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1. Introduction

Some 9xed point principles for maps can be obtained by studying the convergence of
suitable approximants. This approach not only establishes the existence of 9xed points
but also provides approximations and numeral schemes.
Let K be a closed convex set in a Hilbert space H and T :K →H a map. There

are two natural approximants de9ned by xt =(1− t)Txt + tx0 and xt =(1− t)rTxt + tx0,
where r :H →K is the metric projection. It is known that the above two approximants
always exist if T is a nonexpansive self-map or a weakly inward nonexpansive map. We
remark that when T is a self-map, the two approximants coincide. Another approximant
xt = r[(1− t)Txt + tx0] is also used in the literature, see [10,15]. As will be shown (see
Remark 2.5 below), when T is weakly inward, the approximant is exactly the same as
xt =(1− t)Txt + tx0.
A classical result obtained by Browder [1] is that if T is a nonexpansive self-map de-

9ned on a bounded closed convex set of a Hilbert space, then the approximant xt =(1−
t)Txt+tx0 converges to a 9xed point of T . Recently, this result was generalized to non-
expansive nonself-maps de9ned on a bounded or unbounded closed convex sets. Singh
and Watson [14] showed that the result holds if T (K) is bounded and T (@K) ⊂ K .
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Xu and Yin [15] proved that the two approximants converge to a 9xed point of T if
T is a weakly inward nonexpansive map such that {xt} is bounded (see Theorems 2
and 3 in [15]). In Remark 2.4 below, we remark that this boundedness holds if and
only if T satis9es the well-known Leray–Schauder condition on K .
In this paper, we study the convergence of approximants for demicontinuous weakly

inward pseudo-contractive maps in Hilbert spaces. For a demicontinuous weakly inward
pseudo-contractive map de9ned on a closed convex set, we 9rst prove that the existence
of the approximant xt =(1− t)Txt + tx0 by using a recent result obtained by Lan and
Webb [6] and then show that the approximant converges to a 9xed point of T . This
provides not only generalizations of the aforementioned results of [1,14,15] but also
some new convergence results when T is de9ned only on KDK and satis9es the Leray–
Schauder condition on @DK . We emphasize that these convergence results are new even
for nonexpansive maps.
As applications of our general results, we derive new theorems on convergence

of the approximant xt =(1 − t)rTxt + tx0 for generalized inward nonexpansive maps,
extending corresponding known results for weakly inward nonexpansive maps obtained
in [13,15].
We apply our results to the integral equation of the form

x(t)=
∫
G
k(t; s)f(s; x(s)) ds a:e: on G;

where G ⊂ Rn is measurable. Such equations with G=(0;∞) were studied by using
the theory of monotone operators and a sequence was obtained which weakly converges
to a solution (see, for example, Example 11:2 in [3]). In contrast, we are able to provide
sequences which are strongly convergent.

2. Convergence of approximants

Let H be a Hilbert space. Recall that a map T :D ⊂ H →H is said to be a
k-dissipative map with k ∈R if (Tx−Ty; x−y)6 k‖x−y‖2 for x; y∈D. When k =1,
T is called a pseudo-contractive map. It is obvious that a nonexpansive map (i.e.,
‖Tx− Ty‖6 ‖x− y‖ for x; y∈D) is pseudo-contractive. T is said to be demicontinu-
ous if {xn} ⊂ D and xn → x∈D together imply Axn * Ax, where → and * denote
strong and weak convergences, respectively.
We start with the following new property of pseudo-contractive maps.

Theorem 2.1. Let T :K →H be a demicontinuous pseudo-contractive map. Then the
following results hold:
(P1) If {xn} ⊂ K is bounded and {tn} ⊂ (0; 1) with tn → 0 satis:es xn =(1− tn)Txn+

tnx0; then {xn} converges to a :xed point of T.
(P2) If {xt} ⊂ K is bounded and satis:es xt =(1− t)Txt + tx0 for t ∈ (0; �). Then {xt}

converges to a :xed point of T as t→ 0.

Proof. (P1) Since {xn} is bounded and tn → 0, {Txn} is bounded. Hence, there is
a subsequence {xj} of {xn} such that xj * v∈K and xj − Txj → 0. This implies
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lim(xj − Txj; xj − v)= 0 and lim(xj − Txj; xj − x)= 0 for every x∈K . Since I − T
is demicontinuous and monotone, I − T must be pseudo-monotone (see the remark
following De9nition 2:1 in [9]). It follows from the de9nition of a pseudo-monotone
map that

(v− Tv; v− x)6 lim inf (xj − Txj; xj − x)= 0 for all x∈K:

This implies (v− Tv; v− xj)6 0 for each j∈N. Since xj =(1− tj)Txj + tjx0 and T is
pseudo-contractive, we have

‖xj − v‖2 = (1− tj)(Txj − Tv; xj − v) + (1− tj)(Tv− v; xj − v)

+ tj(x0 − v; xj − v)

6 (1− tj)‖xj − v‖2 + tj(x0 − v; xj − v):

This implies ‖xj − v‖26 (x0 − v; xj − v). This, together with xj * v, implies xj → v.
Since T is demicontinuous, we have v=Tv.
We now prove that xn → v. The proof is by contradiction. Assume that xn → v does

not hold. Then there exist �¿ 0 and a subsequence {xk} of {xn} such that ‖xk−v‖¿ �.
Using the above argument, we obtain xk → u=Tu and u 	= v. On the other hand, since
xj =(1− tj)Txj + tjx0 and u=Tu, we have

tj(xj − x0; xj − u) + (1− tj)‖xj − u‖2 = (1− tj)(Txj − Tu; xj − u):

As T is pseudo-contractive, it follows that (xj − x0; xj − u)6 0. Since xj → v, we have
(v − x0; v − u)6 0 for j∈N. Similarly, using xk =(1 − tk)Txk + tkx0 and v=Tv, we
obtain (u− x0; u− v)6 0. It follows that ‖v− u‖2 = (v− x0; v− u)+ (x0− u; v− u)6 0,
and hence v= u, a contradiction to ‖v − u‖¿ �. This proves (P1). Similar arguments
can be used to obtain (P2).

Remark 2.1. (P2) of Theorem 2.1 generalizes the ‘necessary’ part of Theorem 1 in
[15], where T is a nonexpansive map. Our method is completely diPerent from that used
in [15], which depends heavily on nonexpansiveness. We shall see that the ‘suQciency’
part of Theorem 1 in [15] holds when the map involved is a pseudo-contractive map.

Recall that a map T :D ⊂ K →H is said to be weakly inward (relative to K) if
Tx∈ KIK (x) for x∈D, where KIK (x) is the closure of the inward set IK (x) := {x+ c(z −
x): z ∈K and c¿ 1} (see [5,7,8] for more details). It is known that a map T :D ⊂
K →H is weakly inward if and only if limt→ 0+ d(x+t(Tx−x); K)=t=0 for every x∈D
(see Lemma 18:1 in [3]).
Let D be a bounded open set in H . We denote by KDK and @DK the closure and the

boundary, respectively, of DK =D ∩ K relative to K . Some relations among DK , KDK

and @DK can be found in Lemma 2:2 in [6].
The following result is a special case of Theorem 5:1 in [6].

Lemma 2.1. Let D be a bounded open convex set in H such that DK 	= ∅ and KDK 	=K .
Let T : KDK →H be a demicontinuous weakly inward k-dissipative map with k ¡ 1.
Assume that the following condition holds.
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(LS) There exists x0 ∈DK such that x 	=(1− t)Tx + tx0 for x∈ @DK and t ∈ (0; 1).
Then T has a unique :xed point in KDK .

By using Lemma 2.1 and Theorem 4:1 in [9], we obtain the following result.

Theorem 2.2. Let K be a closed convex set in H. Assume that T :K →H is a demi-
continuous weakly inward k-dissipative map with k ¡ 1. Then T has a unique :xed
point in K.

Proof. When K is bounded, the result follows from Theorem 4:1 in [9]. We assume
that K is unbounded. Let x0 ∈K and r=(1− k)−1‖Tx0 − x0‖+ ‖x0‖. We claim that

x 	=(1− t)Tx + tx0 for x∈K with ‖x‖¿r and t ∈ [0; 1]; (2.1)

In fact, if not, then there exist t ∈ [0; 1] and x∈K with ‖x‖¿r such that x=(1 −
t)Tx + tx0. Since

‖x − x0‖2 = (1− t)(Tx − Tx0; x − x0) + (1− t)(Tx0 − x0; x − x0)

6 (1− t)k‖x − x0‖2 + (1− t)‖Tx0 − x0‖‖x − x0‖;
we have (1−k)‖x−x0‖6 ‖Tx0−x0‖. This implies ‖x‖6 r, which contradicts ‖x‖¿r.
It follows from (2.1) and Lemma 2:1 that T has a unique 9xed point in K .

Remark 2.2. When the space involved is a Hilbert space, Theorem 2.2 generalizes
Theorem 7:3, p. 257, in [11], where T is continuous. Note that our method is completely
diPerent from that used in [11], which used the theory of semigroup of nonlinear
operators.

As a useful corollary of Theorem 2.2, we immediately obtain

Corollary 2.1. Let K be a closed convex set in H. Assume that T :K →H is a demi-
continuous weakly inward pseudo-contractive map and x0 ∈K . Then for every t ∈ (0; 1)
there exists a unique xt ∈K such that

xt =(1− t)Txt + tx0: (2.2)

Now, we are in a position to give our main results on the convergence of the
approximant de9ned in (2.2) to 9xed points of T .
We 9rst consider the case when T is de9ned on a bounded closed set.

Theorem 2.3. Let K be a bounded closed convex set in H. Assume that T :K →H is
a demicontinuous weakly inward pseudo-contractive map. Then T has a :xed point
in K . Moreover; for every x0 ∈K; {xt} de:ned in (2:2) converges to a :xed point
of T .

Proof. By Corollary 2.1, {xt} de9ned in (2.2) is well de9ned. It follows from (P2) of
Theorem 2.1 that {xt} converges to a 9xed point of T .
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Remark 2.3. The existence of 9xed points of T in Theorem 2.3 was 9rst obtained in
(Theorem 4.1, [9]) for a more general map. However, Theorem 2.3 not only shows
the existence of 9xed points of T but also provides a sequence {xt} which converges
strongly to a 9xed point of T . Theorem 2.3 generalizes Theorem 1 in [1] where T
is a nonexpansive self-map, and Corollary 1 in [15], where T is a weakly inward
nonexpansive map.

Now, we consider the case when K is unbounded. We need the following proposi-
tion which provides a necessary condition for a pseudo-contractive map de9ned on a
unbounded closed convex set to have at least one 9xed point.

Proposition 2.1. Let K be a unbounded set in H . Assume that T :K →H is pseudo-
contractive and has at least one :xed point in K . Then for every u∈K; T satis:es
the following condition (LS)u on K .

(LS)u There exists r ¿ 0 such that x 	=(1 − t)Tx + tu for x∈K with ‖x‖¿ r and
t ∈ (0; 1].

Proof. Let v∈K with v=Tv and x∈K with ‖x‖¿ r, where r¿ ‖u − v‖ + ‖v‖. Let
zt =(1− t)Tx + tu. Then we have for t ∈ (0; 1],

(x − zt ; x − u) = ‖x − v‖2 − (1− t)(Tx − Tv; x − u)− t(u− v; x − u)

¿ ‖x − v‖2 − (1− t)‖x − v‖2 − t‖u− v‖‖x − v‖
= t[‖x − v‖2 − ‖x − v‖‖u− v‖]¿ 0:

This implies x 	=(1− t)Tx + tu.

Theorem 2.4. Let K be a unbounded closed convex set in H . Let T :K →H be a
demicontinuous weakly inward pseudo-contractive map. Assume that T satis:es (LS)u
on K for some u∈K . Then T has a :xed point in K . Moreover; for every x0 ∈K;
{xt} de:ned in (2:2) converges to a :xed point of T as t→ 0.

Proof. Let t ∈ (0; 1). It follows from Corollary 2.1 that there exists yt ∈K such that
yt =(1− t)Tyt + tu. Note that (LS)u implies the boundedness of {yt}. It follows from
(P2) of Theorem 2.1 that {yt} converges to a 9xed point of T as t→ 0. This, together
with Proposition 2.1, implies that T satis9es (LS)x0 on K for every x0 ∈K . It follows
that {xt} de9ned in (2.2) converges to a 9xed point of T as t→ 0.

Remark 2.4. Let K be a unbounded closed convex set in H and T :K →H be a
demicontinuous weakly inward pseudo-contractive map. Then the following conditions
are equivalent.
(i) T satis9es condition (LS)x0 on K .
(ii) {xt} de9ned in (2.2) is bounded as t→ 0.
In fact, by the proof of Theorem 2.4, we see that (i) implies (ii). We now show that
(ii) implies (i). In fact, if (i) does not hold, then there exist {xn} ⊂ K with ‖xn‖→∞
and {tn} ⊂ (0; 1] with tn → t0 ∈ [0; 1] such that xn =(1−tn)Txn+tnx0. By Corollary 2.1,
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we have xn = xtn . Since {xt} is bounded as t→ 0, we have t0 	=0. On the other hand,
since

‖xn − x0‖2 = (1− tn)(Txn − Tx0; xn − x0) + (1− tn)(Tx0 − x0; xn − x0)

6 (1− tn)‖xn − x0‖2 + ‖Tx0 − x0‖‖xn − x0‖;
we have tn‖xn − x0‖6 ‖Tx0 − x0‖. This implies tn → 0, a contradiction.

Remark 2.5. Let K be a closed convex set in H and let T :K →H be a weakly inward
map. Let t ∈ (0; 1) and x0; xt ∈K . De9ne Tt :K →H de9ned by Tt(x)= (1− t)Tx+ tx0.
Since T is weakly inward, Tt is a generalized inward map. It follows from Lemma 3.1
below that xt =(1− t)Txt + tx0 if and only if xt = r((1− t)Txt + tx0), where r :H →K
is the metric projection.

Remark 2.6. By Proposition 2.1 and Remarks 2.4 and 2.5, we see that Theorem 2.4,
together with Theorem 2.3, generalizes Theorem 3 in [15], where T is a weakly inward
nonexpansive map and the approximant is xt = r((1 − t)Txt + tx0). Note that if T (K)
is bounded, then T satis9es (LS)u on K ; and if T (@K) ⊂ K , then T is weakly inward.
Hence, Theorem 2.4 generalizes Theorem in [14].

By Proposition 2.1 and Theorem 2.4 we see that when T is a demicontinuous weakly
inward pseudo-contractive map, T satis9es (LS)u on K for some u∈K if and only if
T has a 9xed point in K . This enables us to obtain the following convergence result
which generalizes Corollary 1 in [13] when the space involved is a Hilbert space.

Theorem 2.5. Let K be a unbounded closed convex set in H . Let T :K →H be a
demicontinuous weakly inward pseudo-contractive map. Assume that T has a :xed
point in K . Then for every x0 ∈K; {xt} de:ned in (2:2) converges to a :xed point of
T as t→ 0.

Finally, we discuss the case when T is de9ned on KDK . The following result is new
even for nonexpansive maps.

Theorem 2.6. Let D be a bounded open convex set in H such that DK 	= ∅ and
KDK 	=K . Assume that T : KDK →H is a demicontinuous weakly inward pseudo-
contractive map and satis:es the following condition:
(LS) there exists x0 ∈DK such that x 	=(1− !)Tx + !x0 for x∈ @DK and !∈ [0; 1).
Then the following results hold.
(i) T has a :xed point in DK .
(ii) For every t ∈ (0; 1) there exists xt ∈DK such that xt =(1− t)Txt + tx0.
(iii) {xt} converges to a :xed point of T as t→ 0.

Proof. (i) follows from (iii) which follows from (ii) and (P2) of Theorem 2.1. We
now prove (ii). For each t ∈ (0; 1), we de9ne a map Tt : KDK →H by Tt(x)= (1− t)Tx+
tx0. Then Tt : KDK →H is a demicontinuous weakly inward (1− t)-dissipative map for
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t ∈ (0; 1). Moreover, it is easy to verify that Tt satis9es (LS) on @DK . It follows from
Lemma 2.1 that Tt has a 9xed point xt ∈DK for every t ∈ (0; 1).

Remark 2.7. (i) of Theorem 2.6 generalizes Theorem 13 in [2], where K is a closed
ball with center 0 and T is k-dissipative with k ¡ 1. The approximant in (iii) of The-
orem 2.6 is diPerent from that used in Theorem 13 of [2]. Moreover, (iii) of Theorem
2.6 does not require that T be demicompact. (i) of Theorem 2.6 also generalizes (i)
of Theorem 15 in [2], where K is a closed ball with center 0 and T :H →H is a
Lipschitzian pseudo-contractive map. Moreover, (ii) and (iii) of Theorem 2.6 are dif-
ferent from (2) and (3) of Theorem 15 in [2]. Even when K =H , (i) of Theorem 2.6
improves Theorem 4:4 in [12] (and Theorem 2 in [4]) in the following ways: (i) T
need not be de9ned on H , (ii) T need not be continuous and (iii) T need not be a
k-set contractive or Lipschitzian map. We should point out, however, that the results
in [4,12] hold in suitable Banach spaces.

3. Convergence of approximants for generalized inward nonexpansive maps

In this section we apply the results obtained in the above section to generalized
inward nonexpansive maps.
Let K be a closed convex set in H . Recall that a map T :D ⊂ K →H is called a

generalized inward map on D (relative to K) if d(Tx; K)¡ ‖x − Tx‖ for x∈D with
Tx =∈K . It is known that a weakly inward map is generalized inward but the converse
is false (see [8] for more details). Let r :H →K be the metric projection, that is,
‖x − rx‖=d(x; K). It is well-known that r :H →K is nonexpansive (see Proposition
9:2 in [3]).
The following result will be useful, which shows that the 9xed point sets of T and

rT are same if T is generalized inward (see Lemma 2:12 in [8] for a more general
case).

Lemma 3.1. Assume that T :D ⊂ K →H is a generalized inward map on D relative
to K . Let x∈D. Then x is a :xed point of T if and only if x is a :xed point of rT.

Using Corollary 2.1, we immediately obtain the following.

Lemma 3.2. Let T :K →H be a nonexpansive map and let r :H →K be the metric
projection. Let x0 ∈K . Then for every t ∈ (0; 1) there exists xt ∈K such that

xt =(1− t)rTxt + t x0: (3.1)

Theorem 3.1. Let K be a bounded closed convex set in H . Assume that T :K →H is
a generalized inward nonexpansive map. Then T has a :xed point in K. Moreover;
for every x0 ∈K; {xt} de:ned in (3:1) converges to a :xed point of T.

Proof. Since rT :K →K is nonexpansive map, it follows from Theorem 2.3 that
xt → v∈K as t→ 0 and v= rTv. Since T is generalized inward, it follows from Lemma
3.1 that v is a 9xed point of T .
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By a similar argument and using Theorem 2.4, we obtain

Theorem 3.2. Let K be a unbounded closed convex set in H. Let T :K →H be a
generalized inward nonexpansive map. Assume that rT satis:es (LS)u on K for some
u∈K . Then T has a :xed point in K . Moreover; for every x0 ∈K; {xt} de:ned in
(3:1) converges to a :xed point of T .

Remark 3.1. Theorem 3.2, together with Theorem 3.1, generalizes Theorem 2 in [15],
where T is a weakly inward nonexpansive map.

We also have the following result which generalizes Corollary 1 in [13] when the
space involved is a Hilbert space.

Theorem 3.3. Let K be a unbounded closed convex set in H . Let T :K →H be a
generalized inward nonexpansive map. Assume that T has a :xed point in K . Then
for every x0 ∈K; {xt} de:ned in (3:1) converges to a :xed point of T .

Finally, using Theorem 2.6 we obtain the following new result.

Theorem 3.4. Let D be a bounded open convex set in H such that DK 	= ∅ and
KDK 	=K . Let T : KDK →H be a generalized inward nonexpansive map. Assume that
rT satis:es (LS) of Theorem 2:6 on @DK . Then the following assertions hold.
(i) T has a :xed point in KDK .
(ii) For each t ∈ (0; 1) there exists xt ∈DK such that xt =(1− t)rTxt + tx0.
(iii) {xt} converges to a :xed point of T .

Remark 3.2. In Theorems 3.1, 3.2 and 3.4, if T is not assumed to be generalized
inward, then, by Proposition 2.1 in [9], {xt} de9ned in (3.1) converges to a nearest
point v of T , that is, ‖Tv−v‖=d(Tv; K), or, equivalently, to a solution of the variational
inequality (v− Tv; v− x)6 0 for all x∈K .

4. Applications

In this section, we consider the integral equation of the form

x(t)=
∫
G
k(t; s)f(s; x(s)) ds+ g(t) a:e: on G; (4.1)

where G is a measurable set in Rn and g∈L2(G).
A well-known result on the existence of solutions for such equations with G=(0;∞)

can be found in Example 11:2 of [3], where a sequence which weakly converges to
a solution is provided. In this section we shall provide a sequence of approximating
solutions which strongly converges to a solution.
We always assume that the following conditions hold.

(C1) k :G×G→R is such that the linear operator K de9ned by (Kx)(t)=
∫
G k(t; s)x(s)ds

maps L2(G) into L2(G) and satis9es (Kx; x)¿ 0 for x∈L2(G).
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(C2) f :G × R→R satis9es the CarathReodory conditions on G × R and there exists
h∈L2(G) and c¿ 0 such that

|f(t; u)|6 h(t) + c|u| for u¿ 0 and a:e: t ∈G:

Theorem 4.1. Assume that 0¡meas(G)¡∞ and the following conditions hold.
(i) k is symmetric on G × G; that is; k(t; s)= k(s; t) on G × G.
(ii) (f(t; u)− f(t; v))(u− v)6 ‖K‖−1(u− v)2 for u; v∈R.
(iii) There exist a∈L2(G); q¿ 2 and b¿ 0 such that

f(t; u)u6 a(t)|u|+ b|u|(q+2)=q for u∈R and a:e: t ∈G:

Then the following assertions hold.
(1) Eq. (4:1) has a solution in L2(G).
(2) For every !∈ (0; 1); there exists x! ∈L2(G) such that

x!(t)= (1− !)
∫
G
k(t; s)f(s; x!(s)) ds+ g(t) a:e: on D;

(3) {x!} converges to a solution of Eq. (4:1) as !→ 0+.

Proof. Let H=L2(G). We write Eq. (4.1) as x=KF(x+g). We de9ne a map T :H →H
by Tx=K1=2F(K1=2x+ g), where K1=2 is the square root of K . It is easy to verify that
the equation x=KF(x+ g) is equivalent to the 9xed point equation y=Ty. Hence, it
suQces to show that T satis9es all the conditions of Theorem 2.4. It is obvious that
T :H →H is continuous. Moreover, we have for x; y∈H ,

(Tx − Ty; x − y) = (F(K1=2x + g)− F(K1=2y + g); K1=2x − K1=2y)

6 ‖K‖−1‖K1=2(x − y)‖26 ‖x − y‖2:
This shows that T :H →H is pseudo-contractive. To show that T satis9es (LS)0 on
H , it suQces to prove the set {x∈H : x= !Tx; 06 !6 1} is bounded. Assume that
x∈H is such that x= !Tx for some !∈ (0; 1]. Let *=2q=(2 + q) and +¿ 1 satisfy
1=+ + 1=*=1. Using (iii), we obtain

‖x‖6 ‖a‖‖K1=2‖‖x‖+ b meas(G)(+)−1‖K‖1=*‖x‖2=*:
This implies ‖x‖6m for a suitable constant m, independent of !. The result
follows.

The following result allows meas(G)=∞ and k need not be symmetric, but condi-
tions on f are diPerent from those used in Theorem 4.1.

Theorem 4.2. Assume that the following conditions hold.
(h1) (f(t; u)− f(t; v))(u− v)6 0 for u; v∈R.
(h2) There exist �∈L2(G) and -¿ 0 such that

f(t; u)u6 �(t)|u| − -|u|2 for u∈R and t ∈G:

Then the following assertions hold.
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(1) Eq. (4:1) has a solution in L2(G).
(2) For every !¿ 0; there exists x! ∈L2(G) such that

!x!(t) + K∗x! =KF(K∗x! + g);

where K∗ is the adjoint of K .
(3) {x!} converges to a solution of Eq. (4:1) as !→ 0+.
(4) {K∗x!} converges to a solution of Eq. (4:1) as !→ 0+.

Proof. Let H=L2(G). We write Eq. (4.1) as x=KF(x+g). We de9ne a map T :H→H
by Ty=y+KF(K∗y+g)−K∗y. Let x=K∗y. Then y=Ty implies x=KF(x+g). It is
easy to verify that T :H →H is a continuous pseudo-contractive map. It follows from
Corollary 2.1 that for every !¿ 0, there exists x! ∈H such that x! = [1−!=(1+!)]Tx!.
This implies that (2) holds. Now, by a similar argument to that used in Example 11:2
in [3], one can show that T has a 9xed point in H , that is, (1) holds. This, together
with Theorem 2.5, implies that (3) holds. It is obvious that (2) and (3) imply (4).

Remark 4.1. Theorem 4.2 generalizes Example 11:2 in [3], where G=(0;∞). Theorem
4.2 not only shows the existence of solutions of Eq. (4.1) but also provides sequences
which strongly converge to solutions of Eq. (4.1). Example 11:2 in [3] only provides
a sequence which weakly converges to a solution of Eq. (4.1) (see the proof of the
Example 11:2).
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