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We consider a system of delay differential equations modelling the excitatory
interaction of two identical neurons. Assuming the delay is sufficiently large, we
show that the closure of the forward extension W5 of a 5-dimensional leading
unstable manifold of the trivial solution contains a phase-locked periodic orbit and
a synchronized periodic orbit and we classify the dynamics of the semiflow restric-
ted to W5 . We also obtain the precise information about the Floquet multipliers of
the synchronized periodic orbit, which enables us to establish the existence of
heteroclinic orbits from the synchronized periodic orbit to the phase-locked orbit.
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1. INTRODUCTION

We consider the following system of delay differential equations

{u* (t)=&+u(t)+ f (v(t&{)),
v* (t)=&+v(t)+ f (u(t&{)),
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or equivalently (after rescaling the time variable)

{u* (t)=&+{u(t)+{f (v(t&1)),
v* (t)=&+{v(t)+{f (u(t&1)),

(1.1)

where { and + are given positive constants, f : R � R is a C1-map satisfying
the following set of conditions:

f (0)=0, f $(!)>0 for all ! # R (Monotone Positive
Feedback);
f (!)=+! has exactly three zeros !&<0<!+ and
max[ f $(!&), f $(!+)]<+< f $(0) (Dissipativeness and
Instability of 0);
f (!)=&f (&!) for all ! # R (Symmetry);

The function (0, �) % ! [
!f $(!)
f (!)

# R is monotonically

decreasing (Concavity).

It should be mentioned that some results obtained in this paper do not
require the symmetry and concavity conditions on f, and that the function

f (!)=arctan(#!), ! # R

or

f (!)=
e#!&e&#!

e#!+e&#! , ! # R

satisfies the above set of conditions with #>+.
System (1.1) describes the dynamics of a network (Hopfield [5, 6]) of

two identical saturating amplifiers (neurons) with excitatory interaction,
where the delay was incorporated (Marcus and Westervelt [12] and
Wu [16]) to account for finite switching speed of amplifiers. In the applica-
tion of the above model to associative information processing where a
network is triggered by an appropriate external stimulus and relaxes
towards the attractor that encodes previously stored memories (Herz [3]),
it is important to describe completely the structure of the global attractor,
and in particular, to describe the existence and stability of equilibria and
periodic solutions and to describe their connecting orbits and basins of
attraction.

Our ultimate goal is to describe the global attractor of system (1.1), and
our focus here is on the existence of connecting orbits from a synchronous
periodic solution to a phase-locked periodic solution, here a solution (u, v)
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of (1.1) is synchronous if u#v in their domains of definition, and a phase-
locked T-periodic solution of (1.1) is a solution satisfying u(t)=v(t& T

2 ) for
all t # R. The existence of such connecting orbits suggests a mechanism for
desynchronization of the network. We refer to Terman, Kopell and Bose
[15] and references therein for discussions about synchronization of

related models in neurology.
Clearly, a synchronous solution of (1.1) is completely governed by the

scalar delay differential equation for w(=u=v):

w* (t)=&+{w(t)+{f (w(t&1)), (1.2)

which was recently studied by Krisztin, Walther, and Wu [9] and by
Krisztin and Walther [8]. Considering Eq. (1.2) in the phase space
C=C([&1, 0]; R) and linearizing it at the stationary point 0, it is
obtained that the zeros of the characteristic equation

*++{&{f $(0) e&*=0 (1.3)

form the spectrum of the generator As of the solution semiflow of the linear
equation

Z4 (t)=&+{Z(t)+{f $(0) Z(t&1). (1.4)

All zeros of (1.3) are simple eigenvalues of As . There is one real eigenvalue,
the other eigenvalues form complex conjugate pairs with real parts less
than the value of the real eigenvalue. Defining

{s=
2?&arccos(+� f $(0))

- [ f $(0)]2&+2
, {$s=

4?&arccos( +�f $(0))

- [ f $(0)]2&+2
,

one finds that for {>{s the realified generalized eigenspace of As associated
with the spectral set of the eigenvalues with positive real part is at least
3-dimensional, while for {s<{<{$s it is exactly 3-dimensional. When {>{s ,
there exists a 3-dimensional local unstable manifold W� 3, s, loc of the solution
semiflow generated by equation (1.2), which is, at zero, tangent to the
3-dimensional realified generalized eigenspace of the generator As associated
with the positive real eigenvalue and the pair of complex conjugate eigen-
values with the greatest real part. Krisztin, et al. [9] described the fine
structure of the closure of the global forward extension W� 3, s of W� 3, s, loc

under the solution semiflow of equation (1.2). In particular, they proved
that W� 3, s is a 3-dimensional submanifold of C which contains a smooth
invariant disk bordered by a periodic orbit. The disk separates W� 3, s into
halves: one half contains connecting orbits from the stationary point 0 or
the periodic orbit to a positive stationary point, the other half contains

132 CHEN, WU, AND KRISZTIN



connecting orbits from the stationary point 0 or the periodic orbit to a
negative stationary point. Under the above assumptions on f it is also
proved in [8] that if { # ({s , {$s) then W� 3, s is indeed the global attractor of
the solution semiflow of equation (1.2).

It is interesting to note that the characteristic equation of the lineariza-
tion at 0 of the full system (1.1), namely,

{X4 (t)= &+{X(t)+{f $(0) Y(t&1),
Y4 (t)= &+{Y(t)+{f $(0) X(t&1)

(1.5)

can be decoupled as

[*++{&{f $(0) e&*][*++{+{f $(0) e&*]=0, (1.6)

where the first factor corresponds to the characteristic equation (1.3).
Defining

{d=
?&arccos( +�f $(0))

- [ f $(0)]2&+2
,

one sees that for {>{d the zeros of the equation *++{+{f $(0) e&*=0 are
simple and occur in complex conjugate pairs, at least one pair of complex
conjugate zeros has positive real part, while for 0<{�{d all zeros have
nonpositive real parts. In Chen and Wu [2], it was proved that when
{>{d , there exists a complete analogue W� 3, d of W� 3, s for the full system
(1.1). In particular, the full system (1.1) has a phase-locked periodic
orbit O� 2 .

Consequently, when {>{s(>{d), the unstable space of the generator of
the C0 -semigroup generated by (1.5) is at least 5-dimensional and there
exists a 5-dimensional local unstable manifold W� 5, loc tangent, at zero, to
the realified generalized eigenspace of the generator associated with the
positive real and the two leading pairs of complex conjugate eigenvalues
with positive real parts. The global forward extension W� 5 of W� 5, loc

contains W� 3, d and W� 3, s

t
=[(., .) | . # W� 3, s], and in particular, W� 5 con-

tains a phase-locked periodic orbit O� 2 and a synchronous periodic orbit
O� 4 . The purpose of this paper is to describe completely the global
dynamics of the semiflow of system (1.1) restricted to W� 5 and to establish
the existence of heteroclinic orbits from the synchronous periodic orbit O� 4

to the phase-locked periodic orbit O� 2 .
We now briefly describe our main results, technical tools and approach.

First of all, we make the following change of variables

{x(t)=u(2t),
y(t)=v(2t&1)
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to get an equivalent cyclic system of delay differential equations

{x* (t)=&2+{x(t)+2{f ( y(t)),
y* (t)= &2+{y(t)+2{f (x(t&1)).

(1.7)

Powerful technical tools and general results have been developed in the
recent work of Mallet-Paret and Sell [10, 11], and our present work
provides some evidence to support the statements in the above papers
``(that the work [10, 11]) opening the door to a general inquiry into the
structure of the attractor of the (cyclic) system'' and to support the expec-
tation in the featured review of Smith [14] that ``further progress on this
interesting class of systems in the future'' (due to the work of Mallet-Paret
and Sell [10, 11]).

In what follows, we are going to describe our approach only for the
transformed system (1.7), with O4 , O2 , W3, d , W5, and W3, s

t
denoting the

analogues of O� 4 , O� 2 , W� 3, d , W� 5, and W3, s ,
t

respectively. The fundamental
technical tool for (1.7) is an integer-valued Lyapunov functional
V : C(K)"[0] � [0, 2, ..., �], where K=[&1, 0]�[1], C(K)=[.: K �
R|.is continuous] is the phase space of system (1.7) and V(.) measures,
roughly, the number of sign changes of . # C(K)"[0]. Important proper-
ties of V have been established in [10], applications of these properties
show that solutions of (1.7) can not decay too fast at � (Theorem 4.1 of
Chen and Wu [2] for (1.7), but more general results for general cyclic
systems were announced in [10, 11]) and lead to the following charac-
terization of W5 :

W5"[0]={. # C(K)"[0] }
there exists a solution z.: R � R2

of (1.7) with z.
0 =., V(z.

t )�4
for all t # R and z.

t � 0 as t � &�= . (T1)

Also

V(.&�)�4 if ., � # W5 and .{�. (T2)

Another important observation we make is that

every non-constant periodic solution of (1.1) is either syn-
chronous or phase locked.

(T3)

This, together with the concavity and symmetry conditions, enables us to
show that

there exists at most one periodic orbit in each level set
V&1 (2k), k=1, 2, ..., ofV.

(T4)
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One can also apply this Lyapunov functional to show that

there exists no homoclinic connections of O2 and O4 . (T5)

The most important application of V is perhaps the proof of the Poincare� �
Bendixson Theorem for cyclic systems ( Mallet�Paret and Sell [11]) which,
together with the existence of a heteroclinic connection from 0 to non-tri-
vial equilibria of (1.7) (Hirsh [4] or Smith [13]), enables us to
completely describe the dynamics of the semiflow on W5 . To be more
precise, we introduce the separatrix

S=[. # C(K) | .=0 or V(z.
t )>0 for all t�0]

and let z+ and z& denote the nonzero equilibria of (1.7) given by the
unique positive and negative zeros of f (!)=+!, ! # R. Then we show that

{
if . # (W5 & S)"[0]," then :(.)=[0], |(.)=O2 or O4 ,
if . # W5"S, then :(.)=[0], |(.)=[z+] or [z-],
if . # bdW5"(S _ [z- , z+]), then :(.)=O4 or O2 , |(.) =[z+] or [z-],
if . # (bdW5 & S)"[O2 _ O4], then :(.)=O4 and |(.)=O2 ,

(T6)

where bdW5=W5 "W5 . To show that there is indeed a connecting orbit
from O4 to O2 , we need further information about the Floquet multipliers
of O4 . We apply the general theory of Mallet�Paret and Sell [10] and
some type of homotopy argument to show that

there exist exactly 3 Floquet multipliers of O4 , counting mul-
tiplicities, outside the unit circle, and the associated realified
generalized eigenspace is contained in V&1 ([0, 2]) _ [0].

(T7)

An immediate consequence of (T7) implies that there exists a 3-dimen-
sional C1-smooth local unstable manifold W u

loc(P) of a Poincare� -map P
associated with a certain hyperplane. This manifold contains at least one
point of a connecting orbit from O4 to z+ and at least one point of a
connecting orbit from O4 to z& . Since W u

loc(P) is 3-dimensional, there
exists a continuous curve in W u

loc(P)"O4 connecting these points, and a
continuity argument shows that the curve contains a point . # W u

loc(P) & S,
which gives that

there exists a connecting orbit from O4 to O2 . (T8)
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There are several questions remaining to be answered. Denoting by
Wu(O4) the forward extension of W u

loc(P) we conjecture that

(bdW5 & S)"[O2 _ O4]=(W u(O4) & S)"[O2 _ O4]

=[. | :(.)=O4 and |(.)=O2]. (C1)

Also, note that

. # (W5 & S)"[0] O |(.)=O2 or O4 .

It is thus important to describe

Hi=[. # (W5S)"[0] | |(.)=Oi], i=2, 4

(the basins of attraction of Oi in W5 ). Finally, we note that the next critical
value of { when (1.6) has a pair of purely imaginary zeros is {2, d=
(3?&arccos(+�f $(0))�- [ f $(0)]2&+2) (>{s). It is then reasonable to
expect that W5 is the global attractor of (1.1) if { # ({s , {2, d).

The remaining part of this paper deals with (1.7) only and is organized
as follows. Section 2 summarizes some results of Chen and Wu [2] and
Krisztin et al. [9] and establishes the existence of periodic orbits in
W5�V&1(2) and W5�V&1(4). In Section 3, we prove that every non-con-
stant periodic solution is either synchronous or phase-locked. This,
together with a result of Krisztin and Walther [8] on uniqueness and
absence of periodic orbits for scalar positive feedback equations and the
analogous result for scalar negative feedback equations, enables us to show
the uniqueness of periodic solutions of system (1.7) in each level set of V.
Section 4 gives information about the Floquet multipliers of O4 , and
Section 5 describes the dynamics on W5 and establishes the existence of
heteroclinic orbits from O4 to O2 .

2. EXISTENCE OF PERIODIC ORBITS IN W5

In this section, we summarize some results of the monograph of Krisztin
et al. [9] and the work of Chen and Wu [2], which will be needed
throughout the remaining part of this paper.

Consider the following system of delay differential equations

{x* (t)= &2+{x(t)+2{f ( y(t)),
y* (t)= &2+{y(t)+2{f (x(t&1)),

(2.1)
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where we assume

(H1) f # C1(R; R), f (0)=0 and f $(!)>0 for all ! # R;

(H2) f $(0)>+>0;

(H3) there exists M>0 so that f (!)
! <+ if |!|>M;

(H4) {>{s=(2?&arccos(+�f $(0))�- [ f $(0)]2&+2).

It follows easily from (H3) that there are !&<0<!+ so that ( f (!&)�!&)
=+=( f (!+)�!+) and ( f (!)�!)>+ for ! # (!&, !+)"[0].

Set K=[&1, 0] _ [1] and let C(K) denote the Banach space of con-
tinuous functions .: K � R with the supremum norm & }&. Throughout this
paper, we will always tacitly use the identification

C(K)=C([&1, 0]; R)_R

and write an element . # C(K) as (.| [&1, 0] , .(1))tr # C([&1, 0]; R)_R.
We will also use the identification

C1(K)=C 1([&1, 0]; R)_R

and the C1-norm on C1(K) is defined as

&.&1=max[ sup
% # [&1, 0]

|.(%)|, sup
% # [&1, 0]

|.* (%)|, |.(1)|] .

Set

K=[. # C(R) | .(%)�0 for all % # K].

For any . # C(K)"(K _ (&K )), define the number of sign changes by

sc(.)=sup {k�1 } there exist %0<%1< } } } <%k with each
%i # K and .(%i&1) .(%i)<0 for 1�i�k= ,

and let sc(.)=0 if either . # K or &. # K. The Lyapunov functional
V : C(K)"[0] � 2N _ [�], introduced by Mallet-Paret and Sell [10, 11],
is defined as

V(.)={sc(.)
sc(.)+1

if sc(.) is even or infinite,
if sc(.) is odd.

The subset

R={. # C1(K) }
.(1)=0 implies .(0) .(&1)<0,
.(0)=0 implies .* (0) .(1)>0,
.(&1)=0 implies .(1) .* (&1)<0,
.(%)=0 for some % # (&1, 0) implies .* (%){0=
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of C(K) plays an important role in the evaluation of the Lyapunov
functional V. It is not difficult to see that for each . # R there exists =>0
such that

V(�)=V(.) for all � # C1(K) with &�&.&1<=.

Another important property of V is the following:

Lemma 2.1. For any +�0 and for any given positive constants b1�b0

there exists k>0 such that if t0 # R, if b, c: [t0&6, t0+ 1
2] � R are

continuous functions with

b0�b(t), c(t)�b1 for all t # [t0&6, t0+ 1
2],

and if x # C([t0&7, t0+ 1
2]; R) & C1([t0&6, t0+ 1

2]; R) and y # C 1([t0&6,
t0+ 1

2]; R) satisfy (xt0
, y(t0))tr{0 in C(K), and

{x* (t)=&+x(t)+b(t) y(t),
y* (t)=&+y(t)+c(t) x(t&1)

for all t # (t0&6, t0+ 1
2], and V((xt0&6 , y (t0&6))tr)�4, then

&(xt0&1 , y(t0&1))tr&�k &(xt0
, y(t0))tr& .

The proof of Lemma 2.1 is similar to that of Corollary 4.4 in [2],
and thus is omitted. For other properties of V, we refer to the work of
Mallet-Paret and Sell [10, 11].

Following Smith [13] and Mallet-Paret and Sell [10], for each . #
C(K) there exists a unique pair of continuous maps x: [&1, �) � R and
y: [0, �) � R such that (x, y)tr: (0, �) � R2 is continuously differentiable
and satisfies system (2.1) for t>0, x| [&1, 0]=.| [&1, 0] and y(0)=.(1) . Let
z.=(x., y.)tr denote the above unique pair and define z.

t =(x.
t , y.(t))tr #

C(K) for t�0. Note that we define x.
t # C([&1, 0]; R) in the usual sense

(namely, x.
t (%)=x.(t+%) for % # [&1, 0]) and we use subscripts for either

z.
t # C(K) or x.

t # C([&1, 0]; R) , these should be easily distinguished
from the context, specially from the spaces involved.

It is easy to see that 8: R+_C(K) % (t, .) [ z.
t # C(K) is a continuous

semiflow with at least three stationary points 0, z& and z+ , where 0, z&

and z+ denote the constant maps on K with the values given by 0, !& and
!+, respectively.

We now introduce the leading unstable sets W3 and W5 of the origin.
Recall from Section 3 of [2] that the spectrum of the generator of the C0 -
semigroup [D28(t, 0)]t�0 is given by a real number *0>0 and a sequence
of complex conjugate pairs [*j , *j ]j�1 with
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*0>Re *1>Re *2> } } } � &�,

Im *1 # (?, 2?),

Im *2j # (2(2j&1) ?, 4j?), 1� j # N,

Im *2j+1 # (4j?, 2(2j+1) ?), 1� j # N.

Hypothesis (H4) is equivalent to

Re *2>0 .

Now, as in Section 3 of [2], let E0 , E1 , E2 , Q1 , Q2 denote the realified
generalized eigenspaces of the generator of the C0-semigroup [D28(t, 0)]t�0

on C(K) associated with the spectral sets [*0], [*1 , *1 ], [*2 , *2 ],
[*j , *j | 2� j # N], [*j , *j | 3� j # N]. Then

C(K)=E0 �E1 �Q1 ,

C(K)=E0 �E1 �E2 �Q2 ,

Q1=E2 �Q2 .

Choose ;j # (max[1, eRe *j+1], eRe *j), j=1, 2. By Theorem I.4 of [9], we
find convex bounded open neighborhoods N012 of 0 in E0 �E1 �E2 and
Q2, 5 of 0 in Q2 and a C 1-map w5, loc : N012 � Q2 with w5, loc (N012)/Q2, 5 ,
w5, loc(0)=0, Dw5, loc(0)=0 and so that the graph W5, loc=[/+w5, loc(/)|
/ # N012] coincides with the set

there is a sequence (.n)0
&� with

.0=., .n =8(1, .n&1),{. # N5, loc=N012+Q2, 5 } and .n;&n
2 # N5, loc for each = .

integer n�0 and

.n ;&n
2 � 0 as n � -�

Applying again Theorem I.4 of [9] we find convex bounded open
neighborhoods N01 of 0 in E0 �E1 and Q1, 3 of 0 in Q1 and a C1-map
w3, loc : N01 � Q1 with N01+Q1, 3 /N012+Q2, 5 , w3, loc(N01)/Q1, 3 , w3, loc(0)
=0, Dw3, loc(0)=0 and so that the graph W3, loc=[/+w3, loc(/) | / # N01]
coincides with the set

{. # N3, loc=N01+Q1, 3 }
there is a sequence (.n)0

&� with
.0=., .n=8(1, .n&1), and .n ;&n

1 # N3, loc

for each integer n�0 and
.n;&n

1 � 0 as n � &� =
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Our focus in [2] and this paper is the leading unstable sets W3 and W5 ,
i.e., the forward extensions of W3, loc and W5, loc , respectively, defined by

Wi=8(R+_W i, loc), i=3, 5.

It is easy to show that W3 �W5 and that for each . # Wi , (i=3, 5), there
exists a unique C 1-map z.=(x., y.)tr: R � R2 with z.

0 =. satisfying
system (2.1) for all t # R. Moreover, z.

t # Wi , (i=3, 5), for all t # R and
z.

t � 0 as t � &�.
The closed cone K in C(K) defines a partial ordering on C(K). Thus, we

can talk about, for ., � # C(K), .�� if .(%)��(%) for all % # K, .>>�
if .(%)>�(%) for all % # K, and .>� if .�� and .{�. It is easy to
verify that the semiflow 8 is monotone. More precisely, we have

8(t, .)�8(t, �) if t�0, .�� in C(K),

8(t, K1 )�K1 , 8(t, &K1 )�K1 for t�0,

8(t, .)>>8(t, �) if t�2, .>�.

An important subset of C(K) is the following closed set S, called
separatrix,

S=[. # C(K) | .=0 or V (z.
t )>0 for all t�0] .

It is shown in [2] that S is a nonordered set, that is, if .<� then at least
one of them is not in S. Moreover, S is the graph of a Lipschitz continuous
mapping from E1 �Q1 to E0 , and thus we can speak of . being above S
or below S for . # C(K)"S. See [2] for details.

The following results were proved for W3 , but the same arguments can
be utilized for W5 . We then only state the results:

Lemma 2.2. (i) z&<<.<<z+ for all . # W5 and z&�.�z+ for all
. # W5 .

(ii) There exist /, ' # W3 so that both x/ (t) and y/ (t) are positive and
increasing for t # R, and both x'(t) and y'(t) are negative and decreasing for
t # R. Moreover, limt � � x/ (t)=limt � � y/ (t)=!+ and limt � �x'(t)=
limt � � y'(t)=!& .

(iii) Wi and bd Wi=Wi "Wi are compact and invariant with respect to
8 , i=3, 5.

(iv) The map 8Wi
: R_Wi % (t, .) [ z.

t # Wi is a continuous flow,
i=3, 5.

(v) For each . # W5 , . # C1(K), and the map W5 % . [ . # C1(K) is
continuous.
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(vi) If . # W5 is above S, then z.
t � z+ as t � �. If . # W5 is below

S, then z.
t � z& as t � �.

(vii) If ., � # Wi and .{�, then V(.&�)�i&1, i=3, 5.

(viii) For i=3, 5, we have

Wi "[0]={. # C(K)"[0] }
there exists a solution z.: R � R2

of system (2.1) with z.
0 =., V(z.

t )�i&1
for all t # R and z.

t � 0 as t � &� . = .

(ix) Let (x, y)tr: R � R2 be a nontrivial solution of

{x* (t)= &2+{x(t)+2{f $(0) y(t)
y* (t)=&2+{y(t)+2{f $(0) x(t&1).

Then

(x0 , y(0))tr # E0 �E1 if and only if V((xt , y(t))tr)�2

for all t�0,

(x0 , y(0))tr # E0 �E1 �E2 if and only if V((xt , y(t))tr)�4

for all t�0.

Let us note that (viii) of Lemma 2.2 implies that Wi does not depend on
the choice of ;i . (viii) of Lemma 2.2 also implies that W3 �W5 . Therefore,
by Theorem 5.10 of [2], we have the following:

Theorem 2.3. Under the hypotheses (H1)�(H4), there exists a nontrivial
periodic orbit of system (2.1) in W5 & V&1(2).

To obtain one nontrivial periodic orbit for system (2.1) in W5 & V &1(4),
we first recall some results from the monograph of Krisztin et al. [9].
Consider the following scalar delay differential equation

u* (t)=&{+u(t)+{f (u(t&1)) (2.2)

subject to our hypotheses (H1)�(H4). We use the Banach space
C([&1, 0]; R), equipped with the supremum norm & }&0 , as the phase
space of (2.2). Then F : R+_C([&1, 0]; R) % (t, ,) [ u,

t # C([&1, 0]; R)
is a continuous semiflow, where u,: [&1, �) � R is the unique solution of
(2.2) with u,

0=,. The spectrum of the generator of the C0-semigroup
[D2F(t, 0)]t�0 is given by *0 �2 and the sequence of complex conjugate
pairs [*2j �2, *2j �2] j�1 .
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Let Ps , Ls and Qs be the realified generalized eigenspaces of the generator
of the C0 -semigroup [D2 F(t, 0)]t�0 on C([&1, 0]; R) associated with the
spectral sets [*0 �2], [*2 �2, *2 �2] and [*2j �2, *2j �2] j�2 , respectively. Then

C([&1, 0]; R)=Ps �Ls �Qs .

Choose ;s # (max[1, eRe *2�2], e*0 �2). Then there exist convex bounded
open neighborhoods NPs

, NLs
and NQs

of 0 in Ps , Ls and Qs , respectively,
and a C1-map ws : NPs

+NLs
� Qs with range in NQs

, ws(0)=0, Dws(0)=0
and so that the graph Ws, loc=[/+ws(/)|/ # NPs

+NLs
] coincides with the

set

{, # Ns, loc=NPs
+NLs

+NQs }
there is a sequence (,n)0

&� with ,0=,,
,n =F (1, ,n-1), and ,n;&n

s # Ns, loc

for each integer n �0 and ,n ;&n
s � 0

as n � &� = .

Let

Ws=F(R+_Ws, loc).

For . # Ws , define s. # C(K) by

s.(%)={u.(2%),
u.(&1)=.(&1),

% # [&1, 0],
%=1,

where u.: R � R is the unique solution of Eq. (2.2) passing through .. Let

Ws, s=[ s. # C(K) | . # Ws] .

We want to show that Ws, s �W5 . For this purpose, we have to use the
discrete Lyapunov functional for a scalar delay differential equation with
monotone feedbacks.

For , # C([&1, 0]; R)"[0], define the number of sign changes

scs(,)=sup {k�1 } there exist &1�%0<%1< } } } <%k�0
and ,(%i&1) ,(%i)<0 for 1�i�k = .

with the convention that scs(,)=0 if either ,(%)�0 (or �0) for all % #
[&1, 0]. We define the Lyapunov functional V+ : C([&1, 0]; R)"[0] �
2N _ [�] by

V+(,)={scs(,)
scs(,)+1

if scs(,) is even or infinite,
if scs(,) is odd;
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and the Lyapunov functional V& : C([&1, 0]; R)"[0] � (2N+1) _ [�] by

V&(,)={scs(,)
scs(,)+1

if scs(,) is odd or infinite,
if scs(,) is even.

V\ possess similar properties to those of V, and we refer to Mallet�Paret
and Sell [10] or Krisztin, Walther and Wu [9] for details.

Note that Ws"[0] can be characterized by

Ws"[0]={. # C([&1, 0]; R) }
there is a solution u.: R � R of
equation (2.2) with u.

0 =. and V+(u.
t )�2

for all t # R and u.
t � 0 as t � &� = ,

(2.3)

according to Proposition 5.3 of [9].

Proposition 2.4. Ws, s �W5 .

Proof. For any given 0{. # Ws , let

{x(t)=u.(2t),
y(t)=u.(2t&1),

t # R.

Then (x, y)tr satisfies system (2.1) with (x0 , y(0))tr=.s and (xt , y(t))tr � 0
as t � &�. To show that .s # W5 , by (viii) of Lemma 2.2, we only need
to show that V((xt , y(t))tr)�4 for all t # R. If not, assume that there is a
t0 # R such that V((xt0

, y(t0))tr)�6, then by the nonincreasing property of
V, we have

V((xt , y(t))tr)�6 for all t�t0 .

Using the definition of V, we can find a t1<t0 such that y(t1)=0. Since
V((xt1

, y(t1))tr)�6, x has at least 5 sign changes on [t1&1, t1] and hence
there is a t2 # [t1& 1

2 , t1] such that x has at least 3 sign changes on
[t2& 1

2 , t2]. Thus, V+(u.
2t2

)�4, which contradicts (2.3) since . # Ws"[0].
This completes the proof.

Remark 2.5. From [9], we know that under the hypotheses (H1)�(H4)
Eq. (2.2) has a nontrivial periodic orbit in Ws & V &1

+ (2). Then it is easy to
see that system (2.1) has a nontrivial periodic orbit in Ws, s & V&1(4).
Indeed, assume the nontrivial periodic orbit in Ws & V &1

+ (2) is given by the
periodic solution r{: R � R of (2.2) which is normalized so that r{(0)=0
and r{(&1)>0. Then (r{

1 , r{
2)tr: R % t [ (r{(2t), r{(2t&1))tr # R2 satisfies

(2.1) and this gives a periodic orbit of system (2.1) in Ws, s . Now, we claim
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that V(((r{
1)t , r{

2(t)) tr)=4 for all t # R. First, there exists a nonnegative
integer & such that V(((r{

1)t , r{
2(t))tr)=2& for all t # R by Lemma 5.7 of [11].

Secondly, &�1 since r{ is oscillating. Thirdly, &�2 by using Proposition 2.4
and (vii) of Lemma 2.2 and the fact that 0 # W5 . Thus, &=1 or 2. Finally,
we show &=2. If this is true, then the claim is proved. Let us assume &=1.
Particularly, V(((r{

1)0 , r{
2(0))tr)=2. Note that r{

2(0)=r{(&1)>0 and when
%<0 and sufficiently close to 0 we have r{

1(%)=r{(2%)<0. Thus, r{
1 has at

most one sign change on [&1, 0], i.e., r{ has at most one sign change on
[&2, 0]. Then there exists an interval of length 1 in [&2, 0], say
[t0&1, t0], such that r{ has no sign change on it. This means that
V+(r{

t0
)=0, a contradiction. Therefore, we have proved the following

theorem.

Theorem 2.6. Under the hypotheses (H1)�(H4), system (2.1) has a
nontrivial periodic orbit in W5 & V &1(4) .

3. UNIQUENESS OF PERIODIC ORBITS WITH GIVEN
OSCILLATION FREQUENCIES

In this section, we will show that under certain stronger assumptions
than (H1)�(H4), every periodic solution of (2.1) is either synchronous or
phase-locked. This, coupled with some results of Krisztin and Walther [8]
for scalar equations, enables us to derive some results about the uniqueness
and absence of periodic solutions in each level set of V.

Throughout the remaining of this paper, in addition to (H1)�(H4), we
assume

(H5) (i) f (!)=&f (&!) for all ! # R.

(ii) The function h: (0, �) % ! [ !f $(!)
f (!) # R is strictly decreasing.

Observe that (H1)�(H5) imply that &+id + f has exactly three zeros
!&, 0, !+ with !&<0<!+, f $(0)>+, f $(!&)<+, f $(!+)<+.

In order to characterize uniqueness and absence of periodic orbits of
Eq. (2.2) and another scalar equation with negative feedback, we
consider the characteristic Eq. (1.3) with parameter {>0. The zeros
*0 �2, *2 �2, *2 �2, ... depend analytically on {. From (H2) we get *0 �2>0 for
all {>0. If j # 2N"[0] then there is a uniquely determined parameter { j so
that

Re *j ({ j)=0.
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We have

{ j=
j?&arccos ( +�f $(0))

- [ f $(0)]2&+2
.

Note that {2={s and {4={ $s . We compute

(Re *j)$ ({ j)>0

for 0{ j # 2N, and conclude that for every j # 2N"[0]

{<{ j (>{ j) if and only if Re *j ({)<0 (>0).

Hence we obtain that the following two results on the uniqueness and
absence of periodic orbits of Eq. (2.2) are equivalent to Theorem 3.5 in [8].

Lemma 3.1. Let either k=0 or k # N"[0] and 0<{�{2k. Then there is
no nonconstant periodic solution u: R � R of Eq. (2.2) so that V+(ut)=2k
for all t # R .

Lemma 3.2. Let k # N"[0] and {>0. If u1: R � R and u2: R � R are
two periodic solutions of Eq. (2.2) with V+(u1

t )=V+(u2
t )=2k for all t # R,

then there exists a _ # R so that

u1(t)=u2(t+_) for all t # R.

Similar results were previously established by Cao [1] for slowly
oscillating periodic solutions of a negative feedback differential delay
equation without the oddness condition on f. Analogously to the positive
feedback case in Lemmas 3.1�3.2, by using the oddness of f in (H5), Cao's
results can be extended to periodic solutions with higher oscillation
frequencies as well. More precisely, we consider the negative feedback
equation

v* (t)=&{+v(t)&{f (v(t&1)) (3.1)

for the parameter {>0 and the characteristic equation

*+{++{f $(0) e&*=0 (3.2)

of the linearized equation at 0. Then [*2j+1({)�2, *2j+1({)�2 | j # N] is the
zeroset of (3.2). Setting

{ j=
j?&arccos ( +�f $(0))

- [ f $(0)]2&+2
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for j # 2N+1, we have Re*j ({ j)=0, and obtain analogously to the positive
feedback case that, for every j # 2N+1,

{<{ j (>{ j) if and only if Re *j ({)<0 (>0).

The proof of the following two lemmas can be carried out similarly to
that of Lemmas 3.1�3.2 So, we omit the proofs and refer to Section 3
of [8].

Lemma 3.3. Let k # N and 0<{�{2k+1. Then there is no periodic
solution v: R � R of Eq. (3.1) so that V&(vt)=2k+1 for all t # R.

Lemma 3.4. Let k # N and {>0. If v1: R � R and v2: R � R are two
periodic solutions of Eq. (3.1) with V&(v1

t )=V&(v2
t )=2k+1 for all t # R,

then there is a _ # R such that

v1(t)=v2(t+_) for all t # R.

In the remaining part of this section, we show that the above results,
together with some special ``coupling and decoupling'' techniques described
below and the consideration of the symmetry properties of (2.1), yield
uniqueness and absence of periodic orbits with given oscillation frequency
for system (2.1). We start with

Proposition 3.5. If (x, y)tr: R � R2 is a nonconstant periodic solution of
system (2.1), then there exists a k # N"[0] such that

V((xt , y(t))tr)=2k for all t # R. (3.3)

Proof. It is known that there is a k # N such that (3.3) holds and
(xt , y(t))tr # R for all t # R (see Lemma 5.7 of [11]). We only need to
show that k{0. If k=0, x and y are either both nonpositive or both
nonnegative. Without loss of generality, we assume that both x and y are
nonnegative. Since all zeros of x must be simple, we conclude that x is
positive. We claim that y is also positive, since all possible zeros of y must
be simple (otherwise from the second equation of system (2.1), we know
that x has a zero, which is a contradiction to the positiveness of x).
Let m=mint # R[x(t), y(t)], M=maxt # R[x(t), y(t)]. As (x, y)tr is a non-
constant periodic solution of system (2.1), either m # (0, !+) or M>!+

holds.
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If m # (0, !+) holds and s1 # R is given so that x(s1)=m (or y(s1)=m),
then x* (s1)=0 (or y* (s1)=0). Hence, by system (2.1) and by f (!)>+!,
0<!<!+, which follows from (H1) and (H5),

x* (s1)=&2+{x (s1)+2{f ( y(s1))� &2+{x (s1)+2{f (x(s1))>0

(or y* (s1)=&2+{y(s1)+2{f (x(s1 &1))�&2+{y (s1)+2{f (y(s1))>0),

a contradiction.
If M>!+ and s2 # R is chosen so that x(s2)=M (or y(s2)=M ), then

x* (s2)=0 (or y* (s2)=0). On the other hand, the fact &+!+ f (!)<0 for
!>!+, which is implied by (H1) and (H5), and the monotonicity of f
combined yield

x* (s2)=&2+{x(s2)+2{f ( y(s2))� &2+{x(s2)+2{f (x(s2))<0

(or y* (s2)=&2+{y(s2)+2{f (x(s2&1))�&2+{y(s2)+2{f (y(s2))<0),

a contradiction. This completes the proof.

Proposition 3.6. If (x, y)tr: R � R2 is a nonconstant periodic solution of
system (2.1), then both x and y are oscillating (that is, both have zeros).

Proof. It is easy to see from system (2.1) that both x and y are
oscillating or both have no zeros. If the proposition is not true, then
Proposition 3.5 combined with the definition of V and the periodicity of
(x, y)tr implies that x(t) y(t)<0 for all t # R. This implies that x is either
strictly increasing or strictly decreasing on R, which contradicts the
periodicity of x, and hence the proof is completed.

Now, let (x, y)tr: R � R2 be a nonconstant periodic solution of system
(2.1) with minimal period T0 . Since x is oscillating (by Proposition 3.6)
and since f is odd, Theorem 7.2 of [11] implies that

{
x \t+

T0

2 +=&x(t),

y \t+
T0

2 +=& y(t),
t # R. (3.4)

Furthermore, let (x~ , y~ )tr: R � R2 be defined by

{x~ (t)=y(t),
y~ (t)=x(t&1),

t # R.
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Then it is easy to check that (x~ , y~ ) is also a nonconstant periodic solution
of system (2.1) with the same minimal period T0 . Let '1 , '2 :[0, T0] �
C(K) be defined by

'1(t)=(xt , y(t))tr,

'2(t)=(x~ t , y~ (t))tr,

for t # R, respectively. Then by Lemma 5.7 of [11], either 6 |'1 |=6 |'2 |
or 6 |'1 | & 6 |'2 |=< holds, where 6: C(K) � R2 is defined by

6(.)=(.(0), .(1))tr # R2, . # C(K). (3.5)

We claim that 6 |'1 | & 6 |'2 |{<. By way of contradiction, we assume
6 |'1 | & 6 |'2 |=<. By Proposition 3.6 and by Proposition 7.3 of [11],
(0, 0)tr # int(6 |'1 | ) and (0, 0)tr # int(6 |'2 | ). Therefore, either 6 |'1 |/
int(6 |'2 | ) or 6 |'2 |/int(6 |'1 | ) holds. We consider the case 6 |'1 |/
int(6 |'2 | ). Then

max
t # R

x(t)<max
t # R

x~ (t)=max
t # R

y(t)<max
t # R

y~ (t)=max
t # R

x(t),

a contradiction. This verifies the claim. Hence, 6 |'1 |=6 |'2 | , which
implies that there is a _ # [0, T0) such that

{x(t)=y(t+_),
y(t)=x(t&1+_),

t # R.

Then x(t)=x(t+2_&1) and y(t)= y(t+2_&1) for t # R. So 2_&1=
mT0 for some integer m, or _=(1+mT0 )�2. By the periodicity of (x, y)tr,
we must have either _= 1

2 or _=(1+T0 )�2. Thus, we have proved the
following result:

Proposition 3.7. Let (x, y)tr: R � R2 be a nonconstant periodic solution
of system (2.1) with the minimal period T0 . Then either

{x(t)=y(t+ 1
2),

y(t)=x(t& 1
2),

t # R (3.6)

or

{
x(t)=y \t+

1+T0

2 + ,

y(t)=x \t+
T0&1

2 + ,
t # R (3.7)

holds.
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Note that the case _= 1
2 corresponds to synchronized periodic solutions

and _=(1+T0 )�2 corresponds to phase-locked periodic solutions for the
untransformed system (1.1). In the following, we will call a periodic
solution (x, y): R � R2 of (2.1) synchronous or phase-locked if it satisfies
(3.6) or (3.7), respectively.

Proposition 3.8. (i) For k # N, system (2.1) has no synchronized
periodic orbit in V&1(4k+2).

(ii) For k # N"[0], system (2.1) has no phase-locked periodic orbit in
V&1(4k).

Proof. (i) Assume, by way of contradiction, there is a synchronized
periodic solution (x, y) tr: R � R2 of (2.1) such that (xt , y(t))tr # V&1(4k+2)
for t # R. Then using system (2.1) and (3.6), we have

x* (t)=&2+{x(t)+2{f (x(t& 1
2)).

Let u: R % t [ x( t
2) # R. Then u satisfies (2.2). Since y is oscillating, we can

choose a t0 # R such that y(t0)=0. Then we know that x has at least 4k+1
sign changes on the interval [t0&1, t0]. Thus there is a subinterval of
length 1

2 , say [t1& 1
2 , t1]�[t0&1, t0], such that x has at least 2k+1 sign

changes on [t1& 1
2 , t1], which implies that V+(u2t1

)�2k+2. Since u is
periodic and V is nonincreasing, we have V+(ut)�2k+2 for all t # R. Note
that all zeros of x, and hence of u, are simple. Choose t2 # R such that
u(t2)=0. Then u has a sign change at t2 and has at least 2k+1 sign
changes on each of the intervals (t2&1, t2) and (t2 , t2+1). Thus u has at
least 4k+3 sign changes on [t2&1, t2+1], which means that x has at
least 4k+3 sign changes on [(t2&1)�2, (t2+1)�2]. Thus V((xt2+12 ,
y((t2+1)2))tr)�4k+4, a contradiction to our assumption.

(ii) This can be proved similarly using (3.4), (3.7), the assumption
(H5), and V& . This completes the proof.

Proposition 3.9. (i) For k # N, if (x, y)tr: R � R2 is a phase-locked
periodic solution of system (2.1) such that V((xt , y (t))tr)=4k+2 for all
t # R, then v: R � R defined by v(t)=x( t

2) for all t # R satisfies Eq. (3.1) and
V&(vt)=2k+1 for all t # R.

(ii) For k # N"[0], if (x, y)tr: R � R2 is a synchronized periodic
solution of system (2.1) such that V((xt , y(t))tr)=4k for all t # R, then
u: R � R defined by u(t)=x( t

2) for all t # R satisfies (2.2) and V+(ut)=2k
for all t # R.
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Proof. First note that from (3.4) and (3.7), we have

y(t)=x \t+
T0&1

2 +=&x \t&
1
2+.

Thus, x satisfies

x* (t)=&2+{x(t)&2{f (x(t& 1
2))

since f is odd. Thus it is easy to check that v satisfies equation (3.1). Now,
choose a zero t0 # R for y. Then x has at least 4k+1 but at most 4k+2
sign changes on [t0&1, t0]. Then either on [t0&1, t0& 1

2] or on
[t0& 1

2 , t0], x has at least 2k but at most 2k+1 sign changes. This means
that v has at least 2k sign changes either on [2t0&2, 2t0&1] or on
[2t0&1, 2t0]. Thus the periodicity of v and the nonincreasing property of
V& combined yield that V&(vt)�2k+1 for all t # R. In the same way we
find that x has at most 2k+1 sign changes on one open half of [t0&1, t0].
Periodicity of v and monotonicity of V imply V&(vt)�2k+1 for all t # R.
This completes the proof of (i). Part (ii) can be proved similarly.

Now, as immediate consequences of Lemmas 3.1�3.4 and Propositions
3.7�3.9, we have

Theorem 3.10. (i) For any given k # N"[0], system (2.1) has at most
one periodic orbit in V&1(2k).

(ii) All periodic solutions of (2.1) are either phase-locked and belong
to V&1(4k+2) for some nonnegative integer k, or synchronous and belong to
V&1(4k) for some positive integer k.

(iii) For any given l # N"[0], if 0<{�{l, then system (2.1) has no
periodic orbit in V&1(2k) for any integer k�l.

In particular, by Theorems 2.3 and 2.6, we know that under the
hypotheses (H1)�(H5), there are one and only one periodic orbit of system
(2.1) in V&1(2) and also one and only one periodic orbit of system (2.1)
in V&1(4), and both orbits belong to W5 . We will denote these uniquely
determined periodic orbits by O2, { and O4, { (or O2 or O4 if dependence on
{ is not needed to be explicitly mentioned), respectively.

4. THE FLOQUET MULTIPLIERS OF THE SYNCHRONOUS
PERIODIC ORBIT

Recall that the system (2.1) has a unique periodic orbit O4, { in V&1(4)
which is synchronized and can be derived from the periodic orbit of the
scalar equation (2.2) discussed by Krisztin et al. [9].
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The purpose of this section is to get some information about the Floquet
multipliers of O4, { . In particular, we want to show that O4, { has exactly
three Floquet multipliers outside the unit circle. We will need a result
about the continuity of O4, { with respect to {. By the results of Sections 2�3
and [9], for {>{s , there is a unique periodic solution r{: R � R of (2.2)
which has minimal period |{ # (1, 2) and which is normalized so that
r{(0)=0, r{(&1)>0. Let

H=[. # C(K) | .(0)=0, .(1)>0].

Then the function ( p{, q{)tr: R % t [ (r{(2t), r{(2t&1))tr # R2 is a periodic
solution of (2.1) with minimal period T {=|{�2, and ( p{

0 , q{(0))tr # H,
O4, {=[( p{

t , q{(t))tr | 0�t�T {]. Moreover, ( p{, q{)tr is the unique
representation of O4, { with ( p{

0 , q{(0))tr # H. We define, for {={s , ( p{, q{)
=(0, 0).

Proposition 4.1. For every {0�{s and for every sequence ({n)�
n=0 in

({s , �) with {n � {0 as n � �, the sequence of periodic solutions
[( p{n, q{n)tr]�

n=0 converges to ( p{0
, q{0

)tr as n � � uniformly on any compact
subset of R.

Proof. It suffices to show that for any sequence ({n)�
n=0 in ({s , �) with

{n � {0 as n � �, there is a subsequence (nk)�
k=0 such that ( p{nk, q{nk)tr �

( p{0
, q{0

)tr as k � � uniformly on any compact subset of R.

Recall that p{n(t), q{n(t) # [!&, !+] for all t # R and n # N. Then by
system (2.1) and using the Arze� la�Ascoli Theorem and the method of
diagonalization, there exist a subsequence (nk), a constant T*�1�2 and a
C1-map (x, y)tr: R � R2 such that

T {nk � T* as k � �,

(p{nk, q{nk, p* {nk, q* {nk) � (x, y, x* , y* ) as k � �

uniformly on any compact subset of R

and (x, y) satisfies (2.1) with {={0.
If there is a t0 # R such that (xt0

, y(t0))tr{0 in C(K), then (xt , y(t))tr

{0 for all t # R using system (2.1), then T* is a period of (x, y)tr and
hence (xt , y(t))tr # R for all t # R, and therefore by the C1-continuity of V,
we have for all t # R,

V((xt , y(t))tr)= lim
k � �

V(( p{nkt , q{nk (t))tr)=4.
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Clearly, we have x(0)=0, y(0)�0 and y(0) must be positive since
(xt , y(t))tr # R for all t # R. So (x, y)tr=( p{0

, q{0
)tr.

In case {0={s , we must have x#y#0. For otherwise, the above discus-
sion guarantees the existence of a nontrivial periodic solution (x, y) of (2.1)
with {={s satisfying V((xt , y(t))tr)=4 for all t # R, a contradiction to
Theorem 3.10.

In case {0>{s , it remains to exclude the possibility of x#y#0. Assume
({n) is such a sequence that {n � {0 as n � � but ( p{n, q{n)tr � 0 as n � �
uniformly on any compact subset of R. Let

{
un(t)=

p{n(t)
&( p{n, q{n)tr&�

,

vn(t)=
q{n(t)

&( p{n, q{n)tr&�
,

t # R

for all n # N, where for a bounded continuous map (x, y)tr: R � R2,
&(x, y)tr&�=supt # R max[ |x(t)|, | y(t)|] . Then for n # N, |un(t)|�1, |vn(t)|
�1 and V((un

t , vn(t))tr)=4 for all t # R and (un, vn)tr satisfies

{
u* n(t)=&2{n +un(t)+2{n |

1

0
f $(sq{n(t)) ds vn(t),

v* n(t)=&2{n+vn(t)+2{n |
1

0
f $(sp{n(t&1)) ds un(t&1),

t # R.

Using the Arze� la�Ascoli Theorem we find a subsequence (nk), a constant
T*�1�2 and a C1-map (u, v)tr: R � R2 such that

T {nk � T* as k � �,

(unk, vnk, u* nk, v* nk) � (u, v, u* , v* ) as k � �

uniformly on any compact subset of R

and (u, v)tr satisfies

[u* (t)= &2{0+u(t)+2{0f $(0) v(t),
(4.1)

v* (t) = &2{0+v(t)+2{0f $(0) u(t&1).

Moreover, &(u, v)tr&�=1. Thus (u, v) is nonzero and periodic with a
period T*, which implies that (ut , v(t))tr # R and V((ut , v(t))tr)=
limk � � V(( p{nkt , q{nk (t))tr)=4 for all t # R. The boundedness of (u, v)tr

implies that (u0 , v(0))tr is in the center space of the linear system (4.1). But
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we know that for {0>{s the zeros of the characteristic equation of (4.1),
given by

(*+2{0++2{0f $(0) e&*�2)(*+2{0+&2{0f $(0) e&*�2)=0,

are given by a real *0 and a sequence of complex conjugate pairs
[*j , *j ] j�1 such that

*0>Re *1>Re *2>{0,
Re *3> } } }

Im *1 # (?, 2?),

Im *2j # (2(2j&1) ?, 4j?), j�1,

Im *2j+1 # (4j?, 2(2j+1) ?), j�1.

Thus, if .{0 is in the center space of (4.1), then V(.)�6 by (ix) of
Lemma 2.2, a contradiction. This proves that ( p{, q{)tr � ( p{0

, q{0
)tr as

{ � {0 uniformly on any compact subset of R. This completes the proof.
Consider now the system of variational equations

{x* (t)=&2{+x(t)+2{f $(q{(t)) y(t),
y* (t)=&2{+y(t)+2{f $( p{(t&1)) x(t&1).

(4.2{)

The monodromy operator M {: C(K) � C(K) is defined by M {.=
(x.

T { , y.(T {))tr for each . # C(K), where the pair x.: [&1, �) � R and
y.: [0, �) � R is the solution of (4.2{) passing through .. Let X(t)=
x( t

2)+ y( t+1
2 ) and Y(t)=x( t

2)& y( t+1
2 ) for t�&1. Then X and Y satisfy

X4 (t)=&{+X(t)+{f $(r{(t&1)) X(t&1) (4.3{)

and

Y4 (t)=&{+Y(t)&{f $(r{(t&1)) Y(t&1), (4.4{)

respectively, for t�0. Let M {
1 : C([&1, 0]; R) % , [ X ,

|{ # C([&1, 0]; R)
and M {

2 : C([&1, 0]; R) % � [ Y �
|{ # C([&1, 0]; R) be the monodromy

operators of (4.3{) and (4.4{), respectively, where X ,: [&1, �) � R is the
solution of (4.3{) passing through , and Y �: [&1, �) � R is the solution
of (4.4{) passing through �. As |{ # (1, 2) and T {=|{�2, by using the
Arze� la�Ascoli Theorem and the variational equations, we obtain that the
operators (M{)2, M {

1 , M {
2 , are compact. Let _{, _{

1 and _{
2 denote the

spectrum of M {, M {
1 and M {

2 , respectively. Then every nonzero element of
them is an eigenvalue of finite multiplicity of the corresponding
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monodromy operator, which is called the Floquet multiplier of the corre-
sponding system.

Proposition 4.2. _{=_{
1 _ _{

2 .

Proof. It is easy to see that 0 # _{ & _{
1 & _{

2 . Now, let 0{* # _{. Pick an
eigenvector 0{. # C(K; C) associated with the eigenvalue *. Then there is
a global solution z.=(x., y.)tr: R � C2 of (4.2{) such that z.

T {=*..
Therefore, we have

(x.(t+T {), y.(t+T {))tr=*(x.(t), y.(t))tr for all t # R. (4.5)

Let

X0(%)=x. \%
2++ y. \%+1

2 + ,

% # [&1, 0].

Y0(%)=x. \%
2+& y. \%+1

2 + ,

Then X0 , Y0 # C([&1, 0]; C). We claim that either X0 {0 or Y0 {0.
Otherwise, we have

{
x. \%

2+=0,

y. \%+1
2 +=0,

% # [&1, 0].

Therefore, we get .=0 by using system (4.2{), which is a contradiction to
the choice of .. Thus the claim is proved.

If X0 {0, let X(t)=x.( t
2)+ y.( t+1

2 ) for all t # R. Then X satisfies (4.3{)
and X|{=*X0 from (4.5), which implies that * # _{

1 . Similarly, if Y0 {0,
then * # _{

2 . Hence, _{�_{
1 _ _{

2 .
Conversely, let 0{* # _{

1 _ _{
2 . If * # _{

1 , choose an eigenvector
0{� # C([&1, 0]; C) of M {

1 associated with *, then we have a solution
X �: R � C of equation (4.3{) with X �

0 =, and X �
|{=*,. Therefore, we

have

X �(t+|{)=*X �(t) for all t # R. (4.6)

Define . # C(K; C) by

.(%)={X �(2%),
X �(&1),

% # [&1, 0],
%=1.
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Obviously, .{0 and it is easy to check that

{x(t)=X �(2t),
y(t)=X �(2t&1),

t # R

is a solution of (4.2{) passing through .. (4.6) implies that (xT { , y(T {))tr

=*., i.e., * # _{. Similarly, if * # _{
2 , we have * # _{. Thus, _{

1 _ _{
2 �_{.

This completes the proof.

Remark 4.3. It is interesting to note that (4.3{) is the variational
equation of (2.2). Krisztin et al. [9] have got some information about _{

1 .
Particularly, there is a positive *{

u # _{
1 which is larger than 1, and for every

* # _{
1 "[0, 1, *{

u], |*|<1. Moreover, there is a �u # C([&1, 0]; R) with
�u(%)>0 for % # [&1, 0] such that �u is an eigenvector of M {

1 associated
with *{

u . Using the above argument, we can get .u # K1 such that
M{.u=*{

u.u .
For * # C"[0], let G( |*| ) denote the realified generalized eigenspace of

M{ associated with the spectral set [` # _{ | |`|=|*|]. Using Theorem 3.1 of
[10], the following result can be proved similarly to Proposition 3.8.

Proposition 4.4. (i) If 0{* # _{
1 then the realified generalized

eigenspace G( |*| )�V&1(4k) _ [0] for some k # N.

(ii) If 0{* # _{
2 , then the realified generalized eigenspace G( |*| )�

V&1(4k+2) _ [0] for some k # N.

Proposition 4.4 implies that _{
1 & _{

2=[0]. Note that ( p* {
0 , q* {(0))tr # G(1)

with V(( p* {
0 , q* {(0))tr)=4. These facts combined with Theorem 3.1 of [10]

and Remark 4.3 yield that O4, { has at most three Floquet multipliers,
counting multiplicities, outside the unit circle and if *{*{

u is such a
Floquet multiplier then G( |*| )/V&1(2) _ [0]. In the following, we shall
show that O4, { has exactly three Floquet multipliers outside the unit circle.

Recall that |{ and the operators M {
1 , M {

2 were defined for {>{s . Now
we extend their definitions also to {={s . It is not difficult to see that

*2({2)=2 \2?&arccos
+

f $(0)+ i.

Setting ;2=2?&arccos(+�f $(0)) and using {2={s we obtain that i;2 is a
purely imaginary zero of

&+{s+&{s f $(0) e&&=0. (4.7)
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We define |{s as the minimal period of the function t [ ei;2t, that is,

|{s=
2?

2?&arccos (+�f $(0))
.

Let F+ and F& be the C0 -semigroups generated by the solutions of

X4 (t)=&{s +X(t)+{s f $(0) X(t&1)

and

Y4 (t)=&{s +Y(t)&{s f $(0) Y(t&1),

respectively. Define M {s
1 =D2F+(|{s, 0) and M {s

2 =D2F&(|{s, 0). Then _(M {s
1 )

& [` # C | |`|�1]=[1, ew{s&0], _(M {s
2 ) & [` # C | |`|�1]=[e|{s&1, e|{s &1],

where &0>0 is a simple zero of (4.7), and &1 with Re &1>0 and
Im &1 # ( ?

2 , ?) is a simple zero of

&+{s ++{s f $(0) e&&=0. (4.8)

Note that Im(|{s&1) # ( 2?
3 , 2?) since |{s # ( 4

3 , 1).

Proposition 4.5. Im(|{s&1){?.

Proof. Let &1=:1+i;1 where ;1>0. From (4.7) and (4.8) we get

{ {s+={s f $(0) cos ;2 ,
;2=&{s f $(0) sin ;2 ,

(4.9)

and

{:1+{s+=&{s f $(0) e&:1 cos ;1 ,
;1={s f $(0) e&:1 sin ;1 .

(4.10)

If |{s;1=?, then ;2=2;1 , and therefore from the second equations of
(4.9) and (4.10), we have

&2{s f $(0) sin ;1 cos ;1=2{s f $(0) e&:1 sin ;1 .

Consequently,

cos ;1=&e&:1.
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Then from the first equations of (4.9) and (4.10), we get

{s+={s f $(0) cos ;2={s f $(0)[2 cos2;1&1]

={s f $(0)[2e&2:1&1]=&:1+{s f $(0) e&2:1. (4.11)

The first and the fourth terms imply (4.12) and the last two terms imply
(4.13),

{s f $(0) e&2:1={s f $(0)&:1 . (4.12)

e&2:1=
++ f $(0)

2f $(0)
. (4.13)

Equations (4.12) and (4.13) imply that

:1=
{s[ f $(0)&+]

2
.

Using this, and the first and third terms of (4.11) as well as (4.10), we have

:1+{s +=
{s[ f $(0)++]

2
={s f $(0) �++ f $(0)

2f $(0)
e&{s[ f $(0)&+]�2,

or, using the definition of {s ,

f $(0)++
2f $(0)

=e&(2?&arccos (+�f $(0))) - ( f $(0)&+)�( f $(0)++).

Then +�f $(0) # (0, 1) is a zero of the equation

1+x
2

=e&g(x)

in (0, 1), where g(x)=- (1&x)�(1+x) (2?&arccos x). Equivalently, the
equation

F(x)=ln(1+x)&ln 2+ g(x)=0 (4.14)

has a solution in (0, 1). On the other hand, limx � 1& F(x)=0 and F $(x)=
2

1+x&(2?&arccos(+�f $(0)))�(1+x) - 1&x2<0 for all x # (0, 1). Conse-
quently, F(x)>0 for all x # (0, 1), a contradiction. This completes the
proof.
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Proposition 4.6.

M {
1 � M { 0

1 and M{
2 � M{ 0

2 as { � {0>{s ,

M{
1 � M{s

1 and M{
2 � M{s

2 as { � {+
s .

Proof. We only show M {
1 � M {s

1 as { � {+
s , the other cases can be

discussed similarly. We complete the proof in four steps.

Step 1. |{ � |{s as { � {+
s . For {>{s , recall that r{ is the periodic

solution of (2.2) so that V+(r{
t )=2 for all t # R and r{(0)=0, r{(&1)>0.

Defining the function

u{: R % t [
r{(t)
|r{| �

# R

for all {>{s , where |x|�=maxt # R |x(t)| for any bounded and continuous
function x: R � R. We easily obtain that

u* {(t)=&+{u{(t)+{ |
1

0
f $(sr{(t&1)) ds u{(t&1)

for all t # R. By Proposition 4.1, r{ � 0 as { � {+
s uniformly on R. Using

the above equation and the Arze� la�Ascoli Theorem we find that each
sequence ({n)�

0 in ({s , �) with {n � {s as n � � has a subsequence
({nk

)�
k=0 , and there exists a C1-function u: R � R such that u{nk � u and

u* {nk � u* as k � � uniformly on any compact subset of R, moreover

u* (t)=&+{su(t)+{s f $(0) u(t&1)

and V+(ut)�2 for all t # R, u(0)=0 and |u| �=1. These facts and
Proposition 5.1 from [9] yield that for every real t, ut belongs to the
realified generalized eigenspace of As associated with the spectral set
[i;2 , &i;2], where ;2=2?&arccos(+�f $(0)). From ;2 # (?, 2?), u(0)=0,
u(&1)�0 and |u|�=1, it is easy to see that u(t)=sin(;2 t). Then from
|{nk # (1, 2) and from the convergence of u{nk � u on any compact subset of
R it follows that

|{nk � |{s as k � �.

Hence, |{ � |{s as { � {+
s also follows.

Step 2. Uniform boundedness of X {, .(t) for . # B1=[. # C([&1, 0];
R) | &.&0=1], { # [{s , {s+1] and t # [&1, 2]. Here & }&0 is the supremum
norm on C([&1, 0]; R), X {, .: [&1, �) � R denotes the solution of (4.3{)
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with X {, .
0 =. # C([&1, 0]; R) and we assume r{s#0. By the variation-of-

constants formula, we have

X {, .(t)=e&{+t.(0)+|
t

0
{f $(r{(`&1)) e&{+(t&`)X {, .(`&1) d`, t�0.

Note that r{(`) # [!&, !+] for all ` # R and {�{s . Thus there is an N>0
such that |{f $(r{(`))|�N for { # [{s , {s+1] and ` # R. Therefore,

&X {, .
t &0�1+|

t

0
N &X {, .

` &0 d`, t�0, . # B1 , { # [{s , {s+1].

Applying the Gronwall inequality, we get

&X {, .
t &0�eNt�e2N, 0�t�2, . # B1 , { # [{s , {s+1].

Step 3. The estimate of &X {, .
t &X {s , .

t &0 for t # [0, 2]. Using
Proposition 4.1, for any =>0 we can choose $1 # (0, 1) such that for
0<{&{s<$1 , we have

|e&{+t&e&{s +t|<= for all t # [0,2],

|{f $(r{(`&1)) e&{+(t&`)&{s f $(0) e&{s +(t&`)|<=

for 0�`�t�2 uniformly.

Then from

X {, .(t)&X {s , .(t)=(e&{+t&e&{s +t) .(0)+|
t

0
[{f $(r{(`&1)) e&{+(t&`)

&{s f $(0) e&{s +(t&`)] X {, .(`&1) d`

+|
t

0
{s f $(0) e&{s +(t&`)(X {, .(`&1)&X {s , .(`&1)) d`,

we get, for all t # [0, 2] and . # B1 ,

&X {, .
t &X {s , .

t &0�(1+e2N) =+|
t

0
N &X {, .

` &X {s , .
` &0 d`.

Applying Gronwall's inequality again we obtain

&X {, .
t &X {s , .

t &0�(1+e2N) =eNt, 0�t�2, . # B1 . (4.15)
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Step 4. M {
1 � M {s

1 as { � {+
s . For any . # B1 ,

&M {
1.&M {s

1 .&0= sup
% # [&1, 0]

|X {, .(|{+%)&X {s , .(|{s+%)|

� sup
% # [&1, 0]

|X {, .(|{+%)&X {s , .(|{+%)|

+ sup
% # [&1, 0]

|X {s , .(|{+%)&X {s , .(|{s+%)|. (4.16)

Note that

X {s , .(|{+%)&X {s , .(|{s+%)

=(e&{s +(|{+%)&e&{s +(|{s+%)) .(0)

+|
|{+%

|{s+%
{s f $(0) e&{s +(|{+%&`)X {s , .(`&1) d`

+|
|{ s+%

0
{s f $(0)[e&{s +(|{+%&`)&e&{s +(|{ s+%&`)] X {s , .(`&1) d`,

since |{ # (1, 2) and |{s # (1, 2). By Step 1, we know that |{ � |{s as
{ � {+

s . There exists $2 # (0, 1) such that when 0<{&{s<$2 , we have

|X {s , .(|{+%)&X {s , .(|{s+%)|�=, &1�%�0. (4.17)

Therefore, when 0<{&{s<min[$1 , $2], (4.15)�(4.17) combined yield

&M {
1 .&M {s

1 .&0�=N$

for some constant N$, which implies that M {
1 � M {s

1 as { � {+
s . This

completes the proof.
Proposition 4.5 and Im |{s &1 # ( 2?

3 , 2?) imply that e|{s &1 is a non-real
element of _(M {s

2 ) with |e|{s &1|>1. Therefore, it is simple by Theorem 3.1
of [10]. Because of the discrete property of the Floquet multipliers, we can
find a connected bounded open set O in [` # C | |`|>1] which contains no
other element of _(M {s

2 ) but e|{s &1, and for ` # O we have Im `{0. Let B
be the boundary of O and

Q{=
1

2?i |
B

(zI&M {
2)&1 dz.
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By the spectral theory of perturbations of linear operators (see, for
example, [7, pp. 213�214]), there exists a =0>0 such that when
0<{&{s<=0 , we have

dim Range Q{=dim Range Q{s

=the multiplicity of e|{s &1 as an eigenvalue of M {s
2 =1.

Therefore, if { # [{s , {s+=0), then there is a simple complex *{
2 # _{

2 in O. By
Theorem 3.1 of [10] and Proposition 4.4, we get the following result:

Proposition 4.7. There exists a =0>0 such that for { # ({s , {s+=0),
_{ & [` # C | |`|>1]=[*{

u , *{
2 , *{

2 ] with *{
u # _{

1 and *{
2 # _{

2 and *{
u>|*{

2 |.

Now, let

A={{>{s }
there exist exactly three Floquet multipliers, counting
multiplicities for O4,{ out side the unit circle
and the associated realified generalized eigenspaces
are contained in V &1(0) _ V &1(2) _ [0] = .

Note that Proposition 4.7 implies A{<. Using the above spectral theory
of perturbations of linear operators similarly to Proposition 4.7, we can
show that A is relatively open in ({s , �). Now, let ({n)/A with {n � {0>
{s as n � �. Let *{n

1 , *{n
2 be the other two Floquet multipliers outside the

unit circle (not necessarily different) other than *{n
u for O4, {n

for each n # N.
Therefore, by Theorem 3.1 of [10], both *{n

1 and *{n
2 are in _{n

2 . Note that
the results in Step 2 of the Proof of Proposition 4.6 ensure that (*{n

1 ) and
(*{n

2 ) are bounded. Thus, there exist a subsequence (nk)�
k=0 and *1* and *2*

such that *{nk
1 � *1* and *{nk

2 � *2* as k � �. By the aforementioned spectral
theory of perturbations of linear operators, we have that both *1* and *2*
belong to _{0

2 , and either *1* {*2* or *1*=*2* is a double eigenvalue of M {0
2 .

Observe that [*{0
u , 1]/_{0

1 , G(1)�V &1(4) _ [0] and G(*{0
u )�V&1(0)

_ [0]. Also recall that _{0
1 & _{0

2 =[0], 1�|*1* |, 1�|*2*. If |*1* |=1,
then we have G( |*1* |)=G(1)/V&1(4k+2) _ [0] for some k # N by
Proposition 4.4(ii) since *1* # _{0

2 , a contradiction. So, |*1* |>1. Similarly,
we can show |*1* |<*{0

u and 1<|*2* |<*{0
u . This means {0 # A and hence A

is relatively closed in ({s , �). Therefore, the connectedness of ({s , �)
implies the following main result of this section:

Theorem 4.8. A=({s , �).
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5. DYNAMICS ON W5 AND THE CONNECTING ORBITS
FROM O4 TO O2

Recall that under the hypotheses (H1)�(H5), system (2.1) has only one
periodic orbit in V&1(2), denoted by O2 , and only one periodic orbit in
V&1(4), denoted by O4 . Both O2 and O4 are in W5 . The purpose of this
section is to describe the dynamics of the semiflow on W5 , in particular, we
establish the existence of a connecting orbit from O4 to O2 .

Proposition 5.1. There exist no homoclinic orbits with respect to the
periodic orbits O2 and O4 (that is, there exists no solution (x, y)tr: R � R2

of (2.1) such that (x0 , y(0))tr � O2 ( � O4) and :((x0 , y(0))tr)=|((x0 , y(0))tr)
=O2 (=O4)).

Proof. We only show that O4 is not homoclinic, the case for O2 is sim-
pler and can be dealt with similarly. By way of contradiction, let
z=(x, y)tr: R � R2 be a solution of system (2.1) such that . :=
(x0 , y(0))tr � O4 and :(.)=|(.)=O4 . Recall that O4 is determined by
( p, q)tr: R � R2 with the minimal period T # ( 1

2 , 1). It is easy to show that

V(zt)=4 with zt=(xt , y(t))tr for all t # R.

This yields that both x and y are oscillating and all their zeros are simple
since zt # R for all t # R. Let A=[zt | t # R] and let (tn)�

0 be such that
tn � &� and ztn

� ( p0 , q(0))tr as n � �. Note that z&<<( p0 , q(0))tr<<
z+ . Therefore, for any t # R, there is a tn<t such that z&<<ztn

<<z+ ,
from which it follows that z&<<zt<<z+ by the monotonicity of 8. So A
is invariant and bounded. Using system (2.1) we know that [z* t | t # R] is
also bounded. Consequently, A is an invariant and relatively compact
subset of C(K) by the Arze� la�Ascoli Theorem.

Note that if t{s in R, then zt {zs . Otherwise, z is periodic and thus
. # O4 since :(.)=O4 , a contradiction. Now, we want to show that

V(zt&zs)=4 for all t{s in R. (5.1)

Note that zt # S for all t # R. Therefore,

V(zt&zs)�2 for all t{s in R. (5.2)

To show (5.1), we first show

V(zt&zs)�4 for all t{s in R. (5.3)
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Let us consider the two sequences (zt&nT)�
0 and (zs&nT)�

0 . Using the
compactness of A and :(.)=O4 , there exist a strictly increasing sequence
(nk)�

k=0 and reals t1, s1 in [0, T ) so that

zt&nk T � ( pt 1 , q(t1))tr and zs&nk T � (ps1 , q(s1))tr as k � �.

Now we complete the proof of (5.3) in two cases.

Case 1. t1{s1. Then both zt+1&nk T � ( pt1+1 , q(t1+1))tr and zs+1&nk T

� ( ps1+1 , q(s1+1))tr in C1(K) as k � �. Recall that V+(rt&rs)=2 for
all t, s in R such that rt {rs . Similar arguments to those in the proof of
Proposition 3.8 yield that if t, s in R such that ( pt , q(t))tr{( ps , q(s))tr then
V(( pt , q(t))tr&( ps , q(s))tr)=4 and hence for such t and s we have
( pt , q(t))tr&( ps , q(s))tr # R. By the continuity of V on R in the C1-topology,
we have V(zt+1&nk T&zs+1&nk T)=4 for all sufficiently large k # N. Thus,
we have V(zt&zs)�4 by the nonincreasing property of V.

Case 2. t1=s1. For = # (0, T ), we obtain zt+=&nk T � ( pt1+= , q(t1+=))tr

{( ps1 , q(s1))tr as k � �. For 0<=<min[T, |t&s|], the arguments in
Case 1 are applicable for t+= instead of t. We obtain zt+=&zs{0 and
V(zt+=&zs)�4 for 0<=<min[T, |t&s|]. Then the lower semi-continuity
of V produces

V(zt&zs)�lim inf
= � 0+

V(zt+=&zs)�4.

Now, we show that

V(zt&zs)�4 for all t{s in R, (5.4)

Using arguments similar to those for of (5.3). We show it by way of con-
tradiction. If (5.4) is not true, then by (5.2) we can assume that there exist
t0 {s0 in R such that V(zt0

&zs0
)=2. Then, by the nonincreasing property

of V and (5.2), we have

V(zt0+t&zs0+t)=2 and zt0+t &zs0+t # R for all t�4. (5.5)

Consider the sequences (zt0+nT)�
0 and (zs0+nT)�

0 . Using the relative com-
pactness of A and |(.)=O4 , there exist a strictly increasing sequence
(nk)�

0 and reals t2 and s2 in [0, T ) such that

zt0+nk T � ( pt 2 , q(t2))tr and zs0+nk T � (ps2 , q(s2))tr as k � �.

We will arrive at contradictions in two cases.
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Case A. t2{s2. Then both zt0+1+nk T � ( pt 2+1 , q(t2+1))tr and
zs0+1+nk T � ( ps2+1 , q(s2+1))tr in C 1(K) as k � �. Note that V(( pt 2+1 ,
q(t2+1))tr&( ps2+1 , q(s2+1))tr)=4 and ( pt2+1 , q(t2+1))tr&( ps2+1 ,
q(s2+1))tr # R. Thus, V(zt0+1+nk T&zs0+1+nk T)=4 for all sufficiently large
k # N, which contradicts (5.5).

Case B. t2=s2. For = # (0, T ), we obtain zt0+=+nk T � ( pt2+= ,
q(t2+=))tr{( ps2 , q(s2))tr as k � �. Thus, for 0<=<min[T, |t0&s0 |], the
arguments in Case A are applicable for t0+= instead of t0 . Using the
nonincreasing property of V, we have V(zt0+4+=&zs0+4)�4 for 0<=<
min[T, |t0&s0 |]. Note that zt0+3+= � zt0+3 as = � 0+. Thus zt0+4+= �
zt0+4 in C1(K) as = � 0+. This, combined with zt0+4&zs0+4 # R, implies
that

V(zt0+4&zs0+4)= lim
= � 0+

V(zt0+4+=&zs0+4)�4,

a contradiction to (5.5). Therefore, (5.1) is proved.
Note that (5.1) implies that 6 |A is injective, where 6 is defined by (3.5).

Observe that if /0 # 6A and �=6&1(/0), then

�(1, 0)tr,
d
dt

6z�
t �=x* �(t)=2{f ( y�(t))>0

at any t # R with 6z�
t # R2

0, + ,

where R2
0, +=[(u, v)tr | u=0, v>0]/R2. This, combined with the facts

that both x and y are oscillating and all their zeros are simple, implies that
R2

0, + is transversal to the curve 6A=[6zt | t # R]. Fix 0{/0 # 6A &
R2

0, + . Then �=6&1(/0) # A. Let #(�) be the smallest positive zero of x�

with x* �(#(�))>0. We define the first return map \: 6A & R2
0, + � 6A &

R2
0, + by

\(/0)=6z�
#(�) , �=6&1(/0).

By Lemma 5.9 in [11], the map \ is continuous and strictly monotone with
respect to the natural ordering of R2

0, + , which produces a contradiction to
:(.)=|(.)=O4 . This completes the proof.

Proposition 5.2. If . # C(K)"[0] with |(.)=[0], then V(.)�6.

Proof. Assume that there exists . # C(K)"[0] so that |(.)=[0] and
V(.) # [0, 2, 4]. Then z.

t � 0 as t � �, where z. is the solution of system
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(2.1) with z.
0 =.. The monotonicity of V implies V(z.

t )�4 for all t�0. We
can find a sequence (tn)�

0 in R+ such that tn � � as n � � and

max[ |x.(tn)|, | y.(tn)|]=sup
s�0

max[ |x.(tn+s)|, | y.(tn+s)|]

for all n # N.

For n # N, define xn: [&1, �) � R and yn: [0, �) � R by

{
xn(t)=

x.(tn+t)
max[ |x.(tn)|, | y.(tn)|]

,

yn(t)=
y.(tn+t)

max[ |x.(tn)|, | y.(tn)|]
,

t�&1,

t�0.

Then max[ |xn(0)|, | yn(0)|]=1 and |xn(t)|�1, | yn(t)|�1 for t�0 and
n # N. Moreover,

{
x* n(t)=&2{+xn(t)+2{ |

1

0
f $(sy.(tn+t)) dsyn(t),

y* n(t)=&2{+yn(t)+2{ |
1

0
f $(sx.(tn+t&1)) dsxn(t&1)

holds for all t>0 and n # N. Clearly,

|
1

0
f $(sx.(tn+t&1)) ds � f $(0),

|
1

0
f $(sy.(tn+t)) ds � f $(0)

as n � � uniformly on any compact subset of R+. We apply the
Arze� la�Ascoli Theorem to find a subsequence ((xnk , ynk)tr)�

k=0 , a pair of
functions x # C([0, �); R) & C1((1, �); R) and y # C1([0, �); R) such
that

(xnk , ynk) � (x, y)tr uniformly on any compact subset of [0, �),

(x* nk, y* nk) � (x* , y* )tr uniformly on any compact subset of [1, �)

as k � � and

{x* (t)= &2{+x(t)+2{f $(0) y(t),
y* (t)= &2{+y(t)+2{f $(0) x(t&1),

t>1.
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Obviously,

max[ |x(t)|, | y(t)|]�max[ |x(0)|, | y(0)|]=1 for all t�0.

The lower semicontinuity of V and V(z.
tn+t)�V(zn

t )�4 combined yield

V((xt , y(t))tr)�4 for all t�1. (5.6)

Choose : # (0, Re *2). There exists M>0 so that

&D2 8(t, 0) .&�Me:t &.& for all t�0 and . # E0 �E1 �E2 .

Then for _�1, we have

&PrE0�E1�E2
(x1 , y(1))tr&=&D28(1&_, 0) PrE0�E1�E2

(x_ , y(_))tr&

�Me:(1&_) &PrE0�E1�E2
& &(x_ , y(_))tr&

�Me:(1&_) &PrE0�E1�E2
&.

Letting _ � �, we obtain that

(x1 , y(1))tr # Q2"[0].

Lemma 2.1 combined with (5.6) yields a constant k>1 such that

&(xt&1 , y(t&1))tr&�k &(xt , y(t))tr& for t�7.

Then it is to see that there exist constants K>0 and ;>0 so that

&(xt , y(t))tr&�Ke&;t for all t�1.

This estimate implies that there is a minimal k # N such that
PrEk

(x1 , y(1))tr{0, where Ek is the realified generalized eigenspace of the
generator of [D28(t, 0)]t�0 associated with the spectral set [*k , *k ]. Since
PrE0�E1�E2

(x1 , y(1))tr=0, we have k�3. Note that

(xt , y(t))tr=PrEk
(xt , y(t))tr+o(PrEk

(xt , y(t))tr) as t � �

and V(PrEk
(xt , y(t))tr)�6 for all t�1 since k�3. Thus, by the lower

semi-continuity of V, there is a sufficiently large t0>1 such that
V((xt0

, y(t0))tr)�6, which contradicts (5.6). This completes the proof.

Proposition 5.3. Let . # S"[0] with V(.)�4. Then |(.) is a nontrivial
periodic orbit.

Proof. Let . # S"[0] with V(.)�4 be given. Then [z.
t |t�0] is

bounded (Theorem 2.9 of [2]). Assume that |(.) is not a nontrivial
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periodic orbit. Let � # |(.)"[0] and z� be the solution of system (2.1)
with z�

0 =�. Observe that V(�)�4. The Poincare� �Bendixson Theorem
obtained by Mallet-Paret and Sell [11] tells us that

:(�) _ |(�)�E,

where E denotes the set of stationary points of system (2.1). We have

:(�) _ |(�)�|(.)�S,

since |(.) is invariant, and S is closed and positively invariant. Noticing
that 0 is the only stationary point in S, we conclude

:(�) _ |(�)�[0].

Particularly, |(�)=[0] follows. By Proposition 5.2, V(�)�6, which gives
a contradiction. Consequently, |(.)=[0] which again leads to a
contradiction to Proposition 5.2. This completes the proof.

Proposition 5.4. For . # (W5 & S)"[0], :(.)=0 and |(.)=O2 or O4

depending upon whether there is a t0 # R such that V(z.
t0

)=2 or not.

Proof. z.
t � 0 as t � &� follows directly from (viii) of Lemma 2.2,

which also implies V(.)�4. By Proposition 5.3, |(.) is a nontrivial
periodic orbit, which is in V &1(2) _ V &1(4). By the uniqueness of periodic
orbits in V &1(2) and V &1(4), we get |(.)=O2 or O4 . The remaining part
of Proposition 5.4 is obvious due to the monotonicity of V. This completes
the proof.

Proposition 5.5. For . # W5"S, :(.)=[0] and |(.)=[z+] or [z&]
depending upon whether . is above or below S.

Proof. The results follow directly from (vi) and (viii) of Lemma 2.2.

Proposition 5.6. If . # bdW5"(S _ [z& , z+]), then :(.)=O4 or O2

and |(.)=[z+] or [z&].

Proof. The conclusion that z.
t � z+ or z& as t � � follows from (vi)

of Lemma 2.2. Note that :(.)/V &1(0) _ V &1(2) _ V &1(4) _ [0] by (vii)
of Lemma 2.2 and the invariance of bdW5 . Therefore, we only need to
show that :(.) is a nontrivial periodic orbit. If this is true, then :(.)/
V &1(2) _ V &1(4) by Proposition 3.5, and hence the result follows from the
uniqueness of periodic orbits in V &1(2) and V &1(4). Let us assume that .
is above S and hence |(.)=[z+]. The case of . being below S is similar.
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By way of contradiction, assume :(.) is not a nontrivial periodic orbit.
We prove that :(.)=[z+]. Let � # :(.), then by the Poincare� �Bendixson
Theorem,

:(�) _ |(�)�[z+ , 0, z&].

Note that 0 � :(�) since :(�)�:(.)�bdW5 and 0 � bdW5 . Hence, :(�)�
[z+ , z&]. By Proposition 5.2 and the monotonicity of 8, |(�)=[z+] or
[z&]. We claim that |(�)=[z+]. If not, |(�)=[z&], then there exists
a t* # R such that z�

t*<<0 since z&<<0. Note that � # :(.). There exists a
sequence (tn)�

0 such that tn � &� and z.
tn

� � as n � �. Then
z.

tn+t* � z�
t* as n � � by (iv) of Lemma 2.2. Thus, there is an sn0

such that
z.

sn0
+t*<<0, which contradicts |(.)=[z+] since z.

t <<0 for t�sn0
+t* by

using the monotonicity of 8. Then :(�)=[z+], for otherwise :(�)=[z&]
implies that there is a t0 # R such that z�

t0
<<0, and hence the monotonicity

of 8 implies z�
t <<0 for all t�t0 , which contradicts |(�)=[z+]. From

:(�)=[z+] and the monotonicity of 8, we know that z�
t >>0 for all t # R.

Now we claim that �=z+ .
To prove the claim, we first assert that either x� or y� is monotone. If

not, then as x�(t) � !+ for t � \�, both x� and y� have minimal values
which are less than !+. Let t0 # R be such that

x�(t0)= inf
t # R

x�(t)<!+.

Then from

0=x* �(t0)=&2{+x�(t0)+2{f ( y�(t0)),

we have y�(t0)<x�(t0) using the remarks following (H4). Thus,

inf
t # R

y�(t)< inf
t # R

x�(t). (5.7)

On the other hand, let t1 # R be such that

y�(t1)= inf
t # R

y�(t)<!+.

Then, from

0= y* �(t1)=&2{+y�(t1)+2{f (x�(t1&1)),

we have x�(t1&1)< y�(t1), which contradicts (5.7). This shows that either
x� or y� is monotone. Consequently, either x�#!+ or y�#!+ holds due
to :(�)=[z+] and |(�)=[z+]. Then system (2.1) and the remarks
following (H4) combined yield x�#y�#!+. Therefore, �=z+ .
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Now :(.)=|(.)=[z+]. The same argument as above yields .=z+ ,
which contradicts our assumption. The proof is complete.

Proposition 5.7. :(.)=O4 and |(.)=O2 for every . # (bdW5 & S)"
(O2 _ O4).

Proof. By (vii) of Lemma 2.2 and Proposition 5.3, |(.) is a nontrivial
periodic orbit. If we can show that :(.) is also a nontrivial periodic orbit,
then by Proposition 5.1 and the uniqueness of periodic orbits in V&1(4)
and V&1(2) we get :(.)=O4 and |(.)=O2 , since both :(.) and |(.)
are in V&1(2) _ V&1(4).

If :(.) is not a nontrivial periodic orbit and � # :(.), then we can apply
the Poincare� �Bendixson Theorem again to get

:(�) _ |(�)�[z+ , 0, z&].

As :(�) _ |(�)�:(.)�S, we must have :(�)=[0]. Then (viii) of
Lemma 2.2 implies that � # W5 , which is a contradiction since � # :(.)�
bdW5 by the invariance of bdW5 . This completes the proof.

In the remaining part of this paper, we shall show the existence of con-
necting orbits from O4 to O2 .

Let ( p, q)tr: R � R2 be the solution of (2.1) with minimal period T>0
determining the orbit O4 as in Section 4. For the sake of convenience,
denote .0=( p0 , q(0))tr # C(K). For r>0, let C(K) �r and C(K)r< denote
the realified generalized eigenspaces of the monodromy operator M=
D2 8(T, .0) associated with the spectral sets [` # _ | |`|�r] and
[` # _ | |`|>r], respectively. Recall that M has exactly three Floquet multi-
pliers *u , *1 , *2 with *u>|*1 |�|*2 | outside the unit circle. Choose
* # (0, 1) so that

*>max { 1
|*2 |

, max` # _, |`|<1 |`|= .

Then, by Theorem I.3 of [9], there exist convex open neighborhoods N1<

of 0 in C(K)1< , N�1 of 0 in C(K) �1 , and a C1-map

wu: N1< � C(K) �1

so that

wu(0)=0, Dwu(0)=0, wu(N1<)�N�1 ,

and with N u=N�1+N1< the shifted graph

W u(.0 , N u)=[.0+/+wu(/) | / # N1<]
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is equal to the set

{/ # .0+N u }
there is a trajectory (/n)0

&� of 8(T, } )
with /0=/, *n(/n&.0) # N u

for all n # &N and *n(/n&.0) � 0
as n � &� = .

The unstable set W u(O4) of the periodic orbit O4 is defined as

W u(O4)=8(R+_W u(.0 , N u)).

Now let Os=[rt | t # [0, |]] be the orbit of (2.2) with minimal period
|>0 in Ws & V &1

+ (2) and such that p(t)=r(2t) and q(t)=r(2t&1). We
know that the spectrum of the monodromy operator M1=D2F(|, r0) is
contained in _ and it has exactly one Floquet multiplier *u outside the unit
circle. Similarly, for the * chosen above, there exist convex open
neighborhoods N� 1< of 0 in C1< and N� �1 of 0 in C�1 (where C1< and
C�1 are the realified generalized eigenspaces of M1 associated with the
spectral sets [` # _1 | |`|>1] and [` # _1 | |`|�1], respectively) and a
C1-map

wu
s : N� 1< � C�1 ,

so that

wu
s(0)=0, Dwu

s (0)=0, wu
s(N� 1<)�N� �1 ,

and with N� u=N� 1<+N� �1 the shifted graph

W u(r0 , N� u)=[r0+/+wu
s (/) | / # N� 1<]

is equal to the set

{/ # r0+N� u }
there is a trajectory (/n)0

&� of F(|, } )
with /0=/, *n(/n&r0) # N� u

for all n # &N and *n(/n&r0) � 0
as n � &� = .

Lemma 5.8. (W u(r0 , N� u))s :=[ s. | . # W u(r0 , N� u)]�W u(O4).

Proof. Let � # W u(r0 , N� u). Then there exists a solution x�: R � R of
Eq. (2.2) such that

x�
0 =� and *n(x�

n|&r0) � 0 as n � &�. (5.8)
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Define

{x(t)=x�(2t),
y(t)=x�(2t&1),

t # R.

Then (x, y)tr satisfies system (2.1) and (x0 , y(0))tr= s�.
From *n(x�

n|&r0) � 0 as n � &� and * # (0, 1), we know x�
n| � r0 as

n � &�. Then it is easy to get

V+(x�
t )�2 and !&<<x�

t <<!+ for all t # R. (5.9)

Note that x� satisfies

x* �(t)=&{+x�(t)+{ |
1

0
f $(sx�(t&1)) dsx�(t&1), t # R.

Let b(t)={ �1
0 f $(sx�(t&1)) ds, b0=min!&�!�!+ { �1

0 f $(s!) ds (>0) and
b1=max!&�!�!+ { �1

0 f $(s!) ds (>0). Then b0�b(t)�b1 for all t # R.
Thus, Lemma VI.3 of [9] and (5.9) imply that there is a constant k0>0
such that

&x�
t&1&0�k0 &x�

t &0 for all t # R. (5.10)

Recall that &.&0=sup&1�%�0 |.(%)| for . # C([&1, 0]; R).
Recall that T= |

2 . Using (5.10), we have for n # &N,

&*n((xnT , y(nT ))tr&.0)&

=*n max[ sup
&1�%�0

|x(nT+%)& p(%)|, | y(nT )&q(0)|]

=*n max[ sup
&1�%�0

|x�(n|+2%)&r(2%)|, |x�(n|&1)&r(&1)|]

�*n max[&x�
n|&1&r&1&0 , &x�

n|&r0&0]

�*n max[1, k0]&x�
n|&r0 &0 ,

i.e.,

&*n((xnT , y(nT ))tr&.0)&�*n max[1, k0]&x�
n|&r0&0 for all n # &N.

(5.11)

Therefore, *n((xnT , y(nT ))tr&.0) � 0 as n � &� by (5.8). Then there is
an n0 # &N such that

*n((xnT , y(nT ))tr&.0) # N u for all n�n0 . (5.12)
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Especially, (xn0 T , y(n0 T))tr&.0 # N u since * # (0, 1). Let /n=(x(n+n0) T ,
y((n+n0) T))tr for all n # &N. Then (/n)0

&� is a trajectory of 8(T, } ) with
/0 # .0+N u. Moreover, for all n # &N, *n(/n&.0)=*n((x(n+n0) T ,
y((n+n0) T))tr&.0)=*&n0[*(n+n0)(x(n+n0) T , y((n+n0) T))tr&.0)]. Using
(5.8), (5.11), (5.12), and * # (0, 1), we have *n(/n&.0) # N u for all n # &N
and *n(/n&.0) � 0 as n � &�. Therefore, /0 # W u(.0 , N u) by definition.
Note that s�=8(&n0T, /0). This implies s� # W u(O4), and hence the
proof is completed.

By Proposition 12.1 of [9], we can find ,\ # W u(r0 , N� u) such that
,&<<r0<<,+ with respect to the natural partial ordering on
C([&1, 0]; R) and :(,+)=:(,&)=Os . ,\ � Ss :=[� # C([&1, 0]; R) |
(x�)&1(0) is not bounded from above], since Ss is a nonordered set and
r0 # Ss . If ,& is above Ss , then x,&(t) � !+ as t � � (Proposition 4.5 of
[9]), where x,&: [&1, �) � R is the solution of equation (2.2) passing
through ,& . Thus, x,&

t* >>0 for some t*�0 and hence for t�t* we have
0<<x,&

t <<rt , a contradiction. So ,& is below Ss and x,&
t � !& as t � �.

Similarly, x,+
t � !+ as t � �. Let .\= s,\ . Then .\ # W u(O4) by

Lemma 5.8, and :(.\)=O4 , |(.\)=[z\] and .\ � S. Thus, by
Theorem 4.12 of [2], .& is below S and .+ is above S. Let .\=
F(s\ , �\) for some s\�0 and �\ # W u(.0 , N u). Then, obviously,
:(�\)=O4 , |(�\)=[z\], �& is below S and �+ is above S. Note that
W u(.0 , N u) is the shifted graph of a C1-smooth function from C(K)1< into
C(K) �1 defined on an open neighborhood of 0 in C(K)1< , we can con-
struct a continuous curve #: [&1, 1] % s [ #(s) # W u(.0 , N u)"O4 �
W u(O4)"O4 with #(\1)=�\ . Let

A+=[s # [&1, 1] | #(s) is above S],

A&=[s # [&1, 1] | #(s) is below S].

Then both A+ and A& are nonempty and relatively open in [&1, 1] since
S is closed. By the connectedness of [&1, 1], there is an s* # (&1, 1) such
that s* � A+ _ A& . Set �=#(s*). Then � # (W u(O4) & S)"O4 . Since
� # W u(O4), we have :(�)=O4 . Then there exists a sequence (tn)�

0 such
that tn � &� and z�

tn
� .0 as n � � and hence z�

tn+1 � ( p1 , q(1))tr in
C1(K) as n � �. Thus, V(z�

tn+1)=4 for all sufficiently large negative
integers n by the C1-continuity of V on R and V(( pt , q(t))tr)=4 and
( pt , q(t))tr # R for all t # R. This implies that V(�)�4 by the nonincreasing
property of V. Using Propositions 5.1 and 5.3, and the uniqueness of
periodic orbits on each level set of V, we have the following result about
the connection from O4 to O2 .

Theorem 5.9. There exists a connecting orbit from O4 to O2 .
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