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Abstract

For abstract functional differential equations and reaction—diffusion equations with
delay, an exponential ordering is introduced which takes into account the spatial
diffusion. The induced monotonicity of the solution semiflows is established and
applied to describe the threshold dynamics (extinction or persistence/convergence to
positive equilibria) for a nonlocal and delayed reaction—diffusion population model.
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1. Introduction

The purpose of this paper is to introduce a new ordering in the phase
space with respect to which some reaction diffusion equations with
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nonlinear and delayed (not necessarily monotone) reaction terms generate
monotone (or order-preserving) semiflows. We also use the order-preserving
property and some general results of monotone dynamical systems to
describe the global dynamics (in particular, threshold dynamics) of a
diffusive population model with delay and nonlocal effects.

Reaction diffusion equations with delayed reaction terms and, more
generally, abstract functional differential equations, have been widely used
to model the evolution of a physical system distributed over a spatial
domain [21]. In the celebrated work of Martin and Smith [9,10], the
monotonicity of the semiflow generated by an abstract functional
differential equation was established and the powerful theory of monotone
dynamical systems was applied to obtain some detailed descriptions of the
generic dynamics of the semiflow. In order for the semiflow to be order-
preserving with respect to the pointwise ordering of the phase space, the
aforementioned work requires that the nonlinear reaction term satisfy a
certain quasimonotonicity condition which, in the special case of a reaction
diffusion equation with delay, requires the reaction term to be monotone
and thus limits the applications in some cases. It is therefore nature to ask
whether the quasimonotonicity condition in the work of Martin and Smith
can be relaxed. This question was addressed in Smith and Thieme [14,15] for
the case of ordinary functional differential equations (that is, the spatial
diffusion is absent), where they established the monotonicity of the semiflow
in a restricted but sufficiently large subspace with a nonstandard exponential
ordering.

Extending exponential ordering and its induced monotonicity to
abstract functional differential equations and delayed reaction diffusion
equations is the main goal of our work here. Such an extension, however,
seems to require some new ideas, as the interaction of spatial diffusion
and temporal delay requires comparison of solutions at different
locations. This will be illustrated by our example in Section 3, where we
consider the following nonlocal delayed and diffusive population model
proposed in [20]

av(at} = ,2) ~ KW 0) + [y T 3,70 000 = 7,) b,

xeQ, t>0, (1.1)
Bu(t,x) =0, xe€0Q, t>0,
U(Zn X) = ¢(Za X), era ZG[—}’, 0]9

where r>0 is the average maturation time for the species, d >0 is the
diffusion rate, k(x) >0 is the per capita mortality rate of the species at
location x, g(x,v) is the recruitment rate function of an adult population
(which is usually not monotone in v), B is the Dirichlet or Neumann
boundary operator, and I’ is the Green’s function associated with 4 =
dA — k(-)I and boundary condition Bv = 0. It should be mentioned that
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such nonlocal delayed and diffusive models arise very naturally if one
carefully models the delay as condensation of the underlying retarding
process and takes into account that individuals move during this process
(see also [2,17,18]).

The remaining part of this paper is organized as follows. In Section 2, we
introduce an exponential ordering in the phase space, give an analytic
characterization of such an ordering for points in the phase space with
sufficient regularity, and establish the monotonicity and strong order-
preserving property for mild solutions of general abstract functional
differential equations with a quasi-monotone nonlinearity. In Section 3,
we illustrate the exponential ordering and the quasi-monotonicity condition
by the model equation (1.1) and we also apply the general theory of
monotone dynamical systems to describe the threshold dynamics of the
model and give explicit conditions for solutions of (1.1) to converge to either
the trivial equilibrium or a positive equilibrium.

2. The exponential ordering

Let (X, P) be an ordered Banach space with in#(P)#0. For u,ve X, we
writeu=yvifu —veP;u>y vifu—ve P\{0}; u> y vif u — veint(P). Since
P is a closed subset of X, the topology and ordering on X are compatible in
the sense that if u, >y v,, u,—u, v,—v, then u>y v.

Let A:Dom(A)— X be the infinitesimal generator of an analytic
semigroup T(¢) satisfying T(¢)P< P, Vt=0. For convenience, we denote
T(1) by e!. Let r=0 be fixed and let C == C([—,0], X). For u>0, we define

K, =1{¢peC: ¢(5)=x0, Vse[-r,0], and
P(1)= y AT h(s), VO=1=5> — 1},

Then K, is a closed cone in C. Let >, be the partial ordering on C induced
by K. The meaning of <, and <y should be clear.

Lemma 2.1. Assume that ¢eC is differentiable on (—r,0) and
¢(tye Dom(A), Yte(—r,0). Then ¢=>,0 if and only if

d(—r)>x0 and d(/’(l) — (A = uD)(t)> 5 0, Vie(—r,0).

Proof. Assume that ¢>,0, i.e., ¢ € K. It then follows that ¢(—r)= x 0, and
for any te(—r,0) and /2 > 0 with ¢t + he[—r,0],
Pt +h) — (1) (1) — (1)
Zx .
h h
Since ¢ is differentiable at ¢ and ¢(r)e Dom(A), letting h—0*
and using the definition of infinitesimal generators (see, e.g., [11]),
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we get

dp) _ . +h) = 90
h

dt - Paayiet >X(A - H1)¢([)» Vte(fr, 0)

Conversely, assume that ¢(—r)=x 0 and % —(A—u)p(t)=x 0,
Vte(—r,0). Let te(—r,0] be fixed. Clearly, the function u(s):=
A== g (s) is differentiable for se(—r, 7). By the property of analytic
semigroups (see, e.g., [6,11]) and the positivity of e—#U=9) — p=ui=9) pAl=s)
we have

du(s)

—(4- ,ul)e(Af"I)(t*s)qS(s) + pA—uD(i=s
ds

) do(s)
ds
- _ e(AfuI)(t—s)(A — ul)¢(s) + A—u)(t=s) %

— pld—uD(t=9) <@ —(4 - ul)qﬁ(S)) = x 0.

Thus, we get ¢(7) — A4 (s) = u(t) — u(s) = [1 %D dr> y 0, Vse[-r,1].

s dt

This, together with ¢(—r)> x 0 implies peK,,. O

Let ¢ >0 and u: [—r,0)—> X be a continuous map. For each 7€[0, o), we
define u, e C by wu,(s) = u(t +s), Vse[—r,0]. Let D be an open subset of C.
Assume that F: D— X is continuous and satisfies a Lipschitz condition on
each compact subset of D. We consider the abstract functional differential
equation

d‘;(;) = Au(t) + F(u,), >0, o
Uy — (,Z') eD.

By the standard theory (see, e.g., [9,21]), for each ¢pe D, Eq. (2.1) admits a
unique mild solution u(?, ¢) on its maximal interval [0,54). Moreover, if
a4 > r, then u(t, ¢) is a classical solution to (2.1) for te(r, g¢). In order to get
a monotone solution semiflow of (2.1) with respect to >,, we will impose
the following monotonicity condition on F.

(M) p((0) — ¢(0) + F(¥) — F(p)=x 0 for ¢, yeD with o<, 4.

Theorem 2.1. Let (M) hold. If ¢ <, , then u,(¢) <, u(y) for all t=0 such
that both solutions are defined.

Proof. Let v*cint(P) be fixed. For any ¢ > 0, define F,(¢) = F(¢) + ev* for
¢ €D, and let u°(¢, ) be the unique mild solution of the following equation:
du(t)
= Au(t) + Fo(u,), 1> 0,
g~ AU+ Ew), 1> 0 2.2)
Uy = I/IED.
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Without loss of generality, we assume that u(z, ) and u®(t,) are both
defined on [0, co)(If not, we replace [0, c0) by the intersection of their
maximal intervals of existence). Let y*(¢) := u®(¢, ) — u(t, ¢) and define

P = {te]0, 0): y;=,0}.

Clearly, P is closed and 0e P. We claim that if 7y € P, then there exists dg > 0
such that [#y, o + d9] = P. Indeed, by the abstract integral forms of Egs. (2.1)
and (2.2), we have

ys(l) _ e(A—,uI)(r—x)ys(s)

+ / I FGE ) — Fu(@))

Ay

+ u(u"(r, V) —u(t, ) + ev*)dr, t=5=0. (2.3)
By the condition u; () >, u,,(¢) and assumption (M), it then follows that
(F;()) — Ful@)) + p@(t, 1) — u(t, ) + ev™)|,—, = x ev*> x 0.
Thus, there exists dp > 0 such that
Fu;(P)) — F(ul(@)) + u(u’(t,9) — u(t, ¢)) + ev* > x 0, Vte[to, to + do]-

By the integral equation (2.3) and the positivity of the semigroup e“=#D! we
then get

Vi) =y 4Dy s), Vig<s<t<to + o,

which, together with the definition of (K,), implies that wui(y)
>u ut(¢)s Vie [IO, Iy + 50]

Let P, = {: [0,f]< P}. We claim that sup P; = co. Assume that, by way
of contradiction, #* = sup P;<oo. Then there is a sequence {z,} =P <P
such that 7, — £*. Thus the closedness of P implies that /* e P. By the claim in
the previous paragraph, [*,#* + 6*]< P for some 6* >0, and hence 7* +
5% e Py, which contradicts the definition of #*. It then follows that [0, c0) < P,
and hence P = [0, c0).

By a standard argument, we have lim,_, o+ ui()) = w, (), V¢=0. Letting
e—=0" in ! =) —u($)=>,0, we get u,(y)— u,(¢)>,0, and hence
u(W) =, u(¢), ve=0. O

For simplicity, in the rest of this section we assume that for each ¢eC,
Eq. (2.1) admits a unique mild solution u(z, ¢) defined on [0, c0). Then (2.1)
generates a semiflow on C by &(7)(¢p) = u,(¢), ¢ € C. Clearly, condition (M,,)
is sufficient for @(¢) : C— C to be monotone with respect to <, in the sense
that @(1)(¢) <, P(¢)() whenever ¢ <, and 1>0. In some applications of
monotone dynamical systems, however, we need a strong order-preserving
property(see, e.g., [13]). The semiflow @(¢): C— C is said to be strongly
order-preserving with respect to <, if it is monotone and whenever ¢ <,
there exist open subsets U, V' of C with ¢ e U and yy € V" and ¢y > 0 such that
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(1) (U)<,P(to)(V). Next we show that the following slightly stronger
condition than (M) is sufficient for @(#) to be strongly order-preserving.

(SM,)  u((0) — ¢(0)) + F(y) — F(¢)>x 0 for ¢,yeC with ¢p<, ¥
and ¢(s) < xy(s), Vse[—r,0].

Theorem 2.2. Assume that T({)(P\{0})cint(P), Vt>0, and (SM,) holds.
Then the solution semiflow ®(t) is strongly order-preserving on C with respect
to <.

Proof. Let v*cint(P) be fixed, and define ¢*eC by ¢*(1)=
A= Y re[—r,0]. Then ¢*(s)>x 0, Vse[-r,0], and Lemma 2.1
implies that ¢*>,0. For any y e C, the sequence of points ¥, = ¢ + 1¢*
in C satisfies y<,¥, <,¥,, Yn=1, and ¥,—y as n—oo. By this
property and the continuity of F, it is easy to see that (SM,) implies (M).
Then we conclude from Theorem 2.1 that &(¢) is monotone on C. Moreover,
for each ¢eC, u(t,)e Dom(A), Vt>r. For any ¢<,y, the strong
positivity of T(f) = e’ implies that ¢(0)< xy(0), and hence, in view of
u(P) <, ulp), Vt=0, there holds u(t, d) < yu(t,y) for all £>0. Fix a real
number 7y >2r and let ¢° <u Y° be given. By condition (SM, w), the
continuity of F and the compactness of [ty — r, ], it then follows that
there is a sufficiently small ¢y > 0 such that

Fu™) = Fu(§%) + pu(t,°) = ult, )= x eov*, Vielto —r, o]

Since lim, ) |, g0 40y @lto = r,9) — u(to — r, §)) = u(to — r, ") — u(to — r, ¢°)
>y 0 and

lim  FGu(h) — Fu(@)) + p(u(t, ) — u(t, $))
()~ (¢".4")

= F(u,(y")) = Fu(¢°) + u(u(t, ") — u(t, ¢°)) uniformly for
te [l() -, lo],

there exist open subsets U, V of C with ¢°e U and ° € V' such that for any
peUand yeV, u(ty — r,f) — u(ty — r,$)> y 0 and

WD 20D (4 iy ute, ) e )

= F(u,()) — F(u(P)) + wu(t, ) — u(t, §))> x 0, Vie[to —r, 1].

Note that u(z, ¢) and u(z, ) are both classical solutions for # > r. By Lemma
2.1, we then get u,(Y)—uy(¢)=,0, VyeV, ¢cU, and hence
u (U< u (V). O



476 J. Wu, X.-Q. Zhao | J. Differential Equations 186 (2002) 470484

Remark 2.1. In the case where X =R and A4 is the zero operator, <,
reduces to the exponential ordering introduced by Smith and Thieme [14]
for scalar nonquasimonotone ordinary delay differential equations.

Remark 2.2. Let (X;,P;), 1<i<n, be ordered Banach spaces with
int(P;)#0, and let A;:Dom(A;)—X; be the infinitesimal generator
of an analytic semigroup T;(¢) satisfying Ti(t)P;,<P;, Vi=0. Let
X = H?:l Xi, P= H?:] Pi, T()= H;r'l:l T(1, A= H?:1 Ai, Dom(A) =
[T, Dom(A4;). Then A:Dom(A)— X is the infinitesimal generator of the
analytic semigroup 7(f) defined on the ordered Banach space (X, P). Let
B = (b;) be an n x n matrix with b;>0, V1<i#j<n. Define

Kg={peC: ¢(s)=x0, Vse[-r,0],
and ¢(1)> xe ISP G(s), V0> 125> — 1)

Then K3 is a closed cone in C and induces a partial order >3 on C. By an
argument similar to that in Theorem 2.1, we can prove that the solution
semiflow of (2.1) is monotone with respect to <p under the following
monotonicity condition:

(M) F() — F(¢)=xB((0) — $(0))
for ¢,y e D with ¢ <py.

Clearly, in the case where n = 1 and B = —u, > p reduces to >,. Replacing
—u with B in (SM,), we get a stronger condition (SMp). By a similar
argument as in Theorem 2.2, we should be able to prove that the solution
semiflow of (2.1) is strongly order-preserving with respect to <z under
(SMp) and an additional irreducibility assumption. For the details in a
special case where X = R" and 4 = 0, we refer to [15].

3. A nonlocal and delayed reaction—diffusion model

In this section, we illustrate how the exponential ordering and the theory
of monotone dynamical systems can be applied to nonlocal and delayed
reaction—diffusion models in population dynamics.

Consider the growth of a single species with immature and mature stage
structure. For simplicity, we assume that r>0 is the average maturation
time for the species, and that both matured and immatured populations
have the same random diffusive rate d > 0 and the per capita mortality rate
k(x) >0 at location x. Recently, Thieme and Zhao [20] proposed and
analysed a nonlocal delayed and diffusive predator—prey model. By
replacing the biomass gain rate function f(x, u,v) in the predator equation
(1.4) of [20] with the birth rate function g(x,v) of the matured population,
we then get a nonlocal and diffusive model of the mutured population
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growth in a habitat Q

av(at; ¥ _ dAV(t, X) — k(x)o(t,X) + [, Ty, P)g( ot — r,3)) dv,

xeQ, t>0, 3.1
Bu(t,x) =0, xeoQ, t>0,
v(t,x) = ¢p(t,x)=0, xeQ, te[-r,0],

where Q is a bounded and open subset of RY with Qe C**? for a real
number 0> 0, 4 denotes the Laplacian operator on R, either Bv = v or
Bv =2+ av for some nonnegative function oe C'*(6Q,R), £ denotes the
differentiation in the direction of the outward normal n to 0Q, I' is the
Green’s function associated with 4 .= dA — k(-)I and boundary condition
Bv =0, and ¢ is a given function to be specified later. Such a model
equation can also be derived from the structured models (a hyperbolic
partial differential equation) by integration along characteristics (see
[17,18]).

Let pe(N, w) be fixed. For each fe(1/2+ N/(2p),1), let X; be the
fractional power space of L7(€2) with respect to (—A4, B) (see, e.g., [6]). Then
Xp is an ordered Banach space with the cone Xﬁ+ consisting of all
nonnegative functions in Xp, and Xﬁ+ has nonempty interior z'nt()(ﬁ+ ).
Moreover, Xz C'*'(Q) with continuous inclusion for ve[0,28 — 1 — N/p).
We denote the norm in Xj by || -[|4. It is well-known that A generates an
analytic semigroup 7(¢) on L”(Q2). Moreover, the standard parabolic
maximum principle implies that the semigroup T(¢): Xp— Xp is strongly
positive, that is, T(t)(XE)\{O})c int(Xl;*), Vt>0.Let C := C([—r,0], X3) and
Ct = C(~-r, 0],X/;r). Then model (3.1) can be written as the following
abstract functional differential equation:

du(t)
R Av(t) + T(r)g(-,v(t —r)), t>0, (32)

Vo = ¢EC+.

We further assume that k(-) is a positive Hélder continuous function on Q
and ge C'(Q x R*,R") satisfies the following condition:

(G) ¢(-,0) =0, 8,9(x,0) >0, VxeQ, g is bounded on @ x R, and for
each xe®, g(x,-):R"=R" is strictly sublinear in the sense that
g(x, o) > ag(x,v), Yae(0,1), v>0.

Using a similar argument as in [13, Theorem 7.6.1], we can show that the
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nonlocal elliptic eigenvalue problem

Aw(x) = dAw — k(x)w(x) + fQ I'(x,y,r)0,90,0w(y)dy, xeQ, (33)
Bw=0, xeof2 ’
has a principal eigenvalue, which is denoted by A¢(d, r, 0,94(:,0)).
For any ¢eC™, let v(t,¢) denote the solution of (3.1). Define ko =
min{k(x): xeQ}, and

- b
b(r) = sup{/QF(X,y, N9y, p(»)) dy: xeQ, @EX;}, M(r) = IE—Z)’

L(r) = min {0,9(x,v): xeQ,ve[0, M(r)]}.

Then we have the following threshold dynamics for model system (3.1): if
the zero solution of (3.1) is linearly stable, then the species goes to
extinction; if it is linearly unstable, then the species is uniformly persistent.

Theorem 3.1. Let v*eint(Xy) be fixed and let (G) hold.

(1) If 2o(d,1,009(-,0)) <0, then lim,_, . [[v(, )|z = O for every pe C;

2) If Zo(d,r,0,9(-,0)) >0, then (3.1) admits at least one steady-state
solution ¢* with ¢*(x) >0, VxeQ, and there exists a § > 0 such that
for every ¢peC* with ¢$(0,-)£0, there is ty = to(¢p) >0 such that
u(t, §)=6v*(x), VxeQ, t=1.

Proof. Define F:C"—Xy by F(¢)= T(r)g(-,¢(—r)),Y¢peC". Then
Eq. (3.1) can be written as the following abstract functional differential
equation:
dv(t)
— 2 =4 F >
dt U(Z) + (Ut)a t 03 (34)
Uy = (156 Cct.

Since T'(f): Xg— Xp is strongly positive, we have
1
hlir%{ 7 dist(p(0) + hF(¢), X/j) =0, VpeCt.

By Martin and Smith [9, Proposition 3 and Remark 2.4] and using a similar
argument in the case of Dirichlet boundary condition (see also [9, Remark
1.10]), we conclude that for every ¢eC*t, (3.1) admits a unique
noncontinuable mild solution v(z, ¢) satisfying vy = ¢ and v(z, (;5)6Xﬂ+ for
any ¢ in its maximal interval of existence [0, o). Thus v(z, ¢)(x) satisfies the
following parabolic inequality:

{ av(al;x)gdAv(t, X) = kov(t,x) + b(r),  x€Q, 1€(0,0y), (3.5)

Bu(t,x) =0, xe€0Q, te(0,04).
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Let u(¢) be the unique solution of the ordinary differential equation % =
—kou(?) + b(r) satisfying u(0) = max,..g ¢(0)(x). Using the standard para-

bolic comparison theorem, we then get

u(t, P)(x)<ult) = <ma§ P(0)(x) — M (V)> e+ M(r),
xXeQ
,VxeQ,, Vie(0,04). 3.6)

Thus o4 = o0, V¢eC™', and (3.1) defines a semiflow @(r): C* - C* by
d(t)p = v,(¢). By inequality (3.6) and the properties of the fractional power
space Xp, it follows that &(r): C™— C" is point dissipative. Moreover,
@(t): Ct — C* is compact for each ¢ > r (see [21, Theorem 2.2.6]). Then @()
admits a global compact attractor on C* (see [4, Theorem 3.4.8]).

It is easy to see that g(x, v) <0,g(x, 0)v, ¥xeQ,v=0. Then the comparison
theorem for quasimonotone abstract functional differential equations (see
[9,10]) implies that

v(t, p)(x)<u(t, p)(x), VxeQ, t=0,

where u(¢, ¢) is the unique solution of the following linear, nonlocal and
delayed parabolic equation:

av(at;x) = dAv(t,x) — k(x)v(t,x) + [, T(x,,7)0:9(»,0)

o(t—r,y)dy, xeQ, t>0, (3.7)
Bu(t,x) =0, xe€0Q, t>0,
v(t,x) = ¢(t,x), xeQ, te[-r,0].

By Thieme and Zhao [20, Theorem 2.2] and a similar argument in the case of
Dirichlet boundary condition, the nonlocal elliptic eigenvalue problem
Jw(x) = dAw — k(x)w(x) + e~ Jo T(x,,1)0,9(y, 0)w(y) dy,
xeQ, (3.8)
Bw =0, xeoQ

has a principal eigenvalue Zy(d, r, 0,9(-,0)), and Zo(d, r, 6,9(:,0)) has the same
sign as Ao(d,r,0,9(-,0)). Then in the case where A¢(d,r,0,9(-,0))<0, the
properties of principal eigenvalues and linear semigroups imply that
lim, , . [[u(, P)lly = 0, Ve C, and hence lim,, . |[v(z, )|l = 0, Ve C*.
In the case where Ao(d,r, 8,9(-,0)) >0, let Zy = {pe C*: ¢(0,-)#£0},0Z, :
= C*™\Zy. Since g(x,v)>0, Eq. (3.1) implies that
ou(t, x)
ot
By the standard parabolic maximum principle, it then follows that
D(NZy<int(CT), Vi>0. Let Z; = {pedZy d(t)p€dZy, Yt=0}. Then
U¢e 7, 0(¢) = {0}, where w(¢) denotes the omega limit set of the orbit
yH() = {B(t)¢p:, Yi=0}. Clearly, g(x,v) can be written as g(x, v) = vh(x, )

=dAuv(t, x) — k(x)v(t,x), VxeQ, t>0.



480 J. Wu, X.-Q. Zhao | J. Differential Equations 186 (2002) 470484

with A(x,0) = 8,9(x,0). By the condition /iy(d,r,0,9(-,0))>0 and an
argument of contradiction similar to that in the proof of [12, Lemma 3.1],
we can prove that {0} is a uniform weak repellor for Z;, that is, there exists
09 > 0 such that limsup,_, ., [|@(1)¢ll3=0, V€ Zy. By Thieme [19, Theo-
rem 4.6], &(¢) is uniformly persistent with respect to Zj in the sense that
there exists an # >0 such that lim inf,_, ,, dist(®(2)¢p, 0Zy)=n, YVpeZy. As
@(1): Ct - C* is compact for ¢ > r, the order persistence in (2) follows from
[16, Theorem A.2] with e = v*eint(C™"). It remains to prove the existence of
a positive steady state of (3.1). Let @y(7): X;-»Xﬁ*, t=0, be the solution
semiflow of the following nonlocal reaction—diffusion equation
ou(t, x
() e, x) — KOO, + fo TP )
xeQ, t>0, (3.9)
Bu(t,x) =0, xeo0Q, t>0,

u(0,x) = p(x), xeQ.

Since %>dAu(t,x)—k(x)u(t,x), the standard parabolic maximum
principle implies that <I>0(t)(XE\{0})cint(Xﬂ+), Vt>0. As proven for
@(1): CT— C™, it follows that Py(¢) is point dissipative on X, , compact
for each >0 and uniformly persistent with respect to XE\{O}. Then
by Zhao [22, Theorem 2.4], @y(f) has an equilibrium qo*eXE \{0},
ie., P(0)p*=¢* for all =0. Fix a >0, we then get
¢* = Po(t)p*einu(Xy). O

As an application of the theory in Section 2, we are able to get sufficient
conditions under which the species stabilizes eventually at positive steady
states in case (2) of Theorem 3.1.

Theorem 3.2. Assume that (G) holds and Ay(d,r, 0,9(-,0)) > 0.

(1) 1If L(r)=0, then (3.1) admits a unique positive steady state ¢*, and
lim, , - ||o(2, ¢) — @*|| = 0 for every ¢ e C* with $(0,-)#0.

(2) If L(r)<0 and r|L(r)| < 1/e, then there exists an open and dense subset
S of CT with the property that for every ¢ €S with ¢(0,-) %0, there is a
positive steady state ¢ of (3.1) such that lim,_, . [|v(z, §) — ¢||g = 0.

Proof. Let &(7): C™—>C*T be the solution semiflow of (3.1), and
Do (1) X/)T —>X/}L be the solution semiflow of (3.9). Define

Y = {¢peCt: ¢(s,x)<M(r), Vse[-r,0], xeQ}
and
Yy = {q&eXﬁ*: d(xX)<M(r), VxeQ}.
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Then inequality (3.6) implies that every omega limit set w(¢) of &(¢) is
contained in Y, and Y is positively invariant for @(z). In particular, every
nonnegative steady state ¢ of (3.1) is contained in Y.

In the case where L(r)=0, [9, Corollary 5] implies that @(f): Y > Y is a
monotone semiflow with respect to the pointwise ordering of C induced by
C*. We further claim that (3.1) admits at most one positive steady state.
Indeed, it suffices to prove that the semiflow ®y(¢) has at most one positive
equilibrium in Yy. By Martin and Smith [9, Corollary 5] with t = 0, it then
follows that @y(t): Yo— Y, is a monotone semiflow with respect to the
pointwise ordering of X induced by X/j. Moreover, for any ¢, ¢, € Yo with

Q1 — ¢2€X/3+\{0}, w(1) = Po(1)p) — Po(t), satisfies

ow(t, x)
ot

=dAw(t, x) — k(x)w(t,x), VxeQ, t>0.

Then the standard parabolic maximum principle implies that
w(t)eint(XE), Vit >0, that is, &y(f): Yp— Yy is strongly monotone. By
the strict sublinearity of ¢, it easily follows that for each ¢>
0, &y(r): Yy— Y is strictly sublinear (see, e.g., [23]). Now fix a real number
to > 0, then [23, Lemma 1] implies that the map ®((z) has at most one
positive fixed point in Yy, and hence, the semiflow @((¢) has at most one
positive equilibrium in Y;. As shown in Theorem 3.1, @(¢): Ct > C* is
compact for each 7> r, admits a global compact attractor in C*, and is
uniformly persistent with respect to Zy. By Hale and Waltman [5, Theorem
32], @(t): YnZy— Y nZ, has a global attractor Ay. Clearly, Theorem 3.1
(2), together with the uniqueness of positive steady state, implies that 4,
contains only one equilibrium ¢*. By Hirsch [7, Theorem 3.3], it then
follows that ¢* attracts every point in ¥ n Zy. Consequently, every orbit in
Y converges to either the trivial equilibrium or the positive equilibrium ¢*,
and hence, together with Theorem 3.1 (2), equilibria 0 and ¢* are also two
isolated invariant sets in Y, respectively, and there is no cyclic chain of
equilibria. By Hirsch et al. [8, Theorem 3.2 and Remark 4.6], every compact
internally chain transitive sets of @(f): Y — Y is an equilibrium. Let ¢pe C*
be given. As mentioned above, there holds w(¢)< Y. Since every compact
omega limit set is an internally chain transitive set (see [8, Lemma 2.1']),
w(¢) is an equilibrium. If ¢ C* with ¢(0,-)#0, we then get w(¢p) = ¢* in
view of Theorem 3.1 (2).

In the case where L(r)<0 and r|L(r)|<l/e, we define f(o):=o+
L(r)e*, Voe[0, c0). It then follows that f(0)<0 and f"(x)<0, Vae[0, c0).
If r =0, then f(«) > 0 for all « > |L(0)]. If 0 <r|L(7)| <%, then f(o) reaches its
maximum value at oy = —%1n(r|L(r)|) >0 and f(ap) > 0. Consequently, we
can fix a real number p > 0 such that f(u) = u+ L(r)e"” > 0. Let F: C* > Xp
be defined as in the proof of Theorem 3.1, and let K, be defined as in Section
1 with X =X, P= X; and A = dA — k(-)I. By the definition of L(r),
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there holds
g(x,12) — g(x,v1) = L(r)(v2 — v1), Vx€Q, 0<v <o <M(r).

Assume that ¢,y e Y satisfy ¢ <,y and @(s) < x,¥(s), Vse[-r,0]. Clearly,
Y — ¢ e K, implies that

Y(0) — ¢(0) = x, ' ((—r) — p(—r))
=T(re " (p(=r) — ¢(—r)). (3.10)
It then follows that

u@W(0) — ¢(0) + F(y) — F(¢)
= x; (Y(0) — $(0)) + L(NT () (=r) — (=)
= x, (1 + L(n)e')e " T(r)(p(=r) — ¢(=r)> x,0. (3.11)

Thus condition (SM,) holds for F: Y — Xp, and hence, by Theorem 2.2,
@(t): Y - Y is strongly order-preserving with respect to <. Let ¢*>,0 be
defined as in the proof of Theorem 2.2. Recall that ¢*(s)> x,0, Vse[-r,0].
Then for any e Y, either the sequence of points ¥ +1¢* or y —1¢* is
eventually contained in Y and approaches y as n— oo, and hence, each
point of Y can be approximated either from above or from below in Y.
Clearly, @(¢): Y - Y has a global compact attractor in Y. Note that the
cone K, has empty interior in C. Fix a lp(-)eint(Xﬁ*) such that dAy —
k(xW<0,, VxeQ, and By =0, YxeoQ (e.g., taking y(x) as a positive
steady state of (3.1)). Then Lemma 2.1 implies that y € K,,. Define

Cy = {¢eC: there exists =0 such that — By <, <, py}
and
lglly, = inf{f=0: — pY< o<, Py}, VoeCy.

Then (Cy,|| - |l) is a Banach space and C) = CynK,is aclosed cone in Cy
with nonempty interior (see [1]). Using the smoothing property of the
semiflow @(f) on C* and the fundamental theory of abstract functional
differential  equations, we can show that for each >r,
MY <cYNCy, D(t): Y- YnCy is continuous, @(¢)¢p, — P(¢)¢, eint(CJj)
for any ¢, ¢, € Y with ¢, >, ¢, and for each nonnegative equilibrium ¢ of
&(1), the Frechet derivative at ¢ of ®(f): YnCy— Y nCy exists and is
compact and strongly positive on CJ (see, e.g., [15]). By Smith [13, Theorem
2.4.7 and Remark 2.4.1], it then follows that there is an open and dense
subset U of Y such that every orbit of &(¢) starting from U converges to an
equilibrium in Y. Clearly, the condition that L(r)<0 and r|L(r)|<1/e still
holds under small perturbations of b(r). It then follows that there is a small
¢ >0 such that the generic convergence also holds in

Y, = {peC’: ¢(s,x) < M(r), Vse[-r,0], xeQ},
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where M,(r) = b.(r)/ko = M(r) + ¢/ko and b.(r) = b(r) + ¢. By inequality
(3.6), every orbit of @(¢) in C* eventually enters into Y;. Now conclusion (2)
follows from the generic convergence in Y, and Theorem 3.1 (2). O

Example 3.1. Consider model (3.1) with k(x) =k, g(x,v) = g(v) = pve 7,
where k, p and ¢ are all positive constants. The function g(v) was introduced
in [3]. Let Ty(z) be the analytic semigroup generated by dA with boundary
condition Bv = 0. Clearly, T(f) = e ¥ Ty(¢) and condition (G) is satisfied. A
direct computation shows that ¢'(v) = pe (1 — qv), ¢"(v) = —pge 1"(2 —

qv), and g(v) reaches its maximum value g(1/q) :é’e’l.

In the case of Neumann boundary condition Bv = £ = 0, it easily follows
that

Jo(d,r,g0) = pe™ — ke, b(r) =L H0 MGy = o400
q kq
and

L(r)=¢ (M) = p(l 7267(”1"'))6)@(7% e’“*k’)) if M(r)<2/q,
L) =g Q/q) = —pe? if M(r)>2/q.

Clearly, if 2o(d, r, ¢’(0)) > 0, the model has a positive constant steady state
 InGZo).

In the case of Dirichlet boundary condition Bv = v =0, Ay(d,r, g (0)),
b(r) and L(r) depend nontrivially on the diffusion rate d and the domain Q,
and any positive steady state is spatially inhomogeneous. It is possible to get
the explicit expressions or estimates for these quantities in some special cases
of the dimensions and shapes of Q. For example, let Q = Hfi 1(0,7), and
define wy(x) = Hfil sin x;, Vx = (x,--,xy)eQ. It is easy to verify that
To(H)wy = e Ny, Ve=0, and that wy(x) is a positive solution of the
nonlocal elliptic eigenvalue problem (3.3) with k(x) = k, g(x,v) = g(v) and
J=g0)e N+ _(Nd + k). Tt then follows that Zo(d,r, ¢ (0) =
g (0)eNd+Rr _ (Nd + k).
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