Ann. of Diff. Egs.
18 : 1(2002), 27 — 39

IRREGULAR OUTSTARS FOR LEARNING/
RECALLING DOMINATED SPATIAL PATTERNS

Huang Lihong (#sr %)
(College of Math. and Econometrics, Hunan University, Changsha 410082)

Wu Jianhong (R#&%)
(Dept. of Math. and Stat., York University, Toronto, Ontario, M3J 1P3 Canada)

Abstract

We consider an outstar, allowing different spiking frequencies, different transmitter
production rates and different thresholds. We show that different thresholds may lead
to biased pattern learning of the network described by a system of delay differential
equations.
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1 Introduction

In this paper, we study the long-time behavior of the following system

422ll) — —ao(t)zo(t) + fo(t),

drét(—lt = —ai(t)zi(t) + bi(t) fi(zo(t — i) — Ti)zi + L(2). (1.1)
T = —a()z(t) + dit)gi(zo(t — 77) = I7T)as,

>, I'; and I'] are non-negative constants, ag, a;, b;.
c¢i, diy fiy giy To, I : R — [0,00) are continuous functions and Iy and I; are
bounded.

System (1.1) models the evolution of a neural network called outstar, which
consists of a command neuron vy and input ncurons (vq,---,v,). The short-

wheret =1, ---, n, 7, 7~

term memory trace of each neuron v; is denoted by z;(¢), the long-term memory
trace from vg to v; 1s denoted by z;(t), I;(¢) denotes the external input to neuron
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v;, fi and ¢; denote the signal functions, and 7; and 77" denote the time lags of si-
gnal transfer from the command neuron to input neurons. b;()fi(zo(t—7)—T")
and d;(t)g(zo(t — 1) — I'7) are called spiking frequencies and transmitter pro-
duction rates. The special case where all (a;,b;, ¢;, di, fi, 90,7, 75,13, I7) are
independent of ¢ (thus only depending on the source (the command) neuron)
was discussed in a series of papers by Grossberg [1-6] in association with pat-
tern learning and Pavlovian conditioning. It was shown by Grossberg that
such a network is well suited to perfect (unbiased) pattern learning (See also
Harvey [7] and Wu [8}).

In this paper, we are going to consider the more general case admitting
different spiking frequencies, different transmitter production rates and diffe-
rent thresholds from the command neuron to input neurons. Several results
(Theorem 3.2, Corollary 3.1 and Theorem 3.3) are established to given explicit
formulae for lim %(% and tlim ﬁ% in terms of various parameters involved. In

particular, wte_?ilow that even if all parameters are held constant and identi-
cal from one input neuron to another, different thresholds can lead to biased
pattern learning (Corollary 3.1). This may enable the network to pick up only
the dominated spattern and treat other smaller patterns as noise and suppress

them altogther after sufficiently many times of training.

2 Technical Lemmas

In this section, we establish several technical lemmas which will be needed
in the proofs of our main results.

The first lemma, called Gronwall’s Inequality, is perhaps well-known, but
we cite it here for ease of reference.

Lemma 2.1 Suppose that to € R and that o, ¥, w,€ : [to,00) — R are
continuous functions with w(t),£(t) > 0 for all t > to, If

o) <9 +(0) [ wlele)ds ort 2 to 2.1)
then

p(t) <B(t) +£(2) / lo)els)e ks €S for > 1, (2.2)

Lemma 2.2 Letty € R, P,Q,F,G,I : [to,00) — R be continuous with I
being bounded and

P(t),Q(t), F(t),G(t) - 0 as t— oo.
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Assume that o, B,6 and v are non-negative constants such that the real parts

of all eigenvalues of A = ( e

6 : .
v =3 ) are negative. Then every solution of

) — o2 z x z
{ a = —ox(t) +6z(1) + P(t)z(t) + F(t)=(t) + (1), (2.3)

Ll = qa(t) - B2(t) + G()z(t) + Q(t)=(1)

is bounded on [tg, 00).

Proof Let y(t) = (z(t), 2(t))T (T denotes transposition) be a given solution
of (2.3) and let M(¢t) = (gg:; gg;;) for ¢ > t5. Denote by || - || the
Euclidean norm in R?, and for a 2 x 2 real matrix B let || B|| be the matrix
norm so that [[By|| < ||B]||ly]| for all y € R?. Applying the variantion-of-
constants formula to (2.3), we get

t
y(t) = ACDy() 4 / A=9(1(s),0)Tds

to

t
+/ A M(s)y(s)ds, t > to.
to
It follows that

ly@l < H@A(t"“)liliy(to)lHH/ e*=(1(s),0)"ds|

0
t
+ H/ eI M (s)y(s)ds||, t > t,.
to

Since the real parts of all eigenvalues of A are negative, there exist positive
constants K and A such that

et < Ke™* for ¢ > 0.

Therefore,

t
ly@l < KE‘A“"“’)Hy(to)H+K/ eI (s)lds

to
¢
S K [ NI y()ds, 1> to
to
Let ,
C = sup [[&'e—’\(t_t")]‘y(to)fl + K/ e_’\(t's)ll(s)[ds} .

t>tg to
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Note that I is bounded on [to, 00). Therefore, C' < oo and Lemma 2.1 implies

! ty |
“y(t)“ < C+ KC/ e—/\(t—S)”M(S)“eR fs ,,M(u)|,duds

to

= C+KC / "L ARIMEI 11 ) | ds.
to
Since | M(¢)|| — 0 as ¢t — oo, we can find T > %, so that
IM(w)]| <1 and —A+ K||M(u)|| < —% for u>T.
Therefore, for ¢t > T, we have

ly(@®)l| < C+KC [ / i i IHRIM@IN | 17 () ds

to

t t
N / LI+ RIM I M(S)”ds}
T

T
< O 4 KO- KM@l / T (HHEIMEN A7) s
t N o
+KC/ e~ 204
T
T
< C+KC / ST XMW A7 Vs + K/\C_ [1 _ e—%(t—:r)]
to

2KC
A

T
< C+KC / e (KM@ pr o)1 ds +
to

This proves the boundedness of y(t) on [to, oc).

Lemma 2.3 Assume that all conditions of Lemma 2.2 are satisfied. Let
y = (z,2)T : [to,00) — R? be a solution of (2.3), and let Y = (X,Z)T :
[to, 00) — R? be the solution of

{ KO — _aX(t)+62(t) + I(t),
20 — X (t) - BZ(t)
with Y (o) = y(to). Then lim[Y(2) — y(t)] = (0,0)7.

Proof Using the variation-of-constants formula to (2.3) and (2.4) and using
the fact that Y(#o) = y(¢o), we obtain

-0 - (59749)

(2.4)
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- - [ (88 e ) (5
_— / A9 M (s)y(s)ds,

By Lemma 2.2, we can find a constant K; > 0 such that ||y(¢)|| £ K; for all
¢ > to. Again note that ||e4!|| < Ke=* for t > 0. It follows that

YO -yl < KK [ X I(s))es

Let ¢ > 0 be given. Since ||[M(s)|| — 0 as s — oo, there exists a constant

Ty > to such that ||M(s)|| < T’\IA—E for s > Ty. Again note that e™*' — 0 as
¢t — 0o, we can find a constant T > Ty such that K; Ke ™ ftfl e || M(s)||ds <

%5. Therefore, for t > T, we have

7 e [
vl < Kke [ s+ [ e
T)

to

1 1
< 3¢ + 55[1 —e AT g,

Hence ||Y(t) — y(t)]| — 0 as t — oo. This completes the proof.

Lemma 2.4 Assume that o € (0,00),tp € R, P, I : [top,00) — R is
continuous with I being bounded and that P(t) — 0 ast — oc. Let z :
[to, 00) — R be a solution of

dz(t)
dt
and let X : [tg,00) — R be the solution of
dX(t)
dt
with X (to)=z(to). Thentlim [X(t)—z(t)]=0. Moreover, z'ftlim f:o e~ (=) [ (s)ds
erists, then tlim z(t) = tlim X(t) = tlim ftto e =9 (s)ds.
Proof By the variation-of-constants formula, we have

z(t) = e () g (1) + /

to

= —az(t) + P(t)z(t) + I(t),

= —aX(t) +1(t)

t

t

e—(t_s)l(s)d:;%-/ e =) P(s)z(s)ds (2.5)
to

and

X(t) = e () X (o) + /t e~ (=) I (5)ds. (2.6)

to
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Using (2.5) and a similar argument to that for the proof of Lemma 2.2, one
can show that z is bounded on [tg, 00). Again by using a similar argument to

1

that for the proof of Lemma 2.3, one can show that Iim [X(z‘) —z(t)]=0. If
lim f ~(t=9) J(5)ds exists, then it follows from (2.6) that

t—00

t t
lim X(t) = lim e‘“(t_t°)X(to)+tlirn e =9 (s)ds = lim e~ =) I(s)ds.
— 00 — 00 —_ 00 to — 00 to

This completes the proof.

3 Main Results

In this section, we state and prove our main results. We will require the
following assumptions.

(H1) The limits ag £ lim ao(t), s Jim ai(t), b7 = lim b(t), 8 £ lim ei(1)
and d; 2 tlim di(t) exist for i =1,2,---,n

(H2) ag > 0 and the limit Lo(—ag) £ tliglo fot e~20(t=9) [5(s)ds exists.

Theorem 3.1 Suppose that (H1) and (H2) hold. Let é; = b} f;(Lo(—ag) —
I), i =dfgi(Lo(—ao) — I'7),2=1,2,---,n. Assume also that

(H3) ci3; > 6vi and (o — Bi)? +46;7: #0 fori=1,2,---,n
Let y* = (z0,Z1,21,"** ,Tny 2n)7T : [to,00) — RZ*1 be a solution of (1.1), and
let Y* =(Xo,X1,2Z1,, Xn, Zo)T : [to, 00) — R¥™1 be the solution of

o) — _ g Xo(t) + Io(t),
RO = —o Xi(t) + 6:Z:(t) + Li(t), (3.1)
0 = _BZ:(t) + 7w Xi(t), i=1,2,---,n
with Y*(to) = y*(to). Then y* is bounded on [tg,00) and tEIg[Y*(t) —y*(t)] =
0,---,0)f € R+,
Proof Rewrite the first equation of (1.1) as
dzft)
dt
Note that lim[ap — ao(t)] = 0. By Lemma 2.4, we have

t—o0

= —aozo(t) + lo(t) + [0 — ao(t)]zo(?).

t

lim zo(t) = lim Xo(t) = lim [ e 9 [y(s)ds

t—oo t—o0 t—co ¢
0
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4

= lim [ e @09 (s)ds = Lo(—a0). (3.2)

t—oc 0

Let i € {1.2.---.n}.to € R, y; = (zi,2)7 : [to.oc) — R* be a solution of

svstem

{ g"d’u = —a;(t)a(t) + bi(t) filzolt — ) = D)zilt) + 1i(2). (3.3)
T = —at)zilt) + dil)gi(eolt — 77) = TT)i(t). |
and let ¥ = (X;, Z:)" : [to,00) — B be the solution of system
{ ) = 0 X (1) + 6:Z:(t) + L(2), (3.4)
820 — _ 3, Zi(t) + 7 Xi(2)

with Yi(to) = yi(to). Then it suffices to show that y; is bounded on [, oc) and
tim [Yi(1) - (1)) = (0,0)7.

Set 5
A; = ' Col
( Yi —Bi )

Then, the eigenvalues A;; and A2 of A; are given by

— (i + 8:) = {ai = 82 + 4y:é

Ay = : (3.5)
and
—(a; + B 2 — Bi)? + 4
Ao = (a*)*\/ga iy (3.6)
Moreover, it is straightforward to check that A;; < A2 < 0 under the assump-
tion (H3).
Set

F(t) = oi—ai(t),  Qi(t) =5 —alt),
Fi(t) = bilt)filzolt —7) = Ti) - &,
Gi(t) = di(t)gilzo(t —77) —I7) — 7.
Then. bv (3.2) and the given conditions in the theorem, we have
Pit),Qi(t), Fi(1),Gi(t) = 0 ast — cc.
Rewrite (3.3) as
{ L0 = o) + Gizlt) + Pi(t)zi(t) + Fi(t)z:(t) + ().
“a = vw(t) = Biz(t) + Git)zd(t) + Qi(t)z: (1)
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Applying Lemmas 2.2 and 2.3 to (3.7), we obtain that y; is bounded on [ts, 20)
and tlim[Y}(t) — y:i(t)] = (0,0)7.
This completes the proof of Theorem 3.1.

Theorem 3.2 Suppose that all conditions of Theorem 3.1 are satisfied,
and that

(H{) The limits L:(Aa )‘%hm Jier50=9)1(s)ds and Li(/\ﬂ)%nm JaeM2 = [(s)ds
exist for 1 =1,2,---,n, where Ay and Aiy are given by (3.5) and (3.6).
Then every solution of (1.1) is convergent ast — oco. More precisely, we have

}3}2, Io(t) = LD(‘—QQ), (38)
) e tB Aat+ 8

tl—lfglo .’121(t) = mL1(/\12) — /\2'2 — /\“ LZ(AH), (39)
lim 2(f) = ————(Li(Aa) = Li(Aa)], i=1.2,--,n.  (3.10)
t—o0 Aiz — A

Proof The convergence of z4(t) and the expression (3.8) follow from the
proof of Theorem 3.1 and the expression (3.2). We next show the convergence
of z;(t) and z;(t) as t — oo and derive expressions (3.9) and (3.10). In view of
Theorem 3.1, it suffices to show that every solution of (3.4) is convergent as
t — oo and that expressions (3.9) and (3.10) hold for (3.4).

We first consider the case where v # 0. From (3.4), we can obtain

FHO o, 2500

di?
Note that X;; and Ay are the eigenvalues of equation (3.11) and that \; <
Aiz < 0 under (H3). The variation-of-constants formula leads to

+ (a,ﬂ; - ‘7,'5,')2,’@) = ’y;[,'(t). (3.11)

t e/\{;(‘t-—s) — e)~,'1(t—-$)

iz — Aqa

Zi(t) = enetnlimto) 4 gpetnlt=to) +/ vili(s)ds

tp

t
= cpetalimo) ¢ oo ohatt-to) 4 T / T (5)ds
Aiz — Aa

to

¢
——/ e)“l(t"s)]i(s)ds], (3.12)

to
where ¢;; and ¢;; are constants satisfying the following system

ci + ¢z = Zi(ta),

dZ;(z
Aincin + Ancip = =5

= —B: Z:{to) + 7 X:(to).

i=tp
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That 1s
_ =7iXi(to) + (Miz + Bi) Zi(to) o i Xi(to) — (Aix + 3i) Zi(to)

Ci1 = 3 C12
1 Aiz — Ain Aiz — A

(3.13)
Therefore, it follows from (3.4) and (3.12) that
1 dZi(t
Xi(t)=— [BiZi(t) + ( )]
Vi dt
_ (Qa + Bi)ea nlt=to)

n (Xiz + Bi)ciz M t=to)
Yi Yi
/\2+B ¢ /\'2(t ) )\1+/B t A —
— 2(=9) [ (5)ds———t alt=9)r(s)ds. (3.14
X / ¢ ()ds Aiz—xu/ ‘ (s)ds. (3.14)
We next consider the case where 4; = 0. It follows from the second equation
of (3.4) that

to

Zi(t) = e U710 Z,(10), (3.13)
which coincides with (3.12) as 4; = 0. Substituting this into the first equation
of (3.4), we get

dX;(t)
dt

Applying the variation-of-constants formula to this equation, and noting that
(H3) implies o; > 0, 5; > 0 and o; # B; if v; = 0, we obtain

= — o X; (1) + & Z:(to)e P 070) 1 [(1).

t

Xi(t) = e X (1) +/ e~ (t=9) [&-Z,'(to)e_’e‘(s_t") + 1,(s)] ds

to
61'Zit _ _ —a;(t—
= e_"'(t_t”)Xi(to) + ai—(g’f [e Alimto) _gmanlt to)}
t
+/ e~ (s)ds. (3.16)
to

Note that A; < Ap < 0 and that A\;; = min{—¢;.,— 53} < 0 and A\, =
max{—a;,—3} < 0if 4, = 0. From (3.11)-(3.14), it follows that X;(¢) and
Z;(t) are convergent as t — oo. Moreover,

tlirn z:(t) = lim X(¢)

t—o0

)‘12+ﬁx ] t )\,2(1—5) . _ /\11+31 3 t /\,1(t—s) )
Ai2=Ai1 tllfg j;o € L(S)ds Aiz—An tllf(l;lc fio ¢ ]z(S)dS,

lim ftto e‘“'(t"s)li(s)ds, if =0

t—oo
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Aia+3; by +3
= /\'22+/\'1 tlim/ e’\’z(t_s)fi(s)ds— i1 1t / ds
i2— A1 =00 Sy i -,oc
/\i2+3i . ¢ Aia(t— ) ,1+3 /
= — L ' s : d —
Aiz— Ai tl‘l"rg/o ¢ : (5) ° Aig—Ai1 t—'°° ds
iz 5 a+08i
= Li /\i )\i y
ppy wellGORs v Wt
and
tlirn zi(t) = tlirn Zi(t)
¢ t
_ vi . Xia(t=s) Aia(t=s) 7.
- — " 11 2 Li(s)ds — 1i I(s)d
U [tirglo/to € (s)ds lim /. e (s) s]
¢ ¢
_ Yi . Xiz(t=5) A (t=s) 1.
= — hrn/ el ds — lim e Ii(s ds}
/\i2 _— /\1-1 |:t—»<>o 0 ( ) t—oo 0 ( )

i
= ———[Li(Ai2) — Li(Ai1)]-
(L) - L)
This completes the proof of Theorem 3.2.
Corollary 3.1 Suppose that all conditions of Theorem 3.1 are satisfied and

I:(t) is the constant I; for t being large and i =1,2,---,n. Let I =51, > 0

=1
and §; = 7‘ Then, for each solution (zo,z1,21," " xn,~n) of (1.1), we have

(i) thm zo(t) = Lo(—ao). In particular, tllm z:o(t) = % if Io(t) is the con-
stant Iy for t being large;

(it) tlim zi(t) = a—g’%{T and hm zi(t) = % fori=1,2,--- n. Fur-
—00 H (] a0

thermore, if a; = aj,0; = B;,6; = 6 and v; = ; for 1,7 =1,2,---,n, then
lim J—)— lim 2 — &

Mmoo T A T e
Proof Clearly, (H4) is satisfied under the conditions of the corollary. Mo-
reover, after some simple calculations, we have

I
Lo(—ap) = a—(; if Iy(t) = I, for ¢ being large and some constant Iy,
91'] 91] X
Li(Ail) = — . and Li(/\iz): — for 1:1’27....n
'\zl /\1‘2

Therefore, from Theorem 3.2, it follows that

. Iy . )
thm zo(t)=Lo(—ao) and :a_o if Io(t)=1, for t being large and some constant I
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) Aia + 3i 0.1 An + 3 0.1 3.0,1 3,6;1
lmz;(t)=—7F—|— | - ——— [ —— | = = , .
t—oc )‘iQ - )‘1'1 /\iQ >‘i2 - Ail /\il /\il/\:?. szji - ",'1'67'

lim z(t) = —& 6:1 0IN] _ wbd b
t.l-.r?o st = Aia — A Aio A - Aithi - 0.3 — ’;‘1‘61‘.

The second conclusion of (i1) follows from the first conclusion of (ii). This

completes the proof.

Remark 3.1 It is interesting to note that even we hold all parameters
constant and identical from one input neuron to other neurons, allowing dif-
ferent thresholds, I'; and I’} lead to biased learning of spatial patterns. since
the correspending 4; and é; may be different.

Theorem 3.3 Suppose that (H1)-(H3) hold, and that I, : R — [0, ) is

w-periodic function for all 1 = 1.2,---.n. Let y; = (zo.71.21. . Tn.20)0

[to.oc) — R™ 1 be a solution of (1.1). Then lim z4(t) = Lo(—ayo). and for
t—oo

each i € {1,2,--,n} there exists a unique w-periodic solution of (X7. Z*)T :

[to.oc) — R? of (3.4), which is given by

Ao + 3 [ P2=9) (S ds Aan+ 8 [F

w — _ Aa(t=s) 7.
X7 (1) 3 :(s)d o — e Ii(s)ds (3.17)

12 T A‘il -0 —0C

such that

tlirn [z:(t) = X7 ()] =0 (3.19)
and

tlirn [z:(¢) — ZZ(t)] = 0. (3.20)

Proof Using the same argument as that in the proof of Theorem 3.1. we
obtain tllrg zo(t) = Lo(—ao).

In the proof of Theorem 3.2, we obtained the analyvtic representations
(3.12)-(3.16) of solutions for (3.4). Assume that (3.4) has a periodic solu-
tion (X*.Y*)T, then such a solution must be bounded on R. If 4; # 0. then
letting tg — —oc in (3.14) and (3.12) we can get (3.17) and (3.18). respectively.
If 4; = 0. then letting to — —>c in (3.16) and (3.15) we obtain

t
X (1) = / e () (s)ds (3.21)

o
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and

Z2(t) = 0. (3.22)

But (3.21) and (3.22) coincide with (3.17) and (3.18) respectively if v; = 0.
After some simple calculations, it is easy to check that (X¥,Z¥)T given by
(3.17) and (3.18) is an w-periodic solution of (3.4). On the other hand, for
an arbitrary solution (X;, Z;)" of (3.4) with the initial value (X;(to), Zi(t0))”.
from (3.12)-(3.16), (3.17), (3.18), (3.21) and (3.22), it follows that

Xi(t) — X7 (t)
Aathi o erin(t=to) 4 ——'\"2:_’& cppetia(t=to) _ Aat8i ft° e*2(t=3) [(s)ds

i i2—Aj J—o0

A.;ljf-i fto e)\il(t—s)}i(s)ds’ if Yi # 07
_ PES v 3.23
) 4 ) [0 — o) o

_ fi(;o e—a.(t—s)Ii(s)ds’ if Yi = 0.

and

Zi(t) - z;7(t)

cinetinli=to) 4 cpetiali=to) —““—,\i2TAi1 ff:x) e*2(t-9) [;(s)ds
= + /\iQ’E)\il filo e/\u(t_S)Ii(S)dsv if v # 0; (3.24)
e-ﬂ‘(t_tO)Z;(tO), if 5= 0’

where ¢;; and ¢;; are given by (3.13). Since Ai; < Aiz < 0,0; > 0 and 3; > 0
for i € {1,2,---,n} under the given conditions in the theorem, it is clear that

(3.23) and (3.24) imply that

Tim[Xi(t) - X¢(1)] = 0 (3.25)
and
lim [Z:(t) - Z(1)] = 0 (3.26)

for i = 1,2,---,n. This means that (X, Z¥)T attracts every solution of (3.4),
and so (X¥, Z¥)T is a unique w-periodic solution of (3.4).

Let Y; = (Xo,X1, 21, , Xn, Zn)T : [to,00) — R?"*! be a solution of (3.1)
with Yi(to) = wi(to). Then (X;, Z;)T is the solution of (3.4) with the initial
value X;(to) = zi(to) and Z;(to) = zi(to), and it follows from Theorem 3.1 that

thm [:E,(t) - Xl(t)] =0 and thIIl [Z,'(t) - Z,(t)] =0.
This, together with (3.25) and (3.26), implies that
Jim [zi(t) — XP(t)] = lim [z:(t) — X:(6)] + lim (X:(¢) — X ()] =0
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and

lim [z(t) — Z#(t)] = lim [2:(t) — Zi(8)] + Um[Zi(t) — ZZ(0)] = 0

t—oc t—oo t—oc

forall:=1,2,---,n.

This completes the proof of Theorem 3.3.
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