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Abstract

For abstract functional differential equations and reaction–diffusion equations with

delay, an exponential ordering is introduced which takes into account the spatial

diffusion. The induced monotonicity of the solution semiflows is established and

applied to describe the threshold dynamics (extinction or persistence/convergence to

positive equilibria) for a nonlocal and delayed reaction–diffusion population model.
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1. Introduction

The purpose of this paper is to introduce a new ordering in the phase
space with respect to which some reaction diffusion equations with
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nonlinear and delayed (not necessarily monotone) reaction terms generate
monotone (or order-preserving) semiflows. We also use the order-preserving
property and some general results of monotone dynamical systems to
describe the global dynamics (in particular, threshold dynamics) of a
diffusive population model with delay and nonlocal effects.
Reaction diffusion equations with delayed reaction terms and, more

generally, abstract functional differential equations, have been widely used
to model the evolution of a physical system distributed over a spatial
domain [21]. In the celebrated work of Martin and Smith [9,10], the
monotonicity of the semiflow generated by an abstract functional
differential equation was established and the powerful theory of monotone
dynamical systems was applied to obtain some detailed descriptions of the
generic dynamics of the semiflow. In order for the semiflow to be order-
preserving with respect to the pointwise ordering of the phase space, the
aforementioned work requires that the nonlinear reaction term satisfy a
certain quasimonotonicity condition which, in the special case of a reaction
diffusion equation with delay, requires the reaction term to be monotone
and thus limits the applications in some cases. It is therefore nature to ask
whether the quasimonotonicity condition in the work of Martin and Smith
can be relaxed. This question was addressed in Smith and Thieme [14,15] for
the case of ordinary functional differential equations (that is, the spatial
diffusion is absent), where they established the monotonicity of the semiflow
in a restricted but sufficiently large subspace with a nonstandard exponential
ordering.
Extending exponential ordering and its induced monotonicity to

abstract functional differential equations and delayed reaction diffusion
equations is the main goal of our work here. Such an extension, however,
seems to require some new ideas, as the interaction of spatial diffusion
and temporal delay requires comparison of solutions at different
locations. This will be illustrated by our example in Section 3, where we
consider the following nonlocal delayed and diffusive population model
proposed in [20]

@vðt;xÞ
@t

¼ dDvðt;xÞ � kðxÞvðt;xÞ þ
R
O Gðx; y; rÞgðy; vðt � r; yÞÞ dy;

xAO; t > 0;

Bvðt; xÞ ¼ 0; xA@O; t > 0;

vðt;xÞ ¼ fðt;xÞ; xAO; tA½�r; 0�;

8>>>>><
>>>>>:

ð1:1Þ

where rX0 is the average maturation time for the species, d > 0 is the
diffusion rate, kðxÞ > 0 is the per capita mortality rate of the species at
location x; gðx; vÞ is the recruitment rate function of an adult population
(which is usually not monotone in v), B is the Dirichlet or Neumann
boundary operator, and G is the Green’s function associated with A :¼
dD� kð�ÞI and boundary condition Bv ¼ 0: It should be mentioned that
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such nonlocal delayed and diffusive models arise very naturally if one
carefully models the delay as condensation of the underlying retarding
process and takes into account that individuals move during this process
(see also [2,17,18]).
The remaining part of this paper is organized as follows. In Section 2, we

introduce an exponential ordering in the phase space, give an analytic
characterization of such an ordering for points in the phase space with
sufficient regularity, and establish the monotonicity and strong order-
preserving property for mild solutions of general abstract functional
differential equations with a quasi-monotone nonlinearity. In Section 3,
we illustrate the exponential ordering and the quasi-monotonicity condition
by the model equation (1.1) and we also apply the general theory of
monotone dynamical systems to describe the threshold dynamics of the
model and give explicit conditions for solutions of (1.1) to converge to either
the trivial equilibrium or a positive equilibrium.

2. The exponential ordering

Let ðX ;PÞ be an ordered Banach space with intðPÞa|: For u; vAX ; we
write uXX v if u � vAP; u >X v if u � vAP\f0g; ubX v if u � vAintðPÞ: Since
P is a closed subset of X ; the topology and ordering on X are compatible in
the sense that if unXX vn; un-u; vn-v; then uXX v:
Let A :DomðAÞ-X be the infinitesimal generator of an analytic

semigroup TðtÞ satisfying TðtÞPCP; 8tX0: For convenience, we denote

TðtÞ by eAt: Let rX0 be fixed and let C :¼ Cð½�r; 0�;X Þ: For mX0; we define

Km ¼ ffAC: fðsÞXX 0; 8sA½�r; 0�; and

fðtÞXX eðA�mIÞðt�sÞfðsÞ; 80XtXsX� rg:

Then Km is a closed cone in C: Let Xm be the partial ordering on C induced

by Km: The meaning of pm and pX should be clear.

Lemma 2.1. Assume that fAC is differentiable on ð�r; 0Þ and

fðtÞADomðAÞ; 8tAð�r; 0Þ: Then fXm0 if and only if

fð�rÞXX 0 and
dfðtÞ

dt
� ðA � mIÞfðtÞXX 0; 8tAð�r; 0Þ:

Proof. Assume that fXm0; i.e., fAKm: It then follows that fð�rÞXX 0; and
for any tAð�r; 0Þ and h > 0 with t þ hA½�r; 0�;

fðt þ hÞ � fðtÞ
h

XX

eðA�mIÞhfðtÞ � fðtÞ
h

:

Since f is differentiable at t and fðtÞADomðAÞ; letting h-0þ

and using the definition of infinitesimal generators (see, e.g., [11]),
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we get

dfðtÞ
dt

¼ lim
h-0þ

fðt þ hÞ � fðtÞ
h

XX ðA � mIÞfðtÞ; 8tAð�r; 0Þ:

Conversely, assume that fð�rÞXX 0 and dfðtÞ
dt

� ðA � mIÞfðtÞXX 0;

8tAð�r; 0Þ: Let tAð�r; 0� be fixed. Clearly, the function uðsÞ :¼
eðA�mIÞðt�sÞfðsÞ is differentiable for sAð�r; tÞ: By the property of analytic

semigroups (see, e.g., [6,11]) and the positivity of eðA�mIÞðt�sÞ ¼ e�mðt�sÞeAðt�sÞ;
we have

duðsÞ
ds

¼ � ðA � mIÞeðA�mIÞðt�sÞfðsÞ þ eðA�mIÞðt�sÞ dfðsÞ
ds

¼ � eðA�mIÞðt�sÞðA � mIÞfðsÞ þ eðA�mIÞðt�sÞ dfðsÞ
ds

¼ eðA�mIÞðt�sÞ dfðsÞ
ds

� ðA � mIÞfðsÞ
� �

XX 0:

Thus, we get fðtÞ � eðA�mIÞðt�sÞfðsÞ ¼ uðtÞ � uðsÞ ¼
R t

s
duðtÞ

dt dtXX 0; 8sA½�r; t�:
This, together with fð�rÞXX 0 implies fAKm: &

Let s > 0 and u : ½�r;sÞ-X be a continuous map. For each tA½0; sÞ; we
define utAC by utðsÞ ¼ uðt þ sÞ; 8sA½�r; 0�: Let D be an open subset of C:
Assume that F : D-X is continuous and satisfies a Lipschitz condition on
each compact subset of D: We consider the abstract functional differential
equation

duðtÞ
dt

¼ AuðtÞ þ F ðutÞ; t > 0;

u0 ¼ fAD:

8<
: ð2:1Þ

By the standard theory (see, e.g., [9,21]), for each fAD; Eq. (2.1) admits a
unique mild solution uðt;fÞ on its maximal interval ½0;sfÞ: Moreover, if

sf > r; then uðt;fÞ is a classical solution to (2.1) for tAðr; sfÞ: In order to get
a monotone solution semiflow of (2.1) with respect to Xm; we will impose
the following monotonicity condition on F :

ðMmÞ mðcð0Þ � fð0ÞÞ þ F ðcÞ � F ðfÞXX 0 for f;cAD with fpm c:

Theorem 2.1. Let ðMmÞ hold. If fpm c; then utðfÞpm utðcÞ for all tX0 such

that both solutions are defined.

Proof. Let vnAintðPÞ be fixed. For any e > 0; define FeðfÞ :¼ F ðfÞ þ evn for
fAD; and let ueðt;cÞ be the unique mild solution of the following equation:

duðtÞ
dt

¼ AuðtÞ þ FeðutÞ; t > 0;

u0 ¼ cAD:

8<
: ð2:2Þ
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Without loss of generality, we assume that uðt;fÞ and ueðt;cÞ are both
defined on ½0;NÞ(If not, we replace ½0;NÞ by the intersection of their
maximal intervals of existence). Let yeðtÞ :¼ ueðt;cÞ � uðt;fÞ and define

P ¼ ftA½0;NÞ: ye
tXm0g:

Clearly, P is closed and 0AP: We claim that if t0AP; then there exists d0 > 0
such that ½t0; t0 þ d0�CP: Indeed, by the abstract integral forms of Eqs. (2.1)
and (2.2), we have

yeðtÞ ¼ eðA�mIÞðt�sÞyeðsÞ

þ
Z t

s

eðA�mIÞðt�tÞðF ðue
tðcÞÞ � F ðutðfÞÞ

þ mðueðt;cÞ � uðt;fÞÞ þ evnÞ dt; tXsX0: ð2:3Þ

By the condition ue
t0
ðcÞXm ut0 ðfÞ and assumption ðMmÞ; it then follows that

ðF ðue
tðcÞÞ � F ðutðfÞÞ þ mðueðt;cÞ � uðt;fÞÞ þ evnÞjt¼t0XX evnbX 0:

Thus, there exists d0 > 0 such that

F ðue
tðcÞÞ � F ðutðfÞÞ þ mðueðt;cÞ � uðt;fÞÞ þ evnXX 0; 8tA½t0; t0 þ d0�:

By the integral equation (2.3) and the positivity of the semigroup eðA�mIÞt; we
then get

yeðtÞXX eðA�mIÞðt�sÞyeðsÞ; 8t0psptpt0 þ d0;

which, together with the definition of ðKmÞ; implies that ue
tðcÞ

Xm utðfÞ; 8tA½t0; t0 þ d0�:
Let P1 :¼ ft: ½0; t�CPg: We claim that sup P1 ¼ N: Assume that, by way

of contradiction, tn ¼ sup P1oN: Then there is a sequence ftngCP1CP

such that tn-tn: Thus the closedness of P implies that tnAP: By the claim in

the previous paragraph, ½tn; tn þ dn�CP for some dn > 0; and hence tn þ
dnAP1; which contradicts the definition of tn: It then follows that ½0;NÞCP;
and hence P ¼ ½0;NÞ:
By a standard argument, we have lime-0þ ue

tðcÞ ¼ utðcÞ; 8tX0: Letting
e-0þ in ye

t ¼ ue
tðcÞ � utðfÞXm0; we get utðcÞ � utðfÞXm0; and hence

utðcÞXm utðfÞ; 8tX0: &

For simplicity, in the rest of this section we assume that for each fAC;
Eq. (2.1) admits a unique mild solution uðt;fÞ defined on ½0;NÞ: Then (2.1)
generates a semiflow on C by FðtÞðfÞ ¼ utðfÞ;fAC: Clearly, condition ðMmÞ
is sufficient for FðtÞ :C-C to be monotone with respect to pm in the sense

that FðtÞðfÞpmFðtÞðcÞ whenever fpm c and tX0: In some applications of

monotone dynamical systems, however, we need a strong order-preserving
property(see, e.g., [13]). The semiflow FðtÞ : C-C is said to be strongly
order-preserving with respect to pm if it is monotone and whenever fom c
there exist open subsets U ;V of C with fAU and cAV and t0 > 0 such that
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Fðt0ÞðUÞpmFðt0ÞðV Þ: Next we show that the following slightly stronger

condition than ðMmÞ is sufficient for FðtÞ to be strongly order-preserving.

ðSMmÞ mðcð0Þ � fð0ÞÞ þ F ðcÞ � F ðfÞbX 0 for f;cAC with fpm c

and fðsÞ5XcðsÞ; 8sA½�r; 0�:

Theorem 2.2. Assume that TðtÞðP\f0gÞCintðPÞ; 8t > 0; and ðSMmÞ holds.

Then the solution semiflow FðtÞ is strongly order-preserving on C with respect

to pm:

Proof. Let vnAintðPÞ be fixed, and define fnAC by fnðtÞ ¼
eðA�mIÞðtþrÞvn; 8tA½�r; 0�: Then fnðsÞbX 0; 8sA½�r; 0�; and Lemma 2.1

implies that fn
Xm 0: For any cAC; the sequence of points cn ¼ cþ 1

n
fn

in C satisfies com cnþ1om cn; 8nX1; and cn-c as n-N: By this

property and the continuity of F ; it is easy to see that ðSMmÞ implies ðMmÞ:
Then we conclude from Theorem 2.1 that FðtÞ is monotone on C:Moreover,
for each fAC; uðt;fÞADomðAÞ; 8t > r: For any fom c; the strong

positivity of TðtÞ ¼ eAt implies that fð0ÞoXcð0Þ; and hence, in view of
utðfÞpm utðfÞ; 8tX0; there holds uðt;fÞ5X uðt;cÞ for all t > 0: Fix a real

number t0 > 2r and let f0om c
0 be given. By condition ðSMmÞ; the

continuity of F and the compactness of ½t0 � r; t0�; it then follows that
there is a sufficiently small e0 > 0 such that

F ðutðc
0ÞÞ � F ðutðf

0ÞÞ þ mðuðt;c0Þ � uðt;f0ÞÞXX e0vn; 8tA½t0 � r; t0�:

Since limðf;cÞ-ðf0;c0Þ ðuðt0 � r;cÞ � uðt0 � r;fÞÞ ¼ uðt0 � r;c0Þ � uðt0 � r;f0Þ
bX 0 and

lim
ðf;cÞ-ðf0;c0Þ

F ðutðcÞÞ � F ðutðfÞÞ þ mðuðt;cÞ � uðt;fÞÞ

¼ F ðutðc
0ÞÞ � F ðutðf

0Þ þ mðuðt;c0Þ � uðt;f0ÞÞ uniformly for

tA½t0 � r; t0�;

there exist open subsets U ; V of C with f0AU and c0AV such that for any
fAU and cAV ; uðt0 � r;cÞ � uðt0 � r;fÞbX 0 and

dðuðt;cÞ � uðt;fÞÞ
dt

� ðA � mIÞðuðt;cÞ � uðt;fÞÞ

¼ F ðutðcÞÞ � F ðutðfÞÞ þ mðuðt;cÞ � uðt;fÞÞbX 0; 8tA½t0 � r; t0�:

Note that uðt;fÞ and uðt;cÞ are both classical solutions for t > r: By Lemma
2.1, we then get ut0 ðcÞ � ut0 ðfÞXm0; 8cAV ; fAU ; and hence

ut0 ðUÞpm ut0 ðV Þ: &
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Remark 2.1. In the case where X ¼ R and A is the zero operator, pm

reduces to the exponential ordering introduced by Smith and Thieme [14]
for scalar nonquasimonotone ordinary delay differential equations.

Remark 2.2. Let ðXi;PiÞ; 1pipn; be ordered Banach spaces with

intðPiÞa|; and let Ai : DomðAiÞ-Xi be the infinitesimal generator
of an analytic semigroup TiðtÞ satisfying TiðtÞPiCPi; 8tX0: Let

X ¼
Qn

i¼1 Xi; P ¼
Qn

i¼1 Pi; TðtÞ ¼
Qn

i¼1 TiðtÞ; A ¼
Qn

i¼1 Ai; DomðAÞ ¼Qn
i¼1 DomðAiÞ: Then A :DomðAÞ-X is the infinitesimal generator of the

analytic semigroup TðtÞ defined on the ordered Banach space ðX ;PÞ: Let
B ¼ ðbijÞ be an n 
 n matrix with bijX0; 81piajpn: Define

KB ¼ffAC: fðsÞXX 0; 8sA½�r; 0�;

and fðtÞXX eAðt�sÞeBðt�sÞfðsÞ; 80XtXsX� rg:

Then KB is a closed cone in C and induces a partial order XB on C: By an
argument similar to that in Theorem 2.1, we can prove that the solution
semiflow of (2.1) is monotone with respect to pB under the following
monotonicity condition:

ðMBÞ F ðcÞ � F ðfÞXX Bðcð0Þ � fð0ÞÞ

for f;cAD with fpBc:

Clearly, in the case where n ¼ 1 and B ¼ �m; XB reduces toXm: Replacing
�m with B in ðSMmÞ; we get a stronger condition ðSMBÞ: By a similar

argument as in Theorem 2.2, we should be able to prove that the solution
semiflow of (2.1) is strongly order-preserving with respect to pB under
ðSMBÞ and an additional irreducibility assumption. For the details in a
special case where X ¼ Rn and A ¼ 0; we refer to [15].

3. A nonlocal and delayed reaction–diffusion model

In this section, we illustrate how the exponential ordering and the theory
of monotone dynamical systems can be applied to nonlocal and delayed
reaction–diffusion models in population dynamics.
Consider the growth of a single species with immature and mature stage

structure. For simplicity, we assume that rX0 is the average maturation
time for the species, and that both matured and immatured populations
have the same random diffusive rate d > 0 and the per capita mortality rate
kðxÞ > 0 at location x: Recently, Thieme and Zhao [20] proposed and
analysed a nonlocal delayed and diffusive predator–prey model. By
replacing the biomass gain rate function f ðx; u; vÞ in the predator equation
(1.4) of [20] with the birth rate function gðx; vÞ of the matured population,
we then get a nonlocal and diffusive model of the mutured population
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growth in a habitat O

@vðt;xÞ
@t

¼ dDvðt;xÞ � kðxÞvðt;xÞ þ
R
O Gðx; y; rÞgðy; vðt � r; yÞÞ dy;

xAO; t > 0;

Bvðt; xÞ ¼ 0; xA@O; t > 0;

vðt;xÞ ¼ fðt;xÞX0; xAO; tA½�r; 0�;

8>>>>><
>>>>>:

ð3:1Þ

where O is a bounded and open subset of RN with @OAC2þy for a real

number y > 0; D denotes the Laplacian operator on RN ; either Bv ¼ v or

Bv ¼ @v
@n
þ av for some nonnegative function aAC1þyð@O;RÞ; @

@n
denotes the

differentiation in the direction of the outward normal n to @O; G is the
Green’s function associated with A :¼ dD� kð�ÞI and boundary condition
Bv ¼ 0; and f is a given function to be specified later. Such a model
equation can also be derived from the structured models (a hyperbolic
partial differential equation) by integration along characteristics (see
[17,18]).
Let pAðN;NÞ be fixed. For each bAð1=2þ N=ð2pÞ; 1Þ; let Xb be the

fractional power space of LpðOÞ with respect to ð�A;BÞ (see, e.g., [6]). Then
Xb is an ordered Banach space with the cone Xþ

b consisting of all

nonnegative functions in Xb; and Xþ
b has nonempty interior intðXþ

b Þ:

Moreover, XbCC1þnð %OÞ with continuous inclusion for nA½0; 2b� 1� N=pÞ:
We denote the norm in Xb by jj � jjb: It is well-known that A generates an

analytic semigroup TðtÞ on LpðOÞ: Moreover, the standard parabolic
maximum principle implies that the semigroup TðtÞ :Xb-Xb is strongly

positive, that is, TðtÞðXþ
b Þ\f0gÞCintðXþ

b Þ; 8t > 0: Let C :¼ Cð½�r; 0�;XbÞ and

Cþ :¼ Cð½�r; 0�;Xþ
b Þ: Then model (3.1) can be written as the following

abstract functional differential equation:

dvðtÞ
dt

¼ AvðtÞ þ TðrÞgð�; vðt � rÞÞ; t > 0;

v0 ¼ fACþ:

8<
: ð3:2Þ

We further assume that kð�Þ is a positive Hölder continuous function on %O
and gAC1ð %O
 Rþ;RþÞ satisfies the following condition:

(G) gð�; 0Þ � 0; @vgðx; 0Þ > 0; 8xAO; g is bounded on %O
 Rþ; and for

each xAO; gðx; �Þ :Rþ-Rþ is strictly sublinear in the sense that
gðx; avÞ > agðx; vÞ; 8aAð0; 1Þ; v > 0:

Using a similar argument as in [13, Theorem 7.6.1], we can show that the
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nonlocal elliptic eigenvalue problem

lwðxÞ ¼ dDw � kðxÞwðxÞ þ
R
O Gðx; y; rÞ@vgðy; 0ÞwðyÞ dy; xAO;

Bw ¼ 0; xA@O

(
ð3:3Þ

has a principal eigenvalue, which is denoted by l0ðd; r; @vgð�; 0ÞÞ:
For any fACþ; let vðt;fÞ denote the solution of (3.1). Define k0 :¼

minfkðxÞ: xA %Og; and

bðrÞ :¼ sup

Z
O
Gðx; y; rÞgðy;jðyÞÞ dy: xA %O; jAXþ

b

� �
; MðrÞ :¼

bðrÞ
k0

;

LðrÞ :¼ min f@vgðx; vÞ: xA %O; vA½0;MðrÞ�g:

Then we have the following threshold dynamics for model system (3.1): if
the zero solution of (3.1) is linearly stable, then the species goes to
extinction; if it is linearly unstable, then the species is uniformly persistent.

Theorem 3.1. Let vnAintðXbÞ be fixed and let ðGÞ hold.

(1) If l0ðd; r; @vgð�; 0ÞÞo0; then limt-Njjvðt;fÞjjb ¼ 0 for every fACþ;

(2) If l0ðd; r; @vgð�; 0ÞÞ > 0; then (3.1) admits at least one steady-state

solution jn with jnðxÞ > 0; 8xAO; and there exists a d > 0 such that

for every fACþ with fð0; �Þc0; there is t0 ¼ t0ðfÞ > 0 such that

vðt;fÞXdvnðxÞ; 8xA %O; tXt0:

Proof. Define F : Cþ-Xb by F ðfÞ ¼ TðrÞgð�;fð�rÞÞ; 8fACþ: Then

Eq. (3.1) can be written as the following abstract functional differential
equation:

dvðtÞ
dt

¼ AvðtÞ þ F ðvtÞ; t > 0;

v0 ¼ fACþ:

8<
: ð3:4Þ

Since TðtÞ : Xb-Xb is strongly positive, we have

lim
h-0þ

1

h
distðfð0Þ þ hF ðfÞ;Xþ

b Þ ¼ 0; 8fACþ:

By Martin and Smith [9, Proposition 3 and Remark 2.4] and using a similar
argument in the case of Dirichlet boundary condition (see also [9, Remark

1.10]), we conclude that for every fACþ; (3.1) admits a unique

noncontinuable mild solution vðt;fÞ satisfying v0 ¼ f and vðt;fÞAXþ
b for

any t in its maximal interval of existence ½0;sfÞ: Thus vðt;fÞðxÞ satisfies the
following parabolic inequality:

@vðt;xÞ
@t

pdDvðt;xÞ � k0vðt; xÞ þ bðrÞ; xAO; tAð0;sfÞ;

Bvðt; xÞ ¼ 0; xA@O; tAð0;sfÞ:

8<
: ð3:5Þ
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Let uðtÞ be the unique solution of the ordinary differential equation duðtÞ
dt

¼
�k0uðtÞ þ bðrÞ satisfying uð0Þ ¼ maxxA %O fð0ÞðxÞ: Using the standard para-

bolic comparison theorem, we then get

vðt;fÞðxÞpuðtÞ ¼ max
xA %O

fð0ÞðxÞ � MðrÞ
� �

e�k0t þ MðrÞ;

; 8xAO; ; 8tAð0;sfÞ: ð3:6Þ

Thus sf ¼ N; 8fACþ; and (3.1) defines a semiflow FðtÞ : Cþ-Cþ by

FðtÞf ¼ vtðfÞ: By inequality (3.6) and the properties of the fractional power

space Xb; it follows that FðtÞ : Cþ-Cþ is point dissipative. Moreover,

FðtÞ : Cþ-Cþ is compact for each t > r (see [21, Theorem 2.2.6]). Then FðtÞ
admits a global compact attractor on Cþ (see [4, Theorem 3.4.8]).

It is easy to see that gðx; vÞp@vgðx; 0Þv; 8xA %O; vX0: Then the comparison
theorem for quasimonotone abstract functional differential equations (see
[9,10]) implies that

vðt;fÞðxÞpuðt;fÞðxÞ; 8xAO; tX0;

where uðt;fÞ is the unique solution of the following linear, nonlocal and
delayed parabolic equation:

@vðt;xÞ
@t

¼ dDvðt;xÞ � kðxÞvðt;xÞ þ
R
O Gðx; y; rÞ@vgðy; 0Þ

vðt � r; yÞ dy; xAO; t > 0;

Bvðt; xÞ ¼ 0; xA@O; t > 0;

vðt;xÞ ¼ fðt;xÞ; xAO; tA½�r; 0�:

8>>>>><
>>>>>:

ð3:7Þ

By Thieme and Zhao [20, Theorem 2.2] and a similar argument in the case of
Dirichlet boundary condition, the nonlocal elliptic eigenvalue problem

lwðxÞ ¼ dDw � kðxÞwðxÞ þ e�lr
R
O Gðx; y; rÞ@vgðy; 0ÞwðyÞ dy;

xAO;

Bw ¼ 0; xA@O

8><
>: ð3:8Þ

has a principal eigenvalue %l0ðd; r; @vgð�; 0ÞÞ; and %l0ðd; r; @vgð�; 0ÞÞ has the same
sign as l0ðd; r; @vgð�; 0ÞÞ: Then in the case where l0ðd; r; @vgð�; 0ÞÞo0; the
properties of principal eigenvalues and linear semigroups imply that

limt-Njjuðt;fÞjjb ¼ 0; 8fAC; and hence limt-Njjvðt;fÞjjb ¼ 0; 8fACþ:

In the case where l0ðd; r; @vgð�; 0ÞÞ > 0; let Z0 ¼ ffACþ: fð0; �Þc0g; @Z0 :
¼ Cþ\Z0: Since gðx; vÞX0; Eq. (3.1) implies that

@vðt;xÞ
@t

XdDvðt;xÞ � kðxÞvðt;xÞ; 8xAO; t > 0:

By the standard parabolic maximum principle, it then follows that

FðtÞZ0CintðCþÞ; 8t > 0: Let Z1 ¼ ffA@Z0: FðtÞfA@Z0; 8tX0g: ThenS
fAZ1

oðfÞ ¼ f0g; where oðfÞ denotes the omega limit set of the orbit

gþðfÞ :¼ fFðtÞf:; 8tX0g: Clearly, gðx; vÞ can be written as gðx; vÞ ¼ vhðx; vÞ
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with hðx; 0Þ ¼ @vgðx; 0Þ: By the condition %l0ðd; r; @vgð�; 0ÞÞ > 0 and an
argument of contradiction similar to that in the proof of [12, Lemma 3.1],
we can prove that f0g is a uniform weak repellor for Z0; that is, there exists
d0 > 0 such that lim supt-N

jjFðtÞfjjbXd0; 8fAZ0: By Thieme [19, Theo-

rem 4.6], FðtÞ is uniformly persistent with respect to Z0 in the sense that
there exists an Z > 0 such that lim inf t-NdistðFðtÞf; @Z0ÞXZ; 8fAZ0: As
FðtÞ : Cþ-Cþ is compact for t > r; the order persistence in (2) follows from

[16, Theorem A.2] with e ¼ vnAintðCþÞ: It remains to prove the existence of
a positive steady state of (3.1). Let F0ðtÞ :Xþ

b -Xþ
b ; tX0; be the solution

semiflow of the following nonlocal reaction–diffusion equation

@uðt;xÞ
@t

¼ dDuðt;xÞ � kðxÞuðt;xÞ þ
R
O Gðx; y; rÞgðy; uðt; yÞÞ dy;

xAO; t > 0;

Buðt; xÞ ¼ 0; xA@O; t > 0;

uð0; xÞ ¼ jðxÞ; xAO:

8>>>>><
>>>>>:

ð3:9Þ

Since @uðt;xÞ
@t

XdDuðt;xÞ � kðxÞuðt;xÞ; the standard parabolic maximum

principle implies that F0ðtÞðXþ
b \f0gÞCintðXþ

b Þ; 8t > 0: As proven for

FðtÞ : Cþ-Cþ; it follows that F0ðtÞ is point dissipative on Xþ
b ; compact

for each t > 0 and uniformly persistent with respect to Xþ
b \f0g: Then

by Zhao [22, Theorem 2.4], F0ðtÞ has an equilibrium jnAXþ
b \f0g;

i.e., F0ðtÞjn ¼ jn for all tX0: Fix a t > 0; we then get

jn ¼ F0ðtÞjnAintðXþ
b Þ: &

As an application of the theory in Section 2, we are able to get sufficient
conditions under which the species stabilizes eventually at positive steady
states in case (2) of Theorem 3.1.

Theorem 3.2. Assume that ðGÞ holds and l0ðd; r; @vgð�; 0ÞÞ > 0:

(1) If LðrÞX0; then (3.1) admits a unique positive steady state jn; and

limt-Njjvðt;fÞ � jnjjb ¼ 0 for every fACþ with fð0; �Þc0:

(2) If LðrÞo0 and rjLðrÞjo1=e; then there exists an open and dense subset

S of Cþ with the property that for every fAS with fð0; �Þc0; there is a

positive steady state j of (3.1) such that limt-Njjvðt;fÞ � jjjb ¼ 0:

Proof. Let FðtÞ : Cþ-Cþ be the solution semiflow of (3.1), and

F0ðtÞ : Xþ
b -Xþ

b be the solution semiflow of (3.9). Define

Y :¼ ffACþ: fðs;xÞpMðrÞ; 8sA½�r; 0�; xAOg

and

Y0 :¼ ffAXþ
b : fðxÞpMðrÞ; 8xAOg:
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Then inequality (3.6) implies that every omega limit set oðfÞ of FðtÞ is
contained in Y ; and Y is positively invariant for FðtÞ: In particular, every
nonnegative steady state j of (3.1) is contained in Y0:
In the case where LðrÞX0; [9, Corollary 5] implies that FðtÞ :Y-Y is a

monotone semiflow with respect to the pointwise ordering of C induced by

Cþ: We further claim that (3.1) admits at most one positive steady state.
Indeed, it suffices to prove that the semiflow F0ðtÞ has at most one positive
equilibrium in Y0: By Martin and Smith [9, Corollary 5] with t ¼ 0; it then
follows that F0ðtÞ : Y0-Y0 is a monotone semiflow with respect to the

pointwise ordering of Xb induced by Xþ
b :Moreover, for any j1;j2AY0 with

j1 � j2AXþ
b \f0g; wðtÞ :¼ F0ðtÞj1 � F0ðtÞj2 satisfies

@wðt; xÞ
@t

XdDwðt;xÞ � kðxÞwðt;xÞ; 8xAO; t > 0:

Then the standard parabolic maximum principle implies that

wðtÞAintðXþ
b Þ; 8t > 0; that is, F0ðtÞ :Y0-Y0 is strongly monotone. By

the strict sublinearity of g; it easily follows that for each t >
0; F0ðtÞ : Y0-Y0 is strictly sublinear (see, e.g., [23]). Now fix a real number
t0 > 0; then [23, Lemma 1] implies that the map F0ðt0Þ has at most one
positive fixed point in Y0; and hence, the semiflow F0ðtÞ has at most one
positive equilibrium in Y0: As shown in Theorem 3.1, FðtÞ : Cþ-Cþ is

compact for each t > r; admits a global compact attractor in Cþ; and is
uniformly persistent with respect to Z0: By Hale and Waltman [5, Theorem
3.2], FðtÞ : Y-Z0-Y-Z0 has a global attractor A0: Clearly, Theorem 3.1
(2), together with the uniqueness of positive steady state, implies that A0

contains only one equilibrium jn: By Hirsch [7, Theorem 3.3], it then

follows that jn attracts every point in Y-Z0: Consequently, every orbit in
Y converges to either the trivial equilibrium or the positive equilibrium jn;
and hence, together with Theorem 3.1 (2), equilibria 0 and jn are also two
isolated invariant sets in Y ; respectively, and there is no cyclic chain of
equilibria. By Hirsch et al. [8, Theorem 3.2 and Remark 4.6], every compact

internally chain transitive sets of FðtÞ : Y-Y is an equilibrium. Let fACþ

be given. As mentioned above, there holds oðfÞCY : Since every compact
omega limit set is an internally chain transitive set (see [8, Lemma 2:10]),
oðfÞ is an equilibrium. If fACþ with fð0; �Þc0; we then get oðfÞ ¼ jn in
view of Theorem 3.1 (2).
In the case where LðrÞo0 and rjLðrÞjo1=e; we define f ðaÞ :¼ aþ

LðrÞear; 8aA½0;NÞ: It then follows that f ð0Þo0 and f 00ðaÞp0; 8aA½0;NÞ:
If r ¼ 0; then f ðaÞ > 0 for all a > jLð0Þj: If 0orjLðrÞjo1

e
; then f ðaÞ reaches its

maximum value at a0 ¼ �1
r
lnðrjLðrÞjÞ > 0 and f ða0Þ > 0: Consequently, we

can fix a real number m > 0 such that f ðmÞ ¼ mþ LðrÞemr > 0: Let F : Cþ-Xb

be defined as in the proof of Theorem 3.1, and let Km be defined as in Section

1 with X ¼ Xb; P ¼ Xþ
b and A ¼ dD� kð�ÞI : By the definition of LðrÞ;
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there holds

gðx; v2Þ � gðx; v1ÞXLðrÞðv2 � v1Þ; 8xA %O; 0pv1pv2pMðrÞ:

Assume that f;cAY satisfy fpm c and fðsÞ5XbcðsÞ; 8sA½�r; 0�: Clearly,
c� fAKm implies that

cð0Þ � fð0ÞXXbeðA�mIÞrðcð�rÞ � fð�rÞÞ

¼TðrÞe�mrðcð�rÞ � fð�rÞÞ: ð3:10Þ

It then follows that

mðcð0Þ � fð0ÞÞ þ F ðcÞ � F ðfÞ

XXbmðcð0Þ � fð0ÞÞ þ LðrÞTðrÞðcð�rÞ � fð�rÞÞ

XXb mþ LðrÞemrð Þe�mrTðrÞðcð�rÞ � fð�rÞÞbXb0: ð3:11Þ

Thus condition ðSMmÞ holds for F : Y-Xb; and hence, by Theorem 2.2,

FðtÞ : Y-Y is strongly order-preserving with respect to pm: Let f
n
Xm0 be

defined as in the proof of Theorem 2.2. Recall that fnðsÞbXb0; 8sA½�r; 0�:
Then for any cAY ; either the sequence of points cþ 1

n
fn or c� 1

n
fn is

eventually contained in Y and approaches c as n-N; and hence, each
point of Y can be approximated either from above or from below in Y :
Clearly, FðtÞ : Y-Y has a global compact attractor in Y : Note that the

cone Km has empty interior in C: Fix a cð�ÞAintðXþ
b Þ such that dDc�

kðxÞcp0; ; 8xAO; and Bc ¼ 0; 8xA@O (e.g., taking cðxÞ as a positive
steady state of (3.1)). Then Lemma 2.1 implies that cAKm: Define

Cc ¼ ffAC: there exists bX0 such that� bcpmfpmbcg

and

jjfjjc ¼ inffbX0: � bcpmfpmbcg; 8fACc:

Then ðCc; jj � jjcÞ is a Banach space and Cþ
c :¼ Cc-Km is a closed cone in Cc

with nonempty interior (see [1]). Using the smoothing property of the

semiflow FðtÞ on Cþ and the fundamental theory of abstract functional
differential equations, we can show that for each t > r;
FðtÞYCY-Cc; FðtÞ : Y-Y-Cc is continuous, FðtÞf2 � FðtÞf1AintðCþ

c Þ
for any f1;f2AY with f2 >m f1; and for each nonnegative equilibrium j of

FðtÞ; the Frechet derivative at j of FðtÞ : Y-Cc-Y-Cc exists and is

compact and strongly positive on Cþ
c (see, e.g., [15]). By Smith [13, Theorem

2.4.7 and Remark 2.4.1], it then follows that there is an open and dense
subset U of Y such that every orbit of FðtÞ starting from U converges to an
equilibrium in Y : Clearly, the condition that LðrÞo0 and rjLðrÞjo1=e still
holds under small perturbations of bðrÞ: It then follows that there is a small
e > 0 such that the generic convergence also holds in

Ye :¼ ffACþ: fðs;xÞpMeðrÞ; 8sA½�r; 0�; xAOg;
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where MeðrÞ :¼ beðrÞ=k0 ¼ MðrÞ þ e=k0 and beðrÞ :¼ bðrÞ þ e: By inequality

(3.6), every orbit of FðtÞ in Cþ eventually enters into Ye: Now conclusion (2)
follows from the generic convergence in Ye and Theorem 3.1 (2). &

Example 3.1. Consider model (3.1) with kðxÞ ¼ k; gðx; vÞ ¼ gðvÞ :¼ pve�qv;
where k; p and q are all positive constants. The function gðvÞ was introduced
in [3]. Let T0ðtÞ be the analytic semigroup generated by dD with boundary

condition Bv ¼ 0: Clearly, TðtÞ ¼ e�ktT0ðtÞ and condition ðGÞ is satisfied. A
direct computation shows that g0ðvÞ ¼ pe�qvð1� qvÞ; g00ðvÞ ¼ �pqe�qvð2�
qvÞ; and gðvÞ reaches its maximum value gð1=qÞ ¼ p

q
e�1:

In the case of Neumann boundary condition Bv ¼ @v
@n
¼ 0; it easily follows

that

l0ðd; r; g0ð0ÞÞ ¼ pe�kr � k; bðrÞ ¼
p

q
e�ð1þkrÞ; MðrÞ ¼

p

kq
e�ð1þkrÞ

and

LðrÞ ¼ g0ðMðrÞÞ ¼ p 1�
p

k
e�ð1þkrÞ

� �
exp �

p

k
e�ð1þkrÞ

� �
if MðrÞp2=q;

LðrÞ ¼ g0ð2=qÞ ¼ �pe�2 if MðrÞ > 2=q:

Clearly, if l0ðd; r; g0ð0ÞÞ > 0; the model has a positive constant steady state
1
q
lnð p

kekrÞ:
In the case of Dirichlet boundary condition Bv ¼ v ¼ 0; l0ðd; r; g0ð0ÞÞ;

bðrÞ and LðrÞ depend nontrivially on the diffusion rate d and the domain O;
and any positive steady state is spatially inhomogeneous. It is possible to get
the explicit expressions or estimates for these quantities in some special cases

of the dimensions and shapes of O: For example, let O ¼
QN

i¼1ð0;pÞ; and
define w0ðxÞ :¼

QN
i¼1 sin xi; 8x ¼ ðx1;?; xNÞAO: It is easy to verify that

T0ðtÞw0 ¼ e�Ndtw0; 8tX0; and that w0ðxÞ is a positive solution of the
nonlocal elliptic eigenvalue problem (3.3) with kðxÞ ¼ k; gðx; vÞ ¼ gðvÞ and
l ¼ g0ð0Þe�ðNdþkÞr � ðNd þ kÞ: It then follows that l0ðd; r; g0ð0ÞÞ ¼
g0ð0Þe�ðNdþkÞr � ðNd þ kÞ:
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