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Abstract-we consider a network of three identical neurons whose dynamics is governed by the 
Hopfield’s model with delay to account for the finite switching speed of amplifiers (neurons). We show 
that in a certain region of the space of (a, p), where a and p are the normalized parameters measuring, 
respectively, the synaptic strength of self-connection and neighbourhood-interaction, each solution of 
the network is convergent to the set of synchronous states in the phase space, and this synchronization 
is independent of the size of the delay. We also obtain a surface, ss the graph of a continuous function 
of r = r(qp) (the normalized delay) in some region of (a,@, where Hopf bifurcation of periodic 
solutions takes place. We describe a continuous curve on such a surface where the system undergoes 
mode-interaction and we describe the change of patterns from stable synchronous periodic solutions 
to the coexistence of two stable phase-locked oscillations and several unstable mirror-reflecting waves 
and standing waves. @ 1999 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

We consider a network of electronic (artificial) neurons interconnected through nearest neighbour- 

hoods. The mathematical model can be derived from the Kirchhoff’s law. With some resealing 

and reparametrization, the model for a network of three identical neurons takes the following 

form: 

&(t) = -Q(t) + of (zi(t - r)) + P [f (“i-l@ - T)> + f (Q+l(t - T>>] , (1.1) 

where i(mod3), f : W + JR is a sufficiently smooth sigmoid amplification function, normalized 

so that f(0) = 0 and f’(0) = 1 ( normalized neural gain), (Y and ,f3 measures, respectively, the 

normalized synaptic strength of self-connection and neighbourhood-interaction, 7 2 0 represents 

the relative size of the time delay (the ratio of the absolute size of the delay over the system’s 
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relaxation time) due to the finite switching speed of amplifiers. See, for example, [1,2]. Among 
many important results about the dynamics of system (l.l), we mention the convergence to the 
set of equilibria [1,3-7] in case r = 0, the nonlinear oscillation caused by large delay [2,8-151, and 
the desynchronization induced by the large scale of networks with delay [16]. 

A natural phase space is the Banach space C = C([--7, O]; R3) of continuous mappings from 
[-r,O] into R3, equipped with the super-norm. Every initial state 4 E C defines uniquely a 
solution 24 of (1.1) for all t 2 -7, and system (1.1) generates a semiflow in C. A phase state 

(point) d = (&,&r, 43)’ E C is said to be synchronous if 41 = #z = $3. Due to the uniqueness 
of the Cauchy initial value problem of system (l.l), every synchronous phase point 4 gives a 
synchronous solution x4 of (l.l), that is, z!(t) = x$(t) = zt(t) for all t 2 --7. Another 
important class of solution of (1.1) is a phase-locked periodic solution which is a periodic solution 
x : W -+ JR of (1.1) of period p such that xl(t) = sz(t - (p/3)) and zz(t) = zg(t - (p/3)) for all 
t E R. These are periodic solutions of system (l.l), each component of which oscillates in the 
same way but in different phases. Other interesting solutions include mirror-reflecting waves and 
standing waves to be defined later. 

Our focus in this paper is on the pattern formation and mode-interaction/change of system (1.1) 
in different regions of the space of normalized parameters (a, ,0, r). The study of such problems 
is important in various areas, for example, in the theory and applications of content addressable 
memories where a stable solution can be used as coded information of a memory of the system 
to be stored and retrieved. 

We show that in the region A, = {(a, p); [a-PI < 1) of th e normalized parameters, where the 
difference of self-connection and the neighbourhood-interaction is not significant, system (1.1) is 
absolutely synchronous in the sense that every solution is convergent to the set of all synchronized 
phase states independent of the size of the time delay. The w-limit set of a given orbit can be either 
a synchronized equilibrium or a synchronized periodic solution, depending on the connection 
topology of the network, the strength of the self-connection and the neighbourhood-interaction 
and the size of the delay. On the other hand, in the region where cr - p < -1, we obtain a 
continuous surface r = ~(a, p) where Hopf bifurcations of either a stable synchronized periodic 
solution or two stable phase-locked periodic solutions and six unstable periodic waves (more 
precisely, three mirror-reflecting waves and three standing waves) take place, and there is a 
continuous curve on such a surface where we observe the change of stable patterns of system (1.1) 
from stable synchronized periodic solutions and to stable phase-locked oscillations. 

Our main technical tools are Lyapunov functionals, the symmetric local Hopf bifurcation theory 
of delay differential equations 1151, the normal forms on center manifolds of functional differential 
equations 1171, and the stability theory of bifurcated symmetric periodic solutions of ordinary 
differential equations [18]. 

The remaining part of this paper is organized as follows. In Section 2, we describe the model 
equation and formulate the standing assumptions throughout the paper. Section 3 is devoted 
to the discussion of when system (1.1) is absolutely synchronous and what is the typical w-limit 
set of a given synchronized solution. In Section 4, we establish the existence and stability of 
synchronized or phaselocked periodic solutions. Section 5 provides a brief discussion of our 
results and some remarks. The Appendix contains the detailed calculations of the normal forms 
on center manifolds of system (1.1) near Hopf bifurcation points. 

2. THE MODEL OF ARTIFICIAL NEURAL NETWORKS 

Consider an artificial neural network consisting of a set of electronic neurons interconnected 
through a matrix of resistors. Here an electronic neuron, the building block of the network, 
consists of a nonlinear amplifier which transforms an input signal ui into the output signal vi, 
and the input impedance of the amplifier unit is described by the combination of a resistor pi 
and a capacitor C+. 
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We assume the input-output relation is completely characterized by a voltage amplification 
function 

uui = f (Ui) 7 (2.1) 

which is @-smooth and has a sigmoid form. 
It is useful to observe that large negative and positive input signals can steer the amplifier into 

saturation, thus providing for a degree of nonlinearity which is crucial for the operation of the 
network. A commonly used amplification function is 

(2.2) 

which satisfies the following monotonicity and concavity properties: 

f (0) = 0, f’(z) > 0, for all x E W; (2.3) 

f”(X)X < 0, for all x # 0. (2.4) 

--oo < ,liyJ(x) < +co. 

An important parameter is the so-called neuron gain defined by 

Y = f’(0). 

Note also that for the function f defined in (2.2), we have 

f : W t W is C3-smooth and f”‘(0) < 0. (2.6) 

In fact, we have f”‘(0) = -2~~. 
The synaptic connections of the network are represented by resistors &j which connect the 

output terminal of the amplifier j with the input port of the neuron i. In order that the network 
can function properly, the resistances R, must be able to take on negative values. To accomplish 
this, we supply the amplifiers with an inverting output line which produces the signal -uj. The 
number of rows in the resistor matrix is doubled, and whenever a negative value of R+j is needed, 
this is realized by using an ordinary resistor which is connected to the inverted output line. 

The time evolution of the signals of the network is described by the Kirchhoff’s law. Namely, 
the strength of the incoming and outgoing current at a given amplifier input port must balance. 

Consequently, we arrive at 

Let 

We get 

or 

(2.7) 

1 
_‘+‘+. 

Z - Pi j=l Rij 
(2.3) 

(2.9) 

(2.10) Ti = CiR+, 
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and 
Ri 

wii = Rij 
(2.11) 

denote the local relaxation time and the synaptic strength. See [1,19] for more details. 

Implicitly assumed in the above model is that neurons communicate and respond instanta- 

neously. Consideration of the finite switching speed of amplifiers requires that the input-output 

relation (2.1) be modified to 

vi = f (Ui (t - c)) , Tj > 0, (2.12) 

and thus, we obtain the following system of delay differential equations: 

“a 
C.&F + ?&,(t) = C --f (Uj (t - Tj)) , t 

j=l% 

(2.13) 

In what follows, for the sake of simplicity, we assume that all local relaxation times are the same. 

More precisely, we assume that 

Cj = C, & = R, for all i = 1, . . . n. (2.14) 

F&scaling the time and the delay with respect to the relaxation time and resealing the synaptic 

strength by 

we get 

xi(t) = ui(CRt), rj T;=m’ 
R 

Jij = ~ij’ 

- = -xi(t) + 2 Jijf (xi (t - 7;)) . dxi (t) 
dt 

j=l 

(2.15) 

(2.16) 

It is now easy to observe that it is the relative size rj* of the delay which determines the dynamics 

and the computational performance of the network, and designing a network to operate more 

quickly (reducing RC) will increase the relative size of the delay and may lead to nonlinear 

oscillations of the network (as numerical simulations and linear analysis of the celebrated work 

of Marcus and Westervelt [2] and Marcus et al. [8] show). 

In the remaining part of this paper, we consider a network of three identical neurons with 

self-connection and nearest-neighbour interaction, measured, respectively, by 

a=$, P=$, forlli#j<3, ]j-i]=l. 

We also assume the time delays in the self-connection and nearest-neighbor 

same 
r; = r; = r3’ = 7. 

This leads to the following system of delay differential equations: 

(2.17) 

interaction are the 

(2.18) 

dxi (t ) - = -xi(t) + crf (xi(t - T)) + P [f (“i-l@ - T)) + f b+1(t - a1 7 
dt 

(2.19) 

where i (mod 3). We will talk about self-inhibitation or self-excitation if (Y < 0 or a > 0. Similarly, 

we can speak of inhibitory interaction (p < 0) and excitatory interaction (j3 > 0). 

There will be four important parameters: Q, p, 7, and r. However, with the help of resealing 

the unknown x by yx, we can always reduce equation (2.19) to the case where 

y = f’(0) = 1. (2.20) 

Of course, the new variables (Y and /3 then incorporate the original parameters for self-connection 

and neighborhood-interaction with the neuron gain (by multiplication). Henceforth, we will 

assume 7 = 1 and state our results solely in terms of cy, 0, and T. 
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3. ABSOLUTE SYNCHRONIZATION AND MULTISTABILITY 

Our focus in the remaining part of this paper is on system (2.19), where i (mod 3), f : W -+ W 

is C3-smooth and satisfies the normalization, monotonicity, concavity, and boundedness condi- 

tions (2.3), (2.20), (2.4), and (2.5). In the stability analysis and normal form calculations, we 

also need assumption (2.6). 
As usual, the phase space for system (2.19) is the Banach space C = C( [-~,0]; W3) of continuous 

mappings from [--7,O] into lR3, equipped with the super-norm 

for 4 = (+1,4~2, 43)T E C. 

To specify a solution of (2.19), we need to give an initial condition ~I[-~,01 = 4 E C. Once an 
initial condition is given, one can then solve (2.19), by using the variation-of-constants formula 

’ xi(t) = e- (t--%&Q + 
J 

e-(t-s) [crf (zi(s - T)) + P (f (xi-I(S - T)) + f (zi+l(s - T)))] ds 
tlT 

on intervals [no, (n + l)~] inductively for n = 0, 1, . . . . A solution so uniquely defined is denoted 
by ~4 and the mapping [0, oo) x C 3 (t, 4) H z+(t + a) E C gives a semiflow on C. 

We can easily verify that every solution x’#’ of (2.19) is bounded and thus its w-limit set w(4) is 
nonempty, compact, connected, and invariant (see, for example, [20]). A solution s$’ of (2.19) is 
said to be asymptotically synchronous if ~(4) is contained in the set of synchronous phase points 
given by 

A = { 4 = (41~42, +3)T E c; $1 = 4’2 = $‘3} . 

We say that system (2.19) is absolutely synchronozls if every solution of (2.19) is asymptotically 
synchronous, for every fixed nonnegative delay T. 

Note that due to the uniqueness of the Cauchy initial value problem of (2.19), a solution z 
of (2.19) with an initial value in A must be synchronous, that is, ccl(t) = q(t) = q(t) for all 

t > -r. 

THEOREM 3.1. If IQ - ,LlI < 1, then every solution of (2.19) with arbitrarily given T is asymptot- 
ically synchronous. 

PROOF. Consider a given solution z : [--7, cm) + W3 of (2.19) and let y(t) = xl(t) -22(t). Then 
from (2.19), we get for all t 2 0, 

?-j(t) = -Y(t) + (a - P) [f (zl(t - 7)) - f (Q(t - T))] 

= -Y(t) + (a - P)P(t)Y(t - T), 

where 

p(t) = 
s 

(II f’(SXl(t - 7) + (1 - S)x2(t -T)) ds. 

Due to the Cl-smoothness of f, the boundedness of ~1, x2 : [--7, co) ---) JR, and the normalization 
and concavity conditions, we can find p* E (0, l] such that p(t) 5 p* for all t L 0. 

Let 

V(t) = y2(t) + IQ - PIP* 11, Y2(4 ds, t 2 0. 

Then 

-$(t) = 2y(t)[-Y(t) + (Q - P)P(t)Y(t - T)] + b - @lP*Y2(t) - IQ - PlP*Y2(t - T) 

5 -2y2(t) + 1a - PIP* [y2(t) + Y2(t - T)] + Ia - PlP*Y2(t) - b - @lP*Y2(t - 7) 

= -2 [I - Ia - PIP*1 Y2@>, 
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from which it follows that 

Y2@) + Ia - PIP* /-” Y2(S) ds + 2 [l - 10 - P(p’] Jd’ Y2(S) ds 5 Y2(0) + IQ - PIP* 1” y2(s) ds. 
t-r --T 

Consequently, JOOo y2(s) ds < CO. 
Note that y is bounded on [-~,oo), and thus, ti is bounded on [O,oo). This, together with 

y E L2( [0, oo)), implies that limt+oc y(t) = 0. 
Therefore, limt_oo [zl(t) - x2(t)] = 0. Similarly, we can show that 

pim_ [22(t) - 23(t)] = piI [Q(t) - x1(t)] = 0. 

This completes the proof. 

The above result shows that if the difference between the self-connection and the neighbourhood 
interaction is not so significant that 11~ - @I < 1, then system (2.19) is absolutely synchronous 
and the dynamics of system (2.19) is completely characterized by the scalar equation 

i(t) = -z(t) + (a + 2P)f(z(t - T)), (3.1) 

where z is the common component of a synchronous solution of system (2.19). We will call the 
region A, = {(a, /?); Ia - /?I < 1) the absolutely synchronous region. 

It is easy to employ the same argument for Theorem 3.1 to show that every solution z of (3.1) 
converges to zero as t -+ 00 if IQ + 24 < 1. Consequently, we can show the following. 

COROLLARY 3.2. If Ia - PI < 1 and 1~ + 2pI < 1, then every solution of (2.19) converges to the 
zero solution as t -+ co. 

In other words, in the region 

A assf! = {(%P)i Ia - PI < 1, Ia + WI ;: 117 

system (2.19) can store and retrieve information in the form of a single stable equilibrium. We 

call A,, the absolutely asynchronous single equilibrium zone. 
The complement of A,, in A, is the union of two disjoint sets where either cr + 2p > 1 or 

(Y -I- 2p < -1. In the case where a + 2/3 > 1, the scalar equation (3.1) describing all synchronous 
solutions of (2.19) admits exactly three equilibria U_ < 0 < U+ given by the equation 

U = (a + 2P)f(u). 

Note that at u = uh, one has 

(a + 2P)f’(u) < 1. 

Evidently, uk give rise to two synchronous equilibria for system (2.19) 

(3.2) 

z* = (u*,u*,U*)T 7 

which turn out to be asymptotically stable according to the next result. 

THEOREM 3.3. ffla-PI < 1 and(r+2P > 1, thensystem (2J)has threeequifibria(u_,u_,~_)~, 

(O,O, O)T, and (u+,u+,u+)~. The trivial equilibrium is unstable and the other two equilibria are 
asymptotically stable. 

PROOF. The linearization of (2.19) at an equilibrium (x*, z*, x*)~ is given by 

T&(t) = -Yi(t) + 4’ (z*) Yi(t - T) + Pf’ (xc*) [Y&l@ - 7) + Yi+l(t - T)l , i(mod 3). 
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The characteristic matrix is 

123 

A7 (z*, X) = (X + 1)ld - at’ (z*) eex’ld - @f’ (z*) emxT6, 

where 

( 
0 1 1 

f5= 

101. 

1 1 0 ) 
Let 

x = ewd3) 

Vj = (Ilyxjfi2j) 7 j = 0,1,2. 

Then 

AT (z*, X) uj = [(X + 1) - cre --XTf’ (5*) - Pf’ (Z*) eeXT (X-j + Xj)] Vj 

= [(A + 1) - f’(Z*)ewX7 (f_% + 2/?COS Tj)] Vjuj, 

from which it follows that the characteristic values are given by the zeros of 

det A, (z*, X) = II& (X + 1) - f’ (z*) emX’ o + 2~~0s $j)] 

= [X + 1 - (a + 2p)f’ (z*) ebx7] [X + 1 - (a - P)f’ (z*) emAr12. 

In the case where 2” = 0, since (o + 2/3)f’(z*) = (Y + 2P > 1, we know that the first factor of 

detA,(O, X) has a positive real zero, and hence, (O,O, O)T is unstable. 

In the case where z* = T.Q, we know from (3.2) that (o + 2/3)f’(~) < 1, and also ](cu - p) 

f’(z*)] 5 ]a - /?I < 1. Th ere ore, f all zeros of detAT(u*, X) have negative real parts (see, for 

example, [21]), and hence, (u&, u&, u*)’ are asymptotically stable. Thii completes the proof. 

REMARK 3.4. It is interesting to remark that the (local) asymptotic stability of the two non- 

trivial synchronous equilibria is independent of the size of the delay. Also note that the scalar 

equation (3.1) with (Y + 2/3 > 1 generates an eventually strongly monotone semiflow [22], and sys- 

tem (2.19) generates an eventually strongly monotone semiflow with respect to pointwise ordering 

of the phase space in a subregion 

I = {(cy,P); Q + 2p > 1, ]a - B] < 1, Iy > 0, p > 0). 

Consequently, in the subregion I, we can conclude that the generic dynamics of system (2.19) is 

the convergence to z* [23]. It is reasonable to conjecture that system (2.19) generates a strongly 

order-preserving semiflow in the whole region {(cu, p); a+2P > 1, (cr -01 < 1) with respect to a 

certain nonstandard ordering of the phase space (see, for example, [24]). Should this conjecture 

be verified, we can then conclude that the dominant dynamics of the full system (2.19) is the 

convergence to ICY when (Y + 2/3 > 1 and ]o - /3] < 1. We call A,,, the zone of absolutely 

synchronous multiple equilibria. 

REMARK 3.5. It is also important to emphasize that generic convergence to equilibria does not 
necessarily imply simple structure of the global attractor for system (2.19), and that the size 

of the delay does affect the unstable manifold of the trivial solution and the structure of the 

domain of attraction of each nontrivial equilibria zk. As each stable equilibrium represents a 

memory of the network in the theory and applications of content addressable memories, it is 

essential to obtain detailed information about the boundary of the domain of attraction for each 

equilibrium zf, and about the dependence of these boundaries on the size of the delay. This is a 
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quite complicated task, though some progress has been achieved in a recent work of Krisztin et 
al. [25], where it was shown that if 

T , T1 = 27~ - arccos(ll(~ + WI 
J(cr+2@)2- 1 ’ 

then the linearization of the semigroup of (3.1) is a Co-semigroup whose generator has a positive 
real eigenvalue and a complex conjugate pair of eigenvalues with positive real part, there exists a 
leading unstable manifold of the zero solution which is tangent to the three-dimensional eigenspace 
of the generator associated with the positive real and complex conjugate pair with positive real 
part of eigenvalues. The closure of the global forward extension of this leading unstable manifold 
of the zero solution is a three-dimensional smooth spindle with two tips zk, this spindle is 
separated by a smooth two-dimensional invariant manifold with boundary borded by a periodic 
orbit into two halves such that each half belongs to the basins of attraction of the tips. It is also 
shown in [26] (together with our Theorem 3.1) that if 

71 < 7 < 72 = 4r - arccos(l/(o + 2P)) 
&r + 2p)z - 1 ’ 

then this spindle is exactly the global attractor of system (2.19) (with f being given by (2.2)). 
Evidently, as r passes through each of the critical values 

71 < 72 < 73 < . ’ . 

with 
2nn - arccos(l/(a + 2P)) 

Tn = 
&Y + 2p)z - 1 ’ 

the dimension of the unstable space of the zero solution increases by two and the boundaries of the 
basins of attraction of sk become more and more complicated. See also the work of Pakdaman 
et al. [13] and Pakdaman et al. [14] for the effect of the delay on the basins of attraction of uk 
for the scalar equation (2.19). 

REMARK 3.6. The remaining part of the absolute synchronization zone ]o - p] < 1 is 

A - = {(c.\,P); ]o! - p] < 1, Q + 2p < -1). 

In this region, the scalar equation (3.1) is the extensively studied scalar delay differential equation 
with negative feedback. When the delay is sufficiently large, the scalar equation possesses a stable 
slowly oscillatory periodic solution (here, a slowly oscillatory solution is a solution for which 
the distance of consecutive zeros is large than the delay 7) and the dominant dynamics is the 
convergence to slow oscillations. See [21,27-301 and references therein. We thus call A,,, the 
absolutely synchronous slowly oscillatory zone. 

4. DESYNCHRONIZATION: 
STABLE PHASE-LOCKING AND UNSTABLE WAVES 

We start with the following simple observation. 

LEMMA 4.1. If a - @ < -1, then every equilibrium of system (2.19) must be synchronous. 

PROOF. For 1 5 i # j < 3, every equilibrium z* must satisfy 

x; - x; = (CY - p) [f (5;) - f (x,‘)] . 

Using the monotonicity of f and the assumption cr - ,f3 < -1, we get XT = XT. This completes 
the proof. 
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From Lemma 4.1, it follows that the set E of equilibria of system (2.19) is given by 

E = {@,O,O)‘}, ifa-@< -1 anda+2@< 1, 

E = 
{ 

(O,O,O)T,(~*,~*,~*)T 
1 

, ifa-p<-landa+2P>l. 

The characteristic equation at (0, 0, O)T and (u%, Q, u*)~ are 

det A, (0, X) = [X + 1 - (a + 2P)eBxr] [X + 1 - (c-x - p)ewxr12 

and 

det A7 (uA:, X) = [X + 1 - (a + 2P)f’ (u*) emxr] [X + I - ((.y - P)f’ (Q) e-Xr]2, 

respectively. 

In the reminder of this section, we consider system (2.19) where (cy, p) is in the zone 

D = ((aJ3); cx - p < -1, a + 2p < 1). 

When r = 0, we have 

det Aa(0, X) = [X + 1 - (a + Zp)][X + 1 - ((Y - @)I2 

and characteristic values are (Y + 2p - 1 < 0 and (Y - p - 1 < 0. Therefore, the trivial solution is 

asymptotically stable in the absence of delay. However, since cr - /3 < -1, we can increase the 

delay to get purely imaginary characteristic values of the factor X + 1 - (o - P)eeX7. Similarly, 

when (Y + 2p < -1, we can obtain purely imaginary characteristic values from the factor X + l- 

(a + 2fi)emX7 by increasing the delay. In fact, it is easy to obtain the first critical value of r such 

that 

X + 1 - qesA7 = 0, (for a given 77 < -1) 

has a pair of purely imaginary zeros when r = r,,, with 

(4.1) 

T 
11 

= = - ~ccosw?l) 
J;;“---r ’ q<--l (4.2) 

and the associated pair of purely imaginary zeros are X = fti, with 

WV = &xi. (4.3) 

Moreover, if X : (TV - 6,~~ + E) + Cc is a smooth curve of zeros of (4.1) (for some sufficiently 

small c) such that X(rV) = iwg, then 

XT 

REX’ (Tq) = Fte -X77e- W2 

1 + v+ T=Tq,x=iwq = (1 + 7J2 + (T~w~)~ 
> 0. (4.4) 

Also note that 

-1 > 7 > q* implies To > TV*. (4.5) 

Note also that if -1 5 Q + 2/3 I 1 and (Y - 0 < -1, then the factor X + 1 - (LY + 2P)emX7 cannot 

have purely imaginary zeros. Therefore, when (a, 0) E D, the first critical value of T where the 

characteristic equation det A,(O, X) = 0 has a pair of purely imaginary zeros is 

T 
a- ’ if @‘O, 

71 = 7 a +2p = T - wxos(l/l~ + WI) (4.6) 
&+q32__1 ’ ifpco 
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and the associated purely imaginary characteristic values are f&z, where 

J((r - p)2 - 1, 

A/ if P > 0, 
WI = 

(a + 2p)2 - 1, if P < 0. 
14.7) 

These characteristic values are simple or double as zeros of det AT, (0, X) = 0, depending on 

whether p < 0 or @ > 0. 

In the case where fl< 0, we can apply the standard Hopf bifurcation theorem of delay differen- 

tial equations (see, for example, [21,30,31]) to obtain a Hopf bifurcation of synchronous periodic 

solutions. In the case where /I > 0, the aforementioned standard Hopf bifurcation theorem 

does not apply since fiw, are double characteristic values. On the other hand, the considered 

system (2.19) is equivariant with respect to the &-action where the 2’3 subgroup acts by permu- 

tation (sending xi to xi+l) and the flip acts by interchanging (sending xi to 23-i). This allows 

us to apply the symmetric Hopf bifurcation theorem for delay differential equations established 

in [15] (as an extension of the well-known Golubitsky-Stewart Theorem [32] for symmetric ordi- 

nary differential equations) to obtain eight branches of asynchronous periodic solutions. More 

precisely, we have the following theorem. 

THEOREM 4.2. Assume (a, p) E D and define (~1, WI) as in (4.6) and (4.7). Then 

(9 

(ii) 

in case p < 0, near T = q there exists a supercriticai bifurcation of stable syncbre 
nous periodic solutions of period p, near (27r/w,), bifurcated from the zero solution of 

system (2.19); 

in case p > 0, near r = 71 there exist eight branches of asynchronous periodic solutions of 

period p, neax ( 27r/w7), bifurcated simultaneously from the zero solution of system (2.19), 

and 

(a> 
@I 

Cc> 

these are 

two stable phase-locked oscillations: xi(t) = zi-l(t f (p,/3)), for i(mod 3) and t E W; 

three unstable mirror-reflecting waves: xi(t) = xj(t) # xk(t), for t E R and for some 

distinct (i,j, k) in {1,2,3}; 

three unstable standing waves: xi(t) = xj(t + (p,/2)), for t E JR and for some pair of 

distinct elements (i,j) in {1,2,3}. 

PROOF. (i). The existence is an immediate application of the standard Hopf bifurcation theorem 

for functional differential equations. Let T* = 71, p = 7 - ~1. According to the calculations in the 

Appendix, the normal form of (2.19) on the center manifold can be written, in polar coordinates, 

as 

ri = (@l-l + Q2) p + 0 (P2P) + 0 (P4) 1 

where 
WI71 

a1 = _(l+&+w; 
>o 

and 
() = f”‘(0) 71 (1+ TI + WI) < o 

1- 
2 (1 + 7r)2 + WI” 

Conclusion (i) then follows immediately. 

(ii). Let 7* = 71, u* = w,/T~, and p = r - 71. We obtain from the calculations in the Appendix 

the following normal form of (2.19) on the center manifolds: 

(?) = u*7* (TJ,) + /.Lu* ( ‘$J,w;l+$$:y;2) 
+ 3br* (p: + 2p;) 

( 

Re (a-l (1 - iU*)) ‘w1 - Im (a-’ (1 - in”)) w2 

Im (u-l (1 - in*)) w1 + Re (a-l (1 - in*)) w2 > 

+ 0 (P214) + 0 (b14) , 
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(?) = u*r* (JQ) + /.Lu* ( ‘$-J)Q3+;$J,w;4) 

+ 3br* (p; + 24 
( 

Re (a-’ (1 - iU*)) w3 - Im (a-i (1 - in’)) w4 

Im (a-l (1 - in’)) w3 + Re (a-l (1 - iu*)) w4 > 

+ 0 (P21WI) + 0 (Iw14) 9 

where 

Pl = Jw: + w;, 

P2 = dw32 + w:, 

a = 1+ 7* - iu*7*, 

b = $“‘(a). 

Introducing the periodic-scaling parameter w and letting 

q(t) = WI(S) + iwz(s), 

22(t) = w3(s) + iw4(s) 

with 

s = ((1+ w)u*r*]-l t, 

we obtain 

(1 + w)&(t) = ws(s) - iWi(S) 

+ P(T*)-~ [Im (a-l) wi(s)+Re (a-l) w2(s)-iRe (u-l) WI(S) + iIm (a-i)ws(s)] 

+ 3b(~*)-l (lzil” + 2 1~1~) [Re (a-’ (1 - iu*)) WI(S) - Im (a-’ (1 - iu’)) ws(s) 

+iIm (u-l (1 - iu*)) WI(S) + i Re (a-’ (1 - in*)) w,(s)] 

+ 0 (P214> + 0 ( b14) 
= --ifs + p (7*)-l [Im (a-‘) - i Re (u-l)] 21(t) 

+ 3b (U*)-l [Re (a-’ (1 - iu*)) + iIm (u-l (1 - iu*))] q(t) (Izi(t)12 + 2 lzs(t)12) 

+ 0 (P214> + 0 (M4) 
= -i.q(t) - ip(T*)-wz&) 

+ 3b (r&*)-l a-’ (1 - i’lL*) a(t) (Ia( + 2 lz2(t)12) 

+ 0 (P214> + 0 (k14> * 

Similarly, we get an equation for 22(t). Thus, ignoring the terms O(,u2j.zl) and 0(lz14), we get 

the normal form 

(1 + w)ii = -izi - ip (7*)-l a-%i + 3b (u*)-1 u-l (1 - iu*) (Ial” + 2 1~21~) ~1, 

(1 + w)& = -izs - ip (7*)-l a-‘q + 3b (u*)-1 us1 (1 - izl*) (2 lzi12 + lzs12) zs. 
(4.8) 

Let g : @ CB @ ~$3 W -+ Cc CEI @ be given so that -g(zi, 22, p) is the right-hand side of (4.8). Then 

(4.8) can be written as 

(1+ w)i + g(z, /J) = 0. (4.9) 

Note that 

&g(O, 0) (~1, ~2) = i (a, ~2)) z = (Zl,Z2) E @@@. 
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Also note that g(.,p) : C CEI Cc --f C CB Cc is 03 x S’equivariant with respect to the following 

03 x S’action on Cc $ C: 

y (251, z2) = (ei(2*/3)*l, e-i(2ni3)*2) ) 23 = (7) I D3, 

fi(a42) = (wa), 22 = (K) I D3, 

eie (.q,z2) = (eiezl, eiez2) , eis E As’. 

According to (18, pp. 296-297, Theorems 6.3 and 6.51, the bifurcations of small-amplitude periodic 

solutions of (4.8) are completely determined by the zeros of equation 

-i(l + W)Z + g(z, p) = 0, (4.10) 

and their (orbital) stability is determined by the signs of three eigenvalues of 

Dg(z, 0) - i(1 + w)ld (4.11) 

that are not forced to zero by the group action. To be more precise, we note that (4.10) is 

equivalent to 

iwq - ip (7*)-l u-* zl+3b(u*)-1u-1 (1 -iu*) (]*#+2]Z2]2) Zr = 0, 

iwz2 - ip (7*)-l uv1z2 + 3b(u*)-r a-l (1 - iu*) (2 ]~i]~ + 1~~1~) z2 = 0. 
(4.12) 

It is known that (4.12) can be written as 

A(;;)+B@)=O (4.13) 

with 

A = Ao + AN (Izll” + 1~21~) , 

B =Bo 

for some complex numbers Ao, AN, and Bo [la, pp. 3761 given by 

A0 = iu* (T*)-’ a-l - iw, 

AN = -6b (u*)-’ u-l (1 - izl*) , 

BO = 36 (~*)-l a-r (1 - iu*) . 

By the results of [18, pp. 3761, we know that the bifurcation of phase-locked oscillation is 

supercritical (respectively, subcritical) depends on whether RR(AN + Bo) > 0 (respectively, 

R~(AN+Bo) < 0) and these are orbitally asymptotically stable if l?.e(AN+Bo) > 0 and Re B. < 0. 
Note that 

Re (AN + Bo) = Fk (-3b (u*)-’ a-l (1 - i,*)) 

= -3b (u*)-’ Re 
[ 

(i yr:;):;;*;*)2 (I - k*) 1 
= -3b(u*)- 

1 1+7* +(u*)2T* > o 
(1 + T*)2 + (u*T*)2 

and 
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Re(&) = Re (3b(u*)-‘a-’ (1 -c*,) 

1 + 7* + (U*)2 7* 
= 3b @*)-I (1 + 7*)2 + (u*7*)2 < 0. 

Consequently, the bifurcation of phase-locked oscillations is supercritical and orbitally asymptot- 

ically stable. 
Note also that 

Re (FAN + Bo) = Re (-9b (u*)-’ a-l (1 - iu’)) 

= -9bu’ 
1+ 7* + (U*)2 -f* 

(1 + 7*)2 + (U*T*)2 
>o 

and 
Re& < 0. 

We infer from the results of [18, pp. 3761 again that the bifurcations of mirror-reflecting waves 
and standing waves are supercritical and unstable. This completes the proof. 

5. CONCLUSIONS AND REMARKS 

For the normalized model (2.19) of a network of three identical neurons with self-connection 
and neighbourhood interaction and with delay T to account for the finite switching speed of 
amplifiers, we show that there is a region of the parameters ((Y, p), measuring, respectively, the 
strength of self-connection and neighbourhood interaction, given by 

A, = ((0); Ia - PI < 11, 

such that for (cy,/3) in this region, every solution is eventually synchronized and this fact is 
independent of the size of the delay. The synchronized stable pattern can be in the form of either 
the trivial equilibrium (if Ia + 2/3[ < l), the muitiple nontrivial equilibria Z* (if (Y + 2/3 > l), or 
a slowly oscillatory periodic solution (if Q + 2p < -1 and if 7 is sufficiently large). 

When (a, ,B) moves to the region D where (Y - p < -1 and (Y + 2p < 1, we obtain a continuous 
surface in the (7, cr, P)-space given by 

7r - arccos(l/lar - PI) 

7= 
JW ’ If@>07 

( J 

. 

7r - arccos(l/la + 24) 
(a+2p)2_1 ) ifp<07 

where bifurcations of periodic solutions take place. Depending on whether the neighbourhood 
interaction is inhibitory (/I < 0) or excitatory (p > 0), the bifurcated stable periodic solutions 
are either synchronized or phased-locked. This indicates that excitation is the main reason for 

desynchronization for the model equation considered here, and the coexistence of two stable 
phase-locked periodic solutions and six other unstable waves suggest possible complicated struc- 
ture of the global attractor. 

Our stability analysis of the bifurcated periodic solutions is based on the normal form calcula- 
tions developed in 1171 and is greatly simplified due to the fact that the usual sigmoid function 
satisfies f”(0) = 0. When (Y - p < -1 and cy + 2p > 1, system (2.19) has two nontrivial equilib- 
ria E* where Hopf bifurcation can take place when T crosses a critical value T*. We suspect that 
either the mirror-reflecting waves or the standing waves are stable and the phase-locked are unsta- 
ble, verification of this will be quite interesting since this provides a single model which exhibits 
a stable synchronized periodic solution, stable phase-locked oscillations, stable mirror-reflecting 
waves, and stable standing waves depending on the location of related parameters. 



130 J. WV et al. 

APPENDIX 
THE CALCULATION OF NORMAL FORMS 

ON CENTER MANIFOLDS 

In this Appendix, we employ the algorithm and notations of Faria and Magalhbs [17] to derive 
the normal forms of system (2.19) on center manifolds. 

We first rescale the time by t H (t/7) to normalize the delay so that (2.19) can be written as 

k(t) = F (Q,T) 

in the phase space C = C([-l,O]; W3), w h ere for 4 = (4i,&, 9s)T E C, we have 

(F(& r))i = --7&(O) + arf (&(--I)) + Pr V (&-1(-l)) + f (di+r(#(-I)))] 

with i(mod3). We also assume that 

f(x) = z + kc3 + h.o.t. 

(A-1) 

with 

b = $f”‘(O) 

(see (2.3), (2.6), and (2.20)). The linearized equation at zero for system (A.l) is 

k(t) = L(T)Zt, (A.21 

where 

L(r)($) = --74(O) + r@(--I) + @6($(--I)). 

The characteristic equation of (A.2) at (O,O, O)T is det A,(O, X/r) = 0, where det A,(O, X) = 0 is 
the characteristic equation of the linearization of (2.19) at (O,O, O)T. 

Part 1: Case(a,p)ED, P>O 

In Case (ii) of Theorem 4.2, at r = r* the characteristic equation of (A.2) has imaginary 
zeros Gu*r* which are double, where r* = 71 and U*T* = WI are given by (4.6) and (4.7). Since 
A,.(O,iu*)vj = [izl* + 1 - (cr - p)e-iu’7*]~~ = 0, j = 1,2, the center space at r = T* and in 

complex coordinates is X = span (#i,&, $3, ~$4)~ where 

f$i(e) = eiu*r*ewi, 

+2(e) = e-iu*r*efi, 

43(e) = eiU*T*eFf, 

c#q(t9) = e-iu*r*evl, 0 E k-m 

and 

Let 

and 

Note that 

?I1 = 

V:Vi = 3, ifj#iE{1,2} 

and 
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&Ii = 0, if i E {1,2}. 
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It is easy to check that a basis for the adjoint space X* is 

with (q,(a) = Id (the 4 x 4 identity matrix) for the adjoint bilinear form on C* x C defined 
in [30], where 

a = 1+ 7* - iu*r*. (A.3) 

It is useful to note the following: 

(A-4) 

and for I E (c4, we have 

@(0)x = [Vl Cl VI 211]2 = (21 f 24) 211 + (x2 + 23) Ul, (A.5) 

@(-1)x = (c-%i + eiu’r’z4) Vi + (eiu*‘.zs + c-iu*%s) 4, (A.6) 

and 

S((a(-1)x) = - (c-i%rl + eiu*rgSJ4) vi - (eiu*T.ZZ + +*T*q ;isy = _@(_l)zc. (A-7) 

Introducing the new parameter 
p = 7 -r*, ( A.3) 

we can rewrite (A.l) as 

i(t)=L(~*)~t+C(~t,~), (A-9) 

where 

Define the 4 x 4 matrix 
B = iu*r*diag(l, -l,l, -1). 

Using the decomposition zt = &r(t) + it, we can decompose (A.9) as 

k=Bz+!Q(O)G(@x+y,p), 

D = AQly + (I - n)XoG (@CT + y, p) , 
(A.10) 

with z E UZ4,y E Q’. Here and throughout this Appendix, we refer to [17] for explanations of 
several notations involved. We will write the Taylor expansion 

WW (@x + Y, CL) = c ;f:(,, Y, CL), (A.ll) 
jz2 ’ 
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where -fj’(x, y, p) are homogeneous polynomials of degree j in (x, y, p) with coefficients in C4. 
Then the normal form of (2.19) on the center manifold of the origin at p = 0 is given by 

f = Bx + ;g;(x,O>p) + $,g:(x:O,~) + h.o.t., 

where 9; and 9; will be calculated in the following nart of this section. 
First of all, using S(@(-1)x) = -@(-1)x, we get 

These are the second-order terms in (cl, x) of (A.ll) and following Faria and Magalhaes [17], we 
have the second-order terms in (,u, x) of the normal form on center manifold as follows: 

1 1 p2(xr 0,~) = Proj ff’( k.+f;)s 2 z,“,d’ 

Here we recall that 

M;(P)(x, p) = &P(x:, P)BX - BP(x~ ~1, j 2 2. (A.12) 

In particular, 

Mj’ bqek) = iu*T*p (ql - 42 + 43 - 44 + (-l)k) xqek, Iql = j - 1, 

where j > 2, 1 5 k < 4, and {er, es, ea, e4) is the canonical basis for C4. Therefore, if JqI = 1, 
then 

ker (&Id) fl span {pxqek; iql = 1, k = 1,. . . ,4) 

= span {Pxrel, px3el, cLx2e2, Px4e2, cLxle3, cLx3e3, w2e4, w4e4}, 

and 

;g: (x, 0, p) = i/_Lu* 

To compute 9; (x, 0, p), we first note that from (12) it follows that 

9i(xc, 0, PU> = Proj k+jrf$-(x’ ‘7 CL) 

O,O) + 0 (c121~l> > 
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since pzQej C$ ker(Ml), for Iqj = 2, j = 1,. . . ,4. Next, we define 

where iJi is the change of variables associated with the transformation from f,j to gi and h is 

such that M;(h) = gi, i.e., h = U.j is the change of variables associated with the transformation 
of the second-order terms in the second equation of system (A.lO). For p = 0, f.j(~,O,o) = 
gi(z, 0,O) = 0, and we have simply 

$(? 0,O) = f&z, 070) = bT*\E‘(0) [@ ((@(-l)z)3) + o (@(-l)~t3] , 

where we utilized the following notations: 

Let 

We have 

(Al + Az)~ 

(ip(-1)z)3 = ( ei(z*/s)Ar + e-i(2n/a)A2)3 

(e-i(2n/s)A1 + ei(2r/z)A2)3 
) = (A:+A;) (i) +3AfA2q+3A1A& 

and 

(ei(2A/3)A1 + e-i(2T/3)A2)3 + (e-i(2r/3)A1 + ei(2n/3)~2)3 

6 (((a(-1)X)3) = (Al + A2)3 + (e-i(2?F/3)Al + ei(2a/3)A2)3 

(A1 + Az)~ + (ei(2?r/3)A1 + e-i(2n/3)A2)3 

1 

=2(A;+A;) 1 

0 

- 3A;Am - SAlA&. 
1 

Since 

we have 

&z, o, o) = h*Q(0)3(a - P) [A:A~vI + A&vi] = h*(a - P)3 . 

Note that 

ATA = e- 2iu*r*4 + 22124 + e2iu’r’5. 

)( 

eiu*r*22 + e-i~*7’23 

) 

, 

AlAg = (e-iu*r*xl + eiu*~*14) (e2iu*r*Z; + 222s3 + e-2iu*r*5;) . 

Also note that 

it!: (zqej) = 0, with (ql = 3 if and only if q1 - q2 + q3 - q4 + (-l)j = 0, j = 1,2,3,4. 
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\ u-leiu’T* (53x2 + 2x12224) ’ / 
(a)-’ (1 + iU*) 21 (X122 + 223x4) 

= 3br* 
(3-l (1 - iU*) 22 (X122 + 22324) 
(a)-’ (1+ iu*)23(2324 + 22Gq?) * 
a-l (1 - iU*) 24 (2314 + 224 

Consequently, the normal form on the center manifold becomes 

(A.13) 

for z E C4. Changing to real coordinates by the change of variables 

1 -i 0 0 

x=sw, with S = 
0 0 1 -i 
0 0 1 i 

and letting 

p: = 51x2 = wf + w;, 
pg = 23x4 = w; + w;, 

we obtain 

Fk (a-l (1 - in*)) w1 - Im (a-’ (1 - in*)) w2 
Im (a-’ (1 - in*)) WI+ Re (a-l (1 - in*)) w2 

+ 0 (P2bJI) + 0 (Iw14> 7 

(?) = u*r* (:;,) + /Lu* ( ‘$J~;3+m’~~:!,) 
(A.14) 

+ 3br* (p; + 2~:) 
Re (a-’ (1 - iu’)) w3 - Im (a-’ (1 - iu*)) w4 

Im (a-l (1 - iu*)) w3 + Fte (a-’ (1 - iu*>) w4 > 

If we use double polar coordinates 

Wl = PI COSXl, 

w2 = pl sinxl 

and 
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w3 = p2 COSX2, 

~4 = p2sinx2, 

then we get 

iQ = (W + b: + 2b;) Pl + 0 (P2 IhP2)l) + 0 (KPl,P2)14) , 

ri2 = (alC1S2bl~~+blp~)P2+O(1-121(P1,P2)l) +o(lh,P2)14) 7 

$3 = --U*7*+C1~+dlp’4+2dlp~+O(~21(pl,p2)l) ++w2)14), 

>i2 = -a*~* + CIP + 24~: + hp; + 0 (p2 Ih7~2)l) + 0 (I(PI,P~)~~) , 

with 

al = Im (a-‘) u*, 

Cl = --u* Re (a-‘) , 

bi = Re (a-’ (1 - in*)) 3br*, 

di = 3br* Im (a-’ (1 - in*)) . 

As 

we get 

.-l - 1+ 7* + iu*7* 
- 

(1 + T*)2 + (11*Tq2 ’ 

(u*)2 7* 

a1 = (1+ 7*)2 + (U*7*)2’ 

bl 
= 3b7* 1+ 7* + (U*)2 7* 

(1+ T*)2 + (u*7-*)2’ 

u* (1+ T*) 

c1 = - (1 + T*)2 + (u*T*)2’ 

dl = -3b 
u*r* 

(1 + q2 + (u*7*)2’ 

(A.15) 

(A.16) 

Part 2: Case (a,@) E D, p < 0 

In Case (i) of Theorem 4.2, at r = T* the characteristic equation of (A.2) has imaginary ze- 
ros finer* which are simple, where r* and iz1* are given by (4.6) and (4.7). Since A7* (0, iu*)vs = 
[in* + 1 - (a + 2p)e-iU’T’ ] ws = 0, where vs = (1, 1, l)T, the center space at T = r* and in complex 
coordinates is now X = span ($1 , 4~2)) where 

c#B,(~) = eiu*“ewO, 

42(e) = e-iu*r’ewO, e E [-l,O]. 

Let 

@ = (h, 42) . 

F’rom W~VO = 3, one can easily show that the adjoint basis satisfying (‘I!,@) = 12 (the 2 x 2 
identity matrix) is 

with a given by (A.3), so 
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Note that 

@(0)x = (00 2ro] 2 = (Zl + 52) 210, 

@(-1)x = (c-iu*r*xr + eiU*r*x2) Vc, 

6(+(-1)x) = 2 (fP’%r + eiU*T*x2) q-j, 2 E C2. 

For the new parameter p = r - r* and decomposition zt = @x(t) + ~lt, x E C2, y E Q’, and with 

B = diag (i~*r*, --iu*r*) , 

the normal form of (2.19) on the center manifold of the origin at 1_1= 0 is 

i = Bx + ;g;(x,O, p) + ;gj(x, 0,~) + h.o.t., 

and we will compute the second- and third-order terms, i.e., g$(x, 0, p) and gi (x, 0, p), as we have 
done above for Case (ii) of Theorem 4.2. We have 

f f&h 0, cl) = ww(P)(~~) 

= qo)p[-qo)x + cq-1)x + pqq-1)x)] 

= Q(0)I.J [- (21 +x2) + (a + 2p) (e+*r*xr f P*x,)] Vc 

= S(O)cl[- (21 + x2) + (1+ iU*) x1+ (1 - izl’) x2] Vs 

Since 

= ipu’ 

( 

(c)-l (x1 - z2) 

a-l (21 - 52) > * 

1 1 
292 (I, 0, P) = Proj ker(M~)~f21(~7O’P) 

and 

hfj (px’e&) = iU*T*p (ql - q2 + (-l)k) x’ek, Id = j - 1, k=l,2, jz2 

for the canonical basis {er, es} for C2, then 

ker(Mi) II span {j&r?ek; Iqj = 1, k = 1,2} = span {pxrer, pxse2}, 

and 

;ggx, 0, p) = i/Au* (y:xl) 

22 . 

As for the previous case and for similar reasons, 

where 

;f31(z,o,o) = bT*Q(o) pod ((‘P(-1)x)3) + a@(-1)x)3] 

= br*!P(O)(a + 2p) (e--iu*r*xr + eiu*r*x2)31rg 

= bq-*(a + 2p) (e-iu*r*xl + eiu*r’ x2)3(p’;‘). 
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h&j (#ej) = iu*r* (~1 - q2 + (-1)“) z*ej, (4 = 3, j = 192, 

which implies 

ker (Mi) n span {x4ej; 1q1 = 3, j = 1,2} = span {x$z2el, x~&%}. 

We can then derive 
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&;(@),o) = 3b7*(a + 2/3) 
( 

(4-l U+ iU*)szzz 
u-l (1 - iu’) x&j > 

. 

Consequently, the normal form on the center manifold becomes 

for x E C2. Changing to real coordinates by the change of variables 

x=sw, with S = 

and letting 

we obtain 

+ 3bT*p2 

Re (a-l (1 - iz4*)) WI - Im (a-’ (1 - iu*)) w2 

Im (a-l (1 - ju’)) wl + Re (a-’ (1 - in*)) w2 > 

+ 0 (/J214> + 0 (M4) * 

If we use polar coordinates 

Wl = pcosx, 

w2 = psinx, 

then we get 

i, = (w + b2) P + 0 (P2P) + 0 (P4) 3 

k = --u*7* + c1p + d1p2 + 0 (p2p) + 0 (p”) , 

where ul,bl,cl,dl as in (16). 
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