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A b s t r a c t - - W e  discuss a discrete population model describing single species growth with periodic 
harvest/stock. The theory of coincidence degree is applied to show that the model equation admits 
two periodic solutions. Under minor technical assumptions, we show that one of these two periodic 
solutions is positive and attracts almost all positive solutions.~) 1999 Elsevier Science Ltd. All rights 
reserved. 

1. I N T R O D U C T I O N  

Much has been done for the discrete model 

[ 1 ] 1 x(n + 1) -- .1 + ~)x(n)  - ~ x ( n )  (1.1) 

describing the growth of a single species population, where c~ > 0 is the parameter related to the 
growth rate and K > 0 is the carrying capacity [1-3]. 

In this paper, we consider model equation (1.1) subject to periodic harvest/stock. In particular, 
we consider the nonautonomous difference equation 

[ 1 ] 
x(n + 1) = #x(n) 1 - -~x(n) + b(n), for n e N, (1.2) 

where # = 1 + a E (1, 2), b(n) denotes the difference between the stock and the harvest rates at 
t ime n + 1, and we assume that  b : N -~ R is an w-periodic number sequence with w _> 1 and 
satisfies 

(# - 1) 2 
Ib(n)I < 4p K, for n E N. (1.3) 
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A first step towards our complete description of the dynamics of (1.2) is the existence of 
multiple periodic solutions. We note that  such an existence problem is highly nontrivial and, to 
the best of our knowledge, while some progress has been made for differential equations [4-7] and 
linear difference equations [8-10], little has been done for nonlinear problems [11]. Our approach 
to the existence problem here is based on the coincidence degree and the related continuation 
theorem as well as some a priori estimates. We will first formulate a general existence theorem 
which, when applied to equation (1.2), implies the existence of two periodic solutions 5 and x*. 
We will then show that  • is unstable and x* is exponentially asymptotically stable and attracts 
all positive solutions x of (1.2) if x(1) # 5(1). 

2. E X I S T E N C E  OF P E R I O D I C  S O L U T I O N S  
OF G E N E R A L  D I F F E R E N C E  E Q U A T I O N S  

In this section, we apply the theory of the composite coincidence degree to a general difference 
equation to obtain a general existence result for periodic solutions of prescribed periods. 

Let R, N, and Z denote the sets of all real numbers, nonnegative integers, and integers, respec- 

tively. We fix two integers w > 1 and q > 1. Define 

lq = {x = {x(n)} : x(n) • •q, n • Z}. 

For a sequence of mappings {Gn : n • N} with Gn : lq --* R q, we use G = {Gn} to denote the 
mapping G : lq ~ lq defined by 

G(x) = {an (x )} ,  for x • lq. (2.1) 

For a = ( a l , . . .  ,aq) • Rq, define [a[ -- maxl<3<q Jail. Let l w C_ lq denote the subspace of all 
w-periodic sequences equipped with the usual supremum norm [[-I[, i.e., 

Ilxlf= max Jx( )l, 
0<n<w--1 

for x = {x(n) : n • Z} • I w. 

It is easy to see that  I w is a finite-dimensional Banach space. 
Let the linear operator S : I w --* Rq be defined by 

w - 1  

S(x)  = _1 Z x(n),  x = {x(n)} • l ~. (2.2) 
n~O 

Then we obtain two subspaces l~' and l~' of 1 ~ defined by 

= {x  = • s ( x )  = 0} (2.3) 

and 
l~ = {x = {x(n)} • l ~ : x(n) =/3, for some ~ • R q and for all n • N}, 

respectively. Denote by L : l  ~ --* l ~ the difference operator given by Lx  = { (Lx) (n)}  with 

(2.4) 

(Lx)(n)  = x (n  + 1) - x(n),  for x 6 l w and n 6 Z. (2.5) 

Let a linear operator K : l  ~ --* l~ be defined by K x  = { (Kx ) (n ) }  with 

(Kx ) (n )  = S(x) ,  for x E l ~ and n E Z. (2.6) 

Then we have the following lemma. 
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LEMMA 2 .1 .  

(i) Both  l~ and l~ are closed linear subspaces o f  l ~ and 

l ~ = l~ ~ l~, dim l~ = q. (2.7) 

(ii) L is a bounded linear operator wi th  

Ker L = l~ and Im L = l~. (2.8) 

(iii) K is a bounded linear operator wi th  

Ker (L + K)  = {0} and Im(L + K)  = l ~, 

that  is, L + K : I ~ --* l "~ is a bijection. 

PROOF. It is easy to  check tha t  bo th  l~ and lc ~ are closed. To show (2.7), we associate each 
x = {x(n)}  E l ~ with two sequences xc = {xc (n)}  and x0 = {xo(n)} defined by 

xc(n)  = S ( x )  and xo(n)  = x (n)  - S (x ) ,  for n E Z. (2.9) 

Obviously, xc E l~ and x0 E l~'. Hence, I u = l~ + l~. On the other  hand, if x = {x(n)} E l~ M l~', 
then  x E lc ~ implies tha t  there  exists /3 E R q so tha t  x (n )  =_ /3 for n E Z and x E l~ gives 
13 = S ( x )  = 0, and hence, x = 0. This  completes the proof  of (i). 

It  is tr ivial  to see from (2.3) and (2.5) t ha t  K e r L  = l~', so we only need to prove I m L  = l~'. 
Observe t ha t  S ( L x )  = 0 for any x e l u. Therefore,  Im L C l~. We now prove l~ C Im L. For 
any y = {y(n)} E l~', define x = {x(n)} by 

{:i11 E y(i) ,  if n _> 1, 
i=0 

x (n )  = if n = 0, 

- ~ y ( i ) ,  i f n < - l .  

T h e n  it is easy to  check tha t  x ( n + w )  - x ( n )  = wS(y )  for n >_ - w  and x ( n + w )  - x ( n )  = - w S ( y )  

for n < - ( w  + 1). This,  combined with y E l~', implies tha t  x ( n  + w) = x (n )  for all n E Z, i.e., 
x E l ~. Clearly, L(x )  = y. Therefore,  l~ C Im L, and hence, (ii) is proved. 

Finally, to  prove (iii), we first observe from (2.2), (2.5), and (2.6) the  following basic relations: 

S ( L x )  = O, S ( K x )  = S (x ) ,  L ( K x )  = O, for x E l ~. (2.10) 

If x E Ker  (L + K) ,  then  L x  + K x  = O. Applying S to  bo th  sides and using (2.10), we get 
S ( x )  = O. This,  combined with (2.6), gives K x  = O, and hence, L x  = O. Thus,  (ii) and (2.3) 
imply t ha t  x E l~ M lc ~. Therefore,  by (i), x = 0, i.e., Ker (K  + L) = {0}. On the other  hand, for 
any x E I w, we can decompose x uniquely as x = xc + xo with xc E l~ and x0 E l~. T hen  (2.8) 
implies tha t  there  exists ~) E 1 ~ so tha t  L~) = x0. Let  y = fl - Kf l  + K x ,  then  y E l w. We have 
by (2.10) tha t  L y  = Lfl = Xo and S(y )  = S(x ) .  From S(y )  = S (x ) ,  we get K y  = xc. Thus,  we 
have (L + K ) y  = x0 + xc = x, and hence, Im(L + K)  = l ~. This  completes  the  proof. 

We now recall a general cont inuat ion theorem related to coincidence problems. Let  X and Y 
be two Banach  spaces. A closed linear opera tor  L : Dom (L) N X --* Y is a Fredholm opera tor  of 
index zero if 

(i) Ker  L is a finite-dimensional subspace of X;  
(ii) Im L is closed and has finite codimension; 

(iii) dim Ker  L = codim Im L. 
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For such an operator L, a compact resolvent is a compact linear ope ra to r /~  : X -~ Y such that  
L + / ~  : Dom (L) --* Y is a bijection. We denote by CR(L)  the set of all compact resolvents 
of L. For a n y / ~  • C R ( L ) , w e d e f i n e R  R = ( L + ~ ) - I  : y . _ ~  X .  Let f~ c_ X be a bounded, 

open subset such that  Dom (L) M f~ ~ 0 and G : ~ -* Y be a continuous mapping. For any 

R E CR(L) ,  we define a transformation HR(G ) : -~ ---* X by HR(G ) = RR[G +/~] .  We say 

that  G is L-condensing if HR(G ) : -~ ---* X with some/~  • CR(L)  is a condensing mapping. We 

denote by CL(~, 0R) the class of all L-condensings G : ~ -~ Y such that  x ~ HR(G)(x  ) for every 
x • 0R. The following general result will be needed (see [12, Theorem 4.6.9]). 

THEOREM 2.2. Suppose that f~ is an open, bounded, convex, and symmetric neighborhood of 
0 • X .  Assume that G • CL(-~, 0~) and there is no point x • OR such that x+Ax  • Dom (L) and 

L(x + Ax) = G(x) - AG( -x )  for A • [0, 1]. Then degL(G, fl) ~ 0 and the composite coincidence 
problem 

has at least one solution in ~; here, degL(G, f~ ) := deg(Id - HR(G),f~ ) with R • CR(L)  is the 

composite coincidence degree of G and the operator L in the set f~, and deg(Id - HR(G),  ft) is 
the degree for a condensing field. 

To apply Theorem 2.2 to difference equations, we let X = Y = 1 w, ~t C l ~, be an open, 
bounded subset and G : ft -=+ I w a continuous mapping which maps every bounded subset of 12 

into bounded set of I w. For r > 0, we set 

~ r  = { x  = ( x ( n ) )  • g~ : llxll < r} .  

It is clear tha t  f~r is an open, bounded, convex, and symmetric neighborhood of 0 • l ~. 
Using Lemma 2.1, we have the following corollary. 

COROLLARY 2.3. 

(i) The bounded linear operator L : l ~ --* l ~ is a Predholm operator of index zero. 
(ii) The bounded linear operator K : l ~ ~ l~ is a compact resolvent of L, i.e., K • CR(L) .  

(iii) RK = (L + K)  -1 and HK = RK[G -F K] are both compact operators, i.e., G is L-con- 
densing. 

(iv) G • CL('~, OR) provided that Lx  # G(x) for every x • 0R. 

As an immediate consequence of Theorem 2.2 and Corollary 2.3, we have the following existence 
theorem for w-solutions of the difference equation: 

Ax(n)  = Gn(x), (2.11) 

where x -- {x(n)} E lq, Ax(n)  = x(n  + 1) - x(n), and Gn : I a --* R q for n E Z. 

THEOREM 2.4. Assume that there ex/sts r > 0 such that 

(i) G = {Gn} : ~r  -* l ~ is a continuous mapping whose image is a bounded set of l~; 
(ii) there is no point x E Of~r such that 

1 A 
Ax(n)  = -~--_~-fGn(x) - -~-_~--~G,)(-x), (2.12) 

for A • [0,1]. 

Then (2.11) has an w-periodic solution xw = {x~(n))  satisfying [[x~[[ < r. 

We now consider a special case of (2.11): 

Ax(n)  = vx(n) + In(x) -b c(n), for x • lq, (2.13) 

with ['r[ • (0, 1), c = {c(n)} • l w, and fn : lq ~ R q for n • Z. The following existence theorem 
of w-periodic solutions will be crucial in our investigation of model equation (1.2). 
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THEOREM 2.5. / / t h e r e  exists r E (0, 1) such that 

(i) f = { fn}  : ~r ~ lW is a continuous mapping and satisfies 

Ifn(x)l <__ [71r 2, for x E ~ r  and n E Z, 

(ii) Ilcll < b i t ( 1 -  r), 
then (2.13) has an w-periodic solution x~ = {x~(n)} satisfying IIx~ll < r. 

PROOF. Let Gn(x) = 7x(n)  + fn(x) + c(n) for x = {x(n)} C lq, and G(x) = {Gn(x)} be defined 
by (2.1). It is clear tha t  G : ~ r  ~ I ~ is a continuous mapping whose image is a bounded se t  
of l ~. By Theorem 2.4, we only need to prove tha t  there is no point x e 0fir  such tha t  (2.12) 

holds. 
Assume, on the contrary, there exists x = {x(n)} ~ 0fi~ such tha t  (2.12) holds, tha t  is, 

] I-Ao ~ , 1 x f . ( - z )  + x(n -4- 1) = (1 -4- 7)x(n) -4- ~ f , (  ) - I + A0 1-~-~o cLn)' (2.14) 

for some A0 6 [0, 1]. Let Ix(no)l = r for some no > 0. We will complete the proof in two cases. 

CASE A. 0 < ~ < 1. We have by (2.14) and Condition (i) tha t  

1 1 
[x(n)l <_ w:-.-.-.-.-.-.-.~5_, [x(n + 1)1 + ~---Yh--~_, ~, (2.15) 

l t l T I  ± ~- FYI 

where ~ = lTlr 2 +Hcll. From (2.15), it follows tha t  

(1)w 1 [~( 1 ) j ] 
Ix(n0)[_< ~ ] x ( n o + w ) i ' ÷ ~ k j = o  ~ • (2.16) 

Noting tha t  Ix(no)l = Ix(n0 -4- w)l = r and ~ = 171r 2 + [IclI, we obtain from (2.16) tha t  [[cl[ > 
tTir(1 - r), which contradicts Condition (ii). 

CASE B. - 1  < 7 < 0. We have by (2.14) and Condition (i) tha t  

Ix(n 4- 1)1 <_ (1 - I~rl)Ix(n)l -4- ~, 

W X  n w-1  where ~ is defined as in Case A. Hence, we have Ix(no÷w)] <_ ( 1 - h ' l )  I ( 0)['4"~[~-':~j=0 (1-17[)J], 
which implies [Ic[] >_ 171r(1 - r), a contradiction. This completes the proof. 

In Theorem 2.5, if we let q = 1 and fn(X) = f (x(n))  for x = {x(n)} 6 lq, then we obtain the 

following conclusion. 

COROLLARY 2.6. I fc  = {c(n)} 6 l ~ satisfies Ilcll < ar(1 - r) for s o m e  ~ 6 (0, 1) a n d  r 6 (0, 1/2),  

then the following difference equations: 

Ay(n)  = ay(n) (1 - y(n) ) -4- c(n) 

and 
Az(n) = - a z ( n )  (1 - z(n)) - c(n) 

have w-periodic solutions ~ = {~(n)} and-5 = {~(n)}, respectively, satisfying 
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3. E X I S T E N C E  A N D  A T T R A C T I V I T Y  
O F  P E R I O D I C  S O L U T I O N S  O F  T H E  

P O P U L A T I O N  M O D E L  W I T H  H A R V E S T / S T O C K  

With the preparation in Section 2, we can now consider the following difference equation: 

1 
x(n + l) = #x(n) [ 1 -  -~x(n)] + b(n), 

with # E (1, 2) and b = {b(n)} E 1 °'. We assume throughout this section that 

Define 

(3.1) 

]lbI[ < 2 ~ l ,  K . ( #  _ (h) 
4# 

1 1 [  4# ]1/2 
ro(b)- 2 2 1 (~__-T)2glJbl[ (3.2) 

Clearly, 0 _< ro(b) < 1/2 and IIbH = ((# - 1)2/#)Kro(1 - ro), here and in what follows, for the 
sake of simplicity, we write r0 for ro(b). 

THEOREM 3.1. If  condition (h) holds, then (3.1)has two w-periodic solutions ~ = {~(n)} and 
x* = {x* (n)} satisfying 

,~(n)[ <_ ( 1 - 1 )  Kro (3.3) 

and 

x./n/(1 /30, 
respectively, where ro is defined by (3.2). x* is always a positive solution. Moreover, if  b(n) <_ 0 
and S(b) < O, then • is a positive solution; if  S(b) > O, then • is not a positive solution. 

PROOF. Set a = # - 1 and c = {e(n)} with c(n) = (# / (#  - 1)) ( l / K )  b(n) for n E N. We know 
from (3.2) that  

Ilcll = ~r0 (1 - r0) < ar(1 - r), (3.5) 

for any r E (r0, 1/2). Making the change of variables z(n) -+ y(n) with x(n) = ((# - 1)/#) gy (n ) ,  
we can rewrite (3.1) as 

Ay(n) = ay(n) [1 - y(n)] + c(n). (3.6) 

By virtue of (3.5) and Corollary 2.6, (3.6) has an w-periodic solution Y(r) = {Y(r)(n)} satisfying 
[[Y(r) [[ < r. We claim that Y(r) is independent of the choice of r E (r0, 1/2). For any ro(b) < r2 < 
rl  < 1/2, set 

r 1 = 1 - a + 2rla. 

It is easy to see that  0 < ~ < 1 and 

(1 - a )  - a  [~(r,)(n) + ~(r2)(n)] _< 7, for n _> 0. 

This, combined with (3.6), gives us 

+ 1 ) -  ~,r2,(n + 1) = [Y(r,) ,n,- Y(r=)(n)] {( 1 - a ) - a  [~ , r , ) (n)+ ~(r2)(n)] } Y(rt)( n 

< V ~(r,)(n) - Y(r2)(n) • 

Since both Y(r,) and Y(r2) are w-periodic, we have Y(r,) = Y(~2)" This proves the claim. Denote 
this common w-periodic solution by y = {y(n)}. Then [[y[[ < r for any r E (r0, 1/2). Thus, 
[[~[[ _< r0. Consequently, ~ = ((# - 1 ) / # )Ky  is an w-periodic solution of (3.1) satisfying (3.3). 
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If b(n) _< 0 and S(b) < 0, then c(n) <_ 0 and S(c) < 0. Let i0 • {0 , . . .  ,w - 1} be given so tha t  
~(io) = mino<~<~_l ~(i). To prove tha t  E is positive, we only need to prove tha t  ~(io) > 0. If 
this were false, then ~(io) _< 0. From (3.6), we have 

(io ÷ 1) - - y  (io) ÷ a~  (io)[1 - ~  (io)] ÷ c (io) 

_< (io) + c (io). 

Thus, ~(io + 1) _< 0. Continuing in this fashion, we obtain ~(io + w) <_ ~(io) + c(io) + c(io + 1) + 
• .. + c(io + w - 1) < ~(io), since S(c) < 0. This contradicts y • l ~. 

If S(b) >_ O, then S(c) _> 0. Assuming, by way of contradiction, tha t  x(n) > 0 (or, equivalently, 
y(n) > 0 for n _> 0), then (3.6) and ]y(n)l <_ ro give us 

0 = aS(~)--a!w Z°;-1 
j=O 

_> as  - a lwy ] -i 
j=O 

= a ( 1  - r o ) S ( ~ ) ,  

[~(j)]2 ÷ S(c) 

roy(j) 

which contradicts  S(~) > 0, since ro E [0, 1/2) and a E (0, 1). 
To obtain x*, we introduce the change of variables z(n) -- 1 - (# / (#  - 1)) ( l / K )  x(n) and 

t ransform (3.1) into 
Az(n) -- - a z ( n )  [1 - z(n)] - c(n). (3.7) 

The  same argument  used to get ~ shows tha t  (3.7) has an w-periodic solution z* = {z*(n)} 
satisfying IIz*ll < ro. Set z*(n) = (1 - z*(n))(1 - 1 / # ) g  for n > 0 and x* = {z*(n)}. Then x* 
is an w-periodic solution of (3.1) satisfying (3.4). Inequality (3.4) and to(b) e [0, 1/2) guarantee 
t ha t  x* is always positive. This completes the proof. 

We now consider the stabili ty of the above periodic solutions. For any no _> 0 and a E R, let 
x(no, a) = {x(n; no, a)} denote the solution of 

x(n ÷ l) = #x(n) [ 1 -  Kx(n)]  ÷ b(n), n >_ no, 

x (no) = a. 

Define a mapping 0o : (0, 1) ~ (0, 1) by 

e0( ) -- max{13 - 2#1, 1 - (1 - ~) (1 - 2r0) (# - 1)}, for ~ • (0,1). (3.8) 

Then we have the following result on the stability of x*. 

THEOREM 3.2. I f  (h) holds, then x* is exponentially asymptotically stable. Indeed, for any  
a • R, ~ • (0, 1) and no >_ O, if ]a - z*(no)[ <_ ~(1 - 2r0)(1 - 1/ l l )g  then 

Ix (no + j ;  no, a) - x* (n0 + j)] _< [00(~)] j la - x* (no)t, for j >_ O, 

where ~o(~) is defined by (3.8). 

PROOF. It is sufficient to show that ,  for any chosen n >_ no, 

Ix (n; no, a ) -  x*(n)l <_ ~ ( 1 -  2ro) ( 1 - 1 )  K 

implies 
Ix(n ÷ 1; no,a)  - x * ( n ÷  1)1 <_ 00(~) [x (n; no, a) - x ' (n) l .  

(3.9) 
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We know from (3.1) that  

# 1 x*(n)] Ix (n+ 1;no, a) - x * ( n +  1)[ = - -~#[x(n;no,a)+ [x(n;no, a) - x*(n)]. 

It is easy to check that 
# -  1 J ~ #  [x (n; no, a) + x*(n)] I _< 0o(~) 

by using (3.4), (3.8), and (3.9). This completes the proof. 

In what follows, we extend the above (local) stability result to the global attractivity of x* and 
we also want to obtain more precise estimates on the convergence rate of other solutions. For 
these purposes, we need several lemmas to estimate the rate between [x(n + 1; no, a) - x*(n + 1)1 
and [x(n;no, a) - x*(n)[ for n > no and a • R. Let 

Qo= { a e R :  a -  ( 1 - 1 )  K _< ( 1 - 1 )  K r o } ,  ( 3 . 1 0 )  

( 3 . 1 1 )  o = m a x  { ~  - I ,  i - ( I  - 2 t o )  ( ~  - i ) } .  

Then a E (0, 1). For any r E (ro, I - ro), let 

T(r) = max{q, 1 - (# - 1) (r - ro)}, (3.12) 

Qr= { a e R :  ( 1 - 1 )  K r < a <  ( 1 - 1 )  K ( l  +ro)} ,  (3.13) 

B° = {a e R : ( 1 - 1 )  Kr < a < K -  ( 1 - 1 )  K r } .  (3.14) 

It is easy to see that  Qo c_ Qr c_ B °. Define the set A0 by 

A0 = {a • R : 5 ( 0 )  < a < g - ~ ( 0 ) } ,  (3.15) 

where • = {~(n)} is the w-periodic solution of (3.1) obtained in Theorem 3.1. 

LEMMA 3.3. For any no >_ 0 and a • Qo, we have x(n; no, a) • Qo for n >_ no and 

Ix(no+j;no,  a ) - x * ( n o + j ) l  <_qJla-x*(no)l ,  [orj >_0, (3.16) 

where Qo and q are defined by (3.10) and (3.11), respectively. 
PROOF. First, we want to prove that for any no >_ 0 if a • Qo, then x(n; no, a) • Qo for any 
n > no. Equivalently, we want to prove that [z(no + j ) [  _< ro for any j > 1 and no >_ 0 provided 
that  [z(no)l <_ to. Obviously, it is enough to show that for any n _> no if ]z(n)[ _< to, then 
[z(n + 1)l < ro. From (3.9), we have 

z(n + 1) = z(n) - az(n)[1 - z(n)] - c(n). (3.17) 

We estimate ]z(n + 1)[ in two cases. 

CASE A. z(n) = r • [0,ro]. Then (3.5) and (3.17) give 

r - ( ~ r ( 1 - r ) - a r o ( 1 - r o ) < _ z ( n + l )  < r - a r ( 1 - r ) + a r o ( 1 - r o ) .  

It is clear that  z(n + 1) < ro provided that 

[ to  - ~ r o  (1  - ~o)1 - [ r  - ~ r ( 1  - r ) ]  > 0 .  
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Set T(t) = t - at(1 - t) for t E (0, 1). Then  qa'(t) = 1 - ~ + 2a t  > 0 implies tha t  qa(ro) - ~ ( r )  >_ 0. 

Thus,  z ( n ÷ l )  _< ro. On t h e o t h e r  hand, z ( n ÷ l )  >_ r-c~r(1-r)-c~ro(1-ro) > ( 1 - c ~ ) r - r o  > - r  0. 

Therefore ,  Iz(n ÷ 1)1 <_ ro. 

CASE B. z(n) = - r  E [--ro,0]. We obtain from (3.5) and (3.17) tha t  

z ( n + l )  < a r ( l + r ) + a r o ( 1 - r o ) - r  

= ar +~r  2 ÷ ~ r o -  ~ro ~ - r 

- - - - ( ~ r - - ? ' ÷ ( ~ r  2 - ( ~ r o  2 ÷ ~ r 0 - - r o ÷ r o  

~_ ro 

and tha t  

z(n ÷ l) > ar(l  ÷ r) - a r o ( 1 - -  ro) -- r 

>_ ar(1 -- r) -- aro (1 -- ro) -- r 

= ( t o )  - - r o  

_~ - - r  0. 

Thus,  [z(n + 1)[ <_ ro. 
In the  second step, we want  to show tha t  (3.16) holds. In view of the  fact t ha t  a E Qo implies 

x(n; no, a) E Qo for any n >_ no, we only need to prove tha t  for any n _> no if x(n; no, a) E Qo, 
then  

Ix (n+ 1;no ,a)  - x * ( n +  1)I <_ a[x(n;no,a) - x* (n ) l .  

Noting tha t  (3.1) gives 

[1 ] 
x (n + 1; no, a) - x*(n + 1) = ~ 1 - ~ (x (n; no, a) + x*(n)) Ix (n; no, a) - x*(n)], 

we only need to  show 

1 [x (n; no, a) + x*(n)] < ~- 1 - ~  - / z '  

which follows from (3.4) and (3.11) easily. This completes the proof. 

LEMMA 3.4. For  any no >_ 0 and a e Qr, we have x(n; no, a) E Qr for n >_ no and 

[ x ( n o ÷ j ; n o , a ) - x * ( n o + j ) [  < [T(r)]Jla--x*(no)[, f o r j  > 0 ,  (3.18) 

where T(r) E (0, 1) and Qr are defined by (3.12) and (3.13), respectively. 

PROOF. If a E Qo, then  Lemma  3.3 and (3.12) imply (3.18). So, wi thout  loss of generality, we 
may  assume tha t  (1 - 1/#)Kr < a < (1 - 1 / # ) K ( 1  - ro). 

Note  t ha t  if x(~;no,a) E Qo for some fi > no, then Lemma 3.1 and (3.11),(3.12) imply tha t  
x(n; no, a) E Qo for n >_ fi, and hence, (3.18) holds for j _> fi - no. Thus,  to  complete  the  proof  
we only  need to  show tha t  if 

( 1 - 1 )  Kr  <_x(n;no,a) < ( 1 - 1 )  K ( 1 -  ro), (3.19) 

then  

and 

0 < x*(n + 1) - x ( n  ÷ 1; no,a) <_ T(r) [x*(n) -- x ( n ; n o , a ) ]  

x(n;no,a) < x (n  ÷ l;no,a) < ( 1 - 1 )  K (l ÷ ro). 

( 3 . 2 0 )  

(3.21) 
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By (3.1), 

[1 ] 
x* (n + 1) - x (n + 1;no, a) = # 1 - ~ (x* (n) + x (n; no, a)) [x*(n) - x (n; no, a)].  

We observe tha t  x*(n) >_ (1 - 1 /# )K(1  - r o )  > x(n;no,a) from (3.4) and (3.19). To show (3.20), 
we only need to show 

0 < # - ~  # [x*(n) + x (n; no, a)] _< T(r). (3.22) 

In fact, (3.4) and (3.19) give 

<l - 1 )  (l + r - ro) K <_ x*(n) + x (n; no,a) < 2 ( 1 - 1 )  K, 

from which (3.22) follows. 
Using the change of variables x(n; no, a) = ((# - 1)/#)Ky(n), we can rewrite (3.21) as 

y(n) < y ( n + l )  < 1 + r o ,  

where y(n) satisfies r <_ y(n) < 1 -  ro and (3.6). We know from ro < r <_ y(n) < 1 -  ro 
t ha t  y(n)[1 - y(n)] > ro(1 - ro). This, together with (3.5) and (3.6), yields Ay(n) > aro(1 - 
ro) - aro(1 - ro) = 0. Thus, y(n + 1) > y(n). On the other hand,  we obtain from (3.20) tha t  
x(n + 1; no, a) < x*(n + 1) _< (1 - 1 /# )K(1  + ro). Thus, (3.21) holds. This completes the proof. 

If ro < (1 /2) (1 / (#  - 1) - 1), we define the set QO by 

LEMMA 3.5. 

Q°= l a E R :  ( 1 - 1 )  K ( l  +ro) < a < K -  ( 1 - 1 ) K ( l  +ro) I .  

Ifro < (1/2)(1 / (#  - 1) - 1), no >_ 0 and a E QO, then 

I x (no + j ;  no, a) - x* (no + J)I -< aJ I a - x* (no)i,  

(3.23) 

x (n+  1;no,a)  < x(n;no, a). 

Indeed, if (3.26) and (3.27) hold, then  by (3.4) and sett ing n = no, we get 

x(no + l;no,a) < x(no;no,a) =a < K -  ( l - 1 )  K (l + ro) 

• 

and 

Ix(~z+j;no, a)-x*(~z+j) i<_aJix(~;no,a)-x*(~)l ,  for j _> 0. (3.25) 

In view of (3.11), a > 2 - # + 2to(# - 1) _> 2 - #. Thus, the lemma is proved if we can show tha t  
ro < ( 1 / 2 ) ( 1 / ( # -  1) - 1) and z(n;no,a) E QO for n _> no imply 

0 < x ( n +  1;no,a)  - x*(n+ 1) _< ( 2 -  # ) [ x ( n ; n o , a ) -  x*(n)] 

where a is defined by (3.11). 

PROOF. First ,  if x(~; no, a) E Qo for some fi > no, then it follows from Lemma 3.3 t ha t  

(3.26) 

(3.27) 

(3.28) 

for j > O, (3.24) 
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Consequently, if x(no + 1; no, a) _< (1 - 1 /#)K(1 + ro), then (3.25) implies (3.24); and if x(no + 
1;no,a) > (1 - 1 /#)K(1 + ro), then (3.28) implies x(no + 1; no,a) • QO. In the latter case, we 
can continue the same procedure for n = no + 1, no + 2 . . . .  to yield (3.24). 

It remains to verify the relations (3.26),(3.27). Using the change of variables y(n) = (#/(# - 
1)) ( l / K ) x ( n ;  no, a) for n > no, we rewrite (3.27) as 

y(n + 1) < y(n), if y(n) > 1 + ro, (3.29) 

where y(n) satisfies Ay(n) = ay(n)[1 - y(n)] + c(n). From (3.5) and y(n) > 1 + to, it is easy to 
see that  Ay(n) < a(1 + ro)(-ro) + aro(1 - ro) _< 0, which implies (3.29). On the other hand, 
combining (3.4) with (3.23), one obtains 

Accordingly, 

2 ( 1 - 1 )  K <x(n;no, a)+x*(n) <K. 

# [x(n;no, a)+x*(n)] < 2 - # .  o<~-~ 
Now, (3.26) can be verified directly from x(n; no, a) > (1 - 1 /#)K(1 + ro) _> x*(n) and 

{ 1 [x(n;n°'a)+x*(n)]} [x(n;n°'a)-x*(n)] x ( n + l ; n o , a ) - x * ( n + l ) = #  1 - ~  

This completes the proof. 

LEMMA 3.6. For any no >_ 0 and a E R, 

x(no+j;no,a) =x(no+j;no,  K - a ) ,  forj > 1. 

PROOF. It is sufficient to show x(no + 1;no,a) = x(no + 1;no ,K - a), which follows directly 
from (3.1). 

For r E (to, 1 - to), define 

Q ~ = { a e R : K - ( 1 - 1 )  K ( I + r o ) < a < K - ( 1 - 1 ) K r } .  (3.30)  

LEMMA 3.7. For any no > 0 and a E (~r, 

Ix (no+j;no ,a) -x*(no+j) l  <_ [T(r)]Jla-x*(no)l, forj >__0. (3.31) 

PROOF. First, from (3.1), (3.4), and (3.30), we have 

Ix (no + 1; no,  a) - z*  (no + 1)1 < (~  - 1 ) l a  - x* (no)l  • 

Then using Lemmas 3.4 and 3.6 and (3.32), we get 

(3.32) 

Ix (no + j;  no, a) - x* (no -4- J)l = I x (no -4- j ;  no, K - a) - x* (no -4- J)l 

<_ IT(r)] j-1 IX (no -4- 1; no, g - a) - x* (no -4- 1) I 

= [~'(r)] j -1  Ix(no -4- 1; no,a) - x* (no -4- 1)1 

< [~(r)] ~-1 (~  - 1 ) l a  - z*  (no) l ,  

f o r j  > 1. From (3.11) and (3.12), we have ( # - 1 )  < r(r) .  Therefore, (3.31) holds. This completes 
the proof. 

Summarizing the above results, we obtain the following conclusion. 
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THEOREM 3.8. I f  (tl) holds, then for any no >_ 0 and a E B°r with r E (ro, 1 - ro), we have 
x(n; no, a) E B ° for n > no and 

Ix (n;  a )  - x * ( n ) l  < [r( , ' ) ]  n - n °  - x* ( n o ) l ,  / 'or n > no, 

where B ° and 7"(r) • (0, 1) are defined by (3.14) and (3.12), respectively. 

We need the  following technical  result  for our discussion abou t  the  instabi l i ty  of  5. 

LEMMA 3.9. For any  no _> 0 and  a < - ( 1  - 1/#)Kro,  we have x(n; no, a) --* - c o  as n --* co. 

PROOF. Let  ~(n) = - ( # / ( #  - 1 ) ) ( l / K ) x ( n ;  no, a) for n > no. T h e n  ?)(n) satisfies 

A~)(n) = all(n)[1 + ~)(n)] - c(n). (3.33) 

So we only need to prove t h a t  /)(no) > ro implies ~)(n) ~ co as n --* oo. Subs t i tu t ing  (3.5) 

into (3.33), we ob ta in  

~) (no + 1) - ~) (no) > a?) (n0) [1 + ?) (no)] - a ro  (1 - r0) 

> 

Thus ,  ~)(no + 1) > ~)(n0) > to. Repea t ing  the  above a rgumen t  leads to 

fl (no + j )  - ~1 (no) >_ j(~r~, 

which implies t h a t  ~)(n) --* oc as n ~ co. This  completes  the  proof. 

We are now ready  to  s t a te  our ma in  results regarding the  s tabi l i ty  of  the  periodic solut ions 

and  x*. 

THEOREM 3.10. Assume condition (h) holds, no >_ 0 and a • R such that [a[ _< (1 - 1/#)Kro .  
Then we have 

(i) Ix(n;no,a) - x * ( n ) l - - *  0 as n --* co ff a > 5(no); 
(ii) x(n;no ,a)  --* - o o  as n --* oo ira < ~(no)  (this implies t ha t  5 = {5(n)} is unstable). 

PROOF. We can derive easily f rom (3.3) t h a t  for any  n >_ no if Ix(n; no, a)l <_ (1 - 1/#)Kro,  t hen  

{ 1 [ x ( n ; n o , a ) + ~ ( n ) ] } > l + ~ l o ,  (3.34) # 1-~ 

where 7/o -- (/z - 1)(1 - 2ro). 

(i) a > ~(no) .  In  this case, we claim t h a t  we can find a jo > 1 such t h a t  

(1 
Indeed,  from (3.1), we have 

< x(no  + jo;no,a)  < ( 1 - 1 )  K. 

1{ l 1 (3.35) x (n  + l;no,a) - '~(n  + l) = -~ 1 -  --~ 

for n _> no. Let t ing n = no in (3.35) and using (3.34) and the fact that  a > "~(no), we 
obta in  

z ( n o  + 1; no, a) - ~ (no + 1) > (1 + 7 7 o ) [ a - ~ ( n o ) ] ,  

if Ix(n;no, a)l <_ (1 - 1/#)Kro.  Thus,  x(no + 1 ;no , a )  > ~(no + 1). Cont inuing in this 
fashion, we can find a jo >_ 1 such t h a t  Ix(no + j;no,a)l  < (1 - 1/#)Kro,  for j -- 
0 , 1 , . . . , j o  - 1 and x(no +jo;no,  a) > (1 - 1/#)Kro.  To prove t h a t  x ( n o + j ; n o , a )  < 
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(1 - l / i t ) K ,  we int roduce the change of variables x(n;no,a) = ( ( i t -  1 ) / i t )Ky(n )  for 

n > no. Then  y(no + jo) satisfies 

y (no + Jo) = Y (no + jo - 1) + (it - 1)y (no + Jo - 1) [1 - y (no + jo - 1)] + c (no + J0 - 1) 

and ]y(no + jo - 1)] < ro. This  and (3.5) give 

y (no + Jo) < ro + 2(# - 1)r0 (1 - r0) 

< ro + 1 - r0 

----1. 

Consequently,  x(no + J0; no, a) < (1 - 1/#)K.  This proves the claim. 
Using the  result of the  claim, we can find an r E (to, 1 - r0) such t ha t  x(no +J0;  no, a) E 

Q~. Then  (i) follows from Theorem 3.8 and Qr c_ B °. 
(ii) a < 5(n0).  The  proof  is similar to tha t  of (i) above. Namely, we first find a jo > 1 

such tha t  x(no +jo;no,a)  < - ( 1  - 1/#)Kro, and then derive (ii) from L e m m a  3.9. This  
completes  the  proof. 

T h e  following two lemmas, which can be proved by using Lemmas 3.6, 3.9, and Theorem 3.10, 
are impor t an t  in our  description of the basin of a t t rac t ion  of the periodic solution x*. 

LEMMA 3.11.  Let no >_ 0 and assume K - (1 - 1/#)Kro < a < K + (1 - 1/it)Kro. Then 

(i) ]x(n;no,a) - z*(n)[  ---+ 0 as n --~ oc i l K  - a > 5(no); 
(ii) x(n;no, a) --* -oo  as n ~ (x) i l K  - a  < 5(no).  

LEMMA 3.12.  For any  no > 0 and a > K + (1 - 1 / # ) K r o ,  we have x(n; no, a) ---* - c ¢  as n ---* oo. 

Define a set Do by 

Do= { a E R :  ( 1 - 1 )  K r o < a < K - ( 1 - 1 ) K r o } .  (3.36) 

THEOREM 3.13.  Let (h) hold. We have 

(i) Ix(n; 0, a)  - x* (n ) l  - - '  0 a s  n --* oo  i f  a n d  only if a E Ao, where Ao is defined by (3.15). 
(ii) x(n; O, a) is a positive solution if a E Do. Moreover, i f  a E B ° for some r E (ro, 1 - ro), 

then 

Ix (n;O,a) -  x*(n)l  ___ [T(r)l= la - x*(0)l ,  torn  > 0, 

where Do and T(r) are de/ined by (3.36) and (3.12), respectively. 
(iii) I fx (n;  0, a) is a positive solution of (3.1) and x(1; 0, a) # 5(1),  then a E Ao. 

PROOF. 

(i) If Ix(n; O, a) --x*(n)l --* 0 as n --* ~ ,  then  {x(n; 0, a)} is bounded.  Combining L e m m a  3.9 
with Theorem 3.10, we get 5(0) < a < K - 5 ( 0 ) .  I f a  = 5 ( 0 )  o r a =  K - 5 ( 0 ) , t h e n  
L e m m a  3.6 implies tha t  x(n; 0,a)  = 5(n)  for n E N. This  contradicts  Ix(n; 0,a) - 
x*(n)l--* 0 as n ~ c¢. Thus,  we have 5(0) < a < K -  5(0),  i.e., a E A0. On the  
o ther  hand, if a E Ao, applying Lemma  3.11(i) and Theorems  3.10 and 3.8 with no = 0 
yield Ix(n;O,a) - x*(n)l ~ 0 as n ~ oc. 

(ii) We first note  tha t  a E Do implies tha t  there  exists r E (ro, 1 - to) such tha t  a E Br  °. 
T h e n  (ii) follows immediate ly  from Theorem 3.8. 

The  proof  of (iii) is similar to  tha t  of (i), and hence, is omit ted.  

We conclude with a brief biological in terpreta t ion of our results for the  case where (3.1) denotes  
a single species popula t ion model  with harvest,  i.e., b(n) < 0 and b(n) ~ O. In this case, 
5 = {5(n)}  can be regarded as a critical periodic solution. If a < 5(0) or a > K - 5(0) ,  then  we 
know from Lemmas  3.6 and 3.9 and Theorem 3.10 tha t  the species is on the way to  extinction.  
If, however, 5(0) < a < K - 5 ( 0 ) ,  then  Theorem 3.13 shows tha t  the species is persistent.  



90 R.Y. ZHANG et al. 

R E F E R E N C E S  
1. R.P. Agavwal, Difference Equations and Inequalities, Marcel Dekker, New York, (1992). 
2. W.G. Kelley and A.C. Peterson, Difference Equations: An Introduction with Applications, Academic Press, 

New York, (1991). 
3. E.P. Odum, Fundamental Ecology, 3 rd edition, W.B. Saunders, (1971). 
4. H.I. Freedman and H. Xia, Periodic solutions of single species models with delay, differential equations, 

dynamical systems and control science, Lecture Notes in Pure and Appl. Math. 152, 55-74, (1994). 
5. K. Gopalsamy, M.R.S. Kulenovic and G. Ladas, Environmental periodicity and time delays in a "food-limited" 

population model, J. Math. Anal. Appl. 147, 545-555, (1990). 
6. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 

MA, (1993). 
7. W. Wang, P. Fergola and C. Tenneriello, Global attractivity of periodic solutions of population models, 

J. Math. Anal. Appl. 211,498-511, (1997). 
8. R.P. Agarwal and P.Y.H. Pang, On a generalized difference system, Nonlinear Anal. 30, 365-376, (1997). 
9. I. Katsunori, Asymptotic analysis for linear difference equations, Trans. Amer. Math. Soc. 349, 4107-4142, 

(1997). 
10. Z.Y. Zhang, An algebraic principle for the stability of difference operators, J. Diff. Eqns. 136, 236-247, 

(1997). 
11. M. Ryszard and P. Jerzy, On periodic solutions of a first order difference equation, An. Stiint. Univ. "Al.I. 

Cuza" Iasi Sect. I a Mat. (N.S.) 34 (2), 125-133, (1998). 
12. W. Krawcewicz and J. Wu, Theory o] Degrees with Applications to Bifurcations and Differential Equations, 

CMS Series of Monographs, Wiley, New York, (1997). 


