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Let f ( } , *): R � R be given so that f (0, *)=0 and f (x, *)=(1+*) x+ax2+
bx3+o(x3) as x � 0. We characterize those small values of =>0 and * # R for
which there are periodic solutions of periods approximately 2

k with k # N of the
following system arising from a network of neurons

{=x* (t)= &x(t)+ f ( y(t&1), *),
=y* (t)= & y(t)+ f (x(t&1), *).

The periodic solutions are synchronized if k is even and phase-locked if k is odd.
We show that, as = � 0, these periodic solutions approach square waves if a=0 and
b<0, and pulses if a=0 and b>0 or if a{0. � 2001 Academic Press

1. INTRODUCTION

For =>0 and f # C m(R_R), m�3, the following system of delay dif-
ferential equations

{=x* (t)=&x(t)+ f ( y(t&1), *),
=y* (t)=& y(t)+ f (x(t&1), *)

(1.1)

describes the dynamics of a network of two identical amplifiers (or
neurons) with delayed outputs. See, for example, Hopfield [10], Marcus
and Westervelt [12], and Wu [13].

For a given *, if �
�! f (!, *)>0 for ! # R, then system (1.1) models the

delayed excitatory interaction of two identical neurons. We have recently
obtained some results about the global dynamics of system (1.1) under
some minor technical hypotheses [3�5]. It is shown that system (1.1) has
at least two periodic orbits when = is less than a certain value, one is syn-
chronized and has the minimal period between 1 and 2 and the other one
is phase-locked and has the minimal period larger than 2. Here a solution
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(x, y) of (1.1) is synchronized if x#y in their domains of definition, and a
phase-locked T-periodic solution of (1.1) is one satisfying x(t)= y(t& T

2) for
all t # R. The purpose of this paper is to study the limiting properties of
these periodic solutions of (1.1) as = � 0.

More specifically, we assume that

f (x, *)=(1+*) x+ax2+bx3+o(x3) as x � 0. (1.2)

When a{0, f ( } , *) has only one nontrivial fixed point c0* in a small
neighborhood of 0. When a=0, we observe that if *b<0 then f ( } , *) has
two distinct nonzero fixed points c1* and c2* in a small neighborhood of 0;
if *b>0 then 0 is the only fixed point of f in a small neighborhood of 0.
Furthermore, c0* , c1* , c2* � 0 as * � 0. One of our objectives here is to
understand how these fixed points of the map f ( } , *) is reflected into the
bifurcation from the origin of periodic solutions whose periods are
approximately 2

k with some k # N.
Our work is inspired by that of Chow et al. [2] and Hale and Huang

[9] for a scalar delay differential equation with negative feedback. In fact,
our presentation here is parallel to those in [2, 9]: we show that the
aforementioned periodic solutions are determined from the periodic solu-
tions of special perturbed planar Hamiltonian systems that are obtained by
an application of the normal form theory for retarded functional differen-
tial equations with parameters developed by Faria and Magalha~ es [7]. We
will show that the normal forms on the associated center manifold are
exactly the same (up to the third order term) as those for the negative feed-
back equations if we assume the second order term of f (x, *) vanishes, i.e.,
a=0, though interpretation for the limiting properties of the resulted peri-
odic solutions for the original system (1.1) as = � 0 are different from that
of the negative feedback analogue. In the case where a{0, however, we
will have a different normal form and different limiting profiles of periodic
solutions as = � 0.

Roughly speaking, our results are as follows: for any k # N, there exist a
neighborhood Uk of (0, 0) in the (*, =) plane and a sectorial region Sk in
Uk such that, if (*, =) # Uk , then there is a periodic solution (x~ (k)

*, = , y~ (k)
*, =) of

(1.1) with period 2
k (1+=)+O( |=| ( |*|+ |=| )) as (*, =) � (0, 0) if and only if

(*, =) # Sk . Moreover, this orbit is unique and the solution (x~ (k)
* , = , y~ (k)

*, =) is
synchronized if k is even and phase-locked if k is odd. When a=0, as = � 0,
the solution (x~ (k)

*, = , y~ (k)
*, =) approaches square wave if b<0 or pulse if b>0.

When a{0, the solution (x~ (k)
*, = , y~ (k)

*, =) approaches pulse as = � 0.
Note that when k is even, the periodic solution (x~ (k)

*, = , y~ (k)
*, =) is syn-

chronized and hence x~ (k)
*, = satisfies

=x* (t)=&x(t)+ f (x(t&1), *). (1.3)
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Also note that periodic solutions of (1.3) give synchronized periodic solu-
tions of (1.1). Because of the uniqueness, we can deduce similar results for
(1.3) from the above results. That is, for any k # N, there exist a
neighborhood Vk of (0, 0) in the (*, =) plane and a sectorial region Rk in
Vk such that if (*, =) # Vk , then there is a periodic solution x (k)

*, = of (1.3) with
period 1

k (1+=)+O( |=| ( |*|+|=| )) as (*, =) � (0, 0) if and only if (*, =) # Rk .
Moreover, as = � 0, if a=0 then the solution x (k)

* , = approaches square wave
if b<0 or pulse if b>0; if a{0 then the solution x (k)

*, = approaches pulse as
= � 0. The results for the case where a=0 are similar to those obtained by
Chow et al. [2] and Hale and Huang [9] for Eq. (1.3) with f satisfying

f (x, *)=&(1+*) x+ax2+bx3+o(x3) as x � 0. (1.4)

See [2, 9] for more details. We observe that in [2, 9], neither a nor b alone
but their combination ;=a2+b determines the bifurcation diagrams.
However, in our case, if a{0 then a itself alone determines the bifurcation
diagrams and the bifurcation diagrams are different from the case where
a=0 and also from the case considered in [2, 9]. This indicates a dif-
ference between excitatory and inhibitory networks of neurons. The precise
statements of our main results are given in Section 2. The main results
follow from the normal form equations on the center manifold, which are
computed in some detail in Section 3 by using the normal form theory
developed by Faria and Magalha~ es [7], and similar arguments to those in
[2] and [9].

2. MAIN RESULTS

Before obtaining the planar system on an associated center manifold, let
us first do some local analysis for system (1.1). The linear variational
system around the equilibrium solution 0 of (1.1) is

{=x* (t)=&x(t)+(1+*) y(t&1),
=y* (t)=& y(t)+(1+*) x(t&1).

By analyzing the characteristic equation

(=&+1+(1+*) e&&)(=&+1&(1+*) e&&)=0,

we can see that for given *>0 and k # N, there exists

=k(*)=
- *2+2*

k?&arc cos(1�(1+*))
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such that =k(*) &+1+(&1)k (1+*) e&&=0 has a pair of purely conjugate
imaginary solutions \i(k?&arc cos 1

1+*). Furthermore, if the complex
roots near ===k(*) are denoted by +(*, =) and +� (*, =), then �+(*, =k(*))�
�=<0. Therefore, there is a Hopf bifurcation of a periodic solution in (1.1)
and the period is around 2?�k?&arc cos(1�(1+*)) # ( 2

k , 4
2k&1). It can be

shown also that for a given k # N there is a unique periodic orbit bifurcat-
ing from the origin under the assumption that a2&b{0 (this follows easily
from the calculation of the direction of bifurcation, see, for example,
Diekmann et al. [6]) and the period of this unique periodic orbit is
approximately 2?�(k?&arc cos(1�(1+*)) � 2

k as * � 0+. The basic problem
now is to determine the region near the origin in the parameter space (*, =)
for the existence of this bifurcating periodic orbit and to determine the
limiting properties of this orbit as = � 0. We now introduce some scalings
in two cases.

Case A. k is even. Let k=2l for some l # N. We suppose that (1.1) has
a periodic solution (x, y) with period 1

l +r2l= and let

{w1 (t)=x(&=r2l lt),
w2 (t)=y(&=r2l lt).

(2.1)

Since (x, y) has period 1
l +r2l=, it follows from (1.1) that

{w* 1(t)=r2l lw1(t)&r2l lf (w2(t&1), *),
w* 2(t)=r2l lw2(t)&r2l lf (w1(t&1), *).

(2.2)

System (2.2) is now independent of =. We look for periodic solutions of
(2.2) in a neighborhood of the origin. This can be regarded as a two
parameter bifurcation problem with (*, r2l) as parameters.

The next step is to determine the approximate value of the constant r2l

in the formula for the period 1
l +r2l=. The appropriate approximate value

of r2l is obtained by considering the linear variational system around the
zero solution of (2.2) for *=0,

{w* 1(t)=r2l lw1(t)&r2l lw2(t&1),
w* 2(t)=r2l lw2(t)&r2l lw1(t&1).

(2.3)

The corresponding characteristic equation of (2.3) is

(&&r2l l )2&(r2l le&&)2=0. (2.4)

617ASYMPTOTIC SHAPES OF PERIODIC SOLUTIONS



Note that &=0 is always a zero of (2.4). It is a simple zero if r2l {
1
l and

it is a double zero if r2l=
1
l . Also note that all other zeros of (2.4) except

a unique positive real zero have negative real parts. Since bifurcation from
a simple zero does not lead to periodic orbits, it is natural to take r2l=

1
l .

Case B. k is odd. Let k=2l&1 for some l # N. Suppose that (1.1) has
a periodic solution (x, y) with period 2

2l&1+2r2l&1=. Introducing

{w1(t)=x[&=r2l&1(2l&1) t],
w2(t)=y[&=r2l&1(2l&1) t+=r2l&1(2l&1)+1],

(2.5)

we get

{w* 1(t)=r2l&1(2l&1) w1(t)&r2l&1(2l&1) f (w2(t&1), *),
w* 2(t)=r2l&1(2l&1) w2(t)&r2l&1(2l&1) f (w1(t&1), *).

(2.6)

Using similar analysis to that for Case A, we should choose r2l&1= 1
2l&1 .

We remark that we need different scalings (2.2) and (2.5) to get the
transformed systems (2.3) and (2.6), respectively. In fact, if we assume that
(1.1) has a periodic solution (x, y) with period 2

k (1+rk =), then it is natural
to introduce

{w1(t)=x(&rk=t),
w2(t)=y(&rk=t).

Thus,

{w* 1(t)=rkw1(t)&rk f ( y(&rk=t&1), *),
w* 2(t)=rk w2(t)&rk f (x(&rk=t&1), *).

Note that

&rk=t&1=&rk =(t&1)&(rk=+1)

=&rk =(t&1)&
k
2 \

2
k

(1+rk=)+ .

By the periodicities of x and y, it is easy to see that the suggested scaling
works only for k being even. For k being odd, there remaining an addi-
tional half period. This leads us to introduce the scaling (2.5) for that case.
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From the above discussions, for any l # N, if we let r2l=
1+h

l or
r2l&1= 1+h

2l&1 , where h is a small parameter, then (2.3) and (2.6) can be
rewritten as

{w* 1(t)=(1+h) w1(t)&(1+h) f (w2(t&1), *),
w* 2(t)=(1+h) w2(t)&(1+h) f (w1(t&1), *).

(2.7)

If we let w=(w1 , w2), then (2.7) is equivalent to

w* =Lwt+hLwt&F*, h(wt), (2.8)

where

L.=.(0)&_0
1

1
0& .(&1), (2.9)

F*, h (.)=(1+h) _ &.2(&1)+ f (.2(&1), *)
&.1 (&1)+ f (.1 (&1), *)& (2.10)

for .=( .1

.2
) # C=C([&1, 0]; R2), the Banach space of all continuous map-

pings from [&1, 0] to R2 equipped with the super norm, and wt(%)=
w(t+%) for &1�%�0.

This suggests that we should consider (2.8) as a perturbation of the
linear equation

v* =Lvt . (2.11)

Equation (2.11) generates a strongly continuous semigroup T(t) on the
phase space C. The infinitesimal generator A of T(t) has domain
D(A)=[. # C1 : .* (0)=L.] and A.=.* , where C1=C1([&1, 0]; R2) is
the space of all continuously differentiable mappings from [&1, 0] to R2.
The point spectrum of A is given by solutions of the characteristic equation

(&&1)2&e&2&=0,

which has 0 as a double zero, a unique simple positive real zero and all
other zeros have negative real parts. Thus, the small periodic orbits of (2.7)
or (2.8) will lie on a two-dimensional center manifold which is tangent to
the generalized eigenspace of A associated with the eigenvalue 0.

The generalized eigenspace 4 of A corresponding to the eigenvalue 0 has
a basis

8(%)=_
1
3+% &1
1
3+% &1& , &1�%�0. (2.12)
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The adjoint linear equation of (2.11) is

u* (t)=&u(t)+_0
1

1
0& u(t+1),

with a basis for the generalized eigenspace of the eigenvalue 0 being given
by

9(s)=_1
s

1
s& , 0�s�1. (2.13)

The associated bilinear form is

(�, .)=�(0) .(0)&|
0

&1
�(!+1) _0

1
1
0& .(!) d!. (2.14)

With the above choices of basis, we verify easily that (9, 8)=I, the 2_2
identity. As a consequence, the space C can be decomposed as

C=4 � Q,

where

4=[.=8x : x # R2],
(2.15)

Q=[. # C : (9, .)=0].

Each of the closed linear subspaces is invariant under the semigroup T(t).
We also note that

A8=8B, B=\ 0
&1

0
0+ .

For details of the above discussion, we refer to Hale [8].
Under the decomposition wt=8x(t)+ y(t), we can decompose (2.8) as

{x* =Bx+9(0) [hL(8x+ y)&F*, h(8x+ y)],
y* =AQ1 y+(I&6) X0 [hL(8x+ y)&F*, h(8x+ y)],

(2.16)

with x # R2 and y # Q1=Q & C1. Here and throughout this paper, we refer
to Faria and Magalha~ es [7] for explanations of several notations involved.
To avoid confusion, we used 6 for the projection.

Proposition 1. Any solution (w1 , w2) of (2.7) on the center manifold is
synchronized, i.e., w1 #w2 .
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Proof. Let (w1 , w2) be a solution of (2.7) on the center manifold. Then
it is defined for all t # R. Write wt=8x(t)+ y(t), where x(t) # R2 and
y(t) # Q1 for t # R. Then (x, y) satisfies (2.16). From the symmetry of (2.7),
we know that (w2 , w1) is also a solution of (2.7) on R. It follows from
(2.12)�(2.15) that ((8x)2 , (8x)1)=8x for x # R2 and (Y2 , Y1) # Q1 if and
only if (Y1 , Y2) # Q1, here we write 8x=((8x)1 , (8x)2). If we write
y(t)=(Y1(t), Y2(t)). Then ((w2)t , (w1)t)=8x(t)+(Y2(t), Y1(t)) for all
t # R. By the uniqueness of solutions of (2.16) we get Y1(t)=Y2(t) for all
t # R. Thus, (w1)t=(8x(t))1+Y1(t)=(8x(t))2+Y2(t)=(w2)t for all t # R.
Hence, w1(t)=w2(t) for all t # R, i.e., w1 #w2 . This completes the proof.

Remark 2. Proposition 1, combined with (2.1) and (2.5), implies that if
k is even then the periodic solution of (1.1) with period 2

k+rk= is syn-
chronized and if k is odd then the periodic solution of (1.1) with period
2
k+2rk= is phase-locked. Also, Proposition 1 implies that to consider the
small periodic solutions of (1.1) we only need to consider synchronized
solutions of (2.7), i.e., consider

u* (t)=(1+h) u(t)&(1+h) f (u(t&1), *).

We can start from this to calculate the normal form on the center manifold.
But this would not simplify our calculation and hence we continue our
discussion with system (2.7).

Using the normal form theory for retarded delay differential equations
developed by Faria and Magalha~ es [7], we obtain the normal form of
(2.7) or (2.8) on the center manifold, which is given by

( 4
3 *+2h) x1+2* x2& 8

3 ax1 x2&2ax2
2+(2b+ 46

9 a2) x3
2& 5

3 a*x2
2

\x* 1

x* 2+=\ &4
3 ahx2

2+(4b+ 428
45 a2) x1x2

2& 28
27 a*x1x2& 28

9 ahx1x2 +
(2.17)

&x1

up through terms of O((*+h)2 |x|+(*+h) |x|3+|x|4). The details for the
calculation of (2.17) are given in the next section. When a=0, system
(2.17) reduces to

{x* 1=( 4
3 *+2h) x1+2*x2+2bx3

2+4bx1x2
2 ,

x* 2= &x1 ,

which is the same as (1.16) in [9] with ;=&b and can be transformed
into (2.13) of [2] by rescaling x1 and x2 if b<0. Thus, we can use Remark 2
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and the same arguments in [2, 9] to obtain the existence of periodic orbits
and the bifurcation diagrams. When a{0, the dynamics of (2.17) is deter-
mined by terms up to second order (see Carr [1] and Kopell and Howard
[11]). Hence, we only need to consider

{x* 1=( 4
3 *+2h) x1+2*x2& 8a

3 x1 x2&2ax2
2 ,

x* 2=&x1 .
(2.18)

We can study system (2.18) in a similar fashion as that of Hale and Huang
[9]. In fact, if we introduce the scalings

{
*=&:+2,

h=+$,

u1(t)=&sgn(a)
- |a|
2+2 x2 \&

t

- 2++ ,

u2(t)=&sgn(a)
- |a|

2 - 2 +3
x1 \&

t

- 2 ++
in (2.18), then we obtain the equivalent system

{
u* 1=u2 ,

(2.19)
u* 2=:u1+#u2&2 - |a| u2

1&
8 - 2 |a|

3
+u1u2 ,

where #=2 - 2:+�3&- 2$ and sgn is the sign function. For +=$=0, we
obtain the conservative system

{u* 1=u2 ,
u* 2=:u1&2 - |a| u2

1 .

When :>0, system (2.19) is the same form as system (7.4) in Kopell and
Howard [11] and when :<0 we can transform it into the case where :>0
by using the transformations mentioned in Carr [1]. Therefore, we can use
the technique in Kopell and Howard [11] to find the periodic solutions.
Furthermore, using similar arguments as those in Hale and Huang [9]
with the help of the proofs of Lemmas 7.1 and 7.2 in Kopell and Howard
[11] (they are so similar and hence are omitted here), we can get the bifur-
cation diagrams for the case where a{0.

In summary, we have obtained the following results.
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Theorem 3. Suppose that f (x, *) satisfies (1.2) with a2&b{0. Then,
for any k # N, there is a neighborhood Uk of (0, 0) in the (*, =) plane and a
sectorial region Sk in Uk such that, if (*, =) # Uk , then there is a periodic
solution (x~ (k)

*, = , y~ (k)
*, =) of (1.1) with period 2

k (1+=)+O( |=| ( |*|+ |=| )) as
(*, =) � (0, 0) if and only if (*, =) # Sk . Furthermore, this orbit is unique and
the solution is synchronized if k is even and phase-locked if k is odd.

When a=0 and b<0, for small and fixed *=*0>0, the set
[=; (*0 , =) # Sk] is an interval (0, =k(*0)). At the point (*0 , =k(*0)), there is a
Hopf bifurcation and the periodic solution approaches a square wave as
= � 0; that is, the periodic solution (x~ (k)

*0 , = , y~ (k)
*0 , =) has the property that

x~ (k)
*0 , =(t) � c1*0

(respectively, c2*0
) as = � 0 uniformly on compact subsets of

(0, 1
k) (respectively, ( 1

k , 2
k)) ( possibly after a translation, same for the other

cases) (see Fig. 1). When a=0 and b>0, for small and fixed *=*0>0, the
set [=; (*0 , =) # Sk] is an interval (=k(*0), ;k(*0)). At the point (*0 , =k(*0)),
there is a Hopf bifurcation. For small and fixed *=*0<0, the set
[=; (*0 , =) # Sk] is an interval (0, :k(*0)). As = � 0, the unique periodic solu-
tions become pulse-like in the following sense: the periodic solution
(x~ (k)

*0 , = , y~ (k)
*0 , =) has the property that x~ (k)

*0, =(t) � 0 as = � 0 uniformly on compact
subsets of (0, 1

k) _ ( 1
k , 2

k). The magnitude of the pulse exceeds
max[ |c1*0

|, |c2*0
|] (see Fig. 2). When a{0, for small and fixed *=*0>0,

the set [=; (*0 , =) # Sk] is an interval (=k(*0), ;k(*0)). At the point
(*0 , =k(*0)), there is a Hopf bifurcation. For small and fixed *=*0<0, the
set [=; (*0 , =) # Sk] is an interval (0, :k(*0)). As = � 0, the unique periodic
solutions become pulse-like with the magnitude of the pulse exceeds |c0*0

|
(see Fig. 3).

It is interesting to mention that the two nonzero fixed points c1* and c2*

play the same important role played by the two period doubling points d1*

FIG. 1. a=0 and b<0.
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FIG. 2. a=0 and b>0.

and d2* of [2, 9]. Also note that the existence results in Theorem 3 were
previously obtained in [3, 5] for some special f.

Remark 4. When considering (1.3) with f satisfying (1.4), Hale and
Huang [9] showed that the vector field on the center manifold is odd.
Thus the second order terms in the vector field vanish and hence the
phenomenon of all periodic solutions approaching pulses cannot happen.
More precisely, neither a nor b alone but their combination ;=a2+b
determines the bifurcation diagram. But in our model, when k is even, the
periodic solutions are synchronized and hence we get the bifurcation
diagrams for (1.3) with f satisfying (1.2). However, when a{0, a itself

FIG. 3. The case of a>0. For the case of a<0 just reflect the graph with respect to the
t-axis.
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alone can determine the bifurcation diagram, which is different from that
in [2, 9]. This also indicates some differences between excitatory and
inhibitory networks of neurons.

3. CALCULATIONS OF THE NORMAL FORM ON
CENTER MANIFOLD

In this section, we employ the algorithm and notations of Faria and
Magalha~ es [7] to derive the normal form (2.17) of system (2.8) on the
center manifold.

For the convenience of presentation, we let e1 and e2 be the standard
basis of R2, i.e., e1=(1, 0)T and e2=(0, 1)T. We also introduce N0=
N _ [0]. For q=(q1 , q2 , q3 , q4) # (N0)4, let |q|=�4

i=1 qi and (x, *, h)q=
xq1

1 xq2
2 *q3hq4.

Let L.=.(0)&[ 0
1

1
0] .(&1). We consider the following delay differen-

tial equation

w* =Lwt+hLwt&F*, h (wt), (3.1)

where wt # C=C([&1, 0]; R2) and

F*, h(.)=(1+h) _&.2(&1)+ f (.2(&1), *)
&.1(&1)+ f (.1(&1), *)& , .=\.1

.2+
with f satisfying

f (x, *)=(1+*) x+ax2+bx3+o(x3) as x � 0.

We regard (3.1) as a perturbation of the linear equation

v* =Lvt . (3.2)

Equation (3.2) generates a strongly continuous semigroup T(t) on the
phase space C. The infinitesimal generator A of T has domain D(A)=
[. # C1 : .* (0)=L.] and A.=.* . The point spectrum of A is given by the
solution of the characteristic equation

(&&1)2&e&2&=0,

which has zero as a double root and no other roots have zero real parts.
So we have a two-dimensional center manifold.

625ASYMPTOTIC SHAPES OF PERIODIC SOLUTIONS



We know that the generalized eigenspace 4 of A associated with the
eigenvalue 0 has a basis

8(%)=_
1
3+% &1
1
3+% &1& , &1�%�0. (3.3)

Let

9(s)=_1
s

1
s & , 0�s�1. (3.4)

Then under the bilinear form

(�, .)=�(0) .(0)&|
0

&1
�(!+1) _0

1
1
0& .(!) d!,

it is easy to verify that (9, 8)=I, the 2_2 identity. Thus, C can be decom-
posed as

C=4 � Q,

where

4=[.=8x : x # R2],

Q=[. # C : (9, .)=0].

We also note that

A8=8B, B=_ 0
&1

0
0& .

Under the decomposition wt=8x(t)+ y(t), we can decompose (3.1) as

{x* =Bx+9(0)[hL(8x+ y)&F*, h(8x+ y)],
y* =AQ1 y+(I&6) X0[hL(8x+ y)&F*, h(8x+ y)],

with x # R2 and y # Q1. We will write the Taylor expression

9(0)[hL(8x+ y)&F*, h (8x+ y)]= :
j�2

1
j!

f 1
j (x, y, *, h), (3.5)
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where f 1
j (x, y, *, h) are homogeneous polynomials of degree j in (x, y, *, h)

with coefficients in R2. Then the normal form of (3.1) on the center
manifold of the origin at (*, h)=(0, 0) is given by

x* =Bx+
1
2!

g1
2 (x, 0, *, h)+

1
3!

g1
3(x, 0, *, h)+h.o.t., (3.6)

where g1
2 and g1

3 will be calculated in the following part of this appendix
and h.o.t. represents the higher order terms.

Note

hL.&F*, h(.)={h _.1(0)
.2(0)&&(*+h) h _.2(&1)

.1(&1)&&a _(.2(&1))2

(.1(&1))2&=
+{&b _(.2(&1))3

(.1(&1))3&&ah _(.2(&1))2

(.1(&1))2&&*h _.2(&1)
.1(&1)&=

+h.o.t. ,

which, combined with (3.3), (3.4), and (3.5), implies

f 1
2(x, 0, *, h)=\4 [hx1+ 2

3 *x1+*x2&a( 4
9 x2

1+ 4
3 x1x2+x2

2)]
0 + . (3.7)

These are the second terms in (x, *, h) of (3.5). Following Faria and
Magalha~ es [7], we have the second terms in (x, *, h) of the normal form
(3.6) on the center manifold as

g1
2(x, 0, *, h)=(I&P1

I, 2) f 1
2(x, 0, *, h). (3.8)

Recall that for j�2, M 1
j is the operator defined on V 4

j (R2) by

M 1
j ( p)(x, *, h)=Dxp(x, *, h) Bx&Bp(x, *, h),

where V 4
j (R2) is the linear space of the homogeneous polynomials of degree

j in the 4 real variables x1 , x2 , * and h. Consider the decompositions

V 4
j (R2)=Im(M 1

j ) � Im(M 1
j )c,

V 4
j (R2)=Ker(M 1

j ) � Ker(M 1
j )c.

The projections associated with the preceding decompositions of V 4
j (R2)

over Im(M 1
j ) and V 4

j (R2) over Ker(M 1
j )c are denoted by P1

I, j and P1
K, j ,

respectively. Denote by (M 1
j )&1 the right inverse of M 1

j with range defined
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by the spaces complementary to the kernel of M 1
j with (M 1

j )&1

P1
I, jM

1
j =P1

K, j . Particularly, we have

M1
2( p)=\

&x1

�p1

�x2

&x1

�p2

�x2

+ p1+ , p=\p1

p2+ .

After computing the images of the basis [(x, *, h)q ek : k=1, 2, |q|=2] of
V4

2(R2) under M 1
2 , we choose basis for Im(M 1

2) and Im(M 1
2)c as

Im(M1
2)=span {x2

1e1 , *x1e1&*x2e2 , hx1e1&hx2e2 , 2x1x2e1&x2
2e2 ,

*2e2 , h2e2 , *he2 , *x1e2 , hx1e2 , x2
1e2 , x1x2e2 = ,

Im(M1
2)c=span[*2e1 , h2e1 , *he1 , *x1e1 , hx1e1 , *x2e1 , hx2e1 , x1x2e1 , x2

2e1].

Then

(I&P1
I, 2) \ :

|q| =2

(bq e1+cqe2)(x, *, h)q+
=(b0020 *2+b0002h2+b0011*h+(b1010+c0110) *x1+b0110*x2

+(b1001+c0101) hx1+ +b0101hx2+(b1100+2c0200) x1x2+b0200x2
2) e1

(3.9)

and

P1
I, 2 \ :

|q|=2

(bqe1+cqe2)(x, *, h)q+
=(b2000x2

1&c0110*x1&c0101 hx1&2c0200x1x2) e1

+(c0020 *2+c0002h2+c0011*h+c1010*x1+c1001hx1

+c2000x2
1+c1100x1x2+c0110*x2+c0101hx2+c0200 x2

2) e2 .

It follows from (3.7)�(3.9) that

1
2

g1
2(x, 0, *, h)=\

4
3

*x1+2hx1+2*x2&
8a
3

x1x2&2ax2
2+ . (3.10)

0
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On the other hand,

Ker(M 1
2)=span {*x1e1+*x2 e2 , hx1e1+hx2e2 , x2

1e1+x1x2e2 ,
*2e2 , h2e2 , *he2 , *x1e2 , hx1e2 , x2

1e1 = .

We choose [*2e1 , h2e1 , *he1 , *x2e1 , hx2e1 , x2
2e1 , x1x2e1 , *x1e1 , hx1e1 ,x2

1e1 ,
x2

2 e2] as a basis for Ker(M 1
2)c. Then

P1
K, 2 \ :

|q|=2

(bqe1+cqe2)(x, *, h)q+
=(b0020*2+b0002h2+b0011*h+b0110*x2+b0101hx2

+b0200x2
2+b1100x1x2+(b1010&c0110) *x1

+(b1001&c0101) hx1+(b2000&c1100) x2
1) e1+c0200x2

2e2 . (3.11)

Thus

U2(x, *, h)=M &1
2 PI, 2 f2(x, 0, *, h)

=\(M 1
2)&1 P1

I, 2 f 1
2(x, 0, *, h)

H(x, *, h) + ,

where H=� |q| =2(H (1)
q e1+H (2)

q e2)(x, *, h)q # V 4
2(Q1) is the unique solution

of

(M 2
2H)(x1 , x2 , *, h)= f 2

2(x1 , x2 , *, h).

Note that H # V 4
2(Q1) implies Hq=H (1)

q e1+H (2)
q e2 # Q1. It is easy to see

that H satisfies

(M 2
2H)(x1 , x2 , *, h)=2X0[ g(x1 , x2 , *, h)(e1+e2)]

&48[ g(x1 , x2 , *, h) e1], (3.12)

where

g(x1 , x2 , *, h)=hx1+ 2
3 *x1+*x2&a ( 4

9 x2
1+ 4

3 x1 x2+x2
2).

Noting

P1
I, 2 f 1

2(x1 , x2 , 0, *, h)=\& 16
9 ax2

1

0 +=P1
I, 2M 1

2 \
16
9 ax1 x2

8
9 ax2

2 + ,
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it follows from (3.11) that

(M 1
2)&1P1

I, 2 f 1
2(x1 , x2 , 0, *, h)=(M 1

2)&1P1
I, 2M 1

2 \
16
9 ax1 x2

8
9 ax2

2 +
=P1

K, 2 \
16
9 ax1x2

8
9 ax2

2 +
=\

16
9 ax1x2

8
9 ax2

2 + .

Before computing g1
3(x1 , x2 , 0, *, h), we first consider the action of the

mapping M 1
3 on V 4

3(R2). Take [(x, *, h)q ek : k=1, 2, |q|=3] as a basis for
V4

3(R2). After computing the action of M 1
3 on this basis, we can take

{
x2

1x2 e1 , *x2
1e1 , hx2

1e1 , x3
1e1 , *3e2 , h3e2 , x3

1e2 , *2he2 , *2x1 e2 , *h2e2 ,
h2x1e2 , x1x2

2 e2 , hx2
1e2 , *x2

1e2 , *hx1 e2 , x2
1x2e2 , *x1x2 e2 , hx1 x2e2 ,

*2x1 e1&*2x2e2 , h2x1 e1&h2x2e2 , 3x1x2
2e1&x3

2e2 , 2*x1x2e1&*x2
2e2 ,

2hx1x2e1&hx2
2e2 , *hx1 e1&*hx2e2

=
and

{*2x1e1 , h2x1e1 , x1x2
2e1 , *x1x2 e1 , hx1x2e1 , *hx1e1 , *3e1 , h3e1 ,

x3
2e1 , *2he1 , *2x2e1 , *h2e1 , h2x2e1 , *x2

2e1 , hx2
2e1 , *hx2 e1 =

as basis for Im(M 1
3) and Im(M 1

3)c, respectively. Then

(I&P1
I, 3) \ :

|q|=3

(bq e1+cqe2)(x, *, h)q+
=(b0030*3+b0003h3+b0300x3

2+b0021*2h+b0120*2x2

+b0012*h2+b0102h2x2+b0210*x2
2+b0201hx2

2+b0111*hx2

+(b1020+c0120) *2x1+(b1002+c0102) h2x1+(b1200+3c0300) x1x2
2

+(b1110+2c0210) *x1x2+(b1101+2c0201) hx1x2+(b1011+c0111) *hx1) e1 .

Note that

g1
3(x1 , x2 , 0, *, h)=(I&P1

I, 3) f� 1
3(x1 , x2 , 0, *, h),

where

f� 3= f3+ 3
2 [(Dx, y f2) U2&(Dx, yU2) g2].
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Thus, f� 1
3= f 1

3+ 3
2 [(Dx, y f 1

2) U2&(Dx, yU 1
2) g2]. After a routine computa-

tion and omitting terms of (x, *, h)q with q3+q4�2, we get

g1
3(x1 , x2 , 0, *, h)

=\d0300x3
2+d0210*x2

2+d0201hx2
2+d1200x1 x2

2+d1110*x1 x2+d1101hx1x2

0 + ,

(3.13)

where

d0300=12b+ 64
3 a2&6a(H (1)

0200(&1)+H (2)
0200(&1)),

d0210=& 16
3 a&3(H (1)

0200(&1)+H (2)
0200(&1))&6a(H (1)

0110(&1)+H (2)
0110(&1)),

d0201=&12a+3(H (1)
0200(0)+H (2)

0200(0))&3(H (1)
0200(&1)+H (2)

0200(&1))

&6a(H (1)
0101(&1)+H (2)

0101(&1)),

d1200=24b+ 320
9 a2&4a(H (1)

0200(&1)+H (2)
0200(&1))

&6a(H (1)
1100(&1)+H (2)

1100(&1)),

d1110=&3(H (1)
1100(&1)+H (2)

1100(&1))&4a(H (1)
0110(&1)+H (2)

0110(&1))

&6a(H (1)
1010(&1)+H (2)

1010(&1)),

d1101=&16a+3(H (1)
1100(0)+H (2)

1100(0))&3(H (1)
1100(&1)+H (2)

1100(&1))

&4a(H (1)
0101(&1)+H (2)

0101(&1))&6a(H (1)
1001(&1)+H (2)

1001(&1)).

To get the explicit expression for g1
3 , we need to solve (3.12). By using the

fact that Hq # Q1 for |q|=2, we get

H (1)
0101 #H (2)

0101 #0,

H (1)
0110(%)=H (2)

0110(%)= 4
3 %+2%2+ 1

9 ,

H (1)
0200(%)=H (2)

0200(%)=&a( 4
3 %+2%2+ 1

9),

H (1)
1001(%)=H (2)

1001(%)= 4
3 %+2%2+ 1

9 ,

H (1)
1010(%)=H (2)

1010(%)= 7
9 %+ 2

3 %2& 2
3 %3+ 11

135 ,

H (1)
1100(%)=H (2)

1100(%)=&14
9 a%& 4

3 a%2+ 4
3 a%3& 22

135 a, (3.14)

for % # [&1, 0]. Substituting (3.14) into (3.13) gives

(12b+ 92
3 a2) x3

2&10a*x2
2&8ahx2

2& 56
3 ahx1x2

g1
3(x1 , x2 , 0, *, h)=\ +(24b+ 856

15 a2) x1 x2
2& 56

9 a*x1x2 + ,

0

(3.15)
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Substituting (3.10) and (3.15) into (3.6), we know that the normal form
on the center manifold is given by

( 4
3 *+2h) x1+2*x2& 8

3 ax1x2&2ax2
2+(2b+ 46

9 a2) x3
2& 5

3 a*x2
2

\x* 1

x* 2+=\ & 4
3 ahx2

2+(4b+ 428
45 a2) x1x2

2& 28
27 a*x1x2& 28

9 ahx1x2 + ,

&x1

(3.16)

up through terms of O((*+h)2 |x|+(*+h) |x|3+|x|4). This verifies (2.17).
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