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Abstract

We consider the existence of subharmonic solutions of systems of difference equations
with periodic perturbations. The theory of coincidence degree, coupled with some detailed
a priori estimates, is applied to show that the perturbed system admits subharmonic
solutions near a hyperbolic periodic orbit of the unperturbed system if the perturbation
is sufficiently small.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

In the last two decades, the existence of subharmonic solutions has been exten-
sively studied for several important classes of dynamical systems such as periodic
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reaction–diffusion equations [4], forced wave equations [16], nonlinear second-
order differential equations [10] and nonautonomous Hamiltonian systems [19],
to name a few.

Most existing studies deal with the following periodic perturbed systems:

ẋ = F(x)+ εG(x, t), (1.1)

wherex ∈ RN , G :RN × R → RN is T -periodic with respect to thet-argument,
F is a vector field inRN such that (1.1) withε = 0 has an orbit homoclinic at a
hyperbolic saddle point. See [3,8,9,13,14,20,22,23,25] and references therein.

While subharmonic and superharmonic periodic solutions were studied in [11]
for some difference equations, results in the spirit of the aforementioned work
on (1.1) were only recently obtained by Agarwal and Zhang [2] for the following
scalar difference equation:

x(n+ 1)= f (x(n))+ εg(n,x(n), x(n+ 1)
)
. (1.2)

Under the following assumptions:

(a) the mapf has an attracting cycleγ = {w1,w2, . . . ,wp} and its multiplicator
satisfies|µγ |< 1,

(b) bothf andg areC1-smooth,
(c) g ism-periodic inn, wherem ∈ Z+, the set of all positive integers,

they proved that there is a constantε0 > 0 such that for allε ∈ (0, ε0) the
difference equation (1.2) has[m,p] asymptotically stable piecewise continuous
[m,p]-periodic solutions, where[m,p] denotes the least common multiple ofm
andp. Other related problems were studied in [7,14,18,21].

In this and a subsequent paper, we consider subharmonic solutions for the
discrete perturbed system

x(n+ 1)= f (x(n))+µg(n, x(n),µ), (1.3)

whereµ0 is a positive constant,µ ∈ R with 0 � |µ| � µ0, x(n) ∈ RN . Moreover,
we assume:

(H1) The unperturbed systemx(n + 1) = f (x(n)) possesses ak-periodic orbit
{xn}∞n=−∞ for a given positive integerk. f (x) is continuously differential in
a neighborhood of{x0, . . . , xk−1} and the orbit{xn}n∈Z is hyperbolic [15].

(H2) The mappingg : Z × RN × [−µ0,µ0] → RN is continuous andw-periodic
in n, and there is somei∗ ∈ {0, . . . , k − 1} so that for anyµ with |µ| � µ0,
the minimum period ofg(n, xi∗ ,µ) with respect ton is ω.

We refer to [1,5,12,17] for a good introduction to the general qualitative
theory and the existence of periodic solutions of the autonomous difference
equation (1.3) withµ = 0. A solutionx(n) of the discrete system (1.3) is said
to be subharmonic if it ismω-periodic for some positive integerm.
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Letωk = (k,ω) denote the greatest common factor ofk andω, andkω = [k,ω].
In this paper, we prove that under (H1) and (H2), there are a constantµ∗
and a continuous functionr : [−µ∗,µ∗] → (0,∞) satisfying limµ→0 r(µ) = 0
such that for anyµ with 0< |µ| � µ∗ and every given integersi and j with
i ∈ {0, . . . , k − 1} and j ∈ {0, . . . ,ω − 1}, (1.3) has akω-periodic solution
x∗(n, i, j,µ) satisfying∣∣x∗(n, i, j,µ)− xi+n

∣∣< r(µ), for all n ∈ Z.

Our approach to the existence problem here is based on a general existence
result developed in [24] and the related continuation theorem (see Gaines and
Mawhin [6]) as well as some a priori estimates.

The rest of this paper is organized as follows. In Section 2, a general existence
result for the existence of periodic solutions of difference equations (from [24])
is introduced. In Section 3, our main existence result for subharmonic solutions
of (1.3) is proved by applying the general result of [24] and some a priori
estimates.

In a subsequent paper, under the hypothesis that the perturbation is locally
Lipschitz continuous, we prove that (1.3) hask distinctkω-periodic solutions and
ωk distinctkω-period orbits near the periodic orbit of the unperturbed system. We
also prove that thekω-periodic solutions are stable (unstable) provided that the
k-period orbit of the unperturbed system is stable (unstable).

2. Existence of periodic solutions

Let R andZ denote the sets of all real numbers and integers, respectively. We
fix two integersω∗ � 1 andN � 1. Define

lN = {
x = {x(n)}: x(n) ∈ RN, n ∈ Z

}
.

For a sequence of mappings{Gn: n ∈ Z} with Gn : lN → RN, we useG= {Gn}
to denote the mappingG : lN → lN defined by

G(x)= {Gn(x)} for x ∈ lN .
Fora = (a1, . . . , aN) ∈ RN , define|a| = max1�j�q |aj |. Let lω

∗ ⊆ lN denote the
subspace of allω∗-periodic sequences equipped with the usual supremum norm
‖ · ‖, i.e.,

‖x‖ = max
0�n�ω∗−1

|x(n)| for x = {
x(n): n ∈ Z

} ∈ lω∗
.

It is easy to see thatlω
∗

is a finite-dimensional Banach space.
We letΩ ⊂ lω∗

be an open bounded subset andG :Ω → lω
∗

a continuous
mapping which maps every bounded subset ofΩ into bounded set oflω

∗
. For

r > 0, we set

Ωr = {
x = {x(n)} ∈ lω∗

: ‖x‖< r}.
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It is clear thatΩr is an open, bounded, convex and symmetric neighborhood of
0 ∈ lω.

Now, we consider the existence ofω∗-periodic solutions of the difference
equation

∆x(n)=Gn(x), (2.1)

wherex = {x(n)} ∈ lN ,∆x(n)= x(n+ 1)− x(n) andGn : lN → RN for n ∈ Z.
The following existence theorem forω-periodic solutions of Eq. (2.1) will be

needed in next section. This is Theorem 2.4 of [24].

Theorem 2.1. Assume that there existsr > 0 such that

(i) G= {Gn} :Ωr → lω
∗

is a continuous mapping whose image is a bounded set
of lω

∗
.

(ii) There is no pointx ∈ ∂Ωr such that

∆x(n)= 1

1+ λGn(x)−
λ

1+ λGn(−x)
for someλ ∈ [0,1].

Then(2.1) has anω∗-periodic solutionxω∗ = {xω∗(n)} satisfying‖xω∗‖< r.

3. Existence of subharmonic solutions

In this section, we prove the existence theorem ofkω-periodic solutions
of (1.3), after a series technical lemmas.

We denote byL(RN) the space of all linear bounded operators fromRN to RN .
From now on, we writeVr for {y ∈ RN : |y|< r} andVr(x)= {y ∈ RN : |y − x|
< r} for a givenx ∈ RN . Let

Ai =Df k(xi), 0� i � k − 1, (3.1)

α = max
0�i�k−1

‖Df (xi)‖, (3.2)

where‖ · ‖ is the norm ofL(RN) corresponding to a given Euclidean metric| · |
of RN .

By (H1) and [15], we infer thatAi is hyperbolic, i.e., there exist constants
K � 1 and 0< θ < 1 such that for each 0� i � k − 1,

(1) RN = Rsi ⊕ Rui , Ai[Rsi ] ⊆ Rsi , Ai[Rui ] ⊆ Rui , Rsi andRui are closed subspace.

(2) ∣∣Ami ys∣∣�Kθm|ys |, for all ys ∈ Rsi , m� 1, (3.3)∣∣A−m
i yu

∣∣�Kθm|yu|, for all yu ∈ Rui , m� 1. (3.4)
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From (H1) and (H2), we can choose a constantr0> 0 sufficiently small so that

r0< |xi − xj |, for i �≡ j (modk), (3.5)

and

g(n, y,µ) �= g(m,y,µ), (3.6)

with arbitrary 0< |µ| � µ0,m �≡ n (modω) andy ∈ V r0(xi∗).
Forn ∈ Z andy ∈ V r0, we have

f (xn + y)= f (xn)+Df (xn)y +Ln(0, y)y, (3.7)

whereLn(x, y) denotes the mapLn :V (1/2)r0 × V r0 →L(RN) defined by

Ln(x, y)=
1∫

0

[
Df (xn + x + ty)−Df (xn)

]
dt.

Ln(x, y) is k-periodic inn. Then the mappingγ : [0, (1/2)r0] → R defined by

γ (r)= sup
0�ρ�r

sup
(x,y)∈Vr×V 2r

0�i�k−1

‖Li(x, y)‖ (3.8)

is monotonically nondecreasing inr, limr→0+ γ (r)= 0, and

‖Ln(0, y)‖ � γ (r), for |y| � 2r � r0.

Define projectionsP1 : RN → Rs andP2 : RN → Ru by

P1(y)= ys, P2(y)= yu,
wherey = ys + yu, ys ∈ Rs , yu ∈ Ru. Let

‖P‖ = max
{‖P1‖,‖P2‖,1

}
. (3.9)

Then for anyy ∈ RN

max
{|ys |, |yu|}� ‖P‖|y|. (3.10)

Choose 0< r1 � min{(1/2)r0,∑k−1
l=0 (α + 1)l} such that

γ (r1) <
1− θ

4‖P‖K

[
k−1∑
l=0

(α+ 1)l
]−1

, (3.11)

whereα,K, θ are defined in (3.2), (3.3) and (3.4), respectively.
Let

Mr = max
0�i�k−1
0�j�ω−1

{
sup

0�ρ�r
sup

−µ0�µ�µ0
x∈V ρ(xi)

|g(j, x,µ)|,1
}

for 0< r � r1, (3.12)
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µ∗ = min

{
µ0,

1− θ
4‖P‖KMr1

[
k−1∑
l=0

(α + 1)l
]−2

r1

}
, (3.13)

r(µ)=
[

4‖P‖KMr1
1− θ

k−1∑
l=0

(α + 1)l
]
|µ| for 0< |µ|<µ∗, (3.14)

kω = abωk = aω= bk, (3.15)

wherea andb are relatively prime integers.
Now, we address the existence ofkω-periodic solutions of (1.3). In the

following, “a kω-periodic solution of (1.3)” always means the minimum period
of such a solution iskω.

Our main result can now be stated as follows:

Theorem 3.1. Suppose that the conditions(H1) and (H2) are satisfied. Then, for
every giveni andj with i ∈ {0, . . . , k − 1} andj ∈ {0, . . . ,ω− 1} and for anyµ
with 0< |µ|<µ∗, (1.3) possesses akω-periodic solutionx∗(n, i, j,µ) satisfying∣∣x∗(n+ j, i, j,µ)− xi+n

∣∣< r(µ), (3.16)

whereµ∗ andr(µ) are defined in(3.13)and(3.14), respectively, andr(µ)→ 0
asµ→ 0.

The remainder of this section is devoted to the proof of Theorem 3.1. We will
always fix(i, j,µ) so that 0� i � k − 1, 0� j � ω − 1 and 0< |µ|< µ∗, and
for the sake of simplicity, we will omitµ from the notationx∗(n, i, j,µ).

It is obvious that ifx∗(n, i, j) is a solution of (1.3) satisfyingx∗(n+kω, i, j)=
x∗(n, i, j) and (3.16), then with

y∗(n, i, j)= x∗(n+ j, i, j)− xi+n for n ∈ Z, (3.17)

we obtain akω-periodic solution{y∗(n, i, j)}n∈Z of the equation

y(n+ 1)= [
Df (xi+n)+Li+n(0, y(n))

]
y(n)

+µg(n+ j ;xi+n + y(n),µ) (3.18)

with |y∗(n; i, j )|< r(µ) for n ∈ Z, and vice versa. We divide the long proof of
Theorem 3.1 into two steps.

Step 1. We show that Eq. (3.18) has a periodic solutiony∗(n; i, j ) with∣∣y∗(n; i, j )∣∣< r(µ),
wherekω is a period.

Step 2. We prove that the minimum period ofy∗(n; i, j ) defined in (3.17) iskω.
In order to simplify the notations, forn ∈ Z, 0�m� k − 1 andv ∈ V r(µ), we

defineTij (n+m,n)v as follows:

(i) If m= 0,Tij (n,n)v = v.
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(ii) If m � 1, Tij (n +m,n)v = y(n+m;n, v), wherey(l;n, v), l � n, denotes
the solution of (3.18) withy(n;n, v)= u.

Lemma 3.2. For n ∈ Z, we have

Tij (n+m,n)v ∈ Vr1, for v ∈ Vr(µ) and1 �m� k − 1. (3.19)

Proof. Let vm = Tij (n+m;n)v, 0�m� k andr∗ = [∑k−1
l=0 (α+ 1)l]−1r1. Then

[∑m
l=0(α + 1)l]r∗ � r1 for 0 �m� k − 1, and (3.13) yields

|µ|Mr1 < r∗, r(µ) < r∗ for 0< |µ|<µ∗. (3.20)

To prove that|vm|< r1 for 0 �m� k − 1, it is sufficient to prove that

|vm|<
[
m∑
l=0

(α + 1)l
]
r∗ for 0 �m� k− 1 (3.21)

by induction onm. First, it is clear that (3.21) holds form= 0. For the purpose of
induction, assume that form= p� 0, we have already proved

|vp|<
[
p∑
l=0

(α + 1)p
]
r∗. (3.22)

Form= p+ 1, by (3.2), (3.12), (3.18) and (3.20), we get

|vp+1| =
∣∣[Df (xi+n+p)+Li+n+p(0, vp)]vp +µg(n+ j + p,xi+n+p,µ)

∣∣
< (α + 1)|vp| +µ∗Mr1.

Therefore, using (3.22) we get

|vp+1|< (α+ 1)

{[
p∑
l=0

(α + 1)l
]
r∗

}
+ r∗ =

[
p+1∑
l=0

(α + 1)l
]
r∗.

Thus, we have by the induction principle proved that (3.22) hold for 0� m �
k − 1. The proof of Lemma 3.2 is complete.✷

The following result describes some elementary properties ofTij (n+m,n) to
be used later.

Lemma 3.3. Tij (n+m,n) satisfies:

(i) Tij (n,n)= IN , whereIN ∈ L(RN) is the identity mapping.
(ii) Tij (n+ n1 + n2, n+ n1)Tij (n+ n1, n)= Tij (n+ n1 + n2, n), wheren1, n2

are nonnegative integers.
(iii) Tij (n+ kω + n1, n+ kω)= Tij (n+ n1, n).
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Proof. The proof is straightforward if we note that the mapsLn and g are
kω-periodic inn. ✷

In the following lemma, we expressTij (n+m,n)v with k � 2, 2�m� k and
n ∈ Z, in terms ofv andTij (n+ l, n)v, 0� l �m− 1.

Lemma 3.4. If k � 2, then for2 �m� k, a givenn ∈ Z andv ∈ Vr(µ), we have

Tij (n+m,n)v =
(
m−1∏
l=0

Ql

)
v +µ

m−2∑
l=0

(
m−1∏
q=l+1

Qq

)
gl +µgm−1, (3.23)

where
∏q
l=0al denotes the productaqaq−1 . . . a1a0, and

Ql =Df
(
xi+n+l +Li+n+l

(
0, Tij (n+ l, n)v)),

gl = g
(
j + n+ l, xi+n+l + Tij (n+ l, n)v,µ).

Proof. Using above notations, we can rewrite (3.23) as

vm =
(
m−1∏
l=0

Ql

)
v0 +µ

m−2∑
l=0

(
m−1∏
q=l+1

Qq

)
gl +µgm−1. (3.24)

It follows from (3.18) that

vl+1 = Qlvl +µgl for 1 � l � k − 1. (3.25)

We now use (3.25) to prove (3.24) by induction onm. First, form= 2,

v2 = Q1v1 +µg1 = Q1(Q0v0 +µg0)+µg1

=
(

1∑
l=0

Ql

)
v0 +µ

0∑
l=0

(
1∏

q=0+1

Qq

)
g0 +µg1.

Thus, (3.24) holds form= 2.
If k = 2, the proof is complete. Assume nowk � 3, and assume that for

m= p � k − 1, we have already proved

vp =
(
p−1∏
l=0

Ql

)
v0 +µ

p−2∑
l=0

(
p−1∏
q=l+1

Qq

)
gl +µgp−1.

Form= p+ 1, we have

vp+1 = Qpvp +µgp
=
(
p∏
l=0

Ql

)
v0 +µ

p−2∑
l=0

(
p∏

q=l+1

Qq

)
gl +µQpgp−1 +µgp

=
(
(p+1)−1∏
l=0

Ql

)
v0 +µ

(p+1)−2∑
l=0

(
(p+1)−1∏
q=l+1

Qq

)
gl +µg(p+1)−1.



R. Zhang et al. / J. Math. Anal. Appl. 275 (2002) 495–511 503

Therefore we have proved by the induction principle that (3.24) holds. The proof
of Lemma 3.4 is complete.✷

The expansion formulas established in Lemma 3.4 yield the following con-
sequence immediate consequence:

Lemma 3.5. If k � 2, then, forn ∈ Z andv ∈ Vr(µ),
T ((n+ 1)k, nk)v =Aiv + Fij (n, v)v +µHij (n, v,µ), (3.26)

where

Fij (n, v)=
k−1∏
l=0

[
Df (xi+l )+Li+l

(
0, Tij (nk + l, nk)v)]

−
k−1∏
l=0

Df (xi+l ), (3.27)

Hij (n, v,µ)

=
k−2∑
l=0

{
k−1∏
q=l+1

[
Df (xi+q)+Li+l

(
0, Tij (nk + q,nk)v)]

}

× g(j + nk + l, xi+l + Tij (nk + l, nk)v,µ)
+ g(j + nk + k − 1, xi+k−1 + Tij (nk + k − 1, nk)v,µ

)
. (3.28)

BothFij (n, v) andHij (n, v,µ) areb-periodic mappings and forv ∈ V r(µ),
∥∥Fij (n, v)∥∥�

[
k−1∑
l=0

(α + 1)l
]
γ (r1), (3.29)

∣∣Hij (n, v,µ)∣∣�
[
k−1∑
l=0

(α + 1)l
]
Mr1. (3.30)

Proof. Replacingn by nk andm by k in (3.23), respectively, and noting that
{xn}n∈Z is k-periodic, we obtain (3.26)–(3.28). As{xn}n∈Z and{g(n, x,µ)}n∈Z
both arekω-periodic in n and sincekω = bk, we conclude thatFij (n, v) and
Hij (n, v,µ) areb-periodic inn. It remains to verify the boundedness ofFij (n, v)
andHij (n, v,µ), as expressed in (3.29) and (3.30).

From (3.19), we get∣∣Tij (nk + l, nk)v∣∣< r1, 0 � l � k − 1.

Thus we have∥∥Li+l(0, Tij (nk + l, nk)v)∥∥� γ (r1).
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Using (3.27), we get

∥∥Fij (n, v)∥∥�
k∑
l=1

(
l

k

)
γ l(r1)α

k−l = [α+ γ (r1)]k − αk

=
[
k∑
m=1

(α+ γ (r1))k−mγm−1(r1)

]
γ (r1)

�
[
k−1∑
l=0

(α + 1)l
]
γ (r1),

where
(
l
k

)
denotes the coefficient ofxl in the expansion of(1 + x)k. This gives

the desired estimation (3.29).
From (3.12) and arguing as above, we get∣∣g(j + nk + l, xi+l + Tij (nk + l, nk)v,µ)∣∣�Mr1.

This, together with (3.10), yields (3.30). The proof of Lemma 3.5 is complete.✷
Now, we can describe the key observation (to be verified later). If{z∗(n)}n∈Z

with |z∗(n)|< r(µ) is ab-periodic solution of the equation

z(n+ 1)=Aiz(n)+ Fij (n, z(n))z(n)+µHij (n, z(n),µ), (3.31)

whereFij (n, v) andHij (n, v,µ) are defined as in (3.27) and (3.28), respectively,
then{y∗(n; i, j )} defined by

y∗(nk +m; i, j )= Tij (nk +m,nk)z∗(n; i, j ),
n ∈ Z, 0 �m� k − 1, (3.32)

is akω-periodic solution of (3.18) with|y∗(nk; i, j )|< r(µ).
To prove (3.31) has ab-periodic solution, we will used the argument similar to

that in [24]. Namely, we note that (3.31) can be rewritten as

∆z(n)=Gn(z,µ, i, j),
whereGn(z,µ, i, j)= (Ai − IN)z(n)+Fij (n, z(n))z(n)+µHij (n, z(n),µ). Let

G(z,µ, i, j)= {Gn(z,µ, i, j)}n∈Z.

From (3.11), (3.13), (3.29) and (3.30), we have|Fij (n, y)|< 1, |µ| |Hij (n, y,µ)|
< r1 with n ∈ Z, |y| � r(µ) and 0< |µ| < µ∗. These estimates yield that
G = {Gn} :Ωr(µ) → lb is a continuous mapping whose image is a bounded set
of lb.

In view of Theorem 2.1 in Section 2, to prove that (3.31) has ab-periodic
solution{z∗(n)}, it remains to prove thatGn(z,µ, i, j) satisfies condition (ii) of
Theorem 2.1. This is verified in the following lemma.
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Lemma 3.6. There is noz= {zn} ∈ ∂Ωr(µ) ⊂ lb andλ ∈ [0,1] such that

∆z(n)= 1

1+ λGn(z,µ, i, j)−
λ

1+ λGn(−z,µ, i, j), n ∈ Z.

Proof. By way of contradiction, assume there is a constant 0� λ � 1 and ab-
periodic sequencez= {z(n)} with ‖z‖ = r(µ) and

∆z(n)= 1

1+ λGn(z,µ, i, j)−
λ

1+ λGn(−z,µ, i, j),
that is,

z(n+ 1)=Aiz(n)+Φij (λ,n, z(n),µ), (3.33)

where

Φij (λ,n, z(n),µ)=
[

1

1+ λFij (n, z(n))+
λ

1+ λFij (n,−z(n))
]
z(n)

+µ
[

1

1+ λHij (n, z(n),µ)−
λ

1+ λHij (n,−z(n),µ)
]
.

We observe by (3.29) and (3.30) that

∣∣Φij (λ,n, z(n),µ)∣∣�
[
k−1∑
l=0

(α + 1)l
][
γ (r1)r(µ)+ |µ|Mr1

]
. (3.34)

According to the notations in (3.3) and (3.4),

z(n)= zsi (n)+ zui (n), zsi (n) ∈ R(s)i , zui (n) ∈ R(u)i ,

Φij (λ,n, z(n),µ)=Φsij (λ,n, z(n),µ)+Φuij (λ,n, z(n),µ),
whereΦsij (λ,n, z(n),µ) ∈ Rsi , Φ

u
ij (λ,n, z(n),µ) ∈ R(u)i . Let 0� n0 � b − 1 so

that|z(n0)| = ‖z‖ = r(µ). We will lead to a contradiction in two cases.
Case A. |zsi (n0)|> (1/2)|z(n0)| = r(µ). We have

1

2
r(µ)= 1

2
|z(n0)|<

∣∣zsi (n0)
∣∣� ‖P‖|zi (n0)| = ‖P‖r(µ).

It follows from (3.33) that

zsi (n+ 1)=Aizsi (n)+Φsij (λ,n, z(n),µ).
Furthermore, for anym� 1,

zsi (n0 +mb)=Ambi zsi (n0)

+
mb∑
l=1

Amb−li Φsij
(
λ,n0 + l − 1, z(n0 + l − 1),µ

)
.
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We conclude from (3.3) and (3.34) that

∣∣zsi (n0 +mb)∣∣� ‖P‖Kθmbr(µ)+ ‖P‖
(
mb∑
l=1

Kθmb−l
)[

k−1∑
l=0

(α + 1)l
]

× [
γ (r1)r(µ)+ |µ|Mr1

]
.

Taking the limit asm→ ∞ and using (3.10) and (3.11), we obtain

1

2
r(µ) <

∣∣zsi (n0)
∣∣� 1

4
r(µ)+ ‖P‖K

1− θ

[
k−1∑
l=0

(α+ 1)l
]
Mr1|µ|,

that is,

r(µ) <
4‖P‖KMr1

1− θ

[
k−1∑
l=0

(α + 1)l
]
|µ|, (3.35)

this contradicts (3.14).
Case B. |zui (n0)| � (1/2)|z(n0)| = r(µ). Note that (3.33) yields

zui (n0)=A−mb
i zui (n0 +mb)

−
mb∑
l=1

A−l
i Φ

u
ij

(
λ,n0 + l − 1, z(n0 + l − 1),µ

)
.

Using this and following the procedure used in Case A, we get

r(µ)� 4‖P‖Kθ
1− θ

[
k−1∑
l=0

(α+ 1)l
][
γ (r1)r(µ)+ |µ|Mr1

]
.

From this and 0< θ < 1, we obtain (3.35) which contradicts (3.14). The proof of
Lemma 3.6 is complete.✷

We can now complete the arguments in Step 1. From now on, the symbol
{z∗(n)}n∈Z will denote theb-periodic solution of (3.31) with|z∗(n)|< r(µ). For
the remaining part of the proof of the assertion in Step 1, it suffices to prove

Lemma 3.7. {y∗(n; i, j )}n∈Z defined in(3.32) is a periodic solution of(3.18)
with ∣∣y∗(n; i, j )∣∣< r(µ) for n ∈ Z. (3.36)

Proof. We first prove that{y∗(n; i, j )}n∈Z is a periodic solution of (3.18). Using
(3.32) and the definition ofTij (n+m,n), we get

y∗(nk +m; i, j )= y(nk +m;nk, z∗(n; i, j ))
= y(nk +m;nk, y∗(nk; i, j )).
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As {z∗(n; i, j )}n∈Z is a solution of (3.31), we have

y∗((n+ 1)k; i, j)= z∗(n+ 1; i, j )= Tij (nk + k;nk)z∗(nk; i, j )
= y(nk + k;nk, y∗(nk; i, j )).

So{y∗(n; i, j )} satisfies (3.18).
By kω = bk andz∗(n+ b; i, j )= z∗(n; i, j ) for n ∈ Z, we obtain

y∗(nk +m+ kω; i, j )= Tij (nk + bk+m,nk + bk)z∗(n+ b; i, j )
= Tij (nk + kω +m,nk + kω)z∗(n; i, j ).

Lemma 3.3(iii) then yields

y∗(nk +m+ kω; i, j )= Tij (nk +m,nk)z∗(n; i, j )= y∗(nk +m; i, j ),
i.e.,kω is a period of{y∗(n; i, j )}n∈Z.

We now show that{y∗(n, i, j)}n∈Z satisfies (3.36). The case wherek = 1 is
trivial. So we only consider the case wherek � 2. It is sufficient to prove that for
each 1�m� k− 1 andn ∈ Z, |y∗(nk+m; i, j )|< r(µ). If this were false, there
would exist 1�m0 � k − 1 and n0 ∈ Z such that∣∣y∗(n0k +m0; i, j )

∣∣= r0 � r(µ).
Note that∣∣y∗(n; i, j )∣∣< r1, n ∈ Z, (3.37)

by virtue of (3.19) and (3.32). Let 0� i0 � k − 1 and 0� j0 � ω− 1 such that

i +m0 ≡ i0 (modk), j +m0 ≡ j0 (modω). (3.38)

Let

z0(n, i0, j0)= y∗(nk +m0; i, j ), n ∈ Z. (3.39)

Our strategy below, intuitively speaking, is to show that{z0(n; i0, j0)}n∈Z is a
b-periodic solution of (3.31) withi being replaced byi0, andj by j0, respectively.
This, as in the proof of Lemma 3.6, will lead to a contradiction. To carry out this
strategy, our key step is to prove that

Tij (nk +m0 + l, nk +m0)= Ti0j0(nk + l, nk) for 1 � l � k. (3.40)

To begin with, we note that it is possible to writeTij ((nk+m0)+ l, nk+m0)×
z0(n; i0, j0) for 1 � l � k andn ∈ Z by virtue of (3.37) and

z0(n+ 1; i0, j0)= y∗((n+ 1)k+m0; i, j
)

= Tij
(
(nk +m0)+ k,nk +m0

)
y∗(nk +m0; i, j )

= Tij
(
(nk +m0)+ k,nk +m0

)
z0(n; i0, j0).
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In the following, we show that (3.40) holds by induction. Forl = 1, (3.18) gives

Tij (nk +m0 + 1, nk+m0)v

= [
Df (xi+nk+m0)+Li+nk+m0(0, v)

]
v+µg(nk +m0 + j, v,µ)

= Ti0j0(nk + 1, nk)v.

For the purpose of induction, assume that forl = p � k − 1, (3.40) holds true for
l � p. Then forl = p+ 1, Lemma 3.3 yields

Tij (nk +m0 + p+ l, nk +m0)v

= Tij (nk +m0 + p+ l, nk +m0 + p)Tij (nk +m0 + p,nk +m0)v

= [
Df (xi+nk+m0+p)+Li+nk+m0+p

(
Ti0j0(nk + p,nk)v)]

× Ti0j0(nk + p,nk)v
+µg(nk +m0 + p+ j, Ti0j0(nk + p,nk)v,µ)

= [
Df (xi0+p)+Li0+p

(
0, Ti0j0(nk + p,nk)v)]Ti0j0(nk + p,nk)v

+µg(nk + p+ j0, Ti0j0(nk + p,nk)v,µ)
= Ti0j0(nk + p+ 1, nk+ p)Ti0j0(nk + p,nk)v
= Ti0j0(nk + p+ 1, nk)v.

Thus, by the induction principle, we show that (3.40) holds for 1� l � k.
Specially, we getTi0j0(nk+m0 + k,nk+m0)= Ti0j0(nk+ k,nk). It follows that

z0(n+ 1; i0, j0)= Tij
(
(nk +m0)+ k,nk +m0

)
z0(n; i0, j0)

= Ti0j0((n+ 1)k, nk)z0(n; i0, j0).
It is obvious that{z0(n; i0, j0)} has similar properties as{z∗(n; i, j )} as ab-
periodic solution of the equation

z(n+ 1)=Ai0z(n)+ Fi0j0(n, z(n))z(n)+µHi0j0(n, z(n),µ).
We can further proceed as in the proof of Lemma 3.6 and show that|z0(n0; i0, j0)|
= r0 � r(µ) contradicts (3.14). This proves that{y∗(n, i, j)}n∈Z satisfies (3.36),
and completes the proof of Lemma 3.7.✷

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. According to (3.17), we have

x∗(n+ j ; i, j )= xi+n + y∗(n; i, j ) for n ∈ Z. (3.41)

It is easy to see thatx∗(n+ kω; i, j )= x∗(n; i, j ) for n ∈ Z and∣∣x∗(n+ j ; i, j )− xi+n
∣∣< r(µ).
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We also obtain from (3.41) and (3.18), for anyn ∈ Z, that

x∗(n+ j + 1; i, j )= xi+n+1 + y∗(n+ 1; i, j )
= f (xi+n)

+ [
Df (xi+n)+Li+n

(
0, y∗(n; i, j ))]y∗(n; i, j )

+µg(n+ j ;xi+n + y∗(n; i, j ),µ),
y∗(n, i, j,µ)= f (xi+n + y∗(n; i, j ))+µg(n+ j ;x∗(n+ j ; i, j ),µ)

= f (x∗(n+ j ; i, j ))+µg(n+ j ;x∗(n+ j ; i, j ),µ),
that is,{x∗(n; i, j )}n∈Z is a solution of (1.3).

Note that the conclusion stated in Step 1 has been verified above, in Lem-
ma 3.7. We now complete the proof for the conclusion in Step 2. Namely, we
prove thatkω is the minimum period ofx∗(n; i, j ). It will suffice to prove that
if ω0 makesx∗(n + ω0; i, j ) = x∗(n; i, j ) for n ∈ Z, thenω0 ≡ 0 (modk) and
ω0 ≡ 0 (modω). To do this, let

ω0 = p0k + q0 = p0ω+ q0. (3.42)

All we need to prove isq0 = q0 = 0.
The proof forq0 = 0 is clear ifk = 1. Assume nowk � 2. By way of con-

tradiction, if 1� q0 � k − 1, thenxi+p0k+q0 = xi+q0 �= xi. So we have by this
and (3.5), (3.14), (3.16) that

0= ∣∣x∗(j + p0k + q0; i, j )− x∗(j ; i, j )∣∣
� |xi+p0k+q0 − xi |

− [∣∣x∗(j + p0k + q0; i, j )− xi+p0k+q0

∣∣+ ∣∣xi − x∗(j ; i, j )∣∣]
> 2r(µ)− [

r(µ)+ r(µ)]= 0.

This is a contradiction. Thus,q0 = 0 and we have by (3.42) that

ω0 = p0k = p0ω+ q0. (3.43)

It remains to prove thatq0 = 0. This is trivial if ω = 1. Forω � 2, we prove
q0 = 0, again by way of contradiction. Suppose 1� q0 � ω − 1. Choosing
0 � n∗ � k − 1 such thatn∗ + i ≡ i∗ (modk). Then (3.16) gives∣∣x∗(n∗ + j ; i, j )− xi∗

∣∣< r(µ). (3.44)

(3.43) yields

x∗(l + p0ω+ q0 + n∗ + j ; i, j )= x∗(l + n∗ + j ; i, j ), l ∈ Z.

By (1.3) and (3.43), we have

x∗(p0ω+ q0 + n∗ + j + 1; i, j )
= f (x∗(p0ω+ q0 + n∗ + j ; i, j ))

+µg(p0ω+ q0 + n∗ + j ;x(p0ω+ q0 + n∗ + j ; i, j ),µ)
= f (x∗(n∗ + j ; i, j ))+µg(q0 + n∗ + j, x∗(n∗ + j ; i, j ),µ)
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and

x∗(n∗ + j + 1; i, j )= f (x∗(n∗ + j ; i, j ))
+µg(n∗ + j ;x∗(n∗ + j ; i, j ),µ).

It follows that

g
(
n∗ + j + q0;x∗(n∗ + j ; i, j ),µ)= g(n∗ + j ;x∗(n∗ + j ; i, j ),µ).

But by (3.44),x∗(n∗ + j ; i, j ) ∈ Vr(µ)(xi∗)⊂ V r1(xi∗) with n∗ + j + q0 �≡ n∗ + j
(modω). This contradicts (3.6). This proveq0 = 0. The proof of Theorem 3.1 is
then complete. ✷

We conclude this section with a simple consequence of Theorem 3.1. If
g(n, x,µ)= g(x,µ) in (1.3), we have the following equation:

x(n+ 1)= f (x(n))+µg(x(n),µ). (3.45)

Theorem 3.8. Suppose that the condition(H1) is satisfied and the mapping
g : RN × [−µ0,µ0] → RN is continuous. Then, for anyµ with 0< |µ| < µ∗,
(3.45)has ak-periodic solutionx∗(n,µ) satisfying∣∣x∗(n,µ)− xn

∣∣< r(µ),
whereµ∗ andr(µ) are defined in(3.13)and(3.14), respectively.
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