ec and Eu are finite-dimensional, L(Es) ⊂ Es, L(Ec) ⊂
Ec, and L(Eu) ⊂ Eu. We further assume that

σs = σ(L|Es
: Es → Es) is contained in a compact subset of {z ∈ C : |z| < 1}

and

σc = σ(L|Ec
: Ec → Ec) ⊂ S1

C,

σu = σ(L|Eu : Eu → Eu) ⊂ {z ∈ C : |z| > 1}.

Let Ecu = Eu ⊕ Ec. Then
(i) there exist open neighborhoods Ncu of 0 in Ecu, Ns of 0 in Es, N of p in

U , and a C1-map w : Ncu → Es with w(0) = 0, Dw(0) = 0, and w(Ncu) ⊂ Ns so
that the shifted graph W = p + {z + w(z) : z ∈ Ncu} satisfies f(W ∩ N) ⊂ W and
{x ∈ E; there exists a trajectory (xn)0−∞ of f in p + Ncu + Ns with x0 = x} ⊂ W ;

(ii) if f is Ck-smooth for an integer k ≥ 2, then so is w.
We can now state the following smoothness theorem for center manifolds in gen-

eral Banach spaces.
Theorem 5.4. Let f : U → E be a C1-map on an open subset U of a Banach

space E over R, with a fixed point p. Let L = Df(p) and assume that E has the
following decomposition:

E = Es ⊕ Ec ⊕ Eu,
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SMOOTH CENTER MANIFOLDS FOR MAPS AND ABSTRACT FDEs 197

where Es is a closed subspace, Ec and Eu are finite-dimensional, L(Es) ⊂ Es, L(Ec) ⊂
Ec, and L(Eu) ⊂ Eu. We further assume that

σs = σ(L|Es
: Es → Es) is contained in a compact subset of {z ∈ C : |z| < 1}

and

σc =σ(L|Ec
: Ec → Ec) ⊂ S1

C,

σu =σ(L|Eu : Eu → Eu) ⊂ {z ∈ C : |z| > 1}.
Let Esu = Es ⊕ Ec. Then

(i) there exist open neighborhoods Nc of 0 in Ec, Nsu of 0 in Esu, N of p in U,
and a C1-map w : Nc → Esu with w(0) = 0, Dw(0) = 0, and w(Nc) ⊂ Nsu so that
the shifted graph W = p + {z + w(z) : z ∈ Nc} satisfies f(W ∩N) ⊂ W, and if there
exists (xn)∞−∞ such that xn = f(xn−1) and xn ∈ p + Nc + Nsu for every integer n,
then x0 ∈ W ;

(ii) if f is Ck-smooth for an integer k ≥ 2, then so is w.
Proof. Without loss of generality, we may assume p = 0. By Theorem 5.1, there

exist convex open neighborhoods Ñcs of 0 in Ec + Es, Ñu of 0 in Eu, Ñ of 0 in U ,
and a Ck-map (k = 1 in case of (i) and k ≥ 2 in case of (ii)) w̃cs : Ñcs → Eu with

w̃cs(0) = 0, Dw̃cs(0) = 0;

w̃cs(Ñcs) ⊂ Ñu,

and such that the graph

W̃cs = {zcs + w̃cs(zcs) : zcs ∈ Ñcs}
satisfies

f(W̃cs ∩ Ñ) ⊂ W̃cs

and

∩∞
n=0f

−n(Ñcs + Ñu) ⊂ W̃cs.(5.3)

By Theorem 5.3, there exist open neighborhoods N̂cu of 0 in Ec ⊕ Eu, N̂s of
0 in Es, N̂ of 0 in U , and a Ck-map (k = 1 in case (i) and k ≥ 2 in case (ii))

ŵcu : N̂cu → Es with

ŵcu(0) = 0, Dŵcu(0) = 0;

ŵcu(N̂cu) ⊂ N̂s,

and the graph

Ŵcu = {zcu + ŵcu(zcu) : zcu ∈ N̂cu}
satisfies

f(Ŵcu ∩ N̂) ⊂ Ŵcu

and

z ∈ Ŵcu if there exists {zn}0
n=−∞ ⊂ N̂cu + N̂s

such that zn+1 = f(zn) for n ≤ −1 and that z0 = z.
(5.4)
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Choose open neighborhoods N∗
c of 0 in Ec, N

∗
s of 0 in Es, N

∗
c of 0 in Ec, N

∗ of
0 in E such that 

N∗ ⊂ N̂ ∩ Ñ ;

N∗
c + N∗

s ⊂ Ñcs;

N∗
c + N∗

u ⊂ N̂cu;
zc ∈ N∗

c , zs ∈ N∗
s if z ∈ f(N∗);

zc ∈ N∗
c , zu ∈ N∗

u if z ∈ f(N∗);
w̃cs(zc + zs) ∈ N∗

u if zc ∈ N∗
c and zs ∈ N∗

s .

Define

W ∗
cs = {zcs + w̃cs(zcs) : zcs = zc + zs ∈ N∗

c + N∗
s },

W ∗
cu = {zcu + ŵcu(zcu) : zcu = zc + zu ∈ N∗

c + N∗
u},

and

W ∗ = W ∗
cs ∩W ∗

cu.

For z ∈ W ∗, we have

z = zc + zs + w̃cs(zc + zs)

= zc + zu + ŵcu(zc + zu)

with zc ∈ N∗
c , zs ∈ N∗

s , and zu ∈ N∗
u . Therefore,

zs = ŵcu(zc + zu) = ŵcu(zc + w̃cs(zc + zs)).

Consider the equation

zs = ŵcu(zc + w̃cs(zc + zs)).(5.5)

As both ŵcu and w̃cs are Ck-smooth and Dŵcu(0) = 0, Dw̃cs(0) = 0, the implicit
function theorem implies that there are open neighborhoods Nc of 0 in N∗

c and Ns of
0 in N∗

s and a Ck-map ws : Nc → Ns such that for every zc ∈ Ns equation (5.5) has
the unique solution zs = ws(zc). It is easy to verify that ws(0) = 0 and Dws(0) = 0.

We now define wc : Nc → Es ⊕ Eu by

wc(zc) = ws(zc) + w̃cs(zc + ws(zc)), zc ∈ Nc.

Clearly, wc is Ck-smooth, wc(0) = 0, Dwc(0) = 0, and

wc(Nc) ⊂ Ns + Nu

with

Nu = N∗
u .

Let

Wc = {zc + wc(zc) : zc ∈ Nc}.
We prove that if there exists {zn}∞n=−∞ ⊂ Nc + Ns + Nu such that zn+1 = f(zn) for

n ∈ Z, then z = z0 ∈ Wc. In fact, (5.3) and (5.4) imply that z ∈ Ŵcu ∩ W̃cs. As
zc ∈ Nc ⊂ N∗

c , zs ∈ Ns ⊂ N∗
s , and zu ∈ Nu = N∗

u , we have z ∈ W ∗ and

z0 = zc + zs + w̃cs(zc + zs) = zc + zu + ŵcu(zc + zu),
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from which it follows that

zs = ŵcu(zc + w̃cs(zc + zs)), zs ∈ Ns, zc ∈ Nc.

Therefore, we must have zs = ws(zc) and zu = w̃cs(zc + ws(zc)). This shows that
z ∈ Wc.

Other properties in Theorem 5.4 are straightforward consequences of Theorems 5.1
and 5.3.

6. Center manifolds for nonlinear FDEs in Banach spaces. We now start
to consider semilinear FDEs

u̇(t) = ATu(t) + L(ut) + F (ut),(6.1)

where we assume AT , L are as in the previous sections, and, in particular, that (H1)–
(H3) are satisfied. We also assume that F : V1 → X is a Ck-mapping (k ≥ 1) from a
neighborhood V1 of 0 ∈ C into X with F (0) = 0 and DF (0) = 0.

Fix ω > r. Using the arguments of Fitzgibbon [6] (see also Theorems 2.1 and 2.2
in Chapter 2 of Wu [21]), we can find an open neighborhood V2 ⊂ V1 of 0 in C such
that for any φ ∈ V2 there exists a unique continuous function uφ : [−r, ω] → X such

that uφ0 = φ and

uφ(t) = T (t)φ(0) +

∫ t

0

T (t− s)[L(uφs ) + F (uφs )]ds

for t ∈ [0, ω]. Define f̃ : V2 → C by

f̃(φ) = uφω for φ ∈ V2.

As ω > r, we can show that f̃ is compact (using the argument in Travis and Webb
[18]; see also Theorem 1.8 of Chapter 2 of Wu [21]). The next lemma shows that
there exists an open neighborhood V ⊂ V2 of 0 in C such that f = f̃ |V : V → C is
Ck-smooth and

Df(0) = U(ω) : C → C.

Lemma 6.1. There exists an open neighborhood V ⊂ V2 of 0 in C such that for
each t ∈ [0, ω], uφt is Ck-smooth with respect to φ ∈ V . Moreover, for each ψ ∈ C,
Dφu

φ(t)ψ satisfies the linear variational equation{
v(t) = T (t)ψ(0) +

∫ t
0
T (t− s)[L(vs) + DF (uφs )vs]ds,

v0 = ψ.
(6.2)

In particular, Df(0) = U(ω).
Proof. We are going to apply the same argument as that for Theorem 4.1 in Hale

[8] based on [8, Lemma 4.2, p. 46]. Let F̂ (φ) = L(φ) +F (φ). Fix χ ∈ V2. There exist
M > 0, δ > 0, and N > 0 such that

‖T (t)‖ ≤ M for t ∈ [0, 1];

Bδ(χ) ⊂ V2 with Bδ(χ) = {ψ ∈ C : ||ψ − χ|| < δ};

|F̂ (ψ)| ≤ N, |DF̂ (ψ)| ≤ N for ψ ∈ Bδ(χ).
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Now choose ε ∈ (0, 1) and β ∈ (0, 1) so that
β < δ

2 ;
supθ,θ′∈[−r,0],|θ−θ′|≤ε |χ(θ) − χ(θ′)| < δ

8 ;

supt∈[0,ε] |T (t)χ(0) − χ(0)| < δ
8 ;

ε < β
MN .

Let

K(ε, β) = {y ∈ C([−r, ε];X) : y0 = 0, ||yt|| ≤ β for t ∈ [0, ε]}.

Clearly, K(ε, β) is a closed subset of the Banach space C0([−r, ε]) = {z ∈ C([−r, ε];X) :
z(s) = 0 for s ∈ [−r, 0]} equipped with the supremum norm.

For each φ ∈ C, define φ̃ : [−r,∞) → X by φ̃0 = φ and φ̃(t) = T (t)φ(0) for t ≥ 0.
Now, for fixed φ ∈ B δ

8(1+M)
(χ) define A(φ) on K(ε, β) by

A(φ)y(t) =

{ ∫ t
0
T (t− s)F̂ (ys + φ̃s)ds, y ∈ K(ε, β), t ∈ [0, ε];

0, t ∈ [−r, 0].

Clearly, A(φ)y ∈ C([−r, ε];X). Moreover, since for s ∈ [0, ε], ||ys|| ≤ β, and

||φ̃s − χ|| ≤ ||φ̃s − χ̃s|| + ||χ̃s − χ||
≤ ||φ− χ|| + sup

s∈[0,ε]

||T (s)|||φ(0) − χ(0)|

+ sup
θ∈[−r,0],s∈[0,ε],s+θ∈[−r,0]

|χ(θ + s) − χ(θ)|

+ sup
θ∈[−r,0],s∈[0,ε],s+θ≥0

|T (s + θ)χ(0) − χ(0)|

+ sup
θ∈[−r,0],s∈[0,ε],s+θ≥0

|χ(θ) − χ(0)|

≤ (1 + M)||φ− χ|| +
δ

8
+
δ

8
+
δ

8
<

δ

2
,

we have

||ys + φ̃s − χ|| < β +
δ

2
< δ,

and hence

|F̂ (ys + φ̃s)| ≤ N for s ∈ [0, ε].

This implies that

|A(φ)y(t)| ≤ MNε < β for t ∈ [0, ε].

So, A(φ)y ∈ K(ε, β) and A(φ)K(ε, β) ⊂ K(ε, β).
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Moreover, using ||DF̂ (ψ)|| ≤ N for all ψ ∈ Bδ(χ), for y, ŷ ∈ K(ε, β) and t ∈ [0, ε]
we have

|A(φ)y(t) −A(φ)ŷ(t)|

≤
∣∣∣∣∫ t

0

T (t− s)[F̂ (ys + φ̃s) − F̂ (ŷs + φ̃s)ds]

∣∣∣∣
≤ MNε sup

s∈[0,t]

||ys − ŷs||

≤ MNε sup
s∈[−r,ε]

|y(s) − ŷ(s)|

≤ β sup
s∈[−r,ε]

|y(s) − ŷ(s)|.

As β < 1, we conclude that for each φ ∈ B δ
8(1+M)

(χ), the mapping A(φ) : K(ε, β) →
K(ε, β) is a contraction. By Lemma 4.2 of Hale [8], for each fixed φ ∈ B δ

8(1+M)
(χ),

A(φ) has a unique fixed point y(φ) ∈ K(ε, β) which is continuous in φ.
Note that B δ

8(1+M)
(χ) is the closure of the open set B δ

8(1+M)
(χ) and A(φ)y has a

continuous kth derivative with respect to (φ, y) ∈ B δ
8(1+M)

(χ) ×K0(ε, β), where

K0(ε, β) = {y ∈ K(ε, β) : ||yt|| < β for t ∈ [0, ε]}
is open in C0([−r, ε]) and K(ε, β) = K0(ε, β). Therefore, by Lemma 4.2 in Hale [8],

y(φ) is Ck-smooth with respect to φ ∈ B δ
8(1+M)

(χ), and hence uφt = φ̃t + (y(φ))t

is Ck-smooth in φ ∈ B δ
8(1+M)

(χ) for each fixed t ∈ [0, ε]. A standard continuation

argument then leads to the Ck-smoothness of u(φ) with respect to φ for t ∈ [0, ω].
The remaining part of the lemma can be easily verified.

Let

Σs = {λ ∈ σP (AU ) : Reλ < 0},
Σu = {λ ∈ σP (AU ) : Reλ > 0},
Σc = {λ ∈ σP (AU ) : Reλ = 0},

and assume Σc �= ∅. We know that Σc ∪ Σu is a finite set.
Let

Cs =
⊕
λ∈Σs

Mλ(AU ),

Cu =
⊕
λ∈Σu

Mλ(AU ),

Cc =
⊕
λ∈Σc

Mλ(AU ).

Cs, Cu, and Cc are realified generalized eigenspaces associated with Σs, Σu, and Σc,
respectively. Then Cu and Cc are finitely dimensional and

C = Cs ⊕ Cu ⊕ Cc.

Recall that Cs, Cu, and Cc are called the stable, unstable, and center subspaces of the
C0-semigroup {U(t)}t≥0.
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We can now state the main result of this section.
Theorem 6.2. There exist open neighborhoods Nc of 0 in Cc, Ns of 0 in Cs, Nu

of 0 in Cu, and a Ck-map wc : Nc → Cs ⊕ Cu such that
(i) wc(0) = 0, Dwc(0) = 0, wc(Nc) ⊂ Ns + Nu;
(ii) for any φ ∈ V, if there exists a continuous mapping uφ : R → X such that

uφ0 = φ,

uφ(t) = T (t− s)uφ(s) +

∫ t

s

T (t− θ)[L(uφθ ) + F (uφθ )]dθ

for t, s ∈ R with t ≥ s, and uφt ∈ Ns +Nu +Nc for all t ∈ R, then uφt ∈ Wc for t ∈ R,
where

Wc = {φc + wc(φc) : φc ∈ Nc}.

Proof. Recall that f : V → C is Ck-smooth, f(0) = 0, Df(0) = U(ω), and
C = Cs ⊕ Cu ⊕ Cc,
U(ω)Cs ⊂ Cs, U(ω)Cu ⊂ Cu, U(ω)Cc ⊂ Cc,
σ(U(ω)|Cs) is a compact subset of {z ∈ C : |z| < 1},
σ(U(ω)|Cc) ⊂ S1

C
,

σ(U(ω)|Cu) ⊂ {z ∈ C : |z| > 1}.

See Chapter IV.2 in Diekmann et al. [4].
By Theorem 5.4, there exist open neighborhoods Nc of 0 in Cc, Ns of 0 in Cs,

Nu of 0 in Cu, and a Ck-map w : Nc → Cs ⊕ Cu such that wc(0) = 0, Dwc(0) = 0,
and wc(Nc) ⊂ Ns + Nu. Moreover, for Wc = {φc + wc(φc) : φc ∈ Nc}, if there exists
(φn)∞−∞ such that φn = f(φn−1) and φn ∈ Nc + Nsu for n ∈ Z, then φ0 ∈ Wc.

Fix φ ∈ V such that condition (ii) of this theorem is satisfied. Then for any fixed

t ∈ R, uφt ∈ Ns + Nu + Nc ⊂ V , and if we let

φn = uφt+nω, n ∈ Z,

then φn+1 = f(φn) for n ∈ Z and φn ∈ Nc + Ns + Nu for all n ∈ Z. Therefore, the

result in the last step implies that φ0 = uφt ∈ Wc. This completes the proof.
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