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Abstract

We consider the existence of subharmonic solutions of systems of difference equations
with periodic perturbations. The theory of coincidence degree, coupled with some detailed
a priori estimates, is applied to show that the perturbed system admits subharmonic
solutions near a hyperbolic periodic orbit of the unperturbed system if the perturbation
is sufficiently small.
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1. Introduction

In the last two decades, the existence of subharmonic solutions has been exten-
sively studied for several important classes of dynamical systems such as periodic
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reaction—diffusion equations [4], forced wave equations [16], nonlinear second-
order differential equations [10] and nonautonomous Hamiltonian systems [19],
to name a few.

Most existing studies deal with the following periodic perturbed systems:

x=Fx)+eG(x,1), (1.2)

wherex e RY, G: RN x R — RY is T-periodic with respect to theargument,

F is a vector field irR" such that (1.1) witke = 0 has an orbit homoclinic at a

hyperbolic saddle point. See [3,8,9,13,14,20,22,23,25] and references therein.
While subharmonic and superharmonic periodic solutions were studied in [11]

for some difference equations, results in the spirit of the aforementioned work

on (1.1) were only recently obtained by Agarwal and Zhang [2] for the following

scalar difference equation:

x(n+1)=f(x(n))+6g(n,x(n),x(n+1)). (1.2)
Under the following assumptions:

(a) the mapf has an attracting cycle = {w1, wo, ..., w,} and its multiplicator
satisfiegu, | < 1,

(b) both f andg areC-smooth,

(c) g ism-periodic inn, wherem € Z ., the set of all positive integers,

they proved that there is a constasnt> 0 such that for alle € (0, ¢g) the
difference equation (1.2) has:, p] asymptotically stable piecewise continuous
[m, p]-periodic solutions, wherpn, p] denotes the least common multiplerof
andp. Other related problems were studied in [7,14,18,21].

In this and a subsequent paper, we consider subharmonic solutions for the
discrete perturbed system

x(n+1) = fx(n) + pugn, xn), w, (1.3)

whereyq is a positive constanty € R with 0 < || < po, x(n) € RN. Moreover,
we assume:

(H1) The unperturbed system(n + 1) = f(x(n)) possesses &periodic orbit
{x,}52 _ o for a given positive integet. f (x) is continuously differential in
a neighborhood ofxo, ..., xx—1} and the orbifx, },,cz is hyperbolic [15].

(H2) The mapping :Z x RN x [—uo, uo]l — RY is continuous ana-periodic
in n, and there is somg € {0, ..., k — 1} so that for anyu with |u| < 1o,
the minimum period og (n, x;,, u) with respect to: is w.

We refer to [1,5,12,17] for a good introduction to the general qualitative
theory and the existence of periodic solutions of the autonomous difference
equation (1.3) withu = 0. A solutionx(n) of the discrete system (1.3) is said
to be subharmonic if it imw-periodic for some positive integer.
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Letwy = (k, w) denote the greatest common factok@ndw, andk,, = [k, w].
In this paper, we prove that under {Hand (M), there are a constant,
and a continuous function: [— ., 1«1 — (0, 0o) satisfying lim,—or(n) =0
such that for any with 0 < || < us« and every given integersand j with
i€{0,....k—1) and j € {0,...,w — 1}, (1.3) has ak,-periodic solution
x*(n, i, j, u) satisfying

|x*(n, i, j, 1) —x,'+n| <r(n), forallneZ.

Our approach to the existence problem here is based on a general existence
result developed in [24] and the related continuation theorem (see Gaines and
Mawhin [6]) as well as some a priori estimates.

The rest of this paper is organized as follows. In Section 2, a general existence
result for the existence of periodic solutions of difference equations (from [24])
is introduced. In Section 3, our main existence result for subharmonic solutions
of (1.3) is proved by applying the general result of [24] and some a priori
estimates.

In a subsequent paper, under the hypothesis that the perturbation is locally
Lipschitz continuous, we prove that (1.3) Hadistinctk,,-periodic solutions and
wy, distinctk,,-period orbits near the periodic orbit of the unperturbed system. We
also prove that thé,-periodic solutions are stable (unstable) provided that the
k-period orbit of the unperturbed system is stable (unstable).

2. Existence of periodic solutions
Let R andZ denote the sets of all real numbers and integers, respectively. We
fix two integersw* > 1 andN > 1. Define
Iy ={x={x(m)}: x(n) eRY, neZ}.

For a sequence of mappingS,: n € Z} with G, : Iy — R", we useG = {G,)
to denote the mappingG : [y — [y defined by

Gx)={G,(x)} forxely.

Fora = (a1, ...,ay) € RV, definela| = maxi< j<, la;|. LetI®" C Iy denote the
subspace of alb*-periodic sequences equipped with the usual supremum norm
-1l i.e.,
Ixl= max |x(m)| forx={x(m):nez}el”.
<n<o*—1

Itis easy to see that” is a finite-dimensional Banach space.

We let 2 C [“" be an open bounded subset afid$2 — [*" a continuous
mapping which maps every bounded subsefofnto bounded set of*". For
r > 0, we set

2 ={x={xm}el: x|l <r}.
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It is clear thats2, is an open, bounded, convex and symmetric neighborhood of
Oel®.

Now, we consider the existence ef*-periodic solutions of the difference
equation

Ax(n) = Gu(x), (2.2)
wherex = {x(n)} € Iy, Ax(n) =x(n +1) —x(n) andG, : Iy — RN forn e Z.

The following existence theorem far-periodic solutions of Eq. (2.1) will be
needed in next section. This is Theorem 2.4 of [24].

Theorem 2.1. Assume that there exists> 0 such that

() G={G,}:2, — 1“" is a continuous mapping whose image is a bounded set
of 1",
(i) Thereis no poink € 92, such that

1 A
Ax(n) = mGn(X) - mGn(_x)

for somei € [0, 1].

Then(2.1) has anw*-periodic solutionx,« = {x,+(n)} satisfying|x,|| < r.

3. Existence of subharmonic solutions

In this section, we prove the existence theoremkgfperiodic solutions
of (1.3), after a series technical lemmas.

We denote by (R") the space of all linear bounded operators fiefhto R .
From now on, we writé//, for {y e RV: |y| <r} andV,(x) = {y e RV: |y — x|
<r}foragivenx e RV, Let

Ai=Df*xi), 0<i<k-—1, (3.1)
= DFf (x; 2
o= max IDf &), 3.2)

where|| - | is the norm ofL(R") corresponding to a given Euclidean mefrid
of RV,

By (H1) and [15], we infer that4; is hyperbolic, i.e., there exist constants
K >1and 0< 6 < 1suchthatforeach€i <k -1,

(1) RY =R @ RY, A;[R{] CR!, A;[RY] € R, Rf andRY are closed subspace.
2

|AT Y| < KO™|y*|, forally* eRf, m>1, (3.3)
|A7"y | < KO™|y"|, forall y“ e RY, m > 1. (3.4)

i
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From (H) and (H), we can choose a constagt> 0 sufficiently small so that
ro < |x; — x|, foriz j (modk), (3.5)
and

gn,y, w) #glm,y, u, (3.6)

with arbitrary O< || < po, m # n (modw) andy € V o(x;,).
Forn e Z andy € V,,, we have

fOn+y)=fxn)+Df (x)y + Ln(0, y)y, (3.7)
whereL, (x, y) denotes the map,, : V (1/2)r, x V,, — L(RY) defined by
1

L,(x,y)= /[Df(xn +x+ty)— Df(x,,)] dt.
0
L, (x,y) is k-periodic inn. Then the mapping : [0, (1/2)rg] — R defined by

y(r)= sup sup  [ILi(x, )l (3.8)
0<p<r (x,y)€V, XV,
0<i<k—-1

is monotonically nondecreasinginlim,_,q+ y (r) =0, and

L, O, I <y (r), for|y|<2r<ro.

Define projections’; :RY — R® andP,:RY — R* by

Piy)=y',  Py)=y",
wherey = y* + y*, y* e R*, y* e R*. Let

I Pl = max{|| Pul, | P2ll, 1}. (3.9)
Then for anyy e RV

max{[y’[, [y"“[} < I Plllyl. (3.10)

Choose 0< r1 < min{(1/2)ro, Y*“3(« + 1)} such that

1-¢ [ I
V(r1)<4||p||1<[§(“+1)] , (3.11)

wherea, K, 6 are defined in (3.2), (3.3) and (3.4), respectively.
Let

M, = max { sup sup |g(j,x,y,)|,1} forO<r <ry, (3.12)
Osisk—1 Logp<r —po<u<po
0</so-1 xe\7,)(x,-)
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s =min{ uo, ——— (x+1) rig, (3.13)
{ 4||P||KMr1 [Z } }
A||P|IK My,
r(p) = [T@l Z(ot+1)l:||u| for0 < || < s, (3.14)
=0
ko = abwy = aw = bk, (3.15)

wherea andb are relatively prime integers.

Now, we address the existence kf-periodic solutions of (1.3). In the
following, “a k,-periodic solution of (1.3)” always means the minimum period
of such a solution i%,,.

Our main result can now be stated as follows:

Theorem 3.1. Suppose that the conditiofid1) and (H2) are satisfied. Then, for
every given andj withi € {0,...,k—1}andj € {0, ..., ® — 1} and for anyu
with 0 < || < s+, (1.3) possessesi,-periodic solutionc™* (n, i, j, u) satisfying

|x*(n + j. i, j. 1) — Xign| <7 (), (3.16)

whereu, andr(u) are defined in(3.13) and (3.14), respectively, and(u) — 0
asu — 0.

The remainder of this section is devoted to the proof of Theorem 3.1. We will
always fix (i, j,u) sothat 0< i <k —1,0< j <w—1and O< |u| < 4, and
for the sake of simplicity, we will omit. from the notationc*(n, i, j, u).

Itis obviousthatifx*(n, i, j) is a solution of (1.3) satisfying*(n + ke, i, j) =
x*(n, i, j) and (3.16), then with

y'(n,i, j)=x*(n+j,i,j) —xitzn forneZ, (3.17)
we obtain a,,-periodic solutiony*(n, i, j)},<z of the equation

y(n+1)=[Df (xisn) + Lizn (0, y(n))]y(n)
+ g (n+ ji Xign + y(n), 1) (3.18)

with |y*(n; i, j)| < r(un) for n € Z, and vice versa. We divide the long proof of
Theorem 3.1 into two steps.
Step 1 We show that Eq. (3.18) has a periodic solutidi; i, j) with

|y (i, )| <rw),

wherek,, is a period.
Step 2We prove that the minimum period ¢f (n; i, j) defined in (3.17) i%,,.
In order to simplify the notations, fore Z, 0< m <k — 1 andv € V,(,,), we
defineT;; (n +m, n)v as follows:

(i) tm=0,T;;(n,n)v=v.
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(i) f m>1,T;;(n+m,n)v =y +m;n,v), wherey(l; n,v), [ > n, denotes
the solution of (3.18) withy (n; n, v) = u.

Lemma3.2. Forn € Z, we have

Tiin+m,nveV,, forveV,yandl<m<k-1 (3.19)

Proof. Letvm—Ej(n+m;n)v,0<m<kandr* Z (a—+—1) 1r1. Then
> (a+1) re <riforo<m<k-1,and (3.13)y|elds

[wMyy <1, r(u) <r for 0 < |u| < pux. (3.20)

To prove thatv,,| < r1 for 0 <m <k — 1, itis sufficient to prove that

|Um| < |:Z(oc+l)l:|r* foro<m<k-—1 (3.21)
=0

by induction onmn. First, it is clear that (3.21) holds fet = 0. For the purpose of
induction, assume that fat = p > 0, we have already proved

p
lvpl < [Z(a + 1)’]}*. (3.22)

1=0
Form = p +1, by (3.2), (3.12), (3.18) and (3.20), we get

[pt1l = |[Df Gitntp) + Litntp (0, vp)|vp + g + j + p, Xitnip, )|
< (a+Dvp|+ psM,
Therefore, using (3.22) we get

p p+1
|UP+1| <(a+ 1){ |:Z(Ol + 1)l:|r*} +r= |:Z(Ol + 1)l:|r>k

1=0 =0

Thus, we have by the induction principle proved that (3.22) hold fer® <
k — 1. The proof of Lemma 3.2 is completen

The following result describes some elementary properti€s;of 4 m, n) to
be used later.

Lemma 3.3. T;; (n + m, n) satisfies:

() Tij(n,n) =1Iy, wherely € L(RY) is the identity mapping.
(i) T;j(n+n1+n2,n+n)T;j(n+ny,n) =T;j(n+n1+ nz, n), whereny, np
are nonnegative integers.
(i) T;j(n+ky+n1,n+ky) =T;j(n+ng,n).
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Proof. The proof is straightforward if we note that the maps and g are
ke-periodicinn. O

In the following lemma, we expres§; (n +m, n)v withk > 2, 2<m < k and
neZ,interms ofv andT;;(n +1,n)v, 0<I <m — 1.

Lemma3.4.1f k > 2, then for2 <m < k, agivenn € Z andv € V, (), we have

m—1
T;j(n+m, n)v—(]‘[ QZ)U+MZ< I Qq>gl+ugm_1, (3.23)

1=0 \g=I+1
where[]/_,a; denotes the produet;a,—1 . . .a1a0, and

Qi = Df (Xignti + Liznt1(0, Tij(n + 1, n)v)),
gr=8(j+n+1 xignri+Tij(n+ 1. n)v, ).

Proof. Using above notations, we can rewrite (3.23) as

— m—1
Um = (H Ql)"o +u Z( I1 Qq)gl + 1gm-1. (3.24)

q=I+1
It follows from (3.18) that

Ul+1:QlUl+/,Lgl forlélgk—l (325)
We now use (3.25) to prove (3.24) by inductionmnFirst, form = 2,

v2 = Q1v1 + g1 = Q1(Qovo + ugo) + g1

<ZQ1>U0+MZ( ﬁ Qq>go+ug1-

=0 \¢=0+1

Thus, (3.24) holds fom = 2.
If k =2, the proof is complete. Assume now> 3, and assume that for
m = p <k — 1, we have already proved

vp = (]_[ Ql)vo+ui:( ﬁ Qq)gﬂrugp—l-

=0 \g=I+1
Form = p + 1, we have

Vp+1=Qpvp + gy

(HQ1>U0+HZ( I1 Qq)gl+ﬂngp 1+ 1gp

1=0 \g=i+1

(p+D-1 (P+D—2 /(p+D—1
=< I1 Q1>v0+ﬂ > ( I1 Qq>gl+ﬂg(p+1)—1-
1=0 1=0

q=I1+1
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Therefore we have proved by the induction principle that (3.24) holds. The proof
of Lemma 3.4 is complete.O

The expansion formulas established in Lemma 3.4 yield the following con-
seguence immediate consequence:

Lemma3.5.1f k > 2, then, forn € Z andv € V,(,),
T((n+Dk,nk)v=A;v+ F;j(n,v)v+ puH;j(n, v, 1, (3.26)

where
k—1

Fij(n,v) = [ [[Df (i) + Lisi (0, Tij(nk + 1, nk)v)]
=0

k-1
o E! (3.27)

1=0
Hij(n,v, n)

—2( k-1

= { l_[ [Df (xi+q) + Liti(0, Tij(”k"‘qank)v)]}

1=0 Lg=i+1
x g(j +nk+1, x4 + Tij(nk +1,nk)v, )

+g(j +nk+k—1,xi4—1+ T;j(nk + k — 1, nk)v, u). (3.28)

Both F;; (n, v) and H;j (n, v, 1) are b-periodic mappings and far € V,,,,),

k—1
| Fij(n, )] < [Z(a + 1>l]y(r1>, (3.29)
=0
k—1
|Hij (n,v, y,)| < |:Z(oc + 1)l:| M,,. (3.30)
=0

Proof. Replacingn by nk andm by k in (3.23), respectively, and noting that
{xn}nez is k-periodic, we obtain (3.26)—(3.28). As,},cz and{g(n, x, 1)}z
both arek,-periodic inn and sincek,, = bk, we conclude thai;;(n, v) and
H;j(n, v, u) areb-periodic inn. It remains to verify the boundednessiof (n, v)
andH;;(n, v, u), as expressed in (3.29) and (3.30).

From (3.19), we get

|T;j(nk +1,nk)v| <r1, 0<I<k—L1
Thus we have

|Li+1(0, Tij(nk + 1, nk)v) | < y (r0).
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Using (3.27), we get

k

l
|Fj.v)| <> (k)y’(ma"’ =[e+y@Dl* —a*

=1

k
= [Z(a + V(Vl))k_ml’m_l(”l)i| y (r1)

m=1

k-1
< [Z(a + 1>l]y<r1),
=0

where(,’() denotes the coefficient of in the expansion of1 + x). This gives
the desired estimation (3.29).
From (3.12) and arguing as above, we get
|g(j +nk+1, xi4 + Tij(nk + 1, nk)v, /,L)| <M.

This, together with (3.10), yields (3.30). The proof of Lemma 3.5 is complete.

Now, we can describe the key observation (to be verified latef}*(#)},cz
with |z*(n)| < r(u) is ab-periodic solution of the equation

z(n+1)=Aiz(n) + Fij(n, z(n))z(n) + nHij(n, z(n), n, (3.31)
whereF;;(n,v) andH;;(n, v, u) are defined as in (3.27) and (3.28), respectively,
then{y*(n; i, j)} defined by

Yk +m;i, j) =T;j(nk +m,nk)z*(n; i, j),

neZ, 0<m<k—1, (3.32)
is ak,-periodic solution of (3.18) withy™*(nk; i, j)| < r(w).

To prove (3.31) has b-periodic solution, we will used the argument similar to
that in [24]. Namely, we note that (3.31) can be rewritten as

Az(n) = Gn(z, 1y i, j),
whereG,(z, i, i, j) = (A; — In)z(n) + Fij (n, z(n))z(n) + wH;j(n, z(n), u). Let

G(Zv l’l'v iv .]) - {Gn(Za /’Lv i, j)}nEZ~
From (3.11), (3.13), (3.29) and (3.30), we ha¥g (n, y)| < 1, |u||H;j(n, y, w)
<rp with n € Z, [y <r(u) and O< |u| < us. These estimates yield that
G ={Gn}: 2, — 1% is a continuous mapping whose image is a bounded set
of 1%,

In view of Theorem 2.1 in Section 2, to prove that (3.31) hdseriodic

solution{z*(n)}, it remains to prove that, (z, i, i, j) satisfies condition (ii) of
Theorem 2.1. This is verified in the following lemma.
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Lemma 3.6. There is n@ = {z,} € 352,(,,) C * andx € [0, 1] such that

1 A
Az(n) = 1+)LG'1(ZM1])_1+)LG'1( Z,,1,j), neZ.

Proof. By way of contradiction, assume there is a constagt0< 1 and ab-
periodic sequence= {z(n)} with ||z|| = r(u) and

1 A
Az(n) = 7——Gp(z, 1,1, j) — 7——Gu(—2, 11,1, j),

1+ 1+
that is,
Zn+1)=Az(n) +Dij (A, n, z(n), 1, (3.33)
where
A
Pij(A,n,z(n), n) = [1+AF11(” z(n) + —— 1o Fij(n, Z(n))}(n)
1 A
+u[1+/\Hz,(n z(n), w) — 1rx H;j(n, z(n),u)}.
We observe by (3.29) and (3.30) that
@i,y 2(n), )] < [Z(a + 1)1}[)/(r1)r(u) + |l My, ). (3.34)

According to the notations in (3.3) and (3.4),
)=z +2'm), 2 eRY, z‘m)eR™,
Dij (A, n,z(n), p) = ;3 (A, n, z(n), ) + P (A, n, z(n), w,

whered?, (1, n.z(n), ;1) € R?, @l (k. n,2(n), p) € R, Let 0< ng < b — 1 50
that|z(ng)| = ||zl = r(w). We W|I(Iead toa contradlctlon in two cases.
Case Az} (no)| > (1/2)|z(no)| = r(n). We have
1 1
57 = 3512001 < |z} (o) < 1P i (o) = I Pl (10)-
It follows from (3.33) that
zi(n+1) = Aizj(n) + ®;; (A, n, z(n), p).

Furthermore, for anyn > 1,

2§ (no + mb) = A" 25 (no)

mb
+) AT @) (hono+1 -1 z(no+1 - 1), ).
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We conclude from (3.3) and (3.34) that

mb k—1
|28 (no +mb)| < | PIKO™ r(u) + || P (Z KW“) [Z(a + 1)’]
=0

=1
x [y rDr () + |l Myy ).
Taking the limit asn — oo and using (3.10) and (3.11), we obtain

1 1 P
Er(u)<!zf(no)!<‘—1r(u) ” Ix [Z( +1)} My |1l

that is,

4| P KMr
ro <4 ” — [Z( +1) }m (3.35)
this contradicts (3.14).
Case Bz (n0)| > (1/2)|z(no)| = r(). Note that (3.33) yields

2 (no) = A; "z} (no + mb)
mb
—ZA ch“ Ano+l—1z(no+1—1), ).

Using this and foIIowmg the procedure used in Case A, we get

4P| K6
() < || I |:Z( _|_]_)j| y(rl)r(ﬂ)+|M|Mr1]'

From this and O< 6 < 1, we obtain (3.35) which contradicts (3.14). The proof of
Lemma 3.6 is complete. O

We can now complete the arguments in Step 1. From now on, the symbol
{z*(n)},ez Will denote theb-periodic solution of (3.31) withz*(n)| < r(w). For
the remaining part of the proof of the assertion in Step 1, it suffices to prove

Lemma 3.7. {y*(n; i, j)},ez defined in(3.32) is a periodic solution 0f(3.18)
with
|y*(n; i,j)| <r(u) forneZ. (3.36)

Proof. We first prove thaty*(n; i, j)}, .7 is a periodic solution of (3.18). Using
(3.32) and the definition df;; (n 4+ m, n), we get

Yk +ms i, j)=y(nk +m;nk, 2" (n; i, )
= y(nk +m: nk, y*(nk: i, j)).
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As {z*(n; i, j)}nez is a solution of (3.31), we have
Y ((n+ ki, j)=2"(n + Lid, j) = Tij(nk + ks nk)z" (nk: i, j)
= y(nk + ki nk, y*(nk: i, ).

So{y*(n; i, j)} satisfies (3.18).
BY ko, = bk andz*(n + b; i, j) = z"(n; i, j) forn € Z, we obtain

v (nk +m+ky; i, j)=T;j(nk + bk +m,nk + bk)z*(n + b; i, j)
=Tij(nk + ke +m, nk + kw)z*(n; i, j).
Lemma 3.3(iii) then yields
ik +m+ke; i, j) =Tij(nk +m,nk)z*(n; i, j) = y*(nk + m; i, j),

i.e.,ky is a period of y*(n; i, j)}nez.

We now show thaty*(n, i, j)},cz satisfies (3.36). The case where=1 is
trivial. So we only consider the case whére: 2. It is sufficient to prove that for
eachl<m <k—1landn eZ, |y*(nk+m;i, j)| <r(u). If this were false, there
would exist 1< mo < k — 1 and i € Z such that

|y*(nok +mo; i, )| =r° = r(u).

Note that

\y*(m:i, )| <r, neZ, (3.37)
by virtue of (3.19) and (3.32). Letf io < k — 1 and 0< jo < w — 1 such that

i +mo = ip (modk), Jj +mo = jo (modw). (3.38)
Let

2Ln,io, jo) = y*(nk +mo; i, j), neZ. (3.39)

Our strategy below, intuitively speaking, is to show th&(n: io, jo)}nez is a
b-periodic solution of (3.31) witlh being replaced by, and; by jo, respectively.
This, as in the proof of Lemma 3.6, will lead to a contradiction. To carry out this
strategy, our key step is to prove that

T;j(nk +mo+1, nk + mo) = Ty jo(nk +1,nk) for1<I<k. (3.40)

To begin with, we note that it is possible to wrifg ((nk +mo) +1, nk+mo) x
20(n; io, jo) for 1 <I < k andn € Z by virtue of (3.37) and

L+ 1 io, jo) = y*((n + Dk + mo; i, j)
= Tij ((nk + mo) + k, nk + mo) y*(nk + mo; i, j)
= Tj ((nk + mo) + k, nk +mo)z°(n; io, jo).
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In the following, we show that (3.40) holds by induction. Fet 1, (3.18) gives

T;j(nk +mo + 1, nk +mo)v
= [Df (i-tnk+mo) + Litnksmo (0, ) ]v + ug(nk +mo+ j, v, u)
= Tipjo(nk + 1, nk)v.
For the purpose of induction, assume thatifer p < k — 1, (3.40) holds true for
[ < p.Thenforl = p + 1, Lemma 3.3 yields
T;j(nk +mo+ p +1, nk + mo)v
=T;j(nk+mo~+ p+1,nk +mo+ p)T;j(nk + mo + p, nk + mo)v
= [Df Kitnktmo+p) + Litnk+mo+p (Tigjo (nk + p, nk)v)]
x Ty jo(nk + p, nk)v
+ ug(nk +mo+ p+ j, Tigjo(nk + p, nk)v, p)
= [Df (igtp) + Ligtp (0, Tigjo(nk + p, nk)v) | Tig jo (nk + p, nk)v
+ ug(nk + p + jo, Tigjo (nk + p, nk)v, 1)
= Tiyjo(nk + p + 1, nk + p)Ty ;o (nk + p,nk)v
=Tiyjo(nk + p + 1, nk)v.
Thus, by the induction principle, we show that (3.40) holds fog 1 < k.
Specially, we getj, j, (nk +mo +k, nk +mo) = Ty j,(nk + k, nk). It follows that
2+ 15 do, jo) = Tij ((nk + mo) + k, nk +mo)z°(n; io, jo)
= Tigjo((n + Dk, nk)2%(n; i, jo).

It is obvious that{z%(n; io, jo)} has similar properties ag*(n;i, j)} as ab-
periodic solution of the equation

z(n+1) = Aigz(n) + Figjo(n, 2(n))z(n) + wHiqjo (n, 2(n), ).

We can further proceed as in the proof of Lemma 3.6 and shovidab; io, jo)|
=r0 > r(u) contradicts (3.14). This proves that*(n, i, j)},cz Satisfies (3.36),
and completes the proof of Lemma 3.70

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. According to (3.17), we have
x*m+jii, ))=xiwn +y*(n;i,j) forneZ. (3.41)
Itis easy to see that*(n + k; i, j) = x*(n; i, j) forn e Z and

|x*(n+ jsi, j) — Xign| <7 (w).
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We also obtain from (3.41) and (3.18), for am¢ Z, that
X+ j+ L0 j) = Xignra + Y (0 + 154, )
= f(Xi+n)
+ [Df itn) + Lisn (0, y* (30, )]y (3 4, )
+ ug(n + j; Xign + y* (34, j), 1),
Y, i, jow) = f(Xign + ¥ 30, )+ pg(n+ jix*n+ js i, j), i)
= f(x*(+jsis D) +ng(n+ j; ¥+ jii, ), w),
thatis,{x*(n; i, j)},ez is a solution of (1.3).

Note that the conclusion stated in Step 1 has been verified above, in Lem-
ma 3.7. We now complete the proof for the conclusion in Step 2. Namely, we
prove thatk,, is the minimum period of*(n; i, j). It will suffice to prove that
if wop makesx*(n + wo; i, j) = x*(n; i, j) for n € Z, thenwo = 0 (modk) and
wo =0 (modw). To do this, let

o =p0k+q0= pow + qo. (3.42)
All we need to prove ig% = go = 0.

The proof forg® = 0 is clear ifk = 1. Assume now > 2. By way of con-
tradiction, if 1< ¢% <k — 1, thenx;, 0,40 = x;, 0 # x;. SO we have by this
and (3.5), (3.14), (3.16) that

0=[x*(j + pO%k +¢% i, j) = x*(js i, )]
Z X4 pOx+40 — Xil
—[|x*G + Pk +q% i, ) = xi o g0| + xi = x*Giri ]
> 2r(pw) — [r(w) +r(w]=0.
This is a contradiction. Thug? = 0 and we have by (3.42) that
wo = pok = pow + qo. (3.43)

It remains to prove thago = 0. This is trivial if w = 1. Forw > 2, we prove
go = 0, again by way of contradiction. Suppose<lgg < w — 1. Choosing
0 < ny <k —1suchthat, +i =i, (modk). Then (3.16) gives

<r(u). (3.44)

|x* (s + js 4, j) — xi,
(3.43) yields
x*(L+ pow+qo+ns+ jii, j)=x U +ne+j;i, j), le€Z.
By (1.3) and (3.43), we have
x*(pow+qgo+ne+j+1i,j)
= f(x*(pow + qo+ns + ji i, )
+ ug(pow + qo+ns + j; x(pow + qo + nsx + js i, j), 1)
= f(& s+ ji i, ) + 1g(go +ns 4 j, (e + jid, ), 1)
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and

et j+ L0, )= f(xF e+ i, )
+ug(ne+ jix* (i + ji i, j), ).
It follows that

g(ns+j 4 qos X* s+ ji i, ), 1) = g(na + Js X (ns + j3 i, ), 1)

But by (3.44) x*(ns + j; i, j) € Vi (xi,) C Vi (xi,) With n + j + go # ns + j
(modw). This contradicts (3.6). This provg = 0. The proof of Theorem 3.1 is
then complete. O

We conclude this section with a simple consequence of Theorem 3.1. If
g(n, x, mw) =g(x, w in (1.3), we have the following equation:

x(n+1) = f(x(m) + pgxn), w. (3.45)

Theorem 3.8. Suppose that the conditiofiH1) is satisfied and the mapping
g RN x [—puo, ol — RY is continuous. Then, for any with 0 < |u| < s,
(3.45) has ak-periodic solutionc*(n, 1) satisfying

‘x*(n, n) — xn’ <r(u),
whereu, andr(u) are defined in3.13) and (3.14), respectively.
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