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Abstract

The existence of a non-trivial phase-locked periodic orbit is established for a system of delay differential equations describing
the dynamics of networks of two identical saturating neurons. We discuss the instability and the unstable manifold of this
phase-locked orbit. In particular, we give detailed information about the spectrum of the related monodromy operator and
establish the connection between the unstable manifold of the phase-locked orbit and the boundary of the global extension of a
three-dimensionalC1-submanifold of the origin. We obtain a smooth solid spindle, contained in the global attractor, separated
by a disk bordered by the phase-locked orbit. Major technical tools include a discrete Lyapunov functional, invariant manifolds
and other recently developed geometric theory of delay differential equations. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider the following system of delay differential equations{
U̇ (t) = −µU(t)+ f (V (t − τ)),

V̇ (t) = −µV (t)+ f (U(t − τ)),
(1.1)

wheref : R → R is a C1-smooth increasing function withf (0) = 0. Such a system can be regarded as a
special example of the following general Hopfield’s model [7,8] for artificial neural networks with electronic circuit
implementation

dui(t)

dt
= −µiui(t)+

∑
j 6=i
Tij fj (uj (t − τij )), 1 ≤ i ≤ n (1.2)
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with µi > 0 andτij ∈ R being given constants andfj : R→ R being usual sigmoid functions for 1≤ i, j ≤ n,
where the delayτij ≥ 0 was incorporated by Marcus and Westervelt [14] to account for the finite switching speed
of amplifiers (neurons). It has been observed that while a network modeled by Eq. (1.2) without delay (namely,
τij = 0 for 1 ≤ i, j ≤ n) relaxed towards the set of equilibria [4,7,8], the presence of large delayτij may cause
some stable nonlinear oscillations and lead to a completely different computational performance of the network
[1,2,6,14–16,18]. Our ultimate goal is to describe the global attractor of the network, and achieving this seems to be
very important in the applications of the model to tasks of classification and associative memory when the global
attractor encodes the pattern and memory of the network.

System (1.1) can be regarded as a special case of the network (1.2) with identical neurons (µi and τij are
independent of the choices ofi, j ) for two reasons: system (1.2) reduces to Eq. (1.1) whenn = 2, or the dynamics
of Eq. (1.2) are completely described by Eq. (1.1) when the network is divided into two groups of neurons with
neurons in each group being convergent to the same states. It is hoped that, with such simplification and idealization,
we can have a relatively complete picture about the global attractor which shed some light for our understanding
about the general network (1.2).

Rescaling the time variable byu(t) = U(τ t) andv(t) = V (τ t), we can rewrite Eq. (1.1) as{
u̇(t) = −τµu(t)+ τf (v(t − 1)),
v̇(t) = −τµv(t)+ τf (u(t − 1)).

(1.3)

It is easy to see that every continuousψ = (ψ1, ψ2)
T : [−1,0] → R

2 uniquely determines a solution(uψ, vψ)T :
[−1,∞) → R

2 of Eq. (1.3) with(uψ, vψ)T|[−1,0] = ψ . Clearly, ifψ1 = ψ2 then the uniquely determined solution
satisfiesuψ = vψ in [−1,∞) and this can be characterized by the scalar delay differential equation

ẇ(t) = −τµw(t)+ τf (w(t − 1)). (1.4)

Such solutions are said to be synchronous and the recent work of Krisztin, Walther and Wu [10] and Krisztin and
Walther [9] gives a complete description of the global attractor of Eq. (1.4) as a three-dimensional smooth solid
spindle whenτ is in a certain range. It is also interesting to note that, as the first critical valueτ∗ of τ when the
trivial solution of Eq. (1.3) loses its stability due to the occurrence of a pair of purely imaginary eigenvalues of the
generator of the corresponding linearized system, a Hopf bifurcation of periodic solutions takes place and these
periodic solutions are not synchronous but phase-locked in the sense that two neurons oscillate in the same way
but in different phases, or more precisely, the periodic solutions(u, v)T are anti-phase:u(t + (ω/2)) = v(t) for all
t ∈ R and for the minimal periodω > 0.

In [5], we proved that whenτ > τ ∗ there exists a (locally) unstable manifold tangent to a three-dimensional
linearly unstable subspace of the generator of the associated linearization of the trivial solution, the closure of its
global forward extension of such a manifold contains 3 equilibria and a closed disk bordered by a phase-locked
periodic orbit.

The main tool to get the above results is the discrete Lyapunov functional, introduced by Mallet-Paret and Sell
[12,13], for cyclic nearest neighbor systems of differential delay equations. We first note that with the transformation
x(t) = u(2t) andy(t) = v(2t − 1), we can rewrite Eq. (1.3) as the following cyclic system of delay differential
equations{

ẋ(t) = −2τµx(t)+ 2τf (y(t)),
ẏ(t) = −2τµy(t)+ 2τf (x(t − 1)).

(1.5)

Then using the discrete Lyapunov functional, we get the corresponding results for system (1.5), which imply the
above results for system (1.3) by using the aforementioned transformation. For the same reason, in this paper, we
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only concentrate on system (1.5). The readers can easily state the corresponding results for system (1.3) and derive
them as immediate consequences of the above transformation.

The purpose of this paper is to report results about the detailed information of
1. the stability of the phase-locked periodic orbit, including the spectrum analysis of the monodromy operator;
2. the geometric structure of the basins of attraction of this periodic orbit and other equilibria;
3. the geometric structure of the closure of the aforementioned three-dimensional manifold.
It should be remarked that we will only sketch the proofs for most of the results reported. The details are quite

long and technical, but parallel to those of Krisztin, Walther and Wu [10] for the scalar equation. All the details are
provided in a technical report which is available to all readers upon request.

2. The phase-locked orbit and graph representations

Following the work of Smith [17] and Mallet-Paret and Sell [12,13], we letK = [−1,0]∪{1} and use the Banach
spaceC(K) = {ϕ : K→ R; ϕ is continuous} with the supernorm as the phase space for system (1.5) and we will
always tacitly use the identification

C(K) = C([−1,0];R)× R.

Throughout the paper, we assume
(H1) f (0) = 0 andf ′(ξ) > 0 for all ξ ∈ R;
(H2) f ′(0) > µ;
(H3) there existsM > 0 so thatf (ξ)/ξ < µ if |ξ | > M;
(H4) τ > τd = (π − arccos(µ/f ′(0)))/(

√
[f ′(0)]2 − µ2).

In the language for networks of neurons, (H1) and (H2) require that the interaction of two neurons is excitatory
and the neuron gain,f ′(0), is sufficiently large. A standard function employed in the modeling of networks is the
sigmoid which clearly satisfies the dissipativeness condition (H3). It is well known (see, for example, [7,8,14]) that
the network can possess interesting complicated dynamics only when the delay is large, so is our condition (H4),
whereτd is the first critical value of the delayτ where a Hopf bifurcation of periodic solutions takes places from
the trivial solution.

Under the above assumptions, for eachϕ ∈ C(K), there exists a unique pair of continuous mapsx : [−1,∞) → R

andy : [0,∞) → R such that(x, y)T : (0,∞) → R
2 is continuously differentiable and satisfies system (1.5)

for t > 0, x|[−1,0] = ϕ|[−1,0] andy(0) = ϕ(1). Let zϕ = (xϕ, yϕ)T denote the above unique pair and define
z
ϕ
t = (x

ϕ
t , y

ϕ(t))T ∈ C(K) for t ≥ 0 (Note here the subscriptt is used for an element inC(K) other than
C([−1,0];R)). Then the map8 : R+ × C(K) 3 (t, ϕ) 7→ z

ϕ
t ∈ C(K) is a continuous semiflow with at least three

stationary points 0,z− andz+, where 0,z− andz+ denote the constant maps onK with the values 0,ξ− andξ+,
respectively (whereξ− andξ+ are the maximal negative and minimal positive zeros off (ξ) = µξ , respectively.
The existence follows from (H2) and (H3)).

The spectrum of the generator of theC0-semigroup{D28(t,0)}t≥0 coincides with the zero of the characteristic
equation∣∣∣∣ λ+ 2τµ −2τ

−2τe−λ λ+ 2τµ

∣∣∣∣ = [(λ+ 2τµ)2 − 4τ2e−λ] = 0.

It is shown that this spectrum is given byα0, α1 ± iβ1, α2 ± iβ2, . . . with
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α0 > α1 > α2 > · · · , α1 > 0, β1 ∈ (π,2π), β2j ∈ (2(2j − 1)π,4jπ),

β2j+1 ∈ (4jπ,2(2j + 1)π), j ≥ 1.

LetP0, P1 andQ be the realified eigenspaces of the generator of the semigroup{D28(t,0)}t≥0 onC(K) associated
with the spectral sets{α0}, {α1 + iβ1, α1 − iβ1} and{αj + iβj , αj − iβj }j≥2, respectively. Note thatP0 = Rχ0,
where

χ0(θ) =
{

eα0θ for θ ∈ [−1,0],
e−α0/2 for θ = 1.

Forγ ∈ (max{1,eα2},eα1), there exist convex bounded open neighborhoodsN0, N1 andNQ of 0 inP0, P1 andQ,
respectively, and aC1-mapwloc : N1 ⊕ N0 → Q with wloc(0) = 0,Dwloc(0) = 0, wloc(N1 + N0) ⊆ NQ and so
that the graphWloc = {χ + wloc(χ);χ ∈ N0 +N1} coincides with the set

Wγ = {ϕ ∈ Nloc = N0 +N1 +NQ; there is a sequence(ϕn)
0
−∞ with ϕ0 = ϕ, ϕn = 8(1, ϕn−1),

and ϕnγ
−n ∈ Nloc for each integern ≤ 0 and ϕnγ

−n → 0 as n → −∞}.
Our focus here is

W = 8(R+ ×Wloc)

and

S = {ϕ ∈ C(K);ϕ = 0 or V (zϕt ) > 0 for t ≥ 0},
whereV : C(K) \ {0} → {0,2,4, . . . } is the discrete Lyapunov functional introduced by Mallet-Paret and Sell
[12]. Namely, forϕ ∈ C(K) \ {0},

V (ϕ) =
{

sc(ϕ) if sc(ϕ) is even or infinite,
sc(ϕ)+ 1 if sc(ϕ) is odd,

where sc(ϕ) = 0 if eitherϕ ≥ 0 orϕ ≤ 0 and otherwise

sc(ϕ)= sup{k ≥ 1; there existsθ0 < θ1 < · · · < θk with θi ∈ K for i = 0,1, . . . , k

and ϕ(θi−1)ϕ(θ i) < 0 for 1 ≤ i ≤ k}.
It is easy to see that for eachϕ ∈ W there is a unique solution defined onR of system (1.5) passing throughϕ, also
denoted aszϕ . Note thatzϕt ∈ W for t ∈ R. Thus, we have a flow8W : R×W 3 (t, ϕ) 7→ z

ϕ
t ∈ W . We have shown

in [5] thatS is not ordered with respect to the partial ordering onC(K), which is induced by the positive cone

K = {ϕ ∈ C(K); ϕ(θ) ≥ 0 for θ ∈ K}.

Theorem 1.
1. There is a nontrivial periodic solutionp = (p1, p2)T : R→ R

2 of system(1.5)with the minimal periodω > 1
which is determined by three consecutive zeros ofp1 or p2 such thatp1(0) = 0 andp2(0) > 0. Moreover,
p1(t) = p2(t + (ω + 1)/2) andp2(t) = p1(t + (ω − 1)/2) for t ∈ R.

2. O = {pt ; t ∈ R} = bd(W ∩ S) = W ∩ S \ (W ∩ S) is the only nontrivial periodic orbit inW̄ .
3. 5(W ∩ S) = int(5 ◦ η), 5(W ∩ S \ (W ∩ S)) = 5 ◦ η([0, ω)], whereη : [0, ω] 3 t 7→ pt ∈ C(K), and
5 : C(K) 3 ϕ 7→ (ϕ(0), ϕ(1))T ∈ R2.

4. W̄ ∩ S = W ∩ S.
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In what follows, we call the periodic orbitO a phase-locked periodic orbit. This is because if we letq1(t) =
p1(t/2), q2(t) = p2((t+1)/2) for t ∈ R, thenq = (q1, q2)T : R→ R

2 is indeed a phase-locked periodic solution
of the origin system (1.3).

Theorem 1 was established in [5]. In the remaining part of this paper, we study the instability of the phase-locked
periodic orbitO, the structures of̄W andbdW = W̄ \W , and the basin of attraction (within̄W ) of O.

We first give some graph representations ofW̄ andW̄ ∩ S. Direct calculations lead to, for the projection ontoP0

of C(K),

PrP0φ = 1

2 + 2τf ′(0)e−α0/2

[
φ(0)+ φ(1)eα0/2 + 2τf ′(0)e−α0/2

∫ 0

−1
e−α0σ φ(σ )dσ

]
χ0

for all φ ∈ C(K). Define the continuous linear functional

cP0 : C(K) 3 φ 7→ φ(0)+ φ(1)eα0/2 + 2τf ′(0)e−α0/2
∫ 0

−1
e−α0σ φ(σ )dσ ∈ R.

Clearly,c−1
P0
(0) = Q+ P1.

We need the following projection

53 : C(K) 3 ϕ 7→ (ϕ(0), ϕ(1), cP0(ϕ))
T ∈ R3.

The restrictions of53 to W̄ andP0 ⊕P1 are injective. Let5−1
3 : 53W̄ → C(K) be the map given by the inverse of

53 : W̄ 3 ϕ 7→ 53ϕ ∈ 53W̄ . We can show that5−1
3 is Lipschitz continuous. Observe that53 is surjective since

53|P0⊕P1 is injective and dimP0 ⊕ P1 = 3. Choose linearly independent elementsϕj , j = 1,2,3, inC(K) with

53ϕj = ej , j = 1,2,3,

where{e1, e2, e3} is the standard basis ofR3. Let J3 denote the injective linear map fromR3 into C(K) given by
J3ej = ϕj . Then we have a projection

P3 = J3 ◦53 : C(K) → C(K).

The spaceG3 = P3C(K) = Rϕ1 ⊕ Rϕ2 ⊕ Rϕ3 is three-dimensional, and withE = P−1
3 (0) we have

C(K) = G3 ⊕ E.

The restriction ofP3 to W̄ is injective. LetP−1
3 : P3W̄ → C(K) be given by the inverse of̄W 3 ϕ 7→ P3ϕ ∈ P3W̄ ,

and define the map

w : P3W̄ 3 χ 7→ (id − P3) ◦ P−1
3 (χ) ∈ E.

Then we have the following graph representation

W̄ = {χ + w(χ);χ ∈ P3W̄ }.
Consider also the injective linear mapJ from R2 into C(K) given byJ (1,0)T = ϕ1 andJ (0,1)T = ϕ2. As

5ϕ1 = (1,0)T and5ϕ2 = (0,1)T, we obtain another projection

P = J ◦5 : C(K) → C(K).

G2 = PC(K) = Rϕ1 ⊕ Rϕ2 is a two-dimensional subspace ofG3, and

C(K) = G2 ⊕ P−1(0).
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SetG1 = Rϕ3, so that

G3 = G2 ⊕G1.

It is easy to verify thatP−1(0) = G1⊕E. The injectivity of5 to the setW̄∩S and the injectivity ofJ combined show
thatP |W̄∩S is injective. LetP−1 : P(W̄ ∩ S) → C(K) be given by the inverse of̄W ∩ S 3 ϕ 7→ Pϕ ∈ P(W̄ ∩ S),
and define the map

wS : P(W̄ ∩ S) 3 χ 7→ (id − P) ◦ P−1(χ) ∈ G1 ⊕ E.

We obtain the following graph representation:

W̄ ∩ S = {χ + wS(χ);χ ∈ P(W̄ ∩ S)}.
It follows from the Lipschitz continuity of5−1

3 thatw andwS are Lipschitz continuous. The following preliminary
smoothness results can be verified:
1. P3W is open inG3, andw|P3W isC1-smooth;
2. 53W is open inR3, and53 defines aC1-diffeomorphism from theC1-submanifoldW of C(K) onto53W ;
3. The flowR×W 3 (t, φ) 7→ 8W(t, φ) ∈ W isC1-smooth.

3. The minimal linear instability of O

It is known that the Floquet multipliers of the periodic orbitO are eigenvalues of finite multiplicity forming the
spectrum away from 0 of the compact linearized mapM = D28(ω, p0). Let σ denote the spectrum ofM. For
0 6= λ ∈ σ , let

E(λ) = Ker(MC − λ id),

G(λ) =
∞⋃
n=0

Ker(MC − λ id)n

denote the eigenspace and generalized eigenspace associated withλ, respectively. Let ReG(λ) denote the realified
generalized eigenspace associated withλ. If r > 0 is given and if there existsλ ∈ σ with r < |λ|, let C≤r
andCr< denote the realified generalized eigenspaces ofM associated with the nonempty disjoint spectral sets
{λ ∈ σ ; |λ| ≤ r} and{λ ∈ σ ; r < |λ|}, respectively, thenC(K) = C≤r ⊕ Cr<. Analogously, we shall consider
realified generalized eigenspacesC<r andCr≤.

The next result establishes the minimal linear instability ofO:

Theorem 2.
(i) There exist a Floquet multiplierλu > 1 andψu ∈

◦
K withMψu = λuψu.

(ii) dimC1< = 1.
(iii) −1 /∈ σ .
(iv) For everyλ ∈ σ \ {0,1, λu}, |λ| < 1.

Theorem 2(i) implies that the periodic orbitO is linearly unstable. We say thatO is hyperbolic ifdimReG(1) = 1,
and nonhyperbolic if otherwise.

Outline of the proof.

1. We get a positiveλu ∈ σ with an eigenvectorψu in
◦
K = {ϕ ∈ C(K);ϕ(θ) > 0 for θ ∈ K} from the

Krein–Rutman Theorem applied toM2.
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2. We show thatλu > 1 by iteration ofψu + εṗ0 underM and using the monotonicity property ofM.
3. We can show that there existsrM > 0 so thatσ ∩ {λ ∈ σ ; rM < |λ|} 6= ∅, C≤rM ∩ T = ∅, CrM< ⊂
T̄ ,dimCrM≤ ≤ 3, whereT = V −1({0,2}). rM < 1 sinceṗ0 ∈ E(1) ∩ T . Thus, 1≤ dimC1< ≤ 2.

If, by way of contradiction, dimC1< = 2, thenO is hyperbolic andC≤rM = C<1. We would arrive at a
contradiction in step 4 and step 5.

4. Letz = (x, y)T : R→ R
2 be a solution of Eq. (1.5) such thatzt ∈ W ∩ S for all t ∈ R, zt → 0 ast → −∞

andzt → O as t → ∞. Thenpt − zs ∈ T for all t, s ∈ R and there exists a constantc > 0 such that
‖pt − zs‖ ≤ c‖pt+1 − zs+1‖ for all t, s ∈ R. Now, choose a closed complementary subspaceY of Rṗ0 in
C(K). Then there are open neighborhoodU of p0 in C(K) and aC1-mapγ : U → R with γ (p0) = ω

and8(γ (φ), φ) ∈ p0 + Y for all φ ∈ U . The fixed pointp0 of the Poincaré-mapPY is hyperbolic, where
PY : U ∩ (p0 + Y ) 3 φ 7→ 8(γ (φ), φ) ∈ p0 + Y .

5. LetW s be a local stable manifold ofPY atp0. Then there exist a neighborhoodUs of p0 in U and atP ∈ R
such thatztP ∈ W s andW s 3 P jY (ztP ) → p0 asj → ∞. Using the asymptotic phase theorem of Lani-Wayda
and Walther [11], we can findα > 0 so thatφ0 = 8(α, ztP ) belongs to a local stable manifoldW s

ω of the
periodic map8(ω, ·) at the fixed pointp0. Thenφn = 8(nω, φ0) → p0 asn → ∞. It is easy to check that
the normalized vectors(φn − p0)/(‖φn − p0‖) ∈ T satisfy the hypotheses of the Arzèla–Ascoli Theorem.
Combing this with the fact that

‖PrCrM<(φn − p0)‖
‖PrC≤rM (φn − p0)‖ → 0 as n → ∞,

we can find a unit vectorχ ∈ T̄ ∩ C≤rM , a contradiction toC≤rM ∩ T = ∅.
6. Suppose−1 is a Floquet multiplier ofM. Then there exist solutions(ui, vi)T : R→ R

2, i = 1,2, of the system
of variational equations of Eq. (1.5) withM(u1

0, v
1(0))T = −(u1

0, v
1(0))T and(u2

0, v
2(0))T = ψu. Fix three

consecutive zerosα1 < α2 < α3 of ṗ1. Thenu1
α3

= −u1
α1

. We can show thatV (c1(u
1
t , v

1(t))T + c2ṗt ) = 2
for all (c1, c2)

T ∈ R× R \ {(0,0)T} and allt ∈ R. This implies that for such(c1, c2)
T the first component of

c1(u
1, v1)T + c2ṗ cannot have a double zero. Using this result, we can show the following synchronization

property:β1 < α1, β2 ∈ (α1, α2), β3 ∈ (α2, α3), α3 ∈ (β3, β4), whereβ1 is the largest zero ofu1 which is less
than or equal toα1, β2, β3 andβ4 are the next zeros ofu1. Therefore, we have

signu1(α3) = signu̇1(β3) = signu̇1(β1) = signu1(α1),

a contradiction tou1(α3) = −u1(α1). Thus,−1 /∈ σ .
7. Let λ ∈ σ \ {0,1, λu}. If |λ| ≥ 1 then (i) and (ii) imply that|λ| = 1. It follows from (iii) that λ ∈ S1

C
\ R.

Therefore, 4≤ dimC1≤ ≤ dimCrM< ≤ 3, a contradiction.
Note that (iii) excludes bifurcation of Möbius strips.

4. The unstable set ofO

We have noticed that the monodromy operatorM = D28(ω, p0) has exactly one Floquet multiplierλu outside
the unit circle, and

λu ∈ (1,∞), C1< = Rψu, ψu ∈
◦
K, ‖ψu‖ = 1.

Chooseλ ∈ (0,1) so that

λ > max

{
1

λu
, max
ζ∈σ,|ζ |<1

|ζ |
}
.
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Theorem I.3 of [10] guarantees the existence of a local strong unstable manifold of the periodic map8(ω, ·) at
its fixed pointp0. Namely, there are convex open neighborhoodsN1< of 0 in C1< andN≤1 of 0 in the realified
generalized eigenspaceC≤1 ofM associated with the spectral set{ζ ∈ σ ; |ζ | ≤ 1} and aC1-mapwu : N1< → C≤1

so that

wu(0) = 0, Dwu(0) = 0, wu(N1<) ⊆ N≤1,

and withNu = N1< +N≤1, the shifted graph

Wu(p0,8(ω, ·), Nu) = {p0 + χ + wu(χ);χ ∈ N1<}

{χ ∈ p0 +Nu; there is a trajectory(χn)0−∞ of 8(ω, ·)with χ0 = χ,

λn(χn − p0) ∈ Nufor all n ∈ −N,and λn(χn − p0) → 0 as n → −∞}.
The unstable setWu(O) of the periodic orbitO is defined as

Wu(O) =
⋃
t≥0

8(t,Wu(p0,8(ω, ·), Nu)).

The next result identifies the unstable set of the phase-locked periodic orbit with the nonstationary points of the
boundary ofW .

Theorem 3. Wu(O) = bdW \ {z−, z+}.
Outline of the proof. To prove Theorem 3, we first show thatbdW \ {z−, z+} ⊆ Wu(O). Letφ ∈ bdW \ {z−, z+}.
Then we can proveα(φ) = O. Consider the solutionzφ = (xφ, yφ)T : R → R

2 of system (1.5). It suffices
to show that there existst ≤ 0 such thatzφt ∈ Wu(p0,8(ω, ·), Nu). Suppose, by way of contradiction,zφt /∈
Wu(p0,8(ω, ·), Nu) for all t ≤ 0.
1. Sinceα(φ) = O, there exists ans0 ≤ 0 such that{φn = z

φ
s0+nω}n∈−N has a subsequence converging top0 as

n → −∞. We can show thatV (φn − p0) = 2 for all sufficiently large negative integersn.
2. We prove that there existsT0 < 0 such thatV (zφt − p0) = 2 for all t ≤ T0.
3. We show thatV (zφt − ψ) = 2 for allψ ∈ O and for allt ≤ T0 − ω.
4. We prove that there existsT1 ≤ T0 − ω such thatV (zφt − ψ) = 2 for allψ ∈ W ∩ S and for allt ≤ T1.
5. The results in 3 and 4 combined yield that5z

φ
t ∈ ext(5 ◦ η) for all t ≤ T1. We can choose a sequence(χn)∞0

inW such thatχn → z
φ
T1

asn → ∞ andV (zχnt −ψ) = 2 for all t ≤ 0, for allψ ∈ O and for alln ∈ N. Thus,

the curve5 ◦ η and the map(−∞,0] 3 t 7→ 5z
χn
t ∈ R2 have disjoint sets of values for anyn ∈ N. Note that

5χn ∈ ext(5 ◦ η) since5χn → 5z
φ
T1

∈ ext(5 ◦ η) asn → ∞. On the other hand,zχnt → 0 ast → −∞.

Therefore,5zχnt → 0 ∈ int(5 ◦ η) ast → −∞. This yields a contradiction and hence we haveφ ∈ Wu(O).
Next, we show thatWu(O) ⊆ bdW .

6. (Introducing the Poincaré-mapPH ) LetH = {ϕ ∈ C(K);ϕ(0) = 0}. Chooseδ̂ > 0 such that−2τµφ(0) +
2τf (φ(1)) > 0 for all φ ∈ p0 + C(K)

δ̂
, whereC(K)

δ̂
= {ϕ ∈ C(K); ‖ϕ‖ < δ̂}. Selectε̃ > 0 so that

pt ∈ p0 + C(K)
δ̂

for all t ∈ [0, ε̃]. By the continuous dependence of solutions of system (1.5) on initial data
there exists̃δ > 0 so that

z
φ
t ∈ p0 + C(K)

δ̂
for all φ ∈ p0 + C(K)δ̃ and for all t ∈ [0, ε̃].

Noteṗ0 /∈ H . There exist a convex bounded open neighborhoodNp0 of p0 in p0 +C(K)δ̃, εH ∈ (0,min{ω−
1, ε̃/2}), and aC1-map νH : Np0 → (ω − εH , ω + εH ) such thatνH (p0) = ω, and for every(t, φ) ∈
(ω − εH , ω + εH )×Np0,8(t, φ) ∈ H if and only if t = νH (φ), andD18(νH (φ), φ)1 /∈ H for all φ ∈ Np0.
Then the Poincaré-mapPH : Np0 ∩H 3 φ 7→ 8(νH (φ), φ) ∈ H isC1-smooth, andp0 is a fixed point ofPH .
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LetσPH denote the spectrum of the derivativeDPH(p0) : H → H . Thenσ \ {0,1} = σPH \ {0,1}. If r > 0
is given and if there existsζ ∈ σPH with r < |ζ |, then we letH≤r andHr< denote the realified generalized
eigenspaces ofDPH(p0) associated with the nonempty disjoint compact spectral sets{ζ ∈ σPH ; |ζ | ≤ r} and
{ζ ∈ σPH ; r < |ζ |}, respectively. For suchr,H = H≤r ⊕Hr<.

For PH there exist convex open neighborhoodsNH,≤1 of 0 in H≤1, NH,1< of 0 in H1< and aC1-map
wuH : NH,1< → H≤1 with wuH (0) = 0,DwuH (0) = 0, wuH (NH,1<) ⊂ NH,≤1, so that for the neighborhood
Nu
H = NH,1< +NH,≤1 of 0 inH we have that the shifted graph

Wu(p0, PH ,N
u
H ) = {p0 + χ + wuH (χ);χ ∈ NH,1<}

coincides with the set{
φ ∈ Nu

H ; there is a trajectory(φn)
0
−∞ of PHwith φ = φ0,

λn(φn − p0) ∈ Nu
H for all n ∈ −N and λn(φn − p0) → 0 as n → −∞}

.

Furthermore, there exist an open neighborhood̃Nu
H of 0 inNu

H , a constantαH,u ∈ (0, λ), and a norm‖ · ‖H,u
onH , equivalent to‖ · ‖H with

‖φ‖H,u = max{‖PrH,1<φ‖H,u, ‖PrH,≤1φ‖H,u} for all φ ∈ H,
so that the restriction ofPH to Wu(p0, PH ,N

u
H ) ∩ (p0 + Ñu

H ) defines aC1-diffeomorphism(PH )u onto
Wu(p0, PH ,N

u
H ) whose inverse satisfies

‖(PH )−1
u (φ)− (PH )

−1
u (ψ)‖H,u ≤ αH,u‖φ − ψ‖H,u for all φ,ψ ∈ Wu(p0, PH ,N

u
H ).

Let PrH,ṗ0 : C(K) → C(K) be the projection ontoH alongṗ0. DenoteψH = 1/(‖PrH,ṗ0ψu‖H,u)PrH,ṗ0ψu.
ThenH1< = RψH with ‖ψH‖H,u = 1. SinceNH,1< is a convex open neighborhood of 0 inH1<, it follows
that

NH,1< = {sψH ; −β1 < s < β2}
for some constantsβ1 > 0 andβ2 > 0. Chooseβ0 ∈ (0,min{β1, β2}) so that‖DwuH (sψH )ψH‖H,u < 1 for
|s| < β0. For 0< β < β0, define

Wu
β (p0, PH ) = {p0 + sψH + wuH (sψH ); |s| < β}.

Clearly,Wu
β (p0, PH ) ⊆ Wu(p0, PH ,N

u
H )andWu(p0, PH ,N

u
H ) ⊆ ⋃

t≥08(t,W
u
β (p0, PH )). If φ ∈ Wu

β (p0, PH ),

then (PH )−1
u (φ) ∈ Wu

β (p0, PH ) and ‖(PH )−1
u (φ) − p0‖H,u < αH,uβ. In addition to the properties of

N1<,N≤1, N
u,wu stated before, there exist an open neighborhoodÑu of 0 in Nu, a constantαu ∈ (0, λ)

and a norm‖ · ‖u : C(K) → R, equivalent to‖ · ‖, with ‖φ‖u = max{‖PrC1<φ‖u, ‖PrC≤1φ‖u} for all
φ ∈ C(K), so that the restriction of8(ω, ·) toWu(p0,8(ω, ·), Nu)∩ (p0 + Ñu) defines aC1-diffeomorphism
8(ω, ·)u ontoWu(p0,8(ω, ·), Nu), whose inverse satisfies

‖(8(ω, ·)u)−1(φ)− (8(ω, ·)u)−1(ψ)‖u ≤ αu‖φ − ψ‖u
for allφ,ψ ∈ Wu(p0,8(ω, ·), Nu). Chooseδ0 > 0 such that{sψu; |s| < δ0} ⊂ N1< and that‖Dwu(sψu)ψu‖u
< 1 for all |s| ≤ δ0. Then, for everyφ in

Wu
δ (p0,8(ω, ·)) = {p0 + sψu + wu(sψu); |s| < δ}, 0< δ < δ0,

we have(8(ω, ·)u)−1(φ) ∈ Wu
δ (p0,8(ω, ·)) and‖(8(ω, ·)u)−1(φ) − p0‖u < αuδ. The unstable set of the

fixed pointp0 of the periodic map8(ω, ·) is defined by

Wu(p0,8(ω, ·)) =
⋃
n∈N

8(nω,Wu(p0,8(ω, ·), Nu)).
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Observe that, for 0< δ < δ0, we have

Wu(p0,8(ω, ·)) =
⋃
n∈N

8(nω,Wu
δ (p0,8(ω, ·))).

7. We show that there exists a unique continuously differentiable functionz = (x, y)T : R→ R
2 satisfying

ẋ(t) = −2τµx(t)+ 2τf ′(p2(t))y(t),

ẏ(t) = −2τµy(t)+ 2τf ′(p1(t − 1))x(t − 1),
x(0) = 0, y(0) = 1,
V (zt ) = 2 for all t ∈ R.

Let φH = z0. Then we can show that53ψH and53φH span the plane53H = {y ∈ R3; y1 = 0} in R3.
Chooseβ ∈ (0, β0) such that the curve

b : (−β, β) 3 s 7→ 53(p0 + sψH + wuH (sψH )) ∈ 53H

isC1-smooth and satisfiesb(0) = 53p0,Db(0)1 = 53ψH . It follows that there existβ3 ∈ (0, β0), u1 andu2

in (0,∞), and aC1-maph : (−u1, u2) → R with

|h′
1(u)| < 1 for all u ∈ (−u1, u2)

so that

b|(−β3,β3) is injective,
53|Wu

β3
(p0,PH ) is injective,

h1(0) = 0 and h′
1(0) = 0,

53(W
u
β3
(p0, PH )) = b((−β3, β3)) = {53p0 + u53ψH + h(u)53φH ; −u1 < u < u2}.

8. We show that there existsβ4 ∈ (0, β3) such thatWu
β4
(p0, PH ) ⊂ bdW . This result combined with the rela-

tionsWu(O) = ⋃
t≥08(t,W

u(p0, PH ,N
u
H )) andWu(p0, PH ,N

u
H ) ⊂ ⋃

t≥08(t,W
u
β4
(p0, PH )) yields that

Wu(O) ⊂ bdW .
We remark that the above identification enables us to draw a complete picture about the dynamics of the flow on
Wu(O), which will be the main ingredient of the constructive proof of the homeomorphism fromWu(O) to the
two-dimensional sphere in Section 6.

5. Smoothness ofW̄ ,W, bdW and W̄ ∩ S

Recall from Section 2 that there exist mapsw : P3W̄ → E andwS : P(W̄ ∩ S) → G1 ⊕ E such that

W̄ = {χ + w(χ);χ ∈ P3W̄ }
and

W̄ ∩ S = {χ + wS(χ);χ ∈ P(W̄ ∩ S)},
respectively.

The smoothness of the mapsw andwS are described as follows:
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Theorem 4.
1. Bothw|P3W andwS |P(W∩S) areC1-smooth.
2. w and wS are also smooth atP3(bdW) \ {P3z−, P3z+} and PO, respectively, in the sense that close to

these points,w andwS , respectively, can be extended toC1-functions on open subsets inG3 andG2. Moreover,
P3(bdW)\{P3z−, P3z+} is a two-dimensionalC1-submanifold ofG3, andbdW \{z−, z+} is a two-dimensional
C1-submanifold ofC(K).

We will only sketch the proof of (i) due to limitation of space. We should, however, mention that the proof of 2
is very technical but similar to that of corresponding results in [10].

TheC1-smoothness ofw|P3W : note that for everyε > 0, W = ⋃
n∈N8({n} × (Wloc ∩ C(K)ε)). Let Dn =

P38({n} × (Wloc ∩ C(K)ε)). It is sufficient to findε > 0 so thatw|Dn is C1-smooth for everyn ∈ N. SinceP3 is
C1-smooth andDP3(0) = P3 defines an isomorphism fromP0 ⊕ P1 ontoG3, there existsε > 0 so thatP3 maps
Wloc ∩ C(K)ε one-to-one onto an open neighborhoodU of 0 in G3 andw|U is C1-smooth. Now letn ∈ N and
χ ∈ Dn be given. The pointφ = χ + w(χ) satisfiesφ = 8(n,ψ) with ψ ∈ Wloc ∩ C(K)ε. Setρ = P3ψ . Then
χ = P38(n, ρ+w(ρ)) andρ ∈ U . Note that the derivatives of theC1-mapA : U 3 ρ̃ 7→ P38(n, ρ̃+w(ρ̃)) ∈ G3

are injective. HenceA maps an open neighborhoodV of ρ in U one-to-one onto an open neighborhoodN of χ in
G3, which belongs toDn, and the inverseA−1 : N → G3 of the mapV 3 ρ̃ 7→ A(ρ̃) ∈ N isC1-smooth. For every
χ̃ ∈ N ,

w(χ̃) = (id − P3)8(n,A
−1(χ̃)+ w(A−1(χ̃))),

and it becomes obvious thatw|N isC1-smooth. It follows thatw|Dn isC1-smooth.
TheC1-smoothness ofwS |P(W∩S): we discuss it in two cases.
Case1.O is hyperbolic: In this case, the closed subspace

Y = C1< ⊕ C<1

has codimension 1 andD18(ω, p0)1 = ṗ0 ∈ C(K) \ Y . There existεp > 0, a convex open neighborhoodU of p0

in C(K), and aC1-mapν : U → R with the following properties:

1< ω − εp, ν(U) ⊂ (ω − εp, ω + εp), ν(p0) = ω;
for every (t, φ) ∈ (ω − εp, ω + εp)× U,8(t, φ) ∈ p0 + Y if and only if t = ν(φ);
D18(ν(φ), φ)1 ∈ C(K) \ Y for all φ ∈ U.

We can also achieve that 0/∈ U andφ̇ ∈ C(K)\Y for all φ ∈ U∩W̄ . Define the Poincaré-mapPY : U∩(p0+Y ) →
(p0 + Y ) by

PY (φ) = 8(ν(φ), φ).

LetW s be a local stable manifold ofPY atp0. ThenW s ∩W ⊂ W ∩ S and for everyφ ∈ W ∩ S \ {0}, there exists
t > 0 with8W(t, φ) ∈ W s. Letχ ∈ P(W ∩S)\{0}. Setφ = χ+wS(χ) ∈ (W ∩S)\{0}. Then there existst ∈ R so
thatψ = 8W(t, φ) ∈ W s∩W . We can show that close toψ the flow extendsW s∩W to a smooth two-dimensional
submanifoldWψ and that theC1-mapB : Wψ 3 ρ 7→ P8W(−t, ρ) ∈ G2 has an injective derivative atψ . By the
Inverse Function Theorem, there exist an open neighborhoodV of P(ψ) = ψ in P(W ∩ S) \ {0} and aC1-inverse
B−1
V : V → Wψ of the restriction ofB toB−1(V ). Observe that the restriction ofwS to V is given by

wS(χ̃) = (id − P)8W(−t, B−1
V (χ̃)).

Since8W(−t, ·) defines aC1-diffeomorphism ofW onto itself, theC1-smoothness ofwS |P(W∩S)\{0} follows easily.
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For theC1-smoothness ofwS at 0, recall that there exitsε > 0, η > 0 and a Lipschitz continuous map Sepη :
P1,η → Q+ P0 such that

(Wloc ∩ S) ∩ (Q+ P1,η + P0,ε) = {χ + Sepη(χ);χ ∈ P1,η},

wherePi,α = {χ ∈ Pi; ‖χ‖ < α} for i = 0,1 andα > 0. We can show that Sepη|P1,η\{0} is C1-smooth and that
Sepη is differentiable at 0,D Sepη(0) = 0 andD Sepη is continuous at 0. These results imply that

a : P1,η 3 χ 7→ P(χ + Sepη(χ)) ∈ G2

defines aC1-diffeomorphism fromP1,η onto an open neighborhoodV of 0 inG2. Let a−1 denote its inverse. For
all χ ∈ V ,

wS(χ) = (id − P)(a−1(χ)+ Sepη(a
−1(χ))),

so thatwS |V isC1-smooth.
Case2.O is nonhyperbolic: We can choose a unit vectorξ ∈ C(K) such that the realified generalized eigenspace

of M associated with the eigenvalue 1 isRṗ0 ⊕ Rξ . Set

Y = C<1 ⊕ Rξ ⊕ C1<.

Henceṗ0 ∈ C(K) \ Y . Then there existεp > 0, a convex open neighborhoodU of p0 in C(K) and aC1-map
ν : U → R with the same properties as in the case whereO is hyperbolic and, in addition, with

V (φ) ≥ 2 for all φ ∈ U.

Then the Poincaré-map

PY : U ∩ (p0 + Y ) 3 φ 7→ 8(ν(φ), φ) ∈ (p0 + Y )

isC1-smooth and hasp0 as a fixed point. LetW csbe a local center-stable manifold ofPY atp0. Letχ ∈ P(W∩S)\{0}.
Setφ = χ + wS(χ) ∈ (W ∩ S) \ {0}. We can show that there existt ≥ 0, a trajectory(φn)∞0 of PY in W cs, and a
neighborhoodNt of φ0 in C(K) so thatφ0 = 8(t, φ), φn → p0 asn → ∞, andW cs∩Nt ⊂ S. Similar arguments
as those in the hyperbolic case yield thatwS |P(W∩S)\{0} isC1-smooth. TheC1-smoothness ofwS at 0 can be proved
in the same way as for the hyperbolic case.

6. Homeomorphisms from(W̄ , bdW)(W̄ , bdW)(W̄ , bdW) onto (D3, S2)(D3, S2)(D3, S2)

We can now obtain a homeomorphism frombdW ontoS2. The approach is constructive and based on the important
relation betweenbdW andWu(O) described in Section 4. This homeomorphism and the description of dynamics
onW̄ enables us to apply some powerful results in geometry and topology of three-dimensional manifolds to show
thatW̄ is homeomorphic toD3.

Theorem 5.
1. The setbdW is homeomorphic toS2.
2. The setW̄ is homeomorphic toD3.
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Outline of the proof.
1. Using the notations in the proof of Theorem 3, we can show that there existδ1 ∈ (0, δ0), δ2 andδ3 in (0, δ1),

and a continuous strictly increasing functiong : [−δ2, δ3] → [−δ1, δ1] such thatg(−δ2) = −δ1, g(δ3) = δ1,
g(0) = 0, |g(s)| > |s| for all s ∈ [−δ2, δ3] \ {0}, and

8(ω, p0 + sψu + wu(sψu)) = p0 + g(s)ψu + wu(g(s)ψu) for all s ∈ [−δ2, δ3];
moreover, if−δ1 ≤ s1 < s2 ≤ δ1, then

p0 + s1ψu + wu(s1ψu) � p0 + s2ψu + wu(s2ψu).

Chooses0 ∈ (0,min{δ2, δ3}). Let s±1 = g(±s0), s±0 = ±s0. Then the curves

γ+ : [s+0 , s
+
1 ] 3 s 7→ p0 + sψu + wu(sψu) ∈ C(K)

and

γ− : [s−1 , s
−
0 ] 3 s 7→ p0 + sψu + wu(sψu) ∈ C(K)

define homeomorphisms onto their images, respectively. Set0+
8 = {γ+(s); s+0 ≤ s ≤ s+1 }, 0−

8 = {γ−(s); s−1 ≤
s ≤ s−0 } andbd±W = {φ ∈ bdW \ {z−, z+}; zφt → z± as t → ∞}. ThenbdW = {z−} ∪ bd−W ∪ O ∪
bd+W ∪ {z+}. We can show thatbd±W = 8W(R×0±

8) and that for everyφ ∈ bd±W there is a uniquet ∈ R
such that8W(t, φ) ∈ 0±

8.
2. The mapG : R×D2 → D2 given by

G(t, (0,0)T) = (0,0)T for all t ∈ R
and by

G(t, (x, y))T =
(

r

(1 − r)et + r
cos

(
θ + 2π

ω
t

)
,

r

(1 − r)et + r
sin

(
θ + 2π

ω
t

))T

,

r =
√
x2 + y2, 0 ≤ θ < 2π, x = r cosθ, y = r sinθ

for all t ∈ Rand(x, y)T ∈ R2\{(0,0)T} is a continuous flow onD2. Set0G = {(x,0)T; 1/(1+eω) < x ≤ 1/2}.
ThenG(R× 0G) = {x ∈ R2; 0< x2

1 + x2
2 < 1}. The mapsi±8G : 0±

8 → 0G given by

i±8G(γ
±(s)) =

(
s − s±0
s±1 − s±0

1

1 + eω
+ s±1 − s

s±1 − s±0

1

2
,0

)T

are homeomorphisms. Using the results of 1 and definingh± : bd±W ∪O ∪ {z±} → D2 by the relations
h±(φ) = G(−t, i±8G(8W(t, φ))), φ ∈ bd±W, t ∈ R, 8W(t, φ) ∈ 0±

8,

h±(z±) = 0,

h±(φ) =
(

cos2π
ω
t, sin 2π

ω
t
)T
, φ = pt , t ∈ R,

we can show thath+ andh− are homeomorphisms,h+|O = h−|O andh+(O) = S1.
3. The maph∗ : bdW → S2 given by

h∗(φ) = h+(φ) = h−(φ) for φ ∈ O,
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Fig. 1.W̄ can be regarded as a smooth spindle, a complete analogue for system (1.5) of the results for scalar equation (1.4) obtained in [10].

h∗(φ) =

 x1

x2√
1 − x2

1 − x2
2

 ,( x1

x2

)
= h+(φ) for φ ∈ bd+W ∪ {z+} \O,

h∗(φ) =

 x1

x2

−
√

1 − x2
1 − x2

2

 ,( x1

x2

)
= h−(φ) for φ ∈ bd−W ∪ {z−} \O,

is a homeomorphism frombdW ontoS2.
4. Since53 defines a homeomorphism from̄W onto53W̄ , it suffices to show that there is a homeomorphism from
53W̄ ontoD3 such that the homeomorphism sends53(bdW) ontoS2. The Lipschitz continuity of5−1

3 and
(i) imply that53(bdW) is homeomorphic toS2. Therefore, the Jordan–Brouwer Separation Theorem shows
that the setR3 \53(bdW) has two connected components, one bounded and the other unbounded. Denote the
bounded component by int(53(bdW)) and the unbounded component by ext(53(bdW)). We can show that
int(53(bdW)) = 53W , which implies that

53W̄ = 53(bdW) ∪ int(53(bdW)).

5. We show that int(53(bdW)) is uniformly locally 1-connected1 . Then applying Bing’s Theorem [3] with
A = 53(bdW), we complete the proof.

1 The diameter diam(X) of a setX ⊆ R3 is defined by diam(X) = sup{|x − y|
R3; x ∈ X, y ∈ X}. A setX ⊂ R3 is calleduniformly locally

1-connectedif for everyε > 0 there existsδ > 0 such that every continuous mapa : ∂([0,1]× [0,1]) → X with diam(a(∂([0,1]× [0,1]))) < δ

can be extended to a continuous mapb : [0,1] × [0,1] → X with diam(b([0,1] × [0,1])) < ε.
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7. Concluding remarks

We considered a global forward extensionW of a leading unstable manifold of the origin. We proved thatW̄

contains a phase-locked periodic orbitO and 3 equilibria 0,z− andz+. The periodic orbit is linear unstable and its
basin of attraction withinW̄ is the diskW̄ ∩ S minus the trivial equilibrium. Other orbits in̄W \ S are heteroclinic
orbits from eitherO or 0 to the two nontrivial equilibria. The dynamics onbdW \ {z−, z+} and its identification
with the unstable setWu(O) of O enabled us to construct a homeomorphism frombdW ontoS2, which leads to
a homeomorphism from̄W ontoD3 by using the Bing’s theorem and the Jordan–Brouwer Separation Theorem.
Smoothness of̄W andW̄ ∩S were also established. Vaguely speaking,W̄ can be regarded as a smooth solid spindle
with two tipsz− andz+ and a separating disk̄W ∩ S bordered by the phase-locked orbit, as shown in Fig. 1. Such a
spindle was previously observed in [10] for the scalar equation (1.4) and our results here show a complete analogue
of their results for the system (1.5).

In the recent work of Krisztin and Walther [9], it was proved that forτ in a certain range, the closure of the
forward extension of a three-dimensionalC1-submanifold of the local unstable manifold at the trivial solution for
the scalar equation (1.4) is exactly the global attractor. The same result should hold for system (1.5). More precisely,
we expect that all periodic solutions of Eq. (1.5) are either synchronous or phase-locked, and that for

τ ∈
(
π − arccos(µ/f ′(0))√

[f ′(0)]2 − µ2
,

2π − arccos(µ/f ′(0))√
[f ′(0)]2 − µ2

)
,

W̄ is the global attractor for system (1.5).
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