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Numerical solutions for a coupled non-linear oscillator
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A second-order accurate numerical method has been proposed for the solution of a cou-
pled non-linear oscillator featuring in chemical kinetics. Although implicit by construction,
the method enables the solution of the model initial-value problem (IVP) to be computed ex-
plicitly. The second-order method is constructed by taking a linear combination of first-order
methods. The stability analysis of the system suggests the existence of a Hopf bifurcation,
which is confirmed by the numerical method. Both the critical point of the continuous system
and the fixed point of the numerical method will be seen to have the same stability proper-
ties. The second-order method is more competitive in terms of numerical stability than some
well-known standard methods (such as the Runge–Kutta methods of order two and four).
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1. Introduction

A number of authors have reported on the importance of oscillations in chemical
systems. For instance, the so-called Brussels school (see [1,2]) developed and analysed
the behaviour of a non-linear oscillator (known as the “Brusselator”) associated with the
chemical system [3]

A→X, (1a)

B+ X→Y+ D, (1b)

2X+ Y→ 3X, (1c)

X→ E, (1d)

in which A and B are input chemicals, D and E are output chemicals and X and Y are
intermediates.
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It is known [4] that the trimolecular reaction step (1c) arises in the formation of
ozone by atomic oxygen via a triple collision, enzymatic reactions, and in plasma and
laser physics in multiple couplings between modes.

Much attention has been devoted in the literature on the ability of non-linear os-
cillators to synchronize to external influences. In order to carry out a detailed analysis
of the interaction of two centres of oscillators in a chemical network, Tyson [3] consid-
ers two Brusselators coupled in series in which two outputs of the first provide the two
inputs of the second given by

A→X, (2a)

B+ X→Y+ U, (2b)

2X+ Y→ 3X, (2c)

X→ E, (2d)

E+ U→V+ F, (2e)

2U+ V→ 3U, (2f)

U→G. (2g)

Employing easy-to-use explicit finite-difference methods such as the Runge–Kutta (RK)
and Euler methods to discretize non-linear initial-value problems, like the one consid-
ered in this paper, is known to lead to contrived chaos and oscillations whenever the
discretization parameters exceed certain values (see [5]).

Although such contrived chaos can often be avoided by using small time-steps, the
extra computing costs incurred when examining the long-term behaviour of a dynamical
system may be substantial. It is therefore essential to use a numerical method which
allows the largest possible time steps that are consistent with stability and accuracy. In
order to circumvent contrived chaos, whilst retaining accuracy and numerical stability, it
may be necessary to forego the ease-of-implementation of inexpensive explicit numeri-
cal methods in favour of implicit methods (which are known to be more competitive in
terms of numerical stability).

In this paper, a second-order, implicit, finite-difference scheme will be developed
and used for the solution of the dynamical system associated with the aforementioned
coupled ODE system. Although the method is implicit by construction, the numeri-
cal results can be computed explicitly. This method will be seen to have better stabil-
ity property than the second-and fourth-order Runge–Kutta (RK2 and RK4) methods.
Runge–Kutta methods are standard (see, for instance, [5]), so will not be presented here.

A stability and bifurcation of the dynamical system is carried out in section 2. In
section 3, a new second-order, implicit, finite-difference method is constructed for the
coupled IVP, and its fixed point analysed in section 4. Numerical results are reported in
section 5.
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2. Stability and bifurcation analyses

2.1. Analysis of critical point of the system

Consider the kinetic equations associated with (2) given by [6]

dx

dt
≡ f1(x, y) = A− Bx + x2y − x, t > 0, x(0) = X0,

dy

dt
≡ f2(x, y) = Bx − x2y, t > 0, y(0) = Y 0,

de

dt
≡ f3(x, e, u) = x − eu, t > 0, e(0) = E0,

du

dt
≡ f4(x, e, u, v) = Bx − eu+ u2v − u, t > 0, u(0) = U 0,

dv

dt
≡ f5(e, u, v) = eu− u2v, t > 0, v(0) = V 0,

(3)

in which x = x(t), y = y(t), e = e(t), u = u(t), v = v(t) and A and B are real
constants. It can be shown that the only critical point of the ordinary differential equation
(ODE) system is (x∗, y∗, e∗, u∗, v∗) = (A,B/A, 1/B,AB, 1/(AB2)). The Jacobian,
J ∗, at the critical point (x∗, y∗, e∗, u∗, v∗) is given by

J ∗ =




B − 1 A2 0 0 0
−B −A2 0 0 0

1 0 −AB − 1

B
0

B 0 −AB 1

B
− 1 A2B2

0 0 AB − 1

B
−A2B2



. (4)

It is easy to verify that its eigenvalues satisfy the fifth-degree stability equation (charac-
teristic equation)

[
λ2 + (A2 − B + 1

)
λ+ A2

][
λ3 +

(
A2B2 + AB + 1− 1

B

)
λ2

+ (A3B3 + A2B2 + AB − 2A
)
λ+ A3B3

]
= 0. (5)

The quadratic part in (5) is what will be obtained if only the normal isolated Brusselator
(first Brusselator) is considered. This is, of course, due to the absence of “back-coupling”
in this system.

Using the Routh–Hurwitz criteria (see Lambert [5]), it may be shown that the roots
of the cubic part of (5) (the second Brusselator) have negative real parts and the critical
point is stable whenever the following inequalities are satisfied:
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g1(A,B)= A2 − B + 1 > 0,
g2(A,B)= A2B3 + AB2 + B − 1 > 0,
g3(A,B)= A4B6 + 2A3B5 + 2A2B4 − 3A2B3

+ 2AB3 − 3AB2 + B2 − 3B + 2 > 0.

(6)

The first Brusselator may either be stationary or oscillate depending on whether
A2 − B + 1 > 0 or otherwise.

2.2. Hopf bifurcation

Returning back to the stability equations (5) and (6), it can be shown that when
B = A2 + 1, the quadratic part of (5) given by λ2 + (A2 − B + 1)λ + A2 = 0 has a
pair of purely imaginary zeros, namely, λ = ±iA. Suppose that B is a Hopf bifurcation
parameter, and let λ = λ(B) be the smooth curve of roots of λ2+(A2−B+1)λ+A2 = 0
with λ(A2 + 1) = iA. Then,

∂λ(B)

∂B

∣∣∣∣
B=A2+1

= λ(B)

2λ(B)+ (A2 − B + 1)

∣∣∣∣
B=A2+1

, (7)

from which it follows that

Re
∂λ(B)

∂B

∣∣∣∣
B=A2+1

= 1

2
�= 0.

This fact, together with the standard Hopf bifurcation theorem (see, for instance, [6,7]),
confirms that the ODE system (3) has a Hopf bifurcation from (x∗, y∗, e∗, u∗, v∗) near
B = A2 + 1.

It should be noted that such a Hopf bifurcation is associated with the occurrence
of a pair of purely imaginary zeros of the quadratic part of (6) which is exactly what
would have been obtained if only the first Brusselator is considered, and hence, a Hopf
bifurcation takes place near (x∗, y∗) for the decoupled system

dx

dt
= A− Bx + x2y − x,

dy

dt
= Bx − x2y,

(8)

when B is near A2 + 1. To ensure the bifurcating periodic oscillation of the first Brus-
selator induces non-linear oscillation of the second Brusselator, assume condition (6) as
stated and compute the eigenvector of J ∗ − iAI5 by solving

(
J ∗ − iAI5

)


X

Y

E

U

V


 = 0, (9)
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where I5 is the identity matrix of order five. It can then be shown that an eigenvector of
J ∗ − iAI5 is given by (X, Y,E,U, V )T, with

X= 1,

Y = i
1

A
+ 1,


EU
V


=−



−AB − iA − 1

B
0

−AB 1

B
− 1− iA A2B2

AB − 1

B
−A2B2 − iA




−1
 1 0
B 0
0 0


( 1

i

A
+ 1

)
. (10)

As the (E,U, V )T component in (10) is not zero, it can be concluded that the bifurcating
periodic solution of system (3) near the fixed point (x∗, y∗, e∗, u∗, v∗) does have a non-
constant (E,U, V )T component, so the second Brusselator is indeed oscillatory.

The bifurcation direction and stability of bifurcating periodic solution can be deter-
mined using the standard algorithm given, for instance, by Hassard et al. [7, pp. 86–90].
The numerical results to be reported in section 5 confirm the existence of a stable limit
cycle as suggested (predicted) by the Hopf bifurcation theory together with the bifurca-
tion direction (see table 2).

3. Numerical methods for two Brusselators coupled in series

3.1. Numerical methods for x

Starting with the initial-value problem [given in (3)]

x′ ≡ dx

dt
= A− Bx + x2y − x, t > 0, x(0) = X0, (11)

the development of numerical methods may be based on approximating the time deriva-
tive in (11) by its first-order forward-difference approximant given by

dx

dt
= x(t + �)− x(t)

�
+ O(�) as �→ 0, (12)

where � > 0 is an increment in t (the time step). Discretizing the interval t � 0 at the
points tn = n� (n = 0, 1, 2, . . .), the solution of (11) at the grid point tn is x(tn). The
solution obtained by a numerical method at the point tn will be denoted byXn. Four first-
order numerical methods for solving (11) based on approximating the time derivative
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in (11) by (12) and making appropriate approximations for the linear and cubic terms
in (11) are given below:

M(1)
x : Xn+1 = Xn + �A− �BXn + �(Xn

)2
Y n+1 − �Xn,

M(2)
x : Xn+1 = Xn + �A− �BXn + �XnY nXn+1 − �Xn,

M(3)
x : Xn+1 = Xn + �A− �BXn+1 + �(Xn

)2
Y n − �Xn+1,

M(4)
x : Xn+1 = Xn + �A− �BXn + �(Xn

)2
Y n − �Xn.

(13)

The associated local truncation errors of these four methods are, respectively,

L(1)x = L(1)x
[
x(t), y(t), �

]
= x(t + �)− x(t)− �A+ �Bx(t)− �{x(t)}2

y(t + �)+ �x(t),
L(2)x = L(2)x

[
x(t), y(t), �

]
= x(t + �)− x(t)− �A+ �Bx(t)− �x(t)y(t)x(t + �)+ �x(t),

L(3)x = L(3)x
[
x(t), y(t), �

]
= x(t + �)− x(t)− �A+ �Bx(t + �)− �{x(t)}2

y(t)+ �x(t + �),
L(4)x = L(4)x

[
x(t), y(t), �

]
= x(t + �)− x(t)− �A+ �Bx(t)− �{x(t)}2

y(t)+ �x(t),

(14)

in which t = tn. It is easy to show that the Taylor series expansion of the functions
in (14) about t leads to

L(1)x =
(
x′′

2
− x2y′

)
�2 + O

(
�3
)

as �→ 0,

L(2)x =
(
x′′

2
− xyx′

)
�2 + O

(
�3
)

as �→ 0,

L(3)x =
(

1

2
x′′ + Bx′ + x′

)
�2 + O

(
�3
)

as �→ 0,

L(4)x =
1

2
x′′�2 + O

(
�3
)

as �→ 0,

(15)

where x and its derivatives (denoted by primes) are evaluated at some grid point t = tn.
Defining, now, a function L(err)

x by the linear combination

L(err)
x = [L(1)x + 2L(2)x + L(3)x − 2L(4)x

]
(16)

gives

L(err)
x = [x′′ − 2xx′y − x2y′ + Bx′ + x′]�2 + O

(
�3) as �→ 0. (17)

Differentiating the differential equation in (11) with respect to t reveals that the coeffi-
cient of �2 in (17) vanishes; thus,

L(err)
x = O

(
�3) (18)
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as �→ 0. This implies that a second-order method for computing x can be constructed
by taking the linear combination M(1)

x + 2M(2)
x +M(3)

x − 2M(4)
x and is given by

Xn+1 = 2�A+Xn(2− �− �B − �XnY n)+ �(Xn)2Y n+1

2+ �(1+ B −XnY n)
. (19)

This method involves Xn+1 and Y n+1, thus, Xn+1 cannot be calculated explicitly
from (19).

3.2. Numerical methods for y

Recalling the ODE [given in (3)]

dy

dt
≡ y′ = Bx − x2y, (20)

a second-order method for solving (20) may be obtained by approximating its derivative
with (12) and evaluating the linear and cubic forcing terms in ways which lead to the
following numerical methods for finding y:

M(1)
y : Y n+1 = Y n + �BXn − �(Xn

)2
Y n,

M(2)
y : Y n+1 = Y n + �BXn+1 − �(Xn

)2
Y n+1, (21)

M(3)
y : Y n+1 = Y n + �BXn − �Y nXnXn+1.

The principal parts of the local truncation errors associated with (21) are given by,
respectively,

L(1)y =
1

2
y′′�2 + O

(
�3
)

as �→ 0,

L(2)y =
(

1

2
y′′ − Bx′ + x2y′

)
�2 + O

(
�3
)

as �→ 0,

L(3)y =
(

1

2
y′′ + yxx′

)
�2 + O

(
�3
)

as �→ 0.

(22)

Defining, as in (16), the function

L(err)
y = [2L(3)y + L(2)y − L(1)y ], (23)

gives

L(err)
y = (y′′ − Bx′ + 2xx′y + x2y′

)
�2 + O

(
�3) as �→ 0. (24)
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Differentiating (20) with respect to t reveals that L(err)
y = O(�3) as � → 0 and the

resulting second-order method for finding y (obtained by taking the combination 2M(3)
y +

M(2)
y −M(1)

y ) is

Y n+1 = 2Y n + �BXn +Xn+1
(
�B − 2�Y nXn

)+ �(Xn
)2
Y n

2+ �(Xn
)2 . (25)

This scheme, like (19), also involves Y n+1 and Xn+1, hence, Y n+1 cannot be obtained
explicitly from (25).

In both (19) and (25), however, Xn+1 and Y n+1 occur linearly so that (19) and (25)
can be solved simultaneously to give

Xn+1 = 4Xn + �[4A+ 2(Xn)3 − 2Xn − 2BXn] + �2[2A(Xn)2 − (Xn)3]
4+ 2�[1+ B − 2XnY n + (Xn)2] + �2(Xn)2

(26)

and

Y n+1= 4Y n + �[2Y n + 2BYn + 4BXn − 4Xn(Y n)2 − 2Y n(Xn)2]
4+ 2�[1+ B − 2XnY n + (Xn)2] + �2(Xn)2

+ �2[3Y n(Xn)2 − 4AXnY n + 2AB]
4+ 2�[1+ B − 2XnY n + (Xn)2] + �2(Xn)2

. (27)

3.3. Numerical methods for e

Consider the ODE [given in (3)]

de

dt
≡ e′ = x − eu, (28)

a second-order method for solving (28) may be obtained by approximating its derivative
with (12) and evaluating the linear and quadratic forcing terms in ways which lead to the
following numerical methods for finding e:

M(1)
e : En+1 = En + �Xn − �EUn+1,

M(2)
e : En+1 = En + �Xn+1 − �UnEn+1.

(29)

The associated local truncation errors are given by

L(1)e =
(
e′′

2
+ eu′

)
�2 + O

(
�3
)

as �→ 0,

L(2)e =
(
e′′

2
− x′ + ue′

)
�2 + O

(
�3
)

as �→ 0.
(30)

It may be shown that the linear combination

L(err)
e = [L(1)e + L(2)e ] (31)
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gives

L(err)
e = (e′′ − x′ + eu′ + ue′)�2 + O

(
�3
)

as �→ 0. (32)

Differentiating (28) with respect to t reveals that L(err)
e = O(�3) as � → 0 and the

resulting second-order method for finding e (obtained by adding M(1)
e and M(2)

e ) is

En+1 = 2En + �Xn + �Xn+1 − �EnUn+1

2+ �Un
. (33)

This scheme, like (19) and (25), also involves En+1,Xn+1 and Un+1, hence, En+1 cannot
be obtained explicitly from (33).

3.4. Numerical methods for u

Returning to the ODE system (3) where

du

dt
≡ u′ = Bx − eu+ u2v − u, (34)

a second-order method for solving (34) may be obtained by approximating its deriv-
ative with (12) and evaluating the reaction terms in ways which lead to the following
numerical methods for finding u:

M(1)
u : Un+1 = Un + �BXn − �EnUn + �UnV nUn+1 − �Un,

M(2)
u : Un+1 = Un + �BXn − �EnUn+1 + �(Un

)2
V n+1 − �Un+1,

M(3)
u : Un+1 = Un + �BXn+1 − �UnEn+1 + �(Un

)2
V n − �Un,

M(4)
u : Un+1 = Un + �BXn − �UnEn + �(Un

)2
V n − �Un.

(35)

The associated local truncation errors are given by

L(1)u =
(
u′′

2
− uvu′

)
�2 + O

(
�3
)

as �→ 0,

L(2)u =
(
u′′

2
+ eu′ − u2v′ + u′

)
�2 + O

(
�3
)

as �→ 0,

L(3)u =
(
u′′

2
− Bx′ + ue′

)
�2 + O

(
�3
)

as �→ 0,

L(4)u =
u′′

2
�2 + O

(
�3
)

as �→ 0.

(36)

Similarly, defining the function L(err)
u by

L(err)
u = [2L(1)u + L(2)u + L(3)u − 2L(4)u

]
(37)

leads to

L(err)
u = (u′′ − Bx′ − 2uvu′ + eu′ − u2v′ + u′ + ue′)�2 + O

(
�3) as �→ 0. (38)
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Differentiating (34) with respect to t reveals that L(err)
u = O(�3) as � → 0 and the

resulting second-order method for finding u is

Un+1 = 2Un + �[BXn + BXn+1 − UnEn+1 + (Un)2V n+1 − Un − U 2V n]
2+ �(1+ En − 2UnV n)

. (39)

This scheme also involves Un+1, Xn+1, En+1 and V n+1, hence, Un+1 cannot be obtained
explicitly from (39).

3.5. Numerical methods for v

Recalling the ODE

dv

dt
≡ v′ = eu− u2v, (40)

a second-order method for solving (40) may be obtained by approximating its derivative
with (12) and evaluating the quadratic and cubic forcing terms in ways which lead to the
following numerical methods for finding v:

M(1)
v : V n+1 = V n + �EnUn − �V n(Un

)2
,

M(2)
v : V n+1 = V n + �EnUn+1 − �(Un

)2
V n+1,

M(3)
v : V n+1 = V n + �EnUn − �UnV nUn+1,

M(4)
v : V n+1 = V n + �UnEn+1 − �V n(Un

)2
.

(41)

The principal parts of the local truncation errors are given by

L(1)v =
v′′

2
�2 + O

(
�3
)

as �→ 0,

L(2)v =
(
v′′

2
− eu′ + u2v′

)
�2 + O

(
�3
)

as �→ 0,

L(3)v =
(
v′′

2
+ uvu′

)
�2 + O

(
�3
)

as �→ 0,

L(4)v =
(
v′′

2
− ue′

)
�2 + O

(
�3
)

as �→ 0.

(42)

Letting

L(err)
v = [L(2)v + 2L(3)v + L(4)v − 2L(1)v

]
(43)

gives

L(err)
v = (v′′ − ev′ + u2v′ − ue′ + 2uvu′

)
�2 + O

(
�3
)

as �→ 0. (44)

Differentiating (40) with respect to the t reveals that L(err)
v = O(�3) as � → 0 and the

resulting second-order method for finding v is

V n+1 = 2V n + �Un(UnV n + En+1)− �(2UnV n − En)Un+1

2+ �(Un)2
. (45)
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This scheme also involves En+1, Un+1 and V n+1, hence, V n+1 cannot be obtained ex-
plicitly from (45).

It may be seen that, in both (33), (39) and (45), En+1,Un+1 and V n+1 occur linearly,
thus, the three equations can be solved simultaneously (in terms of the already computed
Xn+1) to give (using the Maple software package)

En+1 = C1 +D1 + R1

W
, (46)

Un+1 = C2 +D2 + R2

W
(47)

and

V n+1 = C3 +D3 + R3

W
, (48)

where

C1= �3
(
Un
)2[
Xn+1 + Xn + UnEn − BXnEn − BXn+1En

]
,

Q1= 2
[(
Un
)2
Xn+1 +Xn+1 +Xn + EnXn + EnXn+1 + UnEn

−BXn+1En − 2UnV nXn
]
,

D1= �2{Q1 − 2
[
2UnV nXn+1 + BXnEn − (Un

)2
Xn − (Un

)2
En + (Un

)3
En
]}
,

R1= 8En + 4�
[
Xn +Xn+1 + En + (Un

)2
En − UnEn + (En)2 − 2UnV nEn

]
,

C2=−�3(Un
)3[
Un − BXn − BXn+1],

D2=−2�2Un
[(
Un
)2 − BUnXn − BUnXn+1 + Un − BXn − (Un

)3

+Xn + Xn+1 − BXn+1
]
, (49)

R2= 8Un − 4�
[
UnEn + Un − BXn − BXn+1 − (Un

)3 − (Un
)2]
,

C3= �3Un
[
3
(
Un
)2
V n − 2BUnV nXn − 2BUnV nXn+1 +Xn + Xn+1

]
,

Q2= 2
[
BEnXn+1 + UnV n + BXnEn − (Un

)3
V n + 3

(
Un
)2
V n
]
,

D3= �2
{
Q2 + 2

[
UnXn − 2BUnV nXn − 2BUnV nXn+1 − 2

(
UnV n

)2 + UnXn+1
]}
,

R3= 8V + 4�
[
2UnEn − (Un

)2
V n + EnV n + V n − 2Un

(
V n
)2 + UnV n

]
,

W = 8+ 4�
[
1+ En + Un − 2UnV n + (Un

)2]
+2�2Un

[
1+ (Un

)2 + Un − 2UnV n
]+ �3(Un

)3
.

The second-order method {(26), (27), (46), (47), (48)} is denoted GLTW2.
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3.6. Implementation

The solution of the ODE system (3) may be obtained at every time step via the
following sequential algorithm:

(a) compute Xn+1 using (26),
(b) compute Y n+1 using (27),
(c) compute En+1 using (46) with (49),
(d) compute Un+1 using (47) with (49),
(e) compute V n+1 using (48) with (49).

(50)

4. Analyses of the fixed point

The expressions forXn+1 and Y n+1 in (26) and (27) for solving the first Brusselator
are of the forms

Xn+1= h1
(
Xn, Y n

)
,

Y n+1 = h2
(
Xn, Y n

)
,

(51)

respectively. It is easy to verify that the fixed point of (26) and (27) is X∗ = A,
Y ∗ = B/A. Thus, the fixed point of the numerical method (26), (27) is the same as
the corresponding critical point of the dynamical system (3). It is worth investigating, at
this point, whether or not the fixed point of the difference systems has the same stability
properties as the critical point of the first Brusselator.

Starting first with the functions

h1(X, Y )= 4X + �(4A+ 2X3 − 2X − 2BX)+ �2(2AX2 −X3)

4+ 2�(1+ B − 2XY +X2)+ �2X2
, (52)

h2(X, Y )= 4Y + �(2Y + 2BY + 4BX − 4XY 2 − 2YX2)

4+ 2�(1+ B − 2XY + X2)+ �2X2

+ �2(3YX2 − 4AXY + 2AB)

4+ 2�(1+ B − 2XY +X2)+ �2X2
, (53)

it may be seen (after some tedious manipulations) that the resulting Jacobian J1 at the
fixed point (X∗ = A and Y ∗ = B/A) is the matrix

J1 = 1

α

[
4+ 2�

(
A2 + B − 1

)− 4�2A2 4�A2

−4�B 4+ 2�
(
A2 + B − 1

)− �2A2

]
, (54)

in which α = 4+ 2�(1− B + A2 + �2A2). The eigenvalues of (54) are given by

λ1= 4+ 2�
√
(A2 − B + 1)2 − 4A2 − �2A2

4+ 2�(A2 − B + 1)+ �2A2
,

λ2= 4+ 2�
√
(A2 − B + 1)2 − 4A2 − �2A2

4+ 2�(A2 − B + 1)+ �2A2
.

(55)
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It is clear from (55) that the denominators of λ1 and λ2 are always positive provided
A2 − B + 1 > 0 and it is easy to show then that

|λ1| < 4+ 2�(A2 − B + 1)− �2A2

4+ 2�(A2 − B + 1)+ �2A2
< 1 (56)

and

|λ2| < 4− 2�(A2 − B + 1)− �2A2

4+ 2�(A2 − B + 1)+ �2A2
< 1. (57)

The inequalities in (56) and (57) are also true wheneverA2−B+1 = 0. Thus, a sufficient
condition for (26) and (27) to converge to the fixed point (A,B/A) is A2 − B + 1 � 0.
Similarly, it may be shown that the second Brusselator converges to the fixed point
(E,U, V ) = (1/B,AB, 1/(AB2)) whenever the inequalities in (6) are satisfied.

5. Numerical verification

In order to verify the convergence properties of the implicit, second-order GLTW2
numerical method {(26), (27), (46), (47), (48)}, it was tested on the initial-value prob-
lem (3). Extensive numerical experiments were carried out with various values of time-
steps � and initial conditions within the interval −8 � X0, Y 0, E0, U 0, V 0 � 8. Of
course, X0, Y 0, E0, U 0, and V 0 are concentrations so that non-positive values are irrele-
vant, but the results show that the numerical method GLTW2 performed well for negative
initial conditions, too. Comparisons were made with the standard explicit Runge–Kutta
methods of order two and four.

The behaviours of the two Brusselators for many different combinations ofA andB
satisfying or violating the stability conditions (g1, g2 and g3) using � = 0.001 are tabu-
lated in table 1.

As expected, both methods (GLTW2, RK2 and KR4) gave solution sequences that
converge to the fixed point (X, Y,E,U, V ) = (A,B/A, 1/B,AB, 1/(AB2)) whenever
the inequalities in (6) are satisfied, and give oscillatory or divergent results otherwise.
For instance, when the parameters A and B were given the values 2 and 1.5, respec-
tively, thereby satisfying the condition 1 − B + A2 = 3.5 > 0, the first Brusselator is
stationary. In the case when A = 0.5 and B = 1, satisfying the stability condition g1

Table 1
Convergence properties of two Brusselators using GLTW2 with � = 0.001.

A B g1 g2 g3 Brusselator 1 Brusselator 2

2 1.5 3.5 18.500 303.500 stationary stationary
0.5 1 0.25 0.750 −0.438 stationary oscillatory
1 3 −1.0 38 1325 oscillatory non-autonomous oscillation
1 0.8 1.2 0.952 −0.455 stationary oscillatory
0.2 1.2 −0.160 0.557 −0.330 oscillatory oscillatory
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Table 2
Hopf bifurcation analysis of Brusselator 1 using GLTW2 with A

fixed at 1, B varied and � = 0.001.

A B g1 Brusselator 1

1 0 2 stationary
1 1 1 stationary
1 2 0 neither stationary nor oscillatory
1 3 −1 oscillatory
1 4 −2 oscillatory

(for the first Brusselator) and violating g3 (for the second Brusselator), the second Brus-
selator oscillates autonomously (oscillation of the second Brusselator when the first is
stationary). The absence of back-coupling in the system is responsible for ensuring that
the first Brusselator remains stationary even when the second Brusselator is oscillating.

The phenomenon of non-autonomous oscillation of the second Brusselator (forced
oscillation of the second due to the oscillation of the first) is illustrated in table 1 by
choosing A = 1 and B = 3. With these choices, condition g1 is violated whereas
g2 and g3 are both satisfied. Hence, Brusselator 2, if acting alone (without coupling),
will be expected to be stationary. The oscillation of the first Brusselator drives the second
Brusselator to oscillate. This confirms the prediction and analysis of section 2.2. Another
important observation to make is the case A = 0.2 and B = 1.2 in which both the
two Brusselators are oscillatory. This is an interesting case which the authors hope to
investigate (for the possibility of modulated oscillation) in the near future.

In table 2, the Hopf bifurcation of the first Brusselator was investigated by fixing
the value of A at A = 1 and varying B. Values of B to the left of (less than) the
bifurcating value (B = 2) lead to the first Brusselator being stationary, whereas values
of B to the right of (greater than) B = 2 make the first Brusselator to oscillate, thereby
causing the second to oscillate non-autonomously. Thus, the numerical method GLTW2
confirms the bifurcation direction of the first Brusselator.

The effect of the time-step on the numerical methods was monitored by solving (3)
using both the RK2, RK4 and GLTW2 methods with various time-steps. The concen-
tration parameters A and B were assigned the values 2 and 1.5 respectively, and the
results tabulated in table 3. Clearly, from table 3, the method GLTW2 has superior sta-
bility property (admit large time steps) than the RK2 (which fails when � � 0.3) and the
RK4 (which fails for � � 0.5). This, of course, is consistent with the known fact that
implicit methods, unlike explicit schemes, are very suited for solving non-linear initial
value problems.

It is worth mentioning that using values of A and B for which the convergence
criteria becomes zero, it was observed that the methods appeared neither to converge
nor to diverge. This is because this case marks the boundary between the convergence
and divergence criteria. Detailed analytical study on the possibility of a double-Hopf
bifurcation will be carried out in a separate study.
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Table 3
Convergence properties of GLTW2, RK2 and RK4 using various time-steps with A = 2 and

B = 1.5.

� GLTW2 RK2 RK4

0.001 converge converge converge
0.01 converge converge converge
0.1 converge converge converge
0.2 converge converge converge
0.3 converge diverge (method failed) converge
0.5 converge diverge diverge (method failed)
1 converge diverge diverge
2 converge diverge diverge
3 converge diverge diverge

6. Conclusion

A competitive, implicit, second-order accurate numerical method has been devel-
oped for the coupled Brusselator system introduced by Tyson [3]. The numerical method
converges to its correct fixed point whenever the input chemicals A and B are chosen
such that a certain convergence criterion is satisfied. The fixed point of the numerical
method was seen to have the same stability properties as the critical point of the ODE
system arising from coupling two Brusselators in series. The second-order method was
seen to be more competitive (in terms of numerical stability) than Runge–Kutta meth-
ods of order two and four. The numerical method confirms the existence of oscillatory
solutions as suggested by the Hopf bifurcation analysis.
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