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1. INTRODUCTION

Recently, lattice differential equations have found a considerable amount
of interest and attracted many researchers. The reasons seem to be two-fold.
Practically, lattice differential equations have been proposed as models in
various contexts. Theoretically, many lattice differential equations can be
viewed as the discretization of reaction—diffusion equations along a lattice,
but have exhibited much more complicated and colorful dynamics. We refer
to the excellent survey papers of Chow and Mallet-Paret [2] for the detailed
account of the theory and applications of lattice differential equations.

Among the various important aspects of lattice differential equations is
the phenomenon of traveling wave solutions. There have been a few research
papers working on the existence of traveling wavefront solutions and
periodic traveling waves of systems of lattice differential equations (cf. [2, 6,
7, 23-25]), and it has been shown that the behavior of a system of lattice
differential equations can be remarkably different from its continuous
version. For example, it is well known that if a reaction—diffusion equation
has traveling wave front solutions for some value of the diffusion coefficient
d, it does so for all values of d > 0, but the corresponding discrete version
does not have such a property (cf. [7]).

Evidently, time delay should be and has been taken into consideration in
many realistic models and some essential dynamic differences caused by time
delay have been observed. A few papers have also been devoted to the
existence of traveling wave solutions of lattice differential systems with delay
(cf. [19, 21, 26, 27)).

On the other hand, many authors have discussed the existence of traveling
plane wave solutions of some reaction—diffusion systems (cf. [8, 17]).
However, to the best of our knowledge, little has been done for the existence
of traveling plane wave solutions of planar lattice differential equations,
many of which can be viewed as the discretization of reaction—diffusion
equations defined in a plane (cf. [11, 16, 18]).

The present paper is motivated by the recent work due to Wu and Zou
[22] and Zou [26]. Our main goal is to establish some existence results for
traveling plane wave solutions of planar lattice differential equations with
delay. The remainder of this paper is organized as follows. In Section 2, we
discuss the existence of traveling wave fronts of delayed systems of planar
lattice differential equations by using some fixed point theorems. In Section
3, we consider periodic traveling wave solutions of delayed systems of planar
lattice differential equations from the Hopf bifurcation point of view. Newly
established Hopf bifurcation theory for mixed functional differential
equations by Erbe et al. [3] is applied to the corresponding wave equation
to obtain the global existence of slowly oscillatory spatially periodic wave
solutions. In particular, the obtained results will be applied to a model
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arising from neural networks and explicit conditions for traveling wave
fronts and periodic traveling plane waves will be obtained.

2. TRAVELING WAVE FRONTS

In this section, we will investigate the existence of traveling wave fronts of
the infinitely coupled system of delay differential equations as follows:

d
E um,n(t) = f((um,n)t) + D[g(umfl,n(t)) + g(um+1,n(t))
+ g(”m,n—l(t)) + g(unz,n+l(t)) - 4g(um,n(t))]a (21)

where mneZ, teR, wu,,(t) e R, D= diag(d),d>,...,dy) with d;>0, i =
I,...,N, g:R" > R" and f:C(~7,0],R") - R" are continuous, and for
any continuous mapping u : [-7,4] — RY with 4 >0 and any 7 €[0,4], u, €
C([—1,0], RY) is defined by u,(0) = u(t + 0), 0 € [—1,0].

When 7 = 0 and g(x) =x, x e R", (2.1) becomes

g um,n(t) = f(um,n(t)) + D[um—l,n(t) + u111+1,n(t) + um,n—l(t)

dt
+ um,nJrl(t) - 4um,n(t)]’

which can be viewed as the spatial discretization of the system of reaction—
diffusion equations defined in a plane

%u(x, t) = f(u(x,t)) + DAu(x, t).

In this section, we will use the usual notations for the standard ordering in

RY. That is, for u = (ul,...,uN)T and v = (vl,...,vN)T, we denote u<v if
w;<v;, i=1,...,N,and u<v if u<v but u#v. In particular, we will denote
u <vifu<<vbutu#v, i=1,...,N. If u<o, we also denote (u,v] = {we

RY: u<w<v}, [u,0) = {weR": u<w<v}. Amapping G: R" - R" is said
to be nondecreasing if G(u) < G(v) holds for every u and v with u <v. For any
N x N matrix B, we denote by [|B|| the matrix norm induced by the
Euclidean norm |- | in R".

A traveling plane wave solution of (2.1) is a solution of the form u,, ,(f) =
x(t — mc; — ncy), where c¢j,c; are nonnegative constants. Substituting
Umn(t) = x(t — mc; — ncy) into (2.1), we find that (2.1) has a traveling plane
wave solution if and only if the following wave equation:

) = ) + Dlglale + 1) + g(x(t — 1)
g+ e2) + gla(t — €2) — Aglx0)] (.2)
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has a solution. A solution of (2.2) is called a profile function of the traveling
plane wave solution of (2.1). If a profile function x is nondecreasing and
satisfies the following asymptotic boundary condition:

tlirﬁnﬂ x(t) =x_, tlim x(t) = x4, (2.3)

then the corresponding traveling plane wave solution is called a traveling
wavefront. Obviously, the existence of traveling wavefronts is equivalent
to the existence of solutions of the asymptotic boundary value problem
(2.2)-(2.3).

Without loss of generality, we assume x_ = 0 and x; = K > 0. Then the
asymptotic boundary condition (2.3) takes the form

lim x(¢) =0, lim x(¢) = K. 2.4)
—>—00 t—00
We will look for monotone solutions of (2.2) and (2.4). For convenience
of statement, we now make the following assumptions.

(HF1) f(f)) = f(K) =0, where % denotes the constant mapping
x:[—1,0] - RY with the value x € R";

(HF2) ¢:[0,K] » R" is continuously differentiable, monotonically
nondecreasing, g(0) = 0 and v := ||Dg(0)|| =||Dg(x)|| for all x € [0, K];

(HF3) There exists a matrix § = diag(f;, ..., fy) with ;=0 such that
(@) = f() + Ple(0) — ¥ (0)]=4D[g(¢(0)) — g((0))]
for any ¢,y € C([—1,0], RY) with 0<y(s) <@(s)<K, s€[—1,0].
We also denote by || - || the supremum norm in C([—t, 0], RY). We need the
following continuity assumption:
(HF4) There exists a constant L > 0 such that
|/ () = fFWI<Lllp — |
for ¢,y € C([—1,0], RY) with 0< p(s), Y(s)<K, s€[—1,0].

Define the operator H : C(R,RY) - C(R,R") by

H(p)(®) = f(o,) + Bo(t) + Dlg(o(t — c1)) + g((t + 1))
+ g(@(t — c2)) + g(o(t + c2)) — 4g(@(1))],
¢ € C(R,RY). (2.5)
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Let
C[O,K](Rt RN) = {(P € C(R: RN): OS(P(S)<K,S € R})

then we have the following

LEMMA 2.1.  Assume that (HF1) and (HF2) hold, then

(i) O<H(p)0)<PK, for ¢ € Coxy(R, RY);
(ii) H(p)(?) is nondecreasing in t € R, if ¢ € Cp g)(R, RY) is nondecreas-
ing intelR;
(i) HWY)O)<H(p)?) for te R, if ¢, € Cox(R, RY) are given so that
V(@) <o) for te R.

Lemma 2.1 is easy to be verified and the proof will be omitted. Clearly,
with the above notations, (2.2) is equivalent to the following system of
ordinary differential equations:

X)) = —px(t) + Hx)(E), teR. (2.6)

Define the operator F : Cjo x(R, RY) - Cio.x(R, RY) by

t

(Fo)i) =" / P H(p)(s) ds @.7)

—00

for [(ONS C[()’K](R, [RN)
It is easy to show that F: Cy (R, RY) > Cio.x(R, RY) is a well-defined
map and a fixed point of F is a solution of (2.6). Furthermore, we have

LEMMA 2.2.  Assume that (HF1) and (HF2) hold, then
(i) Fo(t) is nondecreasing in R, if ¢ € Cox(R, RY) is nondecreasing in
teR;

(i) FY()<Fo(t) for teR, if o, ¢ € Co (R, RY) are given so that y(t)
<o(t) for t e R.

Proof. (ii) follows immediately from Lemma 2.1 (iii). To prove (i), let
t e R and s >0 be given, then for any i = 1,2,...,N, we find
(F@)(t+5)— (Fo)(t)

i+s t
= e hilr+) / " Hy()(0) d0 — e / " Hi(p)(0) dO
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t
.z / HH ()0 +5) — Hi(p)(0)) dO
>0.

This completes the proof. 1

Without loss of generality, we assume f;>0, i =1,...,N. Let p>0 be

such that p<min; ;< f;, and let

B,(R,RY) = {@ e CR,RY): sup |p(0)]e " <OO}, lol, = sup lp(0)le """,
tei

teR

Then it is easy to check that (B,(R, RY),|- ,) is a Banach space.

LemMmA 2.3, Assume that (HF1)~(HF4) hold, then F :Cjx(R, RY) -

Cro.x (R, RY) is continuous with respect to the norm | - l, in By(R, RY).

Proof. Firstly, we claim that H : Co (R, RY) — B,(R,RY) is continuous.

In fact, for any fixed ¢ >0, take T > 0 such that
2LIK|e *T <é.
Let 6 >0 be such that
S max{Le’ T ||BI, 2v|ID||(e”" + " 4 2)} <.
Then, if ¢,y € Cox(R, RY) satisfy

lo —¥l, = sup lp(0) = Y(n)le " <,

from (2.9), we have

lp(t) — ()| <0 T < /L, Vie[-T —1,T]

Therefore, for t € [-T, T], by (2.9), we have
IH(@)(t) — HE)(Ole "
<If (@) — LW+ 1Bl o) — w(n)e

+ VDI [lp(t = c1) = Yt — c)l + ot + c1) = Y2+ c1)

(2.8)

(2.9)
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+ lp(t — e2) — Yt — )| + p(t + €2) — Y(t + e2)| + dlo(t) — Y()]]e "
<Lllo, — Yl + [IBll0 + 2v|ID||(e”" + 7* 4-2)d

<L3" T+ + ||B]I5 + 2v]DI|(e” + e + 2)5

<3e,
and for |¢{| =T, by (2.8) and (2.9), we have
[H(@)(0) — Hp)(@)le "

<|f(e) — f(‘pt)|eipT
+ 1Bl 1) — Y(D)le " + 2v||D||(e” + P> + 2)5

<2LIK|e T +[|BI16 + 2v|ID||(e”! 4 e + 2)d

<3e.

Thus, |H(@) — H(Y)|, <3e. That is, H : Cjox)(R, RY) > B,(R,R") is contin-

uous.
Now, we show that F': Cjo x)(R, RN ) = Cox(R, RY ) is continuous.

For t>0, we find

(Fo)(d) — EW)0)
<o / PHH()s) — HW)s)| ds

e}

t
<e*ﬁit / eﬁ‘-s+pls\ dS|H((P) - H(W)'p

[ee}

t 0
— o b [ / B0 g 1 / Bip)s ds] \H(p) — HGD),
0 —00

1 2
e + = eﬁf’] |H(p) = HW),

ot %} " |H(p) — H(D,.

<

Hence,

(F)(0) — Fpyle < |-y 2 ]'H(q))pr. (2.10)

Bi+p ﬁ,-z_Pz
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For t<0, we have
|(F@)(1) — (Fy); (0]

t
<o / PP ds|H (o) — HP)I,
—00

— 1 e*PT _
=5, ¢ ")~ H,

1

and hence

1

(Fo)() — Ep)Hle " <B—1P|H<<p) —HW),. @.11)

Thus, it follows from (2.10) and (2.11) that F: Cjo x1(R, RY) - Cox(R, RY)
is continuous with respect to the norm ||, in B,(R, RY) and the proof is
complete. 1

For the sake of convenience, we introduce the definition of an upper (or a
lower) solution of (2.2).

DEFINITION 2.1. A continuous function p:R — R" is called an upper
solution of (2.2), if p satisfies

p'(t) = f(p,) + Dlg(p(t — c1)) + g(p(t + c1))

+ g(p(t — c2)) + g(p(t + c2)) — 49(p(1))]  ae on R (2.12)

A lower solution of (2.2) is defined in a similar way by reversing the
inequality in (2.12).

Now, we are in a position to state and show the following existence
theorem.

THEOREM 2.1.  Assume that (HF 1)—(HF4) hold. Suppose that (2.2) has an
upper solution p e Cjox)(R, [R{N) and a lower solution p e Cyox(R, IRN)
satisfying

(1) sup,<, p(s)<p(0), for i eR;
(D) (@0, for ue (0,infir H(D)] U [sup, p(0), K).

Then the asymptotic boundary value problem (2.2) and (2.4) has a monotone
solution. That is, (2.1) has a traveling wavefront solution.
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Proof. Let
(1) ¢ is nondecreasing in R;

I' =< ¢eCon®RRY): (i) p)<e)<p(t) VieR;

2717

(i) |o(u) — @) <2|IBIl Kl — v Vu,veR.

Let W(t) = (Fp)(t) — p(¢), t € R. Since p(¢) is an upper solution of (2.2),

from (2.5) and (2.12), it follows that
p'()= — Bp(2) + H(p)(®).
On the other hand, (2.7) implies that
(Fp)' (1) = =BFP)®) + H(p)),

which together with (2.13) implies that

W'(t) = (Fp)' (1) — p'()< — BIFP)D) — p()] = —BW ().

Let W'(t) + BW(t) = r(¢), then we have

t
W(t) = e P 4 / PIp(s) ds.

to

Let typ — —o0 (2.15) yields

W(f) = [ t P (s) ds.

o0

(2.13)

(2.14)

(2.15)

(2.16)

It follows from (2.14) that »(¢)<0, V¢ € R. Hence, (2.16) implies that W ()

<0 for all z € R. This proves that (Fp)(t)<p(¢), t € R.
In a similar way, we can show that (Fp)(t)>p(1), t € R.

Let () = sup,, p(s), then ¢(¢) is nondecreasing in R and Condition (I)

implies that

pO<PO<P). 1R

Therefore, Lemma 2.2 implies that

pO<EDO<SFHO<EPNO<O.  teR.

It is also easy to check that

|(F@)w) — (Fe)) <2BINK] Ju —vl,  u,veR.
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Consequently, F@p € I'. That is, I' is nonempty. It is also easy to verify that I"
is convex and compact in B,(R,R").

Moreover, by Lemma 2.2 and a similar argument as above, we can show
that

F(T) < T.

Therefore, the well-known Schauder’s fixed-point theorem implies that F
has a fixed point ¢ in I'. In other words, ¢(¢) is a solution of (2.2).
Finally, we note that

0<ep_=: lim @@)<inf p(?) (2.17)
t——00 teR
and
sup p(H <o, =: lim () <K. (2.18)
eR t—00

Moreover, we can show that
f@)=0,  f(@,)=0.
Therefore, it follows from (2.17), (2.18) and Condition (II) that
¢ = lim ¢0)=0, ¢, =lm @) =K.
Thus, ¢ is a monotone solution of (2.2) and (2.4). The proof is complete. 1

Finally, we present an application of our general result obtained in this
section to a model arising from neural networks.

Example 2.1. Consider the following system of lattice differential
equations

N
€)= ~ )+ A0gl0) + Y Al ()
=

+ glun— ()] +1 (2.19)

as a model, suggested by Hopfield [4,5], for a network of infinitely many
cells located in a linear lattice. Here, it is assumed that each cell is made of a
linear capacitor, a nonlinear voltage-controlled current source and a few
resistive linear circuit elements, and that cells communicate with each other
directly only through its nearest N-neighbors. In this equation, C and R are
positive constants denoting the capacitance and resistance of each cell, the
transfer (input—output or activation) function g: R — R is a sigmoid (that
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is, a smooth and nondecreasing function with graph asymptotic to two
horizontal lines), (4, 41,42, ...,Ay) are the interactive parameters, and /
denotes the input control effect.

Now, we assume that cells are located in a planar lattice and communicate
with each other directly only through its adjacent four-neighbors. Then we
reach the following system of planar lattice differential equations:

d 1
C E um,n(t) = - 1_3 um,n(t) + Aog(um,n(t)) + Al[g(un1+l,n(t)) + g(umfl,n(t))
+ g(um,nJrl(t)) + g(um,nfl(t))] + 1. (220)
In what follows, we will assume that 7 = 0. This can always be achieved by
some translation of coordinates. Note that 4y, 4; can be either positive or

negative, corresponding to the excitatory or inhibitory interaction of cells.
(2.20) can be rewritten as

d
E um,n(t) = - Omm,n(t) + aog(um,n(t)) + al[g(um+l,n(t))

+ 9lm-140) + g(tmpr1() + gmp-1 (D)), (2.21)

where « = 1/RC and a; = 4,;/C, j=0,1.
Put f(x) = —ox + (ap + 4a;)g(x), x € R, then the corresponding wave
equation (for ¢; = ccos0, c; = csin0, 0 €[0,7]) takes the form

%x(t) = f(x(?)) + a1[g(x(¢ + c cos 0)) + g(x(t — c cos 0))

+ g(x(t + csin 0)) + g(x(t — csin 0)) — 4g(x(@)].  (2.22)

COROLLARY 2.1. Assume that

(1) a¢ and ay are positive constants;
(i) g€ C*(R,R), g(0) =0, lim,, 10 g(x) = £ 1, ¢'(x) >0 and xg"(x)
<0 for x#0;
(iii) v(ap + 4ay)>a, v =: ¢'(0).

For each 0 €[0,5], let

*0) = su ol , —
¢ ( ) xeﬂg _a+v[a0_’_al(excos()_i_efxcos()_~_exsm()+efxsm0)]

(2.23)

Then for every c<c*(0), (2.21) has a traveling wavefront u,,(t) =
x(t — mccos 0 — nesin ) such that lim,,_~ x(t) =0 and lim,_ . x(f) = K,
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FIG. 1. The graph of the function ¢*(0) determining the maximal wave velocities in
directions 6 € [0,7/2] in the case where . =v=a9 = a; = 1.

where K is the unique positive solution of the algebraic equation

aK = (ag + 4a1)g(K).

We can easily verify that (HF1)-(HF4) hold. Moreover, for any positive
number ¢ <c*(0), (2.23) implies that
su £ >1
/1213 —o + V[a() + al(e).c cos 0 + e—/ccos O + e/csin 0 + e—/csin 6)] !

Therefore, we can find two positive constants 4; and 4, with 0 <1; </, such
that A(4;) = A(4;) =0 and A(4) >0 for A€ (4;,4,), where A(A)) = A+ o —
apy — alv[efflc cos 0 + e/lc cos 0 + efi.c sin 0 + e/lc sin ()]. Define

p(f) = K min{e™’, 1}

and

p(t) = K max{0,(1 — Me )"y

It can be verified that p(¢) is an upper solution of (2.22) and for sufficiently
small ¢ >0 and sufficiently large M >0, p(¢) is a lower solution of (2.22).
Clearly, for this pair of upper and lower solutions, Condition (I) and (II) in
Theorem 2.1 hold, therefore, for every c<c*(0), (2.21) has a traveling
wavefront u,, ,(t) = x(t — mc cos 0 — nc sin 0) satisfying lim,_,_, x(#) = 0 and
lim,_, » x(¢) = K.
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3. PERIODIC TRAVELING WAVES

In this section, we consider the following planar lattice differential
systems:

d
% um,n(t) = f(um,n(t), um,n(t - T))
N

+ Y a9t = ©) + Gt jn(t = ©)) = 29 (1t — 7))
Jj=1

M=

+ bj[g(um,nfj(t - T)) + g(ur11,n+j(t - T))

J=1
= 29(upa(t — 1)), (3.1)

where m,neZ, u,,(t)eR, f: R?> > R and g:R - R are continuously
differentiable. Furthermore, we always assume f(0,0) =0, g(0) = 0 and g is
nondecreasing in R.

A traveling plane wave u,,,(f) = x(t — mc; — nc) is said to be spatially
(p,q)-periodic if p,q are positive integers and g ppiq(t) = tpa(¢) for all
teRand m,n e Z. It is easy to verify that u,, ,(¢) is spatially (p, g)-periodic if
and only if x(¢) is pcy + gcp-periodic.

We now consider the related wave equation

& )= 01200~ )

N

+ Z alg(x(t — T+ jer)) + gt — © — jer)) — 2g(x(t — 1))]
Jj=1

+

M=

bjlg(x(t — T+ je2)) + g(x(t — T — je2)) = 29(x(r — D). (3.2)
T

~.
Il

Denote ¢y = ¢, ¢ =re, ¢>0, r>0, then (3.2) takes the form

&) = 01200~ )

M=

+ ajlg(x(t — T+ je)) + g(x(t — T — jo)) — 29(x(t — 7))]

1

~.
Il

+

-

bjlg(x(t — T+ jre)) + g(x(t — T — jre)) = 29(x(t — 1)) (3.3)

Jj=1

Therefore, finding a (p, g)-periodic traveling plane wave of (3.1) with wave
speed (c, rc) is equivalent to finding a (p + rq)c-periodic solution of (3.3). In
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what follows, we will regard the delay t as a parameter and look for periodic
solutions of (3.3) from the Hopf bifurcation point of view.

For the sake of simplicity, we denote g, := pi“rq. We now normalize the
period of x(¢) by
(p+rq)c
) = x(”znqt : (3:4)

then y(¢) is 2zn-periodic if and only if x(¢) is (p + rq)c-periodic. Substituting
(3.4) into (3.3), we get

o )(1) = cf (1), y(t — 0,7/c))

N
+ ¢ > afgi(t — 6,1/ + 6,)) + gt — 0,1 /c — )
j=1

—29(¥(t — 0,7/0))]
N
+e ) bilglv - 0,1/c + a,jr)) + g(W(t — 0,1 /c — 0,jr))

Jj=1
—29(y(t — a,7/c))]. (3.5)

From now on, we will fix the positive integers p,q and the real > 0.
Then, for given constants ¢ > 0 and 7 and for a given 2z-periodic mapping
y:R - R, we define

Fr.7.0(0) =—f (0. (1 = 0,7/<)
N
+ =3 algt = ot/ + 0.) + gt = o,7/e = 5,)

= 2g(;(;_ 6,1/0)]
+ o f; blg((t — 6,1/c + 0,jr)) + g((t — 6,1/c — 6,jr))
24000t~ e/
Then (3.5) can be written as
30) = F(y.2.0)0). (3.6)

X Restricting to the subspace of all constant mappings, F indices a mapping
F:RxRx(0,00) > R by

F(x,1,¢) = aif(x,x).
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Recall that a point (x,7,¢) € R x R x (0, 00) is said to be a stationary point
if F(x,7,¢) =0. In our Hopf bifurcation analysis, we need to verify that
D.F (x,7,¢), the derivative of F with respect to the first argument, is an
isomorphism at given stationary point (0, 1, ¢).

Leta=%& f (0,0) and b = £ f (0,0), the partial derivatives of f(x, y) with
respect to the first and second arguments and evaluating at (0,0),
respectively. We assume

(HP1) a<0, a4+ b+#0 and x f(x,x)<0 for x#0.

'l:herefore for any fixed 7 and ¢, (0,7,c) is the only stationary point and
D.F(0,7,¢c) = C(a + b)#0, and thus an isomorphism.
The linearization of (3.5) at the stationary point (0, 7, c) takes the form

0. )(t) = cay(t) + chy(t — o,7/c)

N
+c Z apyv[y(t — o.t/c + 0,j) + y(t — o,.1/c — 0,))
=

N
—2y(t —0o,1/c)] + ¢ Z byt — o,7/c + a,jr)
=1

+ 3t — 6,1 fc — ,jr) — 20t — 0,7/0)] (3.7)

here and in what follows, v := ¢'(0).
The characteristic values of the stationary point (0,7,¢) are complex
numbers / satisfying the characteristic equation

N
6,/ =ca+ che " + ¢ E ajve"”ﬂ'/"[e”"“ + e 7 = 7]
Jj=1

N
+ e Y byve el e 2], (3.8)
j=1

A stationary point (0,1, ¢) is a center if there exists an integer £ > 1 such that
ik is a characteristic value. Substituting 4 = ik into (3.8), we get

N
ikGr =ca+ Cbe*lkorr/c Ty E ajveflko,.r/c’[elkarj + e*lko'rj - 2]
J=1

N
+ e Z ijefiko,.r/C[eikarjr + efikarjr _ 2] (39)
=
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Since
L L . 2 ko,j
kol 4 emkori _ 3 = 2(cos(ka,j) — 1) = —4 sin® %’
L L . 2 ko,j
eikorir + e tkorjr _ o — 2(cos(ka,jr) — 1) = —4 sin’ 2o

it follows from (3.9) that

N : .
A . . 2 ko, . 2 ko,
ike, = ca + che*orT/¢ — 4eyeikort/e ; [a_, sin’ 021 + b; sin? szr} . (3.10)
Denote
N . 2k0'rj . 2karjr
@ = 4v Z {aj sin® — + b, sin > } (3.11)
j=1

and writing (3.10) in terms of its real and imaginary parts, we get

ko,
(@, — b) cos cr =a,
kot ko,

(®,x — b) sin (3.12)

C

Clearly, from (3.12), we see that ik is a characteristic value only if @, ; #b.
For k>1 with @, #b, (3.12) can be written as

ko, a
cos = ,
c W — b
. kao,t ko,
sin =
c c(w ., — b)
or, equivalently,
kot ac
cot =—
c ko,

2,2
ko ’

(@ — b)? =5 ta (3.13)

Therefore, if (@, x — b)> > a2, the second equation of (3.13) implies that

ko,

N

cl‘,k =
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Substituting ¢, into the first equation of (3.13), we can determine the real t
and c. In summary, we have established the following.

LemMA 3.1.  Assume that (@, — b)? > a? for some fixed r and k. Let 0, €

3, ) be given so that cot 0, = “,:Tk For each integer €=0, define

er,k,f = Hr,k + {m,

ko,

Crk = 3
\/ (mr,k - b)2 —a?

cr,k cr,k
Tkt = - Or ke = o 0, + {m).
r

o,

Then the set of centers of (3.6 is {(0,Triecri); k=11 (w2, — b)* > a?,€>0}
and thus is isolated in R x R x (0, 00).

Now, we make the following assumption:
(HP2) (w, — b)> > a2, where

N

. . 20, . 210
o, =, =4 ; (a_,-sm %+b_,-sm 2r )

Our next step is to evaluate the so-called crossing number of the
stationary point (0, t,¢, ¢,), where

0,

\/ (@, — b)* — az,

Trt = ﬁ (Br + fn)a Hr = 9r,1~
oy

=

The crossing number is defined by
V(Oa Tr,fa cr) = degB(Aa Q)7

where degy is the Brouwer degree and

N

A(t,¢) = i% — a — be e 4 qyeiorT/e ; <aj sin” % + b;sin’ %)
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Oy . »
=il a—be io.t/c + e io,t/c
C

=i% a4 (@, — b)e i
c
and Q == (7,0 — 3,70 + ) X (¢, — 9, ¢, + 9) for sufficiently small 6 > 0.
Define
H(t,u,c) = (u + iﬂ) —a+ (w, — b)e WHior/or,
c

where (u,¢) € D = (0,¢) X (¢, — &, ¢, + ¢) for sufficiently small ¢ > 0. Then we
have the following observation:

(1) H(t,0,¢) = A(x, ¢),
(it) H(t,u,c)#0 if |t — 7,¢|<e and (u,c) € oD\ {(0,¢);|c — ¢,| <&},
(i) H(trp £ ¢,0,¢) #0 for |c — ¢/ <e.

Therefore, by using Lemma 2.5 of Erbe et al. [3], we get
V(O, Trls Cr) = degB(H(TV,[ — & ')9 D) - degB(H(rr,f + &, ')s D) (314)

LEMMA 3.2.  For every integer £=0, the crossing number y(0,7,.,c¢,) at
0,7-¢,¢r) is —1.

Proof. For the sake of simplicity, we let v = g, /c.
Assume that u = u(r) and v = v(r) are the smooth functions of 7€
(ty¢ — 0,7,¢ + 0) so that

g
M(T,.,g) =0, U(Tr,[) =
Cr

and

U+ iv—a+ (@, — b)e @ = 0. (3.15)

Differentiating both sides of (3.15) with respect to = and then evaluating at
T =14, ¢=cp, we find

d . (@, — b)(u + iv)e 0 (y 4+ iv)(a — u — iv)

—(u+iv) = = :

dt 1 — (@, — b)e~(utivr 1 —t(a—u-—iv)
[Ha—ioy/c;)  ig,alc, + a2 /c?

1 —ta—ioJcr) 1 —1t.a+iot/c,
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Therefore,

2

Or

2
(1 — 1 0a)” + 0272,

u/(Tr,é’) =

Consequently, from (3.14), we get y(0,7.¢,¢,) = —1. The proof is
complete. 1

We can now apply the global Hopf bifurcation theorem in [3] to conclude
that the connected component S, through (0,7,,¢,), 7, == 1,0 = C[f”, in the
closure of the subset

{(y,7,¢); y is a nonconstant 2r—periodic solution of (3.5) t e R, ¢>0}

of the space ¥ x R* must be nonempty and unbounded, where Y is the
Banach space of 2zn-periodic continuous functions equipped with the super-
norm. This is equivalent to say that the connected component X, through
(0,7,,c,) in the closure of the subset

{(x,7,¢); x is a nonconstant (p + rq)c — periodic solution of (3.3) 1€ R,
c=0}

of the space X x R?> must be nonempty and unbounded, X is the Banach
space of all bounded continuous functions equipped with the super-norm.

The following results establish a priori bounds for periodic solutions of
(3.3).

LEMMA 3.3.  Assume that lim,_, 1 o x 'g(x) = g, and lim,_, 1 o x~ ' f(x, y)
= f uniformly for y e R. If

_ N
f<-2§ lz (lajl + Ib,)) + (3.16)
J=1

N
Y (a+b)
=

holds, then there exists a constant M > 0, independent of © and c, such that
[x(8)| <M for every given periodic solution x(t) of (3.3).

Proof. Suppose x(t) is a periodic solution of (3.3). Take # € R so that
x(®)| < |x(2)| for every ¢t e R. Without loss of generality, we can assume
x(2p) #0. Then there exist two possible cases:

(1) x(t) > 0.
In this case, we have

x(t)=x(H) = — x(ty) Vte R, (3.17)
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and

> alglx(to — T+ jo)) + glx(to — T — je)) — 2g(x(to) sign(a;))]
=1

N
+ > bilglxlty — T+ jro)) + g(x(ty — T — jre)) — 2g(x(to) sign(b)))]
=1

<0. (3.18)
It follows from (3.17) and (3.18) that
d
0= Ex(l‘())

= f(x(t), x(to — 1))

+ ) ajlgx(ty — T+ jo) + g(x(to — T — j) — 2g(x(ty — 1))]
j=1

+ bjlg(x(to — T + jre)) + g(x(to — T — jre)) — 29(x(1o — 7))]

-

Jj=1

N
= f(x(t0),x(to — ) = 2 Y (a; + bj)g(x(ty — 7))
=1

N N
+ 2 ajg(to) sign(ay) +2 > big(x(to) sign(b)))
j=1 J=1

-

+ ajlg(x(to — T+ jo)) + g(x(to — T — jc)) — 2g(x(to) sign(a;))]

Jj=1

+

-

bjlg(x(to — T + jre)) + g(x(to — T — jre)) — 29(x(10) sign(b;))]
1

J

N N
< SGelt), Xty — 1) =2 Y (a;+b))g (-x(fo) sign (Z (a; + bj)))
=

J=1

N N
+ 2 ajg(x(to) sign(a)) +2 > big(x(to) sign(by)).
J=1 j=1
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Hence,

Sxl),x(00 =) |5

x(to)

g(—x(to) sign(3°7., (a;+ b))

0< . N
—x(to) sign(3_;_ (a; + b))

aj—l—bj)

+ 2 Z g X SEn) Z 1 060 sign(6;)

x(t9) sign(a;) x(to) sign(b;) (3.19)

From (3.16), we observe that there exists a constant M > 0 such that

f(”y) [Z(|a,|+lb|)+ Z( 1 b))

V=M, yeR (3.20)

g( +x)

Therefore, (3.19) and (3.20) imply that |x(z)| <M, and hence |x(¢)| <M, for
all 1 e R.

(2) x(t)<0.
This case can be proved in a similar way and thus is omitted. This
completes the proof. |1

Now, we are in a position to state and prove the following global Hopf
bifurcation theorem.

THEOREM 3.1. Assume that (HP1) and Conditions of Lemma 3.3 hold. For
fixed positive integers p and q, suppose that there exists a constant r >0 so
that (HP2) holds. Let 0, € (n/2, 1) be given so that cot 0, = ac,/a,, and define
1, = ¢;0,/a,. If there exists a real number s >0 such that (p + rq)s=4 is an
even integer and (3.3) has no nontrivial (p + rq)st-periodic solution, then for
each © > 1, there exists a constant ¢ > 0 such that (3.1) has a spatially (p, q)-
periodic traveling plane wave u,, ,(t) = x(t — mc — nrc) and the period of x is
between 2t and (p + rq)st.

Proof. As has been pointed, the connected component X, through
(0,7,,c,) in the closure of the subset

{(x,7,¢); x is a nonconstant (p + rq)c — periodic solution of (3.3) t e R,
c=0}

of the space X x R?> must be nonempty and unbounded, here X is the
Banach space of all bounded continuous functions equipped with the
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super-norm. Note that g, = pi”rq and 2% = 0, € (n/2,7) if a<0, it follows
that
(p+ rg)e _ e _2n €(2,4).
T, ot 0,

Therefore, in the neighborhood of (0, 7,, ¢;), every element (x, 7, c) € £, must
satisfy m €(2,4) < (2,(p+rq)s). If (p + rg)s is an even integer and (3.3)
has no nontrivial (p + rg)st-periodic solution, then (3.3) has no nontrivial
2t-periodic solution. Since X, is connected, Lemma 3.3 implies that the
unbounded component X, must satisfy

5, ¢ {(x,r, o) sup (o) <m, LT
T

teR

e2,(p+ rq)s)}.

We now claim that X, does not intersect with the hyperplane 7 = 0. In
fact, if (x,0,c) € X, for some x € X and ¢=0, then there exists a sequence
(x4, Ty, cp) € Z, such that x, - x in X, 7, > 0 and ¢, - ¢. As (”Trﬂe
(2,(p + rg)s), we must have ¢ = 0. Therefore, x must satisfy the ord”inary
differential equation

d
250 = (0, x(1)).

Now the assumption x f(x,x) <0, x#0 (HP1) implies that x = 0. This leads
to a contradiction to the obvious fact that (0,0,0) ¢ X,.

Therefore, the projection of X, onto the t-space is unbounded
and is contained in [0, c0). This shows that for every t > 7,, there exists a
(p + rq)c-periodic solution of (3.1) with ¢; =¢, ¢co =rc and (p+rg)ce
(27, (p + rg)st). This completes the proof. 1

The above result shows that z, is the critical value of delay where a branch
of spatially (p, q)-periodic plane waves bifurcates from the trivial solution.
The profile x is of a period larger than 2t and thus will be called slowly
oscillating plane waves. See [15,22].

Using a similar argument for X,, ((>1), the connected component
through (0, 7,¢, ¢,) in the closure of the subset

{(x,7,¢); x is a nonconstant (p + rq)c — periodic solution of (3.3),
TeR, ¢=0}

of the space X x R?, we get the following coexistence of one slowly
oscillating plane wave and multiple rapidly oscillating plane waves of

3.1).
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THEOREM 3.2. Assume that conditions of Theorem 3.1 hold. Let 0, €
(n/2, 1) be given so that cot 0, = ac,/a,. Define

c
¢ = 1, =c0/0,
\/ (@, — b)? — a?

Tt = ger,{’a 91‘,8 = er + [TE, t=0.

I3

Then for each fixed integer =0 and for each t> 1, there exist constants
c® >0, 0<k<t, such that (3.1) has € + 1 spatially (p,q)-periodic traveling
plane waves ugy’f)n(t) = xB(t — mc® — nre®), k=0,1,...,¢, and the period
(p+rq)c® of xO  satisfies (p+ rq)c® e 21,(p + rq)st), (p +rg)c® e
(ﬁr, %’L’), 1 <k<{¢, respectively.

As an application of the above results, we now consider the following
planar lattice differential system:

d
E um,n(t) = - O“f‘m,n(t) + aog(um,n(t - T))

N
+ Y a9t = ©) + Gt — 7))
Jj=1

+ glmn—j(t = 1) + gt = D)), (321

and the associated wave equation

d
Ex(t) = — OCX(t) + a()g(x(t - T))

N
+ ) ajlg(x(t — T+ jo) + g(x(t — T — jc))
j=1

+ glx(t — T+ jre)) + glx(t — © — jro))l, (3.22)

where >0, g:R — R is a continuous mapping.
We have the following existence result for periodic traveling plane waves
of (3.21).

THEOREM 3.3. Assume that
(i) g€ C'(R,R), g(0) =0, |g(x)|<M for some M >0 and v = ¢'(0)>
g'(x)>0;
(ii) v(ao +4 YN, ap)<a
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(ii1) For fixed positive integers p and ¢, there exists a real number r >0
such that M, = (w, — v(ay + 4 Zjv:l a))* — o2 >0, where
N

@, = 4y Z aj [sin2 - j—]rq + sin? 7 ];

p+rq

Jj=1

(iv) There exists a real number s >0 such that (p + rq)s=4 is an even
integer and vy, ; <o, where

(ptrg)s
Vrs = max{ﬂ{< Z bjei(ZH/(PJrrq)S)(/l)k); k=0,1,..., (p + rq)s — ]}’

J=1
by :00+Z{aj; 1<j<N, —sjorsjor
— rsj or rsj =0 (mod (p + rq)s)},

b = Z{aj; I<j<N, —sjorsjor —rsjorrsj=i—2 (mod(p+rg)s)},
I<i<(p+rq)s, i#2.

Let 0, € (n/2,m) be given so that cot 0, = —a/\/M,, and define ©, = 0, /\/M,..

Then for each t > 1, there exists a constant ¢ >0 such that (3.21) has a

spatially ( p, q)-periodic traveling plane wave u,, ,(t) = x(t — mc — nrc) and the
period of x is between 2t and (p + rq)st.

Proof. Let f(x,y)= —ox+ (ap+ 4 Ziv:l aj)g(y), then (3.22) can be
written as

d
230 = f(x(0), x(t = 7))
N
+ ) alget — T+ jo) + glx(t — T — je)
J=1

+ gt — T+ jre)) + gt — 7 — jre)) — 4g(x(t — 7))l (3.23)

Clearly, a:=2/(0,0) = —0<0, b= %f(o, 0) = v(ap + 4 Zjvzl a;). There-
fore, Condition (ii) implies that ¢ + »#0 and for x #0,

N
xfx,x) = — <O€ — (ao +4 Z aj)@))(?z
j=1

N
—oax? <0 if ap+4 Y a;<0,
=1
<

N N
(av<a0+42aj>>x2<0 ifag+4 > a;>0.
=1 =1

J J
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Thus, (HP1) holds. Clearly, all conditions of Lemma 3.3 and (HP2) also
hold.

We claim that under Condition (iv), (3.22) has no nontrivial (p + rg)st-
periodic solution, thus, by virtue of Theorem 3.1, for each 7 > 7, there exists
a constant ¢ >0 such that (3.21) has a spatially (p, g)-periodic traveling
plane wave u,,,(t) = x(t — mc — nrc) and the period of x is between 2t and
(p + rq)st.

In what follows, we prove that (3.22) has no nonconstant (p + rq)st-
periodic solution. By way of contradiction, we suppose that x(¢) is a
nontrivial (p 4 rg)s-periodic solution of (3.22). Define

xi(t) = x(t — iv), 1<i<(p+ rq)s;
X(t) = (xl(t)aXQ(Z), s 7x(p+rq)s(t))T;
GX (1) = (9(x1(0), gx2(D)), - - -, X pirgrs (D)

Then we get
X(1) = —aX(1) + BG(X (1)), (3.24)

where B is the (p + rq)s x (p + rq)s circulant matrix

by by by - bpirg)s
b(p+rq)s by by ce b(p+rq)sfl
B = b(p+rq)sfl b(p+rq)s by to b(p+rq)S72
by b3 by e b

Let V(X) = Y71 [V g(x) dx. Then
V29X (1) = =X (0] GX (1) + [GX ()] BG(X(2)).
By using Nussbaum’s spectral theorem for circulant matrices [14], we find
[GX )] BGX (1) <7, [GX ()] GX ().

Therefore, we have

(p+rq)s '
Vaz <= > moatmo|x- 200 |
J

J=1
(ptrq)s
< vl Y w0900,

=1
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By virtue of LaSSalle’s Invariance Principle [9], we conclude that X(¢) is
convergent to a constant as ¢ — oo. This contradicts with the fact that x(¢) is
a nonconstant periodic solution. The proof of Theorem 3.3 is complete.

Corresponding to Theorem 3.2, we have the coexistence of at least one
slowly oscillating and multiple rapidly oscillating plane waves.

THEOREM 3.4.  Assume that all conditions of Theorem 3.3 hold. Let 0, €
(n/2,m) be given so that cot 0, = —o/+/M,, and define

Tt = 0)’,{/ V M,, 07‘,[ = Qr +{n, £=0.

Then for each fixed integer =0 and for each © > 1, there exist constants
c® >0, 0<k<¢, such that (3.21) has € + 1 spatially ( p, q)-periodic traveling
plane waves u'f) (1) = x®(t — mc® — nre®), k=0,1,...,¢, and the period
(p+rq)c® of xO  satisfies (p+ rq)c® e 21,(p + rq)st), (p +rg)c® e
(ﬁ‘c,%r), 1 <k<{¢, respectively.

Example 3.1. We return to the neural network model (2.21). It was
observed by Hopfield [4,5], Marcus and Westervelt [12] and Wu and Zou
[21] that cells do not communicate and response instantaneously and
sustained oscillations can arise from large relative size of the delay (relative
to the relaxation time of the system) in the communication and response
among cells. This naturally leads to the following infinite system of delay
differential equations:

L n®) = — () + @09t — 7))

dt
+ al[g(umfl,n(t - T)) + g(uerl,n(t - T))
+ g p-1(t — 1)) + gUmps1(t — 7)) (3.25)

Clearly, its wave equation takes the form

d
550 = = ox(t) + apg(x(t — 1))

+ ailg(x(t — 1+ ) + gx(t — T — )
+ g(x(t — © + rc)) + gx(t — T — re))]. (3.26)

In the case where p=1, ¢=2, r=1/2 and s =2, we see that b =
ay, bziao, b3:a1, b4:2611 and

4 4
R (Z b_,-) = da; + ag, m(Z bje"zU—”) = by — by =0,
j=1

j=1
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=1
4
(ZbeZ(’ ”) =b; — by =0.

Therefore, we have

4
Vrs = max{fR(Z bje[Z(/l)k>; k=0, 1,2,3} = max{ao + 4a1,0, —ao}.
=1

Moreover, by Theorem 3.3, we can prove the following.

4
<Z e D) =by — by + b3 — by = —ay,

~.

COROLLARY 3.1.  Assume that ge C*(R,R), ¢g(0) =0, lim,_, + g(x) =
+1, ¢'(x) >0 and xg"(x) <0 for x#0, and that

o
ag + da; <-—,
v
o
|Cl() - 2al| > )
v
o
ag > ——
v

that is, (ap,a1) belongs to the shaded region in Fig. 2. Let 0,/ € (n/2,m) be

given so that cotl, = ———2——, then for each 1t>1); =
\/ V2 (2a; —ag)*—a2

bz there exists a constant ¢ >0 such that (3.25) has a spatially

\/v2(Qa—ag)*—a?
A

o
=7 1 2v

</n
\ &3

P
—_ 0 e
P v ——
v // \
_*|
/
2vr
Pl
L
=

FIG. 2. The region of (ag,a;) when (3.25) has a slowly oscillating spatially (1,2) — periodic
traveling plane wave.
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(1

,2)-periodic traveling plane wave u,, ,(t) = x(t — mc — nc/2) and the period

of x is between 2t and 4x.

10.

11.

12.

13.
14.

15.
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