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Abstract

For the Dirichlet boundary value problem of the di�usive Nicholson's blow¯ies

equation, it was shown in Ref. [17] that in a certain range of the parameter space, there

is a unique positive steady state solution. In this paper, we propose a scheme to compute

this steady state numerically. In addition, we describe an iterative procedure to locate

the critical values of the delay where a Hopf bifurcation of time periodic solutions takes

place near the steady state. Some numerical simulations of both schemes are giv-

en. Ó 1999 Elsevier Science Inc. All rights reserved.

Keywords: Delay; Di�usion; Numerical analysis; Hopf bifurcation; Nicholson's equation

1. Introduction

In this paper, we will report on some numerical schemes and simulations for
the positive steady state and Hopf bifurcation analysis of the following
normalized Dirichlet boundary problem of di�usive Nicholson's blow¯ies
equation in one spatial dimension:

www.elsevier.nl/locate/amc
Applied Mathematics and Computation 111 (2000) 33±51

* Corresponding author.
1 Research partially supported by Natural Sciences and Engineering Research Council of

Canada.

0096-3003/00/$ - see front matter Ó 2000 Elsevier Science Inc. All rights reserved.

PII: S0 0 96 -3 0 03 (9 9 )0 00 4 7- 8



ou�t; x�
ot

� d
o2u
ox2
�t; x� ÿ su�t; x� � bsu�t ÿ 1; x�eÿu�tÿ1;x�; �1:1�

u�t; 0� � u�t; 1� � 0; �1:2�
u�h; x� � u0�h; x�;

where x 2 �0; 1�, t > 0, and h 2 �ÿ1; 0�. The steady state solution satis®es the
two-point boundary problem

d/xx ÿ s/� bs/eÿ/ � 0;

/�0� � /�1� � 0:
�1:3�

It was shown in Ref. [17] that the boundary value problem (1.3) has a unique
positive solution if and only if

�bÿ 1�s > dk1; �1:4�
where k1 is the principle eigenvalue of ÿo2=ox2 with a Dirichlet boundary
condition. One also observes that /�x�6 lnb for all x 2 �0; 1� for any positive
solution / of (1.3).

Recall that the linearized equation of (1.1)±(1.2) about the positive steady
state is

ov�t; x�
ot

� d
o2v
ox2
�t; x� ÿ sv�t; x� � bseÿ/�x��1ÿ /�x��v�t ÿ 1; x�;

v�t; 0� � v�t; 1� � 0

�1:5�

and the corresponding eigenvalue problem is

ÿ dwxx � s
ÿ � kÿ bseÿ/�1ÿ /�eÿk

�
w � 0;

w�0� � w�1� � 0:
�1:6�

The study of the impact of the time delay s on the existence of Hopf bifurcation
of periodic orbits requires to locate the critical values of s when (1.6) admits
nonzero solution for some purely imaginary k. Locating such critical values
seems to be a very di�cult problem both theoretically and numerically, since /
is not explicitly given. To our knowledge, little work has been done for Hopf
bifurcation analysis of Dirichlet boundary value problems with delay (see, for
example, Ref. [19]). We note that for the di�usive Hutchinson equation with
Dirichlet boundary conditions, Ref. [3] proved the existence of a Hopf bifur-
cation by using perturbation methods together with the implicit function the-
orem. Unfortunately, their approach cannot be applied to our case due to the
di�erence in the nonlinearity.

Under condition (1.4), the boundary value problem (1.3) has at least two
solutions, one of which is the zero solution. Computing the positive solution of
such nonlinear two-point boundary value problems with multiple solutions
seems to be a nontrivial task (see, for example, Refs. [1,2,16]). We propose a
new approach which employs the Newton's iteration and the evaluation of
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certain integrals with or without singular points. This approach seems to be
quite e�ective in dealing with problems like (1.3).

Computing the Hopf bifurcation of periodic solutions near the positive
steady state requires us to ®nd the critical value of s, a purely imaginary k � ib
and a nonzero function w so that (1.6) is satis®ed. Our proposed scheme is
motivated by the inverse power method with shift and the inverse iteration
method for nonlinear elliptic eigenvalue problem (see, for example,
Refs. [10,12]). We establish some a priori estimates for s and b which proves to
be quite useful in restricting the initial guesses for our iteration scheme. The
rigorous proof of the convergence of the scheme for a more general problem
will be reported in a separate paper, though the provided numerical examples
do con®rm the convergence for the speci®c blow¯ies equation. In particular,
for the numerical examples provided, we can locate some critical values of s
and purely imaginary k � ib such that (1.6) has nonzero solution w. Moreover,
by substituting these into the original Eq. (1.1), we are able to observe periodic
solutions near the positive steady state. These numerical results illustrate that
the iteration scheme provides us with a clue to prove the existence of Hopf
bifurcation theoretically.

The rest of this paper is organized as follows. In Section 2, we present the
numerical methods applied to Eq. (1.3). Following in Section 3 is the numer-
ical Hopf bifurcation analysis. Finally, based on the numerical methods in
Sections 2 and 3, some numerical simulations are provided in Section 4.

2. Numerical solutions of the positive steady state

Let / 2 H 2�0; 1� be the unique positive steady state of (1.1)±(1.2). Recall
from Ref. [16] that m � maxx2�0;1�/�x�6 lnb. Therefore, from

d �/ � s/ÿ bs/eÿ/ � s/�1ÿ beÿ/� �2:1�
we obtain d �/6 0 on �0; 1�. It follows that _/ is nonincreasing on �0; 1� and
_/�0� > 0. Let x0 > 0 be the ®rst (smallest) zero of / on �0; 1�. We claim that
_/�x� < 0 for x 2 �x0; 1�. Otherwise, there exists d > 0 such that _/�x� � 0 for all
x 2 �x0; x0 � d� � �0; 1�. Therefore, �/�x� � 0 on �x0; x0 � d�. This, together with
(2.1), implies that 1ÿ beÿ/�x� � 0 on �x0; x0 � d�. So, /�x� � lnb on �x0; x0 � d�,
which contradicts the uniqueness of solution to the initial value problem:
�z � sz�1ÿ beÿz�, z�x0� � lnb and _z�x0� � 0. This proves the claim. Next, we
observe that by (2.1), /�1ÿ x�, x 2 �0; 1�, also satis®es (1.3). The uniqueness
result in Ref. [17] implies that

/�x� � /�1ÿ x� for x 2 �0; 1�: �2:2�
This shows that / is symmetric about x � 1

2
. Consequently, we must have

x0 � 1
2
. In other words. _/�x� > 0 on �0; 1

2
�, _/ < 0 on �1

2
; 1�, _/�1

2
� � 0 and
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/
1

2

� �
� m � max

x2�0;1�
/�x�: �2:3�

Multiplying (1.3) throughout by ÿ/x and integrate over �x0; x�, we obtain

ÿ d
2

/2
x � s

Z /�x�

m
w dwÿ bs

Z /�x�

m
weÿw dw � 0:

Therefore,

d
2

/2
x �

s
2
�/2 ÿ m2� � bs �/� � 1�eÿ/ ÿ �m� 1�eÿm

�
: �2:4�

Consequently,

/x �
�������������������������������������������������������������������������������������������������
s
d

/2 � 2b�/� 1�eÿ/
� �ÿ s

d
m2 � 2b�m� 1�eÿm� �

r
on 0;

1

2

� �
:

�2:5�
De®ne

J�w� :� s
d

w2
� � 2b�w� 1�eÿw

�
: �2:6�

Then, solving (2.5) over �0; 1
2
�; we haveZ /�x�

0

1��������������������������
J�w� ÿ J�m�p dw � x: �2:7�

Now letting x � 1
2

and noting that /�1
2
� � m; we have from (2.7)Z m

0

1��������������������������
J�w� ÿ J�m�p dw � 1

2
:

Making the substitution w � mt; we can then write the above equation asZ 1

0

1���������������
K�m; t�p dt � x0; �2:8�

where

K�s; t� :� s
d
�t2

�
ÿ 1� � 2b�st � 1�eÿst ÿ 2b�s� 1�eÿs

s2

�
: �2:9�

It is natural to consider the following function

F �s� :�
Z 1

0

1�������������
K�s; t�p dt: �2:10�

Lemma 2.1. F : �0; lnb� ! R is monotonically increasing and
lims!� ln b�ÿF �s� � 1.
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Proof. Note thatZ 1

0

1�������������
K�s; t�p dt �

Z 1

0

1

�1ÿ t�1=2

�������������
1ÿ t

K�s; t�

s
dt; �2:11�

and that by Taylor's expansion

K�s; t�
1ÿ t

� s
d

2�beÿs� ÿ 1� � �b�sÿ 1�eÿs � 1��1ÿ t� � 2bR�s; t��; �2:12�
where

R�s; t� :� ÿ 1

2
seÿs�1ÿ t�2 � s�s� 1�eÿs�1ÿ t�2

X1
k�0

sk�1ÿ t�k
�k � 3�!

ÿ s2 eÿs�1ÿ t�3
X1
k�0

sk�1ÿ t�k
�k � 3�! :

Using the fact thatX1
k�0

sk�1ÿ t�k
�k � 3�! 6

X1
k�0

sk�1ÿ t�k
k!

� es�1ÿt�;

we get

jR�s; t�j6K1�1ÿ t�2 � � lnb�2�1ÿ t�3; �2:13�
for 06 t6 1 and 06 s6 lnb, where K1 � 1

2
eÿ1 � lnb� lnb� 1�: Hence, for any

06 s0 < lnb there exists a constant Kc; depending on s0 only, such that �1ÿ
t�=K�s; t�6Kc for all t 2 �0; 1� and 06 s6 s0: Therefore, the improper integralZ 1

0

1�������������
K�s; t�p dt

is uniformly convergent for 06 s6 s0: This implies that the function F �s� is
continuous for 06 s < lnb: Similarly, we can show that the improper integralZ 1

0

oK�s; t�=os���������������
K3�s; t�p dt

is uniformly convergent for any ®xed 06 s6 s0; s0 2 �0; lnb�: Hence by Leib-
niz's rule,

F 0�s� � ÿ 1

2

Z 1

0

oK�s; t�=os���������������
K3�s; t�p dt; s 2 �0; lnb�:

On the other hand, we have after direct calculation that

oK�s; t�
os

� 2bs
d

T �s; t�
s3

;
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where T �s; t� :� �ÿ�st � 1�2 ÿ 1�eÿst � ��s� 1�2 � 1�eÿs: Note that T �s; 1� � 0
and that oT �s; t�=ot � s3t2 eÿst P 0: Therefore, T �s; t�6 0 for t 2 �0; 1�: This
shows that oK�s; t�=os6 0 for t 2 �0; 1� and s 2 �0; lnb�: This implies that F �s� is
an increasing and continuously di�erentiable function of s 2 �0; lnb�: We now
claim

lim
s!� ln b�ÿ

F �s� � �1: �2:14�

In fact, for any given M > 0, we choose

s1 � max 0; lnb

�
ÿ ln 1

�
� 1

2
eÿM=K2

��
;

K2 �
���
d
s

r ��������������������������������������������������
1

b� 2� 2b�K1 � � lnb�2�

s
:

Let d � 1ÿ 2�beÿs1 ÿ 1�: Then, 06 s1 < lnb and 0 < d < 1: So for any
s16 s < lnb; the monotonicity of F and (2.11)±(2.13) imply

F �s�P F �s1�

�
Z 1

0

1���������������
K�s1; t�

p dt

�
Z 1

0

1

�1ÿ t�1=2

���������������
1ÿ t

K�s1; t�

s
dt

P

���
d
s

r Z d

0

1����������
1ÿ t
p

� 1������������������������������������������������������������������������������������������������������
jb�s1 ÿ 1�eÿs1 � 1j � 1� 2b�K1 � � lnb�2�
h i

�1ÿ t�
r dt

P K2

Z d

0

1

�1ÿ t� dt

� K2 ln
1

1ÿ d

� �
P M :

This shows F �s� ! �1 as s! � lnb�ÿ, and completes the proof of the lemma.

We now describe our numerical scheme to ®nd /. First of all, we note
that by (2.2), it is su�cient to compute /�x� for x 2 �0; 1

2
�. We can use

Eq. (2.8) and solve F �s� � 1
2

for the maximum value m. To do that, Newton's
iteration:

mn�1 � mn ÿ
F �mn� ÿ 1

2

F 0�mn� ; n P 0;
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is used here. The convergence of this method is guaranteed since F �s� is
monotonically increasing for 06 s < lnb: An initial guess is chosen slightly less
than lnb: Note that lnb cannot be used as an initial guess.

Since F �s� is de®ned by an integral, one needs to evaluate this integral (as
well as the integral for F 0�s�) in order to iterate. Since K�s; 1� � 0, t � 1 is a
singular point for the integrand. Hence, we choose a formula of Gauss type
(see, for example, Ref. [9], p. 179) to evaluate this integral:Z 1

0

H�x�
�1ÿ x�1=2

dx �
Xn

k�1

xkH�xk� � 24n�1��2n�!�3
�4n� 1���4n�!�2 H �2n��n�:

Here, 06 n6 1; xk � 1ÿ n2
k ; nk is the kth positive zero of the Legendre

polynomial P2n�x� and x2n
k is the weight corresponding to nk in the rule G2n; i.e.

a 2n-point interpolation by Gauss rule (see, for example, Ref. [9], p. 97). To
apply this formula to F �s�, we simply rewrite F �s� as in (2.11). Using the same
argument as for F �s�, one obtains

F 0�s� � ÿ 1

2

Z 1

0

1

�1ÿ t�1=2

���������������
1ÿ t

K3�s; t�

s
oK�s; t�

os
dt;

where

lim
t!1ÿ

���������������
1ÿ t

K3�s; t�

s
oK�s; t�

os
�

����������������������������������
d

2s�beÿs ÿ 1�
� �3

s �
ÿ 2bs

d
eÿs

�
is ®nite for 06 s < lnb:

Finally, we compute /�x� for x 2 �0; 1
2
�. Let a � /�x�: Viewed as a function

of a with ®xed m; Eq. (2.7) can be rewritten as

S�a� :�
Z 1

0

adt��������������������������
J�at� ÿ J�m�p � x:

One can also show that for 0 < a < m, we have S0�a� > 0. Therefore, Newton's
iteration can be applied again. In order to get a descent initial guess of a, we
start with x < 1

2
but x near x0: Since a < m; the integrand de®ning S�a� has no

singular point on �0; 1�: Thus, we can use Simpson's formula (see, for example,
Ref. [9], pp. 57±58) to evaluate this integral.

3. Numerical analysis of Hopf bifurcations

Recall that the characteristic equation of the linearized equation about a
positive steady state takes the form

ÿ dwxx � s
ÿ � kÿ bseÿ/�1ÿ /��eÿk

�
w � 0;

w�0� � w�1� � 0:
�3:1�

J.-W.H. So et al. / Appl. Math. Comput. 111 (2000) 33±51 39



To apply the standard Hopf bifurcation theorem for functional di�erential
equations (see, for example, Ref. [19]), we need to ®nd nonzero function w)
with w�0� � w�1� � 0; such that (3.1) possesses purely imaginary eigenvalue
k � ib for some b 2 R�:

To have a good initial guess for our proposed numerical scheme, we ®rst
derive some necessary conditions for the existence of nonzero solutions �b;w�
of the following eigenvalue problem:

ÿ dwxx � s
ÿ � ibÿ bseÿ/�x��1ÿ /�x��eÿib

�
w � 0;

w�0� � w�1� � 0:
�3:2�

where ib with b > 0 is a purely imaginary eigenvalue of (3.1) and w is a
corresponding eigenfunction. If we multiply both sides of (3.2) by w and
integrate using by parts, the real and imaginary parts of the resulting ex-
pression are:

bs
Z 1

0

eÿ/�x��1ÿ /�x��jw�x�j2 dx� bkwk2
L2�0;1�

sinb
� 0; �3:3�

dkwxk2
L2�0;1� � �s� b cotb�kwk2

L2�0;1� � 0 �3:4�
for w 2 H 1

0 �0; 1� \ H 2�0; 1�: Let

U0 :� fw 2 H 1
0 �0; 1� \ H 2�0; 1�; kwxkL2�0;1� � 1g:

Notice that kwxk2
L2�0;1�P k1kwk2

L2�0;1�: Then on U0; Eq. (3.4) implies

06 s6 ÿ bcotbÿ dk1: �3:5�
On the other hand, Eq. (3.3) gives,

bkwk2
L2�0;1�

sinb
� bs

Z 1

0

eÿ/�x��/�x� ÿ 1�jw�x�j2 dx

� bs
Z

X1
1

eÿ/�x��/�x�
"

ÿ 1�jw�x�j2 dx

�
Z

~X
1
1

eÿ/�x��/�x� ÿ 1�jw�x�j2 dx

#

6 bs
Z

~X
1
1

eÿ/�x��/�x� ÿ 1�jw�x�j2 dx

6 bseÿ2

Z
~X
1
1

jw�x�j2 dx

6 bseÿ2kwk2
L2�0;1�;
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where X11 :� fx 2 �0; 1�; /�x� < 1g and ~X
1
1 is the complement of X11 in �0; 1�:

Therefore, we have

sP
1

beÿ2

b
sinb

: �3:6�
A combination of (3.5) and (3.6) gives

1

beÿ2

b
sinb

6 s6 ÿ bcotbÿ dk1: �3:7�
It was shown in Ref. [17] that b= sinb > 0 and cotb < 0. Hence, we will restrict
b to the interval �1

2
p; p�. Now we can conclude the following.

Lemma 3.1. If (3.2) has nontrivial solutions, then beÿ2 > 1 and sP sc; where

sc � ÿbc cotbc ÿ dk1 �3:8�
and bc is the unique solution of

v
beÿ2 sinv

� ÿbcotvÿ dk1; v 2 1

2
p;p

� �
: �3:9�

Proof. Consider two functions

f �v� :� v
beÿ2 sinv

and

g�v� :� ÿvcotvÿ dk1:

Both functions are monotonically increasing for v 2 �1
2
p; p�: Notice that

h�v� :� f �v� ÿ g�v� � 1

beÿ2

�
� cosv

�
v

sinv
� dk1:

The existence of nontrivial solutions of (3.3) implies that there exists v 2 �1
2
p; p�

such that f �v� < g�v�: This implies

1

beÿ2
� cosv < 0

and hence beÿ2 > 1: Consequently, there always exists bc 2 �12 p; p�; with
f �bc� ÿ g�bc� � 0 because

f
p
2

� �
ÿ g

p
2

� �
> 0

and

lim
v!pÿ
�f �v� ÿ g�v�� � ÿ1:

We now show that bc is the unique root of h�v� � 0 in �1
2
p; p�: Let b�c be the

smallest zero of h�v� in �1
2
p; p�: Since h�b�c� � 0; we have
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cosb�c � ÿ
1

beÿ2
ÿ sinb�c

b�c
dk1 < ÿ 1

beÿ2
:

We claim that h�v� is monotonically decreasing for x 2 �pÿ arccos
�1=beÿ2�; p�: In fact, since 1=beÿ2 � cosv < 0 and � sinvÿ xcosv�= sin2v > 0
for x 2 �pÿ arccos�1=beÿ2�; p�; we have

h0�v� � ÿv� 1

beÿ2

�
� cosv

�
sinvÿ vcosv

sin2v
< 0:

Therefore, h�v� < 0 for x 2 �b�c ; p�: This implies that bc is the unique zero of
h�v� in �1

2
p; p� and f �v� < g�v� for v 2 �bc; p�: Furthermore, since both f �v� and

g�v� are increasing, (3.6) implies that

sP
b

beÿ2 sinb
P

bc

beÿ2 sinbc

� sc:

This completes the proof.

Before introducing our numerical scheme, we need to establish an estimate
for b. According to Lemma 3.1, bc and sc satisfy (3.8) and (3.9). Note that (3.8)
and (3.9) are equivalent to

b � sbeÿ2 sinb; �3:10�
s � ÿsbeÿ2 cosbÿ dk1: �3:11�

Therefore,

cosb � ÿ s� dk1

sbeÿ2
:

We solve this equation for b to obtain

b � pÿ arccos
s� dk1

sbeÿ2
: �3:12�

Substituting (3.12) into (3.10), we have

pÿ arccos
s� dk1

sbeÿ2
�

��������������������������������������������
�sbeÿ2�2 ÿ �s� dk1�2

q
: �3:13�

Hence, sc is a root of Eq. (3.13). We should note that (3.12) and (3.13) make
sense only when beÿ2 > 1 and s� dk1 < sbeÿ2; i.e.

s >
dk1

beÿ2 ÿ 1
> 0: �3:14�

A few more calculations show that sc is the unique root of Eq. (3.13). In fact,
we denote

Y �s� :� pÿ arccos
s� dk1

sbeÿ2
ÿ

��������������������������������������������
�sbeÿ2�2 ÿ �s� dk1�2

q
:
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Then,

Y 0�s� � ÿdk1 ÿ s2�beÿ2�2 � s�s� dk1�
s
��������������������������������������������
�sbeÿ2�2 ÿ �s� dk1�2

q :

Noticing that for s > dk1=��beÿ2�2 ÿ 1�; we have

s�1ÿ �beÿ2�2� � dk1 < 0:

Therefore,

s2�1ÿ �beÿ2�2� � dk1sÿ dk1 < 0:

So, we get Y 0�s� < 0 for s > dk1=��beÿ2�2 ÿ 1�: Furthermore, since beÿ2 > 1;
we have

dk1

beÿ2 ÿ 1
>

dk1

�beÿ2�2 ÿ 1
:

Hence, Y 0�s� < 0 for s > dk1=�beÿ2 ÿ 1�. This implies that sc is the only one
root of Eq. (3.13). We can use Newton iteration to solve the equation Y �s� � 0
for sc. This gives the initial guess of s satisfying (3.14).

Now, we consider functions f �v� and g�v� that de®ned in the proof of
Lemma 3.1. As we know, f �v� and g�v� are monotonically increasing and
continuous functions of v on the interval �1

2
p; p�: For any given sP sc, we

consider the following two equations:

f �x� � s;

g�x� � s:
�3:15�

Solving these two equations for x 2 �1
2
p; p�; we obtain the unique root of the

equations, respectively, denoted by bf and bg: Clearly, 1
2
p < bg6 bf < p:

Moreover, bg � bf if and only if s � sc:

Lemma 3.2. Let sP sc be given. Suppose k � ib is a pure imaginary eigenvalue of
Eq. (3.1). Then, b 2 �bg; bf � � �12 p; p�:

Proof. According to (3.7), b and s satisfy

f �b�6 s6 g�b�:
Noting that s � f �bf � � g�bg�; and that f �b� and g�b� are both monotonically
increasing continuous functions on �1

2
p; p�; we obtain from f �b�6 s � f �bf �

that b6 bf ; and from g�bg� � s6 g�b� that bg6 b. This completes the proof.

We now describe our numerical scheme to locate the critical values of s
when one can ®nd a purely imaginary number ib so that (3.2) has nonzero
solution w. Our numerical scheme is motivated by the inverse power method
with shift (see Ref. [10]) and the inverse iteration method for nonlinear elliptic
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eigenvalue problems (see Ref. [12]). Let sP sc be given. We choose initial
guesses of b0 and w�0� such that b0 2 �bg; bf � and w�0� 2 U0. For k � 1; 2; . . . ; we
update w�k� and bk according to the following iteration scheme:

ÿ dW �k�
xx ÿ bf W �k�

� ÿ�bf � s�w�kÿ1� � �ÿibkÿ1 � bseÿibkÿ1 eÿ/�1ÿ /��w�kÿ1�; �3:16�
w�k� � kW �k�

x kÿ1
L2�0;1�W

�k�; �3:17�
bk � bg � kW �k�

x kÿ1
L2�0;1��bkÿ1 ÿ bg�; if kW �k�

x kL2�0;1� > 1; �3:18�
bk � bf � kW �k�

x kL2�0;1��bkÿ1 ÿ bf �; if kW �k�
x kL2�0;1� < 1: �3:19�

There are a couple of advantages of this iteration scheme. First of all, under
this scheme, the interval �bg; bf � is invariant in the sense that if b0 2 �bg; bf �
then bk 2 �bg; bf � for all k P 1: Secondly, suppose that eventually,
kW �k�

x kL2�0;1� > 1 or kW �k�
x kL2�0;1� < 1; then the sequence fbkg is eventually

monotone decreasing or increasing, respectively.
A natural and important question is whether this scheme is convergent. We

will address this question for a more general problem in a separate paper so
that we can focus on our numerical results for the considered Eq. (1.1). Our
numerical observations show that eventually either kW �k�

x kL2�0;1� > 1 or
kW �k�

x kL2�0;1� < 1: Hence for k su�ciently large, fbkg is either a monotonically
increasing sequence or a monotonically decreasing sequence. In either case,
sequence fbkg converges to a certain number ~b 2 �bg; bf �: If ~b 6� bg; bf ; then
kW �k�

x kL2�0;1� ! 1 as k !1: Therefore, i~b is a purely imaginary eigenvalue of
Eq. (3.1) and ~w � limk!1w�k� is a corresponding eigenfunction. Unfortunately,
when ~b � bg or bf ; our scheme fails to ®nd an eigenvalue if j�kW �k�

x kL2�0;1� ÿ 1�j
is beyond the tolerance of accuracy. This may imply that Eq. (3.1) has no
purely imaginary eigenvalue for the choice of s; and suggests that we should
adjust s: In our practice, we choose s bigger than the previously chosen one if
kW �k�

x kL2�0;1� < 1; and choose s smaller than the previous one if kW �k�
x kL2�0;1� > 1:

Our numerical investigations show that the above strategy works well. In the
next section, we present some numerical examples of locating Hopf bifurca-
tions to illustrate how one can implement the above strategy.

4. Numerical results

In Section 2, we proposed an approach to solve two-point boundary
problem (1.3). It should be mentioned that there are many numerical methods
to solve two-point boundary problems, and the associated computer solvers are
well-developed (see for instance, Refs. [2,4±8,11,13±15,18]). However, very few
of them seem to be applicable to our problems. The di�culties lie in the fact
that two solutions (the zero solution and the positive solution) co-exist for
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Eq. (1.3). We had tried the solver TWPBVP, which is a Fortran program based
on the mono-implicit Runge±Kutta formula and an adaptive mesh re®nement
for solving two-point boundary problems (see Refs. [4±8], and the references
therein for details). Unfortunately, when applied to our equation, this software
always ends up with the zero solution, no matter what ranges of parameters are
chosen. We also applied other methods, including di�erences schemes and
shooting method, but the results are not as satisfactory as those obtained via
our scheme.

In Section 3, we developed an iteration scheme to solve the eigenvalue
problem (3.2) for a pure imaginary eigenvalue ib and the corresponding ei-
genfunction. The di�culties encountered involve the calculation of b and w, as
well as the location of s simultaneously. The following tables lists some nu-
merical results that we obtain by running a program based on the iteration
scheme, see Eqs. (3.16)±(3.19).

Here, the column called ``iteration'' in the table presents the number of itera-
tions that was needed to locate a eigenvalue ib for a given b and a proper choice
of s. Using the classic ®nite di�erence scheme, we obtain a discrete version of
Eq. (3.16), that is,

ÿ d
�
� h2bf

12

�
W �k��xjÿ1� � 2d

�
� 5h2bf

6

�
W �k��xj� ÿ d

�
� h2bf

12

�
W �k��xj�1�

� ÿ �bf � s� ibkÿ1� h2

12
w�kÿ1��xjÿ1�
h

� 10w�kÿ1��xj� �w�kÿ1��xj�1�
i

� bseÿibkÿ1 eÿ/�xj��1ÿ/�xj��

� h2

12
w�kÿ1��xjÿ1�
h

� 10w�kÿ1��xj� �w�kÿ1��xj�1�
i
;

for j � 1; 2; . . . ;N ; where, h � 1=�N � 1�; xj � jh for j � 0; 1; . . . ;N � 1
and W �k��0� � W �k��1� � 0: The corresponding numerical norm of W �k� is
de®ned as

s b b Iteration

0.1696000E+02 0.9200000E+01 0.2997433E+01 802

0.2890000E+01 0.1920000E+02 0.2737416E+01 1018

0.4703500E+02 0.8000000E+01 0.3080901E+01 5864

0.6845500E+02 0.7800000E+01 0.3098623E+01 8380

0.7744550E+02 0.7750000E+01 0.3103318E+01 8837

0.8176870E+02 0.7730000E+01 0.3105233E+01 7420

0.2006870E+01 0.2420000E+02 0.2711029E+01 467

0.1306870E+01 0.3420000E+02 0.2646918E+01 281

0.7568700E+00 0.5460000E+02 0.2598600E+01 409
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kW �k�
x kh � hÿ1

XN�1

i�1

�W �k��xj�
 

ÿ W �k��xjÿ1���W �k��xj� ÿ W �k��xjÿ1��
!1=2

:

Throughout the computation, we ®rst choose b > e2: Then we solve Eq. (3.13)
for sc: Choosing s slightly larger than sc; we solve (3.15) for bf and bg: Next we
make initial guesses of b0 � 1

2
�bf � bg� and w0�x� � �

���
2
p

=p� sinpx: Before
starting the iteration to update b and w; we use the method proposed in Sec-
tion 2 to compute the positive steady state, since this is required in Eq. (3.16).
Figs. 1±4 are graphs of the positive steady state for various values of param-
eters. These pictures illustrate that, for large s; the positive steady state has
boundary layers which result in di�culties of computation. As s decreases,

Fig. 1. Plots of the steady solutions with various value of �s;b; d�: s � 81:7687;b � 7:73; d � 0:35.

Fig. 2. Plots of the steady solutions with various value �s;b; d�: s � 2:89; b � 19:2; d � 0:35

46 J.-W.H. So et al. / Appl. Math. Comput. 111 (2000) 33±51



these boundary layer disappear. Note that in these pictures, the value of s is a
critical value near which Hopf bifurcation occurs. Stability of the bifurcated
periodic solutions is not clear at this moment. However, with those parameters
obtained in these numerical examples, we can solve the original di�usive
Nicholson's blow¯ies equation. Figs. 5±8 are numerical solutions (time evo-
lution) that we obtained. In Figs. 5 and 6, we do observe the time periodic
behaviors of the solutions to the equation, which is an indication that the
periodic solutions are indeed stable. In Figs. 7 and 8, however, we are not so
sure about the stability of the periodic solutions.

To close this section, we compare our iteration scheme with the existing
inverse power method with shift, which can be describe as follows:

Fig. 4. Plots of the steady solutions with various value �s;b; d�: s � 0:75687; b � 54:6; d � 0:35.

Fig. 3. Plots of the steady solutions with various value �s;b; d�: s � 1:30687; b � 34:2; d � 0:35.
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ÿ dW �k�
xx ÿ bgW �k�

� ÿ�bg � s�w�kÿ1� � �ÿibkÿ1 � bseÿibkÿ1 eÿ/�1ÿ /��w�kÿ1�;

w�k� � kW �k�
x kÿ1

L2�0;1�W
�k�;

bk � bg � kW �k�
x kÿ1

L2�0;1��bkÿ1 ÿ bg�:

Fig. 6. Time evolution of a solution with the same parameters as Figs. 1 and 2, respectively.

Fig. 5. Time evolution of a solution with the same parameters as Figs. 1 and 2, respectively.
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Using the same discrete scheme as on page 50, we obtain the following results:

s b b Our

scheme

Power

method

0.8176870E+02 0.7730000E+01 0.3105233E+01 7420 8955

0.7744550E+02 0.7750000E+01 0.3103318E+01 8837 > 9999

0.2006870E+01 0.2420000E+02 0.2711029E+01 467 90

Fig. 8. Time evolution of a solution with the same parameters as Figs. 3 and 4, respectively.

Fig. 7. Time evolution of a solution with the same parameters as Figs. 3 and 4, respectively.
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We can see that, for given b; if the same s is used for two methods and b is close
to e2; then our scheme requires less number of iterations than the existing
scheme. On the other hand, we should also point out that if b is far away from
e2; then the existing scheme need less number of iterations than ours. Never-
theless, even in this case, our scheme has its own advantage since the classic
scheme cannot locate s so that the eigenvalue lies exactly in the interval of
interest to us. For example, when b � 8:55 the classic scheme ends up with b �
3:046215 if s happens to be chosen as s � 24:445. While, for such b and s; the
interval �bg; bf � � �3:033295; 3:034119�: Clearly, the value of b is beyond the
interval �bg; bf �!
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