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Abstract-A new fixed-point theorem for a family of maps defined on product spaces is obtained. 
The new result requires the functions involved to satisfy the local intersection properties. Previous 
results required the functions to have the open lower sections which are more restrictive conditions. 
New properties of multivalued maps are provided and applied to prove the new fixed-point theorem. 
Applications to problems on sets with convex sections and to the existence of Nash equilibria for a 
family of continuous functions are given. @ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Fixed-point problems for a family of multivalued maps defined in product spaces have proved to 
be useful for the study of problems on sets with convex sections, the existence of Nash equilibria 
in game theory and minimax inequalities. 

Lan and Webb [l] recently obtained fixed-point theorems for a family of multivalued maps 
defined on product spaces and applied them to problems on sets with convex sections and to 
some inequalities for a family of functions. A key restriction is that the maps involved are 
required to have open lower sections, that is, the inverse image of every point is open. 

It is known that various results (for example, results in [l-3]) involving maps with open lower 
sections can be generalized to a larger class of maps possessing the local intersection properties. 
Examples include the fixed-point theorems of Browder type [4, Theorem 7.2, p. 331, continuous 
selection theorems [5, Theorem l] and fixed-point theorems for a family of maps defined on 
product spaces (different from those in [l]) [6]. It should be also mentioned that the maps having 
the local intersection properties were also used in [7-111. 

In this paper, we generalize Lan and Webb’s results to the class of maps which have the 
local intersection properties. First, we establish some new properties of multivalued maps. In 
particular, we prove that if a map T has the local intersection property, then (F*)* has the open 
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lower section (see Theorem 2.1); and if also T(y) # 0, then (T*)* # 0 (see Theorem 2.3). These 
properties enable us to change problems on maps which have the local intersection properties into 
problems on maps which have open lower sections. Next, we generalize Lan and Webb’s results 
to the class of maps which have local intersection properties. Our proofs are simpler and our 
conditions imposed on the maps are weaker. Finally, we apply our results to problems on sets 
with convex sections and to inequalities for a family of functions. We also present an application 
to the existence of Nash equilibria for a family of continuous functions defined on product spaces, 
extending many well-known results. 

2. PROPERTIES OF MULTIVALUED MAPS 

In this section, we establish some new properties of multivalued maps. These new properties 
will play important roles in the subsequent sections. 

We assume that X is a nonempty set and Y a topological space. We denote by 2y the family 
of all subsets of Y, and by B and B” the closure and interior of a subset B of Y, respectively. 
Let G : X -+ 2y be a map. We define GC, G, Go : X 4 2y by G”(x) = {y E Y : y $ G(x)}, 
G(x) = G(z), and G’(z) = (G(z))‘, respectively. We also define maps G-l, G” : Y --t 2x by 
G-‘(y) = {z E X : y E G(z)} and G*(y) = {z E X : y $ G(z)}, respectively. 

We start with the following known result (see [12, Lemma 3.21). 

LEMMA 2.1. Let S, T : X -+ Y be two maps. Then the following properties hold. 

(hl) For each x E X, S(s) c T(s) if and only ifT*(y) c S*(y) for each y E Y. 
(h2) y $! T(s) if and only if 2 E T*(y). 
(hs) For each 2 E X, (T*)*(x) = T(x). 
(hd) For each z E X, T(x) # 0 if and only if nyEy T*(y) = 0. 
(hs) For each y E Y, (TC)*(y) = T-‘(y). 
(hs) For each y E Y, (T-‘)‘(y) = T*(y). 

Now, we can state some new properties of multivalued maps. 

PROPOSITION 2.1. Let F : Y -+ 2x be a map. Then the following assertions hold: 

(1) (l?*)“(z) = (F-‘)O(x) for each z E X; 
(2) (F*)*(y) = ((F-‘)‘)-‘(y) for each y E Y. 

PROOF. Let z E X. Since (F-‘)‘(x) c F-l(z), we obtain 

F*(x) = (F-l)C (x) c ((F-‘)“)’ (CC). 

Noting that ((F-1)o)c(z) is closed, we have E*(z) c ((F-1)0)“(x). This implies (F-l)O(x) = 
[((F-1)o)c]c(s) c (p*)“(z). On the other hand, since F*(x) c p*(x), we have (F*)“(z) c 
(F*)C(z) = F-l(z). Noting that (p*)“( z is open, we have (F*)C(z) c (F-l)‘(x). Hence, (1) ) 
holds. Moreover, Assertion (2) follows from Assertion (1). I 

In Proposition 2.1, if we let F = T*, we obtain the following. 

PROPOSITION 2.2. Let T : X ---t 2y be a map. Then the following assertions hold: 

(i) (T)C(~) = (T”)O(x) for each z E X; 
(ii) (T)*(y) = ((T”)‘)-‘(y) for each y E Y. 

Recall that a map F : Y -+ 2 x is said to have an open lower section if F-‘(x) is open in Y 
for each 5 E X. Such maps were first employed in Browder’s fixed-point theorem [2] and used 
in other fixed-point theorems, for example, in [l]. It is well known that some known results 
involving maps which have open lower sections can be generalized to maps which have the local 
intersection properties (see, for example, (4-61). 
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DEFINITION 2.1. A mapF: Y -+ 2 x is said to have the local intersection property if there exists 
an open neighborhood N(y) of y such that nzENCyI F(z) # 8 whenever F(y) # 0. 

The following result provides necessary and sufficient conditions for a map to have the local 
intersection property. The proof is straightforward, and thus, is omitted. 

LEMMA 2.2. Let F :Y + 2 x be a map. Then the following assertions are equivalent. 

(1) F has the local intersection property. 
(2) If y E F-l(z), th en there exist an open neighborhood N(y) of y and 51 E X such that 

N(y) c F-‘(Q). 

(3) U&X F-‘(z) = U,,x-(F-l)O(~). 

Condition (2) was used in Theorem 7.2 of [4, p. 331. By Assertion (3) of Lemma 2.2, we see 
that if F has an open lower section, then F has the local intersection property. The following 
example shows that the converse is not true. 

EXAMPLE 2.1. Let E = iI2 and X = [0,2]. We define a map F : X + 2x by F(z) = (0,2] if 
z = 0,2 and F(z) = (1) if 2 E (0,2). Then F has the local intersection property. However, 

F-‘(Y) = io, 2) is not open in X for each y E (0,l) U (1,2]. 

The following new result shows that if F has the local intersection property, then (F*)* has 
an open lower section. The proof follows from Property (hs) of Lemma 2.1 and we omit it. The 
result will play an important role in the following section. 

THEOREM 2.1. Assume that F : Y --t 2x has the local intersection property. Then the map 
(E*)* : Y -+ 2x has an open lower section. 

Now, we study the relations between T and T*. We need the following concept introduced 
in [13]. 

DEFINITION 2.2. A map T : X + 2y is said to be transfer-closed if y E TC(s), there exists 
x1 E X such that y $! T(zl). 

The following lemma provides necessary and sufficient conditions for a map to be transfer- 
closed. The proof follows from Assertion (i) of Proposition 2.2 and Lemma 2.1, and thus, is 
omitted. 

LEMMA 2.3. Let T : X -+ 2’ be a map. Then the following are equivalent. 

(1) T is transfer-closed. 

(2) UZEX T=(z) = U,,x(T)“(~). 

(3) UZEX TC(x) = U~~x(W”(4. 
(4) fLEX T(z) = f&x %d. 

Now, we state the relations between the transfer-closedness and the local intersection property. 

THEOREM 2.2. The following assertions hold. 

(1) Let T : X -+ 2 y be a map. Then T is transfer-closed if and only if T’ : Y -+ 2x has the 
local intersection property. 

(2) Let F : Y --+ 2 x be a map. Then F has the local intersection property if and only if F* 
is transfer-closed. 

Let F : Y + 2x be a map. In applications, one often requires not only F(y) # 0 for each 
y E Y but also F has the local intersection property. The following result provides necessary and 
sufficient conditions for maps to satisfy the two conditions. 

THEOREM 2.3. LetF :Y-+ 2 x be a map. Then the following assertions are equivalent. 

(i) F(y) # 0 for each y E Y and F has the local intersection property. 
(ii) nzEf( E*(z) = nzEX F*(z) = 0. 

(iii) (F*)*(y) # 0 for each y E Y. 
(iv) Y = iJ,Ex(F-‘)o(z). 
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PROOF. By Condition (2) of Theorem 2.2 and Assertions (1) and (4) of Lemma 2.3, we see 
that F has the local intersection property if and only if F* is transfer-closed if and only if 
nIEX F*(X) = nrEX F*(z). By Property (hd) of Lemma 2.1, F(y) # 0 for each y E Y if 
and only if nrEX F*(z) = 0. Hence, Assertions (i) and (ii) are equivalent. By Property (h4) 
of Lemma 2.1, Assertions (ii) and (iii) are equivalent. By (1) of Proposition 2.1, we see that 
Assertions (ii) and (iv) are equivalent. I 

We refer to Lemma 1 in [7], Lemma 1 in [8], and Lemma 1.1 in [9] for some related results 
on maps which have the local intersection properties. Item (iv) of Theorem 2.3 was also used in 
Lemma 1 in [lo] and Theorems 3.4 and 3.5 in [ll]. 

LetF,G:Y-+2 x be two maps u s ch that F(y) c G(y) f or each y E Y. If one of them has the 
local intersection property, in general, we do not know whether the other has the local intersection 
property. The following result gives the sufficient conditions which assure that if F has the local 
intersection property, then G also has the property. The proof follows from Lemma 2.1 and 
Theorem 2.3 and is omitted. 

THEOREM 2.4. Let F,G : Y -+ 2 x be two maps. Assume that the following conditions hold. 

(a) F(y) c G(y) for each y E Y. 
(b) F(y) # 0 for each y E Y. 
(c) F has the local intersection property. 

Then G has the local intersection property. 
We end the section with two results on transfer-closed maps. 

THEOREM 2.5. Let T : X -+ 2y be a map. T hen the following assertions are equivalent. 

(i) T is transfer-closed and nzEX T(z) = 0. 

(ii) nzExm3 = nzExv4 = 0. 
(iii) (T)*(y) # 0 for each y E Y. 

(iv) Y = UzEXP’C)o(~)e 
THEOREM 2.6. Let T,S : X -+ 2 y be two maps. Assume that the following conditions hold. 

(a) T(z) c S(x) for each y E Y. 
(b) nzExS(4 = 0. (c) S is transfer-closed. 

Then T is transfer-closed. 

3. FIXED-POINT THEOREMS AND APPLICATIONS 

Throughout this section, let I be an index set and for each i E I, let Ei be a Hausdorff 
topological vector space. Let Xi be a nonempty convex subset in Ei, X = Hi,, Xi and Xi = 
n,,,, jE1 Xj. We write X = Xi @Xi. Then for each i E I and each x E X, we write x = (xi, xi), 
where xi E Xi and xi E Xi. 

We need the following result (see [l, Theorem 2.21). 

LEMMA 3.1. For each i E I, let 4i : Xi + 2*? be a map such that the following conditions hold. 
(HI) For each i E I and each xi E Xi, 4i(xi) # 0. 
(Hz) For each i E I and each yi E Xi, 4;’ (yi) is open in Xi. 
(Hs) If Xi is not compact, assume that there exist a nonempty compact convex subset X9 of Xi 

and a nonempty compact subset D(i) of Xi such that, for each xi E Xi \ D(i), 

x; r-l co& (xi) # 0. 

Then there exists z E X such that xi E co&(xi) for all i E I. 

Now, we are in the position to state our new fixed-point theorem. 
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THEOREM 3.1. For each i E I, let yi,$% : X” -+ 2xS be two maps. Assume that the following 
conditions hold. 

(Sl) 

(Sd 
(S3) 

(S4) 

For each i E I and each xi E Xi, yZ(xci) C &(zi). 
For each i E I and each xZ E Xi, yi(xi) # 8. 
For each i E I, yi has the local intersection property. 
If Xi is not compact, there exist a nonempty compact convex subset XF of Xi ant 
nonempty compact subset D(i) of Xi such that, for each xi E Xi \ D(i), 

x; n co @;>* (xi) # 0. 

Then there exists x E X such that x, E co $i(~?) for all i E I. 

PROOF. For each i E I, we define a map $i : Xi -+ 2x~ by 

C$i (Xi) = ($z*)* (xc”) . 
By Conditions (Sl)-(Ss) and Theorem 2.4, q& has the local intersection property and $i(xi) # 0 
for each xz E Xi and each i E I. It follows from Conditions (i) and (iii) of Theorem 2.3 that 

4i(Xi) = (Gz)*(Xi) # 0 f or each zi E Xi and Condition (HI) of Lemma 3.1 holds. Since Qi has 
the local intersection property for each i E I, it follows from Theorem 2.1 that +il(yz) is open 
in X” for each yi E Xi. Hence, Condition (Hz) of Lemma 3.1 holds. It is clear that Condition (S4) 
implies Condition (Hz) of Lemma 3.1. It follows from Lemma 3.1 that there exists x E X such 
that x, E co4,(xi) = co(q@)*(xi) f or all i E 1. Since (@)*(x~) C $i(X’), we have Xi E CO$Ji(Z’) 
for all i E I. I 

REMARK 3.1. In general, we have the following inclusion: 

($$)* (xi) c q!+ (xi) , for each xi E X”. 

Moreover, if +i has an open lower section, then 

($,)* (xi) = $i (xi), for each X’ E Xi. (3.1) 

Let yz = +i = $i. Then Condition (Hz) of Lemma 3.1 implies Condition (SJ) and Condition (Hs) 
coincides with Condition (S4) by (3.1). Hence, even when Ti = &, Theorem 3.1 generalizes 
Lemma 3.1. 

Using Theorem 3.1, we obtain the following new result on sets with convex sections. 

THEOREM 3.2. Let {Ai}rEl, {Bi}iEI be two families of subsets of X. Assume that the following 
conditions hold. 

(i) For each i E I, A, c &. 
(ii) For each i E I and each xi E X”, {yi E Xi : (yi) xi) E Ai} # 0. 

(iii) For each i E I and each (yi, xi) E Ai, there exist an open neighborhood N(xi) of zi and 
yi E Xi such that {y:} x N(xi) C A,. 

(iv) If Xi is not compact, assume that there exist a nonempty compact convex subset X,” of 
X, and a nonempty compact subset D(i) of Xi such that for each xi E Xi \ D(i), 

X,0 fl CO { y7_ E Xi : Xi 6 {Zi E Xi : (yi, Zi) # Bi}} 
Then there exists x E X such that xi E CO{Y~ E Xi : (yi, xi) E Bi}. 

PROOF. For each i E I, we define yl, 4i : Xi + 2x7 by 

7~ (xi) = {yi E Xi : (yi,xi) E A,} and 4i (Xi) = {yi E Xi : (gi,Xi) E Bi} . 
Then it is easy to verify that {yz}icl and (4i)icI satisfy all the conditions of Theorem 3.1. It 
follows from Theorem 3.1 that there exists x E X such that xi E co{yi E Xi : (yi,xi) E &} for 
all i E I. The result follows. I 
REMARK 3.2. If for each yi E Xi, the set {y” E Xi : (yil xi) E Ai} is open in X”, then Asser- 
tion (iii) of Theorem 3.2 holds. Hence, even when Ai = Bi, Theorem 3.2 generalizes Theorem 2.3 
in (11. 
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THEOREM 3.3. Assume that all the conditions of Theorem 3.2 hold. Let {Ci},L,I be a family of 
subsets of X such that, the following condition holds. 

(*) For each z E X, there exists a nonempty subset I(z) c I such that, for each i E I(z), 

CO(1Ji E Xi : (Vi,Z”) E Bi} C {Yi E Xi : (yi,2”) E Ci}. 

Then there exists z E X such that n,,-r(lj C, # 0. 
PROOF. By Theorem 3.2, there exists z E X such that 

Ic, E co {y2. E xi : (y&) E Bi} ) for all i E I. 

For this IC, by Condition (*), we have 5, E {yi E Xi : (yi, xci) E Ci} for all i E T(z). This implies 
2 E C, for all i E I(z) and n,Er(zj C, # 0. I 
REMARK 3.3. Theorem 3.3 generalizes Theorem 3.2 in [l] and those noted in [l], for example, 
Theorems 15 and 16 in [16] and Theorem 2 in [17]. 

Now, we give an analytical formulation of Theorem 3.2. We first recall some concepts. Let 2 
be a topological space. A function g : Z -+ (-CO, CO] is said to be lower semicontinuous on Z if 
the set {z E Z : g(z) > X} is open in Z for each X E Iw. If, in addition, Z is convex, g : Z + Iw is 
said to be quasiconcave if for each X E Iw, the set {z E Z : g(z) > X} is convex. 

DEFINITION 3.1. Let X be a set, Y a topological space, and X E Iw. A function f : X x Y + Iw is 
said to be X-transfer-lower-semicontinuous on Y if f (x, y) > X, there exist an open neighborhood 
N(y) of y and z1 E X such that 

f(x1, z) > 4 for each z E N(y). 

f is said to be transfer-lower-semicontinuous on Y if f is X-transfer-lower-semicontinuous on Y 
for each X E Iw . 

It is clear that if for each 2 E X, f(x, .) is lower-semicontinuous on Y, then f is transfer-lower- 
semicontinuous on Y. 

THEOREM 3.4. Let {.fi}zEI> {gt}iEI, {hi}~l : X -+ Iw be three families of functions and let {ti}zE~ 
be a sequence of real numbers. Assume that the following conditions hold. 

(a) For each i E I and x E X, fi(x) 5 gi(x) 5 hi(x). 
(b) For each i E I and each xi E Xi, there exists yi E Xi such that fi(yi, xi) > t,. 
(c) For each i E I, fi is ti-transfer-lower-semicontinuous on X”. 
(d) If Xi is not compact, assume that there exist a nonempty compact convex subset X,” of 

Xi and a nonempty compact subset D(i) of Xi such that for each x2 E Xi \ D(i), 

X,0 n CO {J/i E Xi : Zi # {Z” E X” : gi (yi, Zi) 5 ti}} . 

(e) For each i E I and each xi E X”, hi( .> xi) is quasiconcave on Xi. 
Then there exists x E X such that hi(x) > ti for all i E I. 

PROOF. For each i E 1, we define yi, 4i : Xi -+ 2*‘1 by 

yi (Xi) = {yi E Xi : fi (yi,Xi) > ti} and 4% (xc”) = {Yz E Xi : .!?i (Yi7zi) > ti} 

Then it is easy to verify that {yi}tEl and (4i)iEI satisfy all the conditions of Theorem 3.1. It 
follows from Theorem 3.1 that there exists x E X such that xi E co&(xi) for all i E I. Since 
gi(x) I h,(z) f or z E X and h, is quasiconcave on Xi, h,(z) > ti for all i E I. I 
REMARK 3.4. If for each 2, E X,, fi(Z,, .) is lower-semicontinuous on Xi, then Condition (c) of 
Theorem 3.4 holds. Hence, even when fi = gi = h,, Theorem 3.4 generalizes Theorem 2.5 in [l] 
and Theorem 3 in [14]. Some related results involved only one lower semicontinuous function can 
be found for example, in [18]. 

Now, we can present an application of Lemma 3.1 to the existence of Nash equilibria for a 
family of continuous functions. 
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THEOREM 3.5. Let Xi be a nonempty compact convex subset of Ei for each i E I. Let {fi}iEI : 
X + Iw be a family of functions. Assume that the following conditions hold. 

(i) For each i E 1, f% is continuous on X. 
(iij For each-1 i E I and 2% E X”, fi(.,zi) is quasiconcave on Xi. 

Then there exists x E X such that 

(Yi,Xi) I foralli E I. 

PROOF. Let E > 0. For each i E I, we define 4i : Xi -+ 2”l by 

& cxi) = { Yi E xi : fi (Y/i,Xi) > ;zg fi (zi,xi) _ c} . I , 

Then {di}iEI satisfies all the conditions of Lemma 3.1. It follows from Lemma 3.1 that there 
exists Z, = (zf, xe) E X such that 

.fi(Xe) > :Fi fi (-%7X:) -E, for each i E I. 
1 I 

(3.2) 

Let E, > 0 and E, + 0. Since X is compact and {x,,,} c X, we assume that x,,, 4 x E X. 
Note that fi and gi(zi) = SUP~,~X, fi(q, xi) are continuous, it follows from (3.2) that fi(xi, xi) > 
SUP,, EX, fi(zi, xc") for each i E I. The result follows. 4 
REMARK 3.5. Theorem 3.5 generalizes Theorem 4 in [14], where I is finite. 
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