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Abstract

The existence of a non-trivial phase-locked periodic orbitis established for a system of delay differential equations describing
the dynamics of networks of two identical saturating neurons. We discuss the instability and the unstable manifold of this
phase-locked orbit. In particular, we give detailed information about the spectrum of the related monodromy operator and
establish the connection between the unstable manifold of the phase-locked orbit and the boundary of the global extension of a
three-dimensional’l-submanifold of the origin. We obtain a smooth solid spindle, contained in the global attractor, separated
by a disk bordered by the phase-locked orbit. Major technical tools include a discrete Lyapunov functional, invariant manifolds
and other recently developed geometric theory of delay differential equations. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider the following system of delay differential equations

{ U(t) = —pU(@) + f(V(t — 1)),

! 1.1
V(t) = —uV () + UG — 1), (2.1)

where f : R — R is a Cl-smooth increasing function withf(0) = 0. Such a system can be regarded as a
special example of the following general Hopfield’s model [7,8] for artificial neural networks with electronic circuit
implementation
du; (1) :
#:_Miui(t)‘i‘ZTijfj(uj(t_Tij)), l<i=z<n (1.2)
J#
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with u; > 0 andr;; € R being given constants arg} : R — R being usual sigmoid functions for4 i, j < n,
where the delay;; > 0 was incorporated by Marcus and Westervelt [14] to account for the finite switching speed
of amplifiers (neurons). It has been observed that while a network modeled by Eq. (1.2) without delay (namely,
1;; = 0for1 < i, j < n) relaxed towards the set of equilibria [4,7,8], the presence of large dglayay cause
some stable nonlinear oscillations and lead to a completely different computational performance of the network
[1,2,6,14-16,18]. Our ultimate goal is to describe the global attractor of the network, and achieving this seems to be
very important in the applications of the model to tasks of classification and associative memory when the global
attractor encodes the pattern and memory of the network.

System (1.1) can be regarded as a special case of the network (1.2) with identical nesrand ¢;; are
independent of the choices ifj) for two reasons: system (1.2) reduces to Eq. (1.1) when2, or the dynamics
of Eq. (1.2) are completely described by Eq. (1.1) when the network is divided into two groups of neurons with
neurons in each group being convergent to the same states. It is hoped that, with such simplification and idealization,
we can have a relatively complete picture about the global attractor which shed some light for our understanding
about the general network (1.2).

Rescaling the time variable by(z) = U (t¢t) andv(¢z) = V (zt), we can rewrite Eq. (1.1) as

{ u(t) = —tpu(t) + tf (v — 1)), (1.3)

v(1) = —tpv() + of (u( —1)).

It is easy to see that every continuofs= (1, ¥2)" : [—1, 0] — R2 uniquely determines a solutian¥, v¥)T :
[—1, 00) — R2of Eq. (1.3) with(u¥, v¥)T|{_1.0] = ¥. Clearly, if 1 = ¥ then the uniquely determined solution
satisfiest¥ = v¥ in [—1, 0o) and this can be characterized by the scalar delay differential equation

w(t) = —tpw) + tf(w( — 1)). (1.4)

Such solutions are said to be synchronous and the recent work of Krisztin, Walther and Wu [10] and Krisztin and
Walther [9] gives a complete description of the global attractor of Eq. (1.4) as a three-dimensional smooth solid
spindle wherr is in a certain range. It is also interesting to note that, as the first critical véloé r when the

trivial solution of Eq. (1.3) loses its stability due to the occurrence of a pair of purely imaginary eigenvalues of the
generator of the corresponding linearized system, a Hopf bifurcation of periodic solutions takes place and these
periodic solutions are not synchronous but phase-locked in the sense that two neurons oscillate in the same way
but in different phases, or more precisely, the periodic solutiens)" are anti-phasei(r + (w/2)) = v(z) for all

t € R and for the minimal perioeb > 0.

In [5], we proved that wher > t* there exists a (locally) unstable manifold tangent to a three-dimensional
linearly unstable subspace of the generator of the associated linearization of the trivial solution, the closure of its
global forward extension of such a manifold contains 3 equilibria and a closed disk bordered by a phase-locked
periodic orbit.

The main tool to get the above results is the discrete Lyapunov functional, introduced by Mallet-Paret and Sell
[12,13], for cyclic nearest neighbor systems of differential delay equations. We first note that with the transformation
x(t) = u(2t) andy(r) = v(2r — 1), we can rewrite Eq. (1.3) as the following cyclic system of delay differential
equations

{ x(1) = —2rpx(t) + 2t f(y(1)), (1.5)

y(t) = —2tpyt) + 2tf (x(t — 1)).

Then using the discrete Lyapunov functional, we get the corresponding results for system (1.5), which imply the
above results for system (1.3) by using the aforementioned transformation. For the same reason, in this paper, we
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only concentrate on system (1.5). The readers can easily state the corresponding results for system (1.3) and derive
them as immediate consequences of the above transformation.
The purpose of this paper is to report results about the detailed information of
1. the stability of the phase-locked periodic orbit, including the spectrum analysis of the monodromy operator;
2. the geometric structure of the basins of attraction of this periodic orbit and other equilibria;
3. the geometric structure of the closure of the aforementioned three-dimensional manifold.
It should be remarked that we will only sketch the proofs for most of the results reported. The details are quite
long and technical, but parallel to those of Krisztin, Walther and Wu [10] for the scalar equation. All the details are
provided in a technical report which is available to all readers upon request.

2. The phase-locked orbit and graph representations

Following the work of Smith [17] and Mallet-Paret and Sell [12,13], wéklet [—1, 0]U {1} and use the Banach
spaceC(K) = {¢ : K — R; ¢ is continuou$ with the supernorm as the phase space for system (1.5) and we will
always tacitly use the identification

C(K) = C(-1,0]:R) x R.

Throughout the paper, we assume

(H1) f(0O) =0andf’(§) > Oforall¢ e R;

(H2) 1/(0) > p;

(H3) there existay > 0 so thatf (§)/& < nif |&] > M;

(H4) © > 19 = (7 — arccogu/f'(0))/ (/[ f'(0)]2 — u?).
In the language for networks of neurons, (H1) and (H2) require that the interaction of two neurons is excitatory
and the neuron gairy,’(0), is sufficiently large. A standard function employed in the modeling of networks is the
sigmoid which clearly satisfies the dissipativeness condition (H3). It is well known (see, for example, [7,8,14]) that
the network can possess interesting complicated dynamics only when the delay is large, so is our condition (H4),
wherety is the first critical value of the delay where a Hopf bifurcation of periodic solutions takes places from
the trivial solution.

Under the above assumptions, for each C (K), there exists a unique pair of continuous maps$—1, co) — R
andy : [0,00) — R such that(x, y)T : (0, 00) — RZ? is continuously differentiable and satisfies system (1.5)
fort > 0, x|[—1,00 = ¢l[-1,00 andy(0) = ¢(1). Letz¥ = (x¥, y#)T denote the above unique pair and define
= !, y?(@)" € C(K) for + > 0 (Note here the subscriptis used for an element i6 (K) other than
C([-1,0]; R)). Then the mag : RT x C(K) > (¢, ¢) — z¥ € C(K) is a continuous semiflow with at least three
stationary points 0;_ andz,, where 0z_ andz, denote the constant maps Enwith the values 0§~ and&,
respectively (wheré~ and&™ are the maximal negative and minimal positive zerog @) = ué, respectively.
The existence follows from (H2) and (H3)).
The spectrum of the generator of teg-semigroup{D>® (¢, 0)},>0 coincides with the zero of the characteristic

equation

A+ 2tu -2t

_ 2 _pr2a-M —
pret spoey| =02 —are =0

It is shown that this spectrum is given by, o1 +i81, a2 £ 82, ... with
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o) > oL > > -, a1 >0, p1e(m,2n), Boj € 22j — Dm,4jm),
B2j+1 € (4jm,22j + D), j=1

Let Py, P1 andQ be the realified eigenspaces of the generator of the semigip(z, 0)};>0 on C (K) associated
with the spectral setfyo}, {o1 + i1, a1 — i1} and{a; +iB;, a; —iB;};>2, respectively. Note thaly = R xo,
where

e’  for 6 € [-1,0],

x0(0) = { e /2 for § =1.

Fory e (max{1, e*2}, &), there exist convex bounded open neighborhaéglsv, andNy of 0 in Py, P1 andQ,
respectively, and &1-mapwioc : N1 ® No — Q With wioc(0) = 0, Dwioc(0) = 0, wioc(N1 + No) € Ng and so
that the graptWioc = {x + wioc(x); x € No + N1} coincides with the set

W, ={¢ € Nioc = No+ N1+ Ng; there is a s;equenc(arp,,)(loO with g0 = ¢, ¢, = (1, ¢,_1),
and ¢,y " € Njoc for each integem <0 and ¢,y " — 0 asn — —oo}.

Our focus here is

W= CD(R+ x Wioc)

and

S={peCK);p=0 or V() >0 for t > 0},

whereV : C(K) \ {0} — {0, 2,4, ...} is the discrete Lyapunov functional introduced by Mallet-Paret and Sell
[12]. Namely, forp € C(K) \ {0},

sAy) if sc(p) is even or infinite

Vie) = {sdw) +1 if sc(ep) is odd

where s¢p) = 0 if eithergp > 0 org < 0 and otherwise

sap) =supk > 1; there existsd® < 6 < ... < 6% with 6’ e K for i =0,1,... .k
and (0" He®') <0 for 1<i <k}.

Itis easy to see that for eaghe W there is a unique solution defined Brof system (1.5) passing through also
denoted as?. Note that:” € W fort € R. Thus, we have afloy : Rx W 3 (¢, ) — z{ € W. We have shown
in [5] that S is not ordered with respect to the partial ordering@@), which is induced by the positive cone

K ={p e C(K); ¢©®) >0 for 6 e K.

Theorem 1.

1. There is a nontrivial periodic solutiop = (p!, p?)T : R — R? of systen{1.5)with the minimal period» > 1
which is determined by three consecutive zeroglobr p? such thatpl(0) = 0 and p%(0) > 0. Moreover,
pr(t) = p?(t + (@ + 1/2) and p?(t) = p(t + (0 — 1)/2) for 1 € R.

2. 0={p;teRy=bdWNS)=WnS\(WnS)is the only nontrivial periodic orbit ir¥ .

3. TOWNS) =intlon), AWNS\ (WNS)) =TIIon(0,w)], wheren : [0,w] > ¢t — p; € C(K), and
M:CEK) 3¢ (90), (1) € R2

4. WNS=wnS§.
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In what follows, we call the periodic orb® a phase-locked periodic orbit. This is because if weyfgt) =
p(t/2), ¢2(t) = p2((t+1)/2) fort € R, theng = (¢1, ¢®T : R — RZis indeed a phase-locked periodic solution
of the origin system (1.3).
Theorem 1 was established in [5]. In the remaining part of this paper, we study the instability of the phase-locked
periodic orbit®, the structures o andbdW = W \ W, and the basin of attraction (withi) of O.
We first give some graph representationgioand W N S. Direct calculations lead to, for the projection oritg
of C(K),

0
Prpy¢ [qs (0) + ¢ (1)E™/2 4 20 f'(0)e™0/2 / €% ¢ (o) do} X0

= 24 20/ (0)e /2 1

for all ¢ € C(K). Define the continuous linear functional

0
cpy i C(K) 3 ¢ — ¢(0) + p(1)e"/% + 2zf/(0)e*“0/2/ e % (o)do € R.

Clearly,c;Ol(O) = Q0 + P1.
We need the following projection

M3: C(K) 3 ¢ > (@(0), p(1), cpy(9)' € R3.

The restrictions of13 to W and P @ P; are injective. Lel‘[g1 : [I3W — C(K) be the map given by the inverse of
[3: W 3 ¢ — I3p € [13W. We can show thaltl?j1 is Lipschitz continuous. Observe thds is surjective since
I3| pye p, iS injective and dinPo & Py = 3. Choose linearly independent elemepts; = 1, 2, 3, in C(K) with

Map; =e;, j=1273,

where{e1, eo, e3} is the standard basis &2. Let J3 denote the injective linear map froR?e into C (K) given by
Jae; = ¢;. Then we have a projection

P3 = J30Il3: C(K) —» C(K).
The spac&3 = P3C(K) = Ry1 & Ryo @ Res is three-dimensional, and with = P3‘1(0) we have
C(K)=G3®E.

The restriction ofP; to W is injective. LetP; * : PsW — C(K) be given by the inverse aF 5 ¢ > Psp € PsW,
and define the map

w: PsW 3 x > (id — P3) o Py Y(x) € E.
Then we have the following graph representation
W = {x +w(x); x € P3W}.

Consider also the injective linear mapfrom R? into C(K) given by J(1,0)T = ¢1 andJ(0, 1)T = ¢,. As
Ip1 = (1,07 andIlg, = (0, 1)T, we obtain another projection

P=JoIl:CK)— CK).
G2 = PC(K) = Ry1 ® Rgs is a two-dimensional subspace®@§g, and
C(K) = Go® P~1(0).
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SetG1 = Rys, so that
G3=G2® G1.

Itis easy to verify thaP~1(0) = G1@ E. The injectivity ofI1 to the seW NS and the injectivity o/ combined show
that Py is injective. LetP~1 : P(W N S) — C(K) be given by the inverse a¥ NS > ¢ > Py € P(WN'S),
and define the map

ws: P(WNS)> x> (id—P)o P Nx) e G1DE.
We obtain the following graph representation:
WNS={x+ws():x € PWNS)}.

Itfollows from the Lipschitz continuity 01’13_l thatw andwg are Lipschitz continuous. The following preliminary
smoothness results can be verified:
1. P3W is open inGs, andw| p,w is C1-smooth;
2. TIsW is open inR3, andI13 defines a!-diffeomorphism from thecl-submanifoldW of C (K) onto[13W;
3. TheflowR x W > (¢, ¢) — Pw(z, ¢) € W is CL-smooth.

3. The minimal linear instability of O

It is known that the Floquet multipliers of the periodic orBitare eigenvalues of finite multiplicity forming the
spectrum away from 0 of the compact linearized mép= D,®(w, po). Let o denote the spectrum a@ff. For
O0#£Xreo,let

E(\) = Ker(M¢ — Aid),

o
G = | Ker(M¢ — rid)"
n=0
denote the eigenspace and generalized eigenspace associategresfiectively. Let R& (1) denote the realified
generalized eigenspace associated withf » > 0 is given and if there exists € o with r < ||, let C<,
and C, . denote the realified generalized eigenspacesf aissociated with the nonempty disjoint spectral sets
{A € 0;|A| < r}and{r € o;r < |A]}, respectively, thel (K) = C<, & C,. Analogously, we shall consider
realified generalized eigenspacgs, andC, <.
The next result establishes the minimal linear instabilitgpof

Theorem 2. i
(i) There exist a Floquet multipliex, > 1 andv, € K with My, = 1, .
(i) dimCy. = 1.
(i) —1¢ 0.

(iv) Foreveryr € o\ {0, 1, A}, |A] < 1.

Theorem 2(i) implies that the periodic orldkis linearly unstable. We say théis hyperbolic ifdim Re G(1) = 1,
and nonhyperbolic if otherwise.
Outline of the proof.

1. We get a positive,, € o with an eigenvectory, in IO< = {p € C(K); 9(®) > 0 for 6 € K} from the
Krein—Rutman Theorem applied 2.
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N

. We show thak, > 1 by iteration ofy, + ¢ po underM and using the monotonicity property df.

3. We can show that there existy > 0 so thatc N {A € o;ry < [A]} # 3,C<,, NT = 0,Cry< C
T,dimC,, < < 3, whereT = V~1({0, 2}). ryy < 1sincepo € E(1)) N T. Thus, 1< dimCy- < 2.

If, by way of contradiction, dinf1. = 2, thenO is hyperbolic andC<,,, = C.1. We would arrive at a
contradiction in step 4 and step 5.

4. Letz = (x,y)" : R — R2 be a solution of Eq. (1.5) such thate W N Sforallr € R, z;, — 0 ast - —o0
andz; - O ast — oo. Thenp, — z; € T for all t,s € R and there exists a constant> 0 such that
lp: — zsll < cllpr+r1 — zs+1ll for all £, s € R. Now, choose a closed complementary subsgaot R pg in
C(K). Then there are open neighborhotidof pg in C(K) and aCl-mapy : U — R with y(po) = »
and®(y(¢),¢) € po+ Y forall ¢ € U. The fixed pointpg of the Poincaré-mapy is hyperbolic, where
Py:UN(po+Y)s¢> O(y(@),d) € pot+Y.

5. LetW* be a local stable manifold dfy at po. Then there exist a neighborho6d of pg in U and arp € R

such that;, € WSandWw=s > P; (z:p) = poasj — oo. Using the asymptotic phase theorem of Lani-Wayda

and Walther [11], we can find > 0 so thatgpg = ®(«, z;,) belongs to a local stable manifold; of the
periodic map® (w, -) at the fixed pointpg. Theng, = ®(nw, ¢o) — po asn — oo. It is easy to check that
the normalized vector&p, — po)/(ll¢n — poll) € T satisfy the hypotheses of the Arzela—Ascoli Theorem.

Combing this with the fact that

IPrc,,, - (@n — po)ll

— 0 asn— oo,
IPrc.,,, (&n — POl

we can find a unit vectog € T N C<,,  acontradiction t€<,,, N T = ¢.

6. Suppose-1is a Floquet multiplier oM. Then there exist solutiong’, v/)T : R — R?,i = 1, 2, of the system
of variational equations of Eq. (1.5) withf (u3, v1(0)T = —(ud, v1(0)" and (3, v2(0))T = . Fix three
consecutive zerosy < az < a3 of p*. Thenul, = —ul . We can show thaV (c1(u, v1(1)" + c2p;) = 2
forall (c1,c2)" € R x R\ {(0,0)T} and allr € R. This implies that for suckic1, c2)" the first component of
c1(ut, v1H)T + c2p cannot have a double zero. Using this result, we can show the following synchronization
property:f1 < a1, B2 € (a1, @2), B3 € (a2, @3), a3 € (B3, fa), Wherepy is the largest zero af! which is less
than or equal tecy, B2, B3 and B, are the next zeros of'. Therefore, we have

signut(as) = signit(B3) = signit (1) = signu*(a1),

a contradiction to! (a3) = —ul(a1). Thus,—1 ¢ o.
7. Letd € o\ {0, 1, A,}. If |A] > 1 then (i) and (ii) imply thatr| = 1. It follows from (iii) that 1 € S((l: \ R.
Therefore, 4< dimC1< < dimC,,, . < 3, a contradiction.
Note that (iii) excludes bifurcation of Mobius strips.

4. The unstable set ofD

We have noticed that the monodromy operatbe= D>® (w, po) has exactly one Floquet multipliy, outside
the unit circle, and

Au € (l’ OO), Cic = Rwu, 1/fu €k, ”vfu” =1
Choosex € (0, 1) so that

1
A > max{—, max | |}.
)Lu ceo,|C|<1
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Theorem 1.3 of [10] guarantees the existence of a local strong unstable manifold of the periodic(aap at
its fixed pointpg. Namely, there are convex open neighborhotds of 0 in C1. and N<1 of O in the realified
generalized eigenspace of M associated with the spectral $ete o; |¢| < 1} and aCt-mapw" : Ny — C<1
so that

w"(0) =0, Dw"(0) =0, w"(N1<) S N<1,
and withN* = N1 + N<1, the shifted graph
WH(po, ®(w, ), N*) = {po+ x + w"(x): x € N1}

{x € po+N"; there is a trajectory(x")°,, of ®(w, )with x°= x,
N (x™ — po) € N*for all n e =N, and A"(x" — po) — 0 asn — —oo}.

The unstable seé¥"(0) of the periodic orbit) is defined as
wH(0) =@, W'(po, ®(w, ), N)).

t>0
The next result identifies the unstable set of the phase-locked periodic orbit with the nonstationary points of the
boundary ofW.

Theorem 3. WY(O) = bdW \ {z_, z+}.

Outline of the proof. To prove Theorem 3, we first show thatW \ {z_, z.} € WY(O). Let¢ € bdW \ {z_, z4}.
Then we can prove(¢) = O. Consider the solution? = (x%,y?)T : R — R? of system (1.5). It suffices
to show that there exists < 0 such thatzf’ € WY(pg, ®(w, -), N*). Suppose, by way of COﬂtféldiCtiOl’,lf ¢
WY(po, ®(w, -), N*) forall t < 0.
1. Sincex(¢) = O, there exists asg < 0 such thaf¢, = zf0+,1w},1€_N has a subsequence convergingoas
n — —oo. We can show tha¥ (¢, — po) = 2 for all sufficiently large negative integets

. We prove that there existy < 0 such thaﬁ/(zf’ — po) =2forallt < Tp.

. We show thaV(z;” — ) =2forally € Oandforallr < Ty — w.

. We prove that there exist§ < Tp — w such thatV(zj” — ) =2forallyy € Wn Sandforallr < T1.

. The results in 3 and 4 combined yield tmbzt? € ext(TT o n) for all r < T1. We can choose a sequergg )y’
in W such thaty,, — z"T’l asn — oo andV(z;" —y) =2forallr <0, forally € O and for alln € N. Thus,
the curvell o n and the mag—oo, 0] > ¢ > Iz} e R? have disjoint sets of values for anye N. Note that
Iy, € ext(IT o n) sincelly, — l‘lz‘?1 € ext(TT o n) asn — oo. On the other hand;” — 0 ast — —oo.
Therefore 1z — 0 € int(IT o n) ast — —oo. This yields a contradiction and hence we have WY(0).

Next, we show thaw'¥(0) C bdW.

6. (Introducing the Poincaré-magy) Let H = {¢ € C(K); ¢(0) = 0}. Choose > 0 such that-2t ¢ (0) +
2tf(¢(1)) > Oforallg € po+ C(K);, whereC(K); = {9 € C(K); lloll < 5}. Selecté > 0 so that
pr € po+ C(K); forall + € [0, ]. By the continuous dependence of solutions of system (1.5) on initial data
there exist$ > 0 so that

20 € po+C(K); for all ¢ € po+ C(K); and for all 7 € [0, &].

a b~ wWwN

Note po ¢ H. There exist a convex bounded open neighborhgggof po in po + C(K);, ey € (0, min{w —
1,£/2}), and aCl-mapvy : Npy = (0w — eg, @ + ep) such thatvy (po) = o, and for every(z, ¢) <
(w—¢en,w+¢ep) x Ny, ®(t,¢) € Hifand only ift = vy (¢), andD1® (vy (¢), ¢)1 ¢ H for all ¢ € N,,.
Then the Poincaré-maRy : N,y N H 3 ¢ = ®(vy(9),¢) € His Cl-smooth, angy is a fixed point ofPy.
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Leto P denote the spectrum of the derivati®ePy (po) : H — H.Theno \{0,1} = o7\ {0,1}.1f r > 0
is given and if there exists € o©# with r < |¢|, then we letH-, and H, - denote the realified generalized
eigenspaces db Py (po) associated with the nonempty disjoint compact spectral{setso % ; |¢| < r} and
{¢ ea®r;r < ||}, respectively. For such H = H-, @ H,-.

For Py there exist convex open neighborhoaslg <1 of 0 in H<1, Ny 1< of 0 in Hi. and aCl-map
wy © Npi1< — H<y with w,(0) = 0, Dwy, (0) = 0, w, (Ng,1<) C Ng <1, S0 that for the neighborhood
Nj; = Nu1< + Ny <1 0f 0in H we have that the shifted graph

W(po, Pr, Nfp) = {po+ x + wy (x); x € Nua<}
coincides with the set
{¢ e N there is a trajectory(¢,)° ., of Pywith ¢ = ¢o,
A" (¢n — po) € Ny; for all n € =N and 1" (¢, — po) - 0 asn — —oo}.

Furthermore, there exist an open neighborh@pof 0in N¥, aconstaniy , € (0, A), and anorm - ||z,
on H, equivalent td| - || y with

@1l a,u = maX{(IPra,1<@ll v, IPTH <1¢llmu} for all ¢ € H,

so that the restriction oPy to WY(po, Py, N§;) N (po + ﬁf,) defines aCl-diffeomorphism(Py), onto
WY(po, Pr, N},) whose inverse satisfies

1(Pr) @) — (P W) e < @mullg — Yllm for all ¢, ¢ € W(po, P, Njy).

LetPry p, - C(K) — C(K) be the projection ont&/ alongpo. Denoteyry = 1/(IPry, o Vull H,u)PTH, o Yu-
ThenHi. = Ryy with |[Yg|lg, = 1. SinceNg 1< is a convex open neighborhood of 04 -, it follows
that

Nui1< = {s¥u; —P1 < s < B2}

for some constantg; > 0 andg, > 0. Choosefp € (0, min{B1, B2}) so that| Dwl, (s¥y)¥ullg.. < 1 for
|s| < Bo. For 0< B < Bo, define

W};J(po, Pyu) ={po+s¥u +wy(s¥gy); Is| < B}
CIearIy,W/;‘(po, Py) © WY(po, Py, Nf;) andW'(po, Pu, Nip) S =@ (t, Wﬁ(po, Pp)).If¢ € W,?;’(Po, Py),
then (PH)u_l(¢) € Wg(po, Py) and ||(PH);1(¢) — polHu < am,B. In addition to the properties of
N1, N<1, N*, w" stated before, there exist an open neighborh&ve)dof 0 in N*, a constanty, € (0, 1)
and a norm| - [, : C(K) — R, equivalent to]| - ||, with |¢[l, = maxX]|[Prc,_¢|.. IPrc_,¢l.} for all
¢ € C(K), so that the restriction b (w, -) to WY(po, ®(w, -), N*) N (po+ N*) defines ac1-diffeomorphism
®(w, ), onto WY(pg, ®(w, -), N*), whose inverse satisfies

(@ (@, ) "HB) = (@@, ) " Wllu < el — ¥l
forallg, v € WY(po, ®(w, -), N*). Chooseg > 0suchthafsy,; |s| < do} C N1 andthatl Dw"” (sv¥,) ¥ llu
< 1forall|s| < 8. Then, for every in

Ws'(po, ®(@, ) = {po+ s¥u + w"(sy); Is| <8}, 0<68 <o,
we have(® (w, ),)"H(¢) € Wi(po, ®(w, ) and [[(®(w, )u) (@) — polls < 8. The unstable set of the
fixed point pg of the periodic mapb (w, -) is defined by

W'(po, (@, ) = @ (1w, W!(po, (@, ), N*)).
neN
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Observe that, for < § < §g, we have

WU(po, (@, ) = | (o, Wy (po, (@, ).
neN

7. We show that there exists a unique continuously differentiable fungtierix, y)T : R — R? satisfying

X(1) = —2rpx(t) + 2t (p?(0))y(2),

$(t) = =2ty () + 2t (P2t — D)x(t — 1),
x(0)=0, y0) =1

V(z;) =2 for all r e R.

Let ¢z = zo. Then we can show thdlsyy andITz¢y span the plan€lsH = {y € R3; y; = 0} in R3.
Chooses < (0, Bo) such that the curve

b:(=B,B)>s+> M3a(po+syy +wy(syn)) € IzH
is C1-smooth and satisfigg0) = [3pg, Db(0)1 = I3yry. It follows that there exisBs € (0, Bo), u1 andus
in (0, 00), and aCl-maph : (—u1, uz) — R with

|hiw)| <1 for all u € (—u, up)

so that
bl(—ps,p5) IS injective
H3|W53(,,0’PH) is injective
h1(0) =0 and /% (0) = 0,
M3(Wg, (po. Pr)) = b((—Ps, B3)) = {Tlzpo + ullsyy + h(w)adpy: —u1 < u < uz}.

8. We show that there exisfl € (0, 83) such thatW/;’4(po, Py) C bdW. This result combined with the rela-
tions WH(O) = UJ,»0®(t, W (po, Pu, Ng;)) andW(po, Pu, Ni) C ;-0 (t, Wg4(p0, Pp)) yields that
WH4(O) C bdW.
We remark that the above identification enables us to draw a complete picture about the dynamics of the flow on

WU (0), which will be the main ingredient of the constructive proof of the homeomorphism Wo©) to the
two-dimensional sphere in Section 6.

5. Smoothness of¥#, W, bdW and W N S

Recall from Section 2 that there exist maps P3W — E andwgs : P(W N S) — G1 @ E such that
W = {x +w(x); x € P3W}
and
WNS={x+uws(:x € PWNS),

respectively.
The smoothness of the mapsandwg are described as follows:
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Theorem 4.
1. Bothw|p,w andws|pwns) are C-smooth
2. w and wg are also smooth alP3(bdW) \ {P3z_, P3z+} and PO, respectively, in the sense that close to
these pointsw andwg, respectively, can be extended-functions on open subsetsar andG». Moreover
P3(bd W)\ {P3z_, P3z.}is atwo-dimensional’-submanifold 063, andbd W\ {z_, z} is atwo-dimensional
C1-submanifold of” (K).

We will only sketch the proof of (i) due to limitation of space. We should, however, mention that the proof of 2
is very technical but similar to that of corresponding results in [10].

The C1-smoothness ob|p,w: note that for every > 0, W = [J,cn@({n} x (Wioc N C(K),)). Let D, =
P3®({n} x (Wioc N C(K),)). Itis sufficient to finde > 0 so thatw|p, is C1-smooth for every: € N. SincePs is
C1-smooth andD P3(0) = P defines an isomorphism froy @ P; onto G, there existg > 0 so thatPz maps
Wioc N C(K), one-to-one onto an open neighborhddf 0 in G3 andw|y is C1-smooth. Now let: € N and
x € D, be given. The poinp = x + w(y) satisfiesp = &, ¥) with v € Wjoc N C(K),. Setp = P3y. Then
x = P3®(n, p+w(p)) andp € U. Note that the derivatives of tt@!-mapA : U 5 5 +— P3®(n, p+w(p)) € G3
are injective. Hencet maps an open neighborhoddof p in U one-to-one onto an open neighborhddaf y in
G3, which belongs td,,, and the inversd 1 : N — Gz ofthemapV > 5 — A(p) € N is C1-smooth. For every
X €N,

w(F) = (id = P3)®(n, A=) + w(A~ (D)),
and it becomes obvious thaty is C1-smooth. It follows thatv| p, is C1-smooth.

TheCl-smoothness abs|pwns): we discuss it in two cases.
Casel. O is hyperbolic: In this case, the closed subspace

Y=Ci-®C

has codimension 1 anbl; ® (w, po)1 = po € C(K) \ Y. There exist, > 0, a convex open neighborhoodof pg
in C(K), and aCt-mapv : U — R with the following properties:

l<w—¢g,,v(U)C(®—¢pw+ey),v(po) =w;
for every (t,¢) € (w —ep,w+¢p) x U, D(t,¢9) € po+ Y if and only if + =v(¢);
D1®(v(¢), )1l e C(K)\ Y for all ¢ € U.

We can also achieve tha®®U and$ € C(K)\Y forall¢ € UNW. Define the Poincaré-magy : UN(po+Y) —
(po+7Y) by

Py(¢) = ®(v(9), ¢).

Let WS be a local stable manifold dfy at pg. ThenWSN W c W N S and for everyp € W N S\ {0}, there exists
t>0with®w(z, ) € WS. Lety € P(WNS)\{0}. Setp = x +ws(x) € (WNS)\{0}. Then there existse R so
thaty = Oy (¢, ¢) € WSN W. We can show that close tb the flow extend$¥SN W to a smooth two-dimensional
submanifoldWy, and that theCl-mapB : Wy 3 p = POw(—t, p) € G2 has an injective derivative gt. By the
Inverse Function Theorem, there exist an open neighboriooldP () = v in P(W N S) \ {0} and aCl-inverse
B;l : V. — Wy of the restriction ofB to B~1(V). Observe that the restriction afs to V is given by

ws(X) = (id — P)®w(—t, B, (%)).

Sincedy (—t, -) defines a’1-diffeomorphism of onto itself, theC1-smoothness af g | pwns)\ o) follows easily.
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For theCl-smoothness oifios at 0, recall that there exits> 0, » > 0 and a Lipschitz continuous map Sep
P, = Q + Posuch that

(Wioc N S) N (Q + Pry + Poe) = {x +Sep,(x); x € Py},

whereP; o = {x € Pi; lIxll < e} fori =0,1ande > 0. We can show that Sgfp, ,\(0} IS C1-smooth and that
Sep, is differentiable at 0D Sep,(0) =0 andD Sep, is continuous at 0. These results imply that

a:Pyy>x— P(x +SEQ7(X)) e Gy

defines aC1-diffeomorphism fromPy, onto an open neighborhodd of 0 in G». Leta—! denote its inverse. For
all y e v,

ws(x) = (id — P)(@(x) + Sep (a1 ().

so thatws|y is C1-smooth.
Case2. O is nonhyperbolic: We can choose a unit veétar C(K) such that the realified generalized eigenspace
of M associated with the eigenvalue TRgg @ RE. Set

Y=C.1®REDCy.

Hencepg € C(K) \ Y. Then there exist, > 0, a convex open neighborhoad of po in C(K) and aCl-map
v : U — R with the same properties as in the case witgiie hyperbolic and, in addition, with

V(p)>2 for all ¢ € U.
Then the Poincaré-map

Py :UN(po+7Y)3 ¢ ®v(9),¢) € (po+Y)

is C1-smooth and hagg as a fixed point. Lel *Sbe a local center-stable manifold®f at pg. Lety € P(WNS)\{0}.
Setp = x +ws(x) € (WNS)\ {0}). We can show that there exist- 0, a trajectory(¢,)g° of Py in W, and a
neighborhoodV; of ¢ in C(K) so thaipg = ® (¢, ¢), ¢, — po asn — oo, andWN N, C S. Similar arguments
as those in the hyperbolic case yield thg{ p (wnsy\ (o} iS C1-smooth. Theol-smoothness afs at 0 can be proved
in the same way as for the hyperbolic case.

6. Homeomorphisms from(W, bdW) onto (D3, Sz)

We can now obtain a homeomorphism fréa ontoS2. The approach is constructive and based on the important
relation betweebd W and WY () described in Section 4. This homeomorphism and the description of dynamics
on W enables us to apply some powerful results in geometry and topology of three-dimensional manifolds to show
that W is homeomorphic td?.

Theorem 5.
1. The sebd W is homeomorphic t62.
2. The setW is homeomorphic t®3.
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Outline of the proof.
1. Using the notations in the proof of Theorem 3, we can show that thereSexistO, 3¢), 62 andéss in (0, 81),
and a continuous strictly increasing functign [—82, §3] — [—81, §1] such thatg(—82) = —81, g(83) = 81,
g(0) =0, |g(s)| > |s| forall s € [—82, 83] \ {0}, and

Q(w, po+ s¥u + w*(s¥u)) = po+ &) Yu + w(g(s)¥,) for all s e [-52, 53]
moreover, if—381 < s1 < 52 < 41, then

po + s1%u + w" (s1%4) <K po + s2%u + w" (s2¢u)-
Choosesg € (0, min{3, 83}). Lets = g(+£s0), s5 = =£so. Then the curves

vyt ilsg. 5713 s > po+svu + w sy € CK)
and

Y~ ilsy.s012 s = po+ sy +w(sv,) € C(K)

define homeomorphisms onto theirimages, respectivelf.Set {y*(s);s§ <s <s7},Tg ={y (s);s] <
s <50} andbd*W = {¢ € bdW \ {z_,z+};z?S — z4 ast — oo). ThenbdW = {z_}Ubd~"WUQOU
bd* W U{zy}. We can show thaid* W = & (R x Fqi,) and that for every € bd*W there is a unique € R
such tha®y (1, ) € I'z.

2. The mapG : R x D2 — D2 given by

G, (0,0T) = (0,07 for all teR

and by

(o N (e Y
G, (x,y)) _((1_r)et+rcos(0+ a)t>’(1—r)e’+rsm (9+ a)t)) ,

r=,/x2+y2, 0<6 <27, x=rcosd, y=rsing

forallz € Rand(x, y)" € R?\{(0, 0)"}is a continuous flow o®?. Setl'g = {(x, 0)"; 1/(1+€”) < x < 1/2}.
ThenG(R x I') = {x € R% 0 < x? + x2 < 1}. The maps : 'y — [ given by

-j:(:l:()) s—saC 1 +sf—s10T
l S = -,
oGV sli—soil-i-e‘” sli—soiZ

are homeomorphisms. Using the results of 1 and defihthgbd*W U O U {z+} — D? by the relations

hE(p) = G(—1, iz (Pw(t, ¢)), ¢ e€bd*W, teR, Oy, ¢) els,
h*(z4) =0,

T
h*(¢) = (cos%t, sin%’t) . ¢ =piteR,

we can show thait andh~ are homeomorphisms;"|p = h~|p andht (O) = S,
3. The map:* : bdW — S2 given by

h*(¢) = h* (@) =h"(¢) for ¢ €O,
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Fig. 1.W can be regarded as a smooth spindle, a complete analogue for system (1.5) of the results for scalar equation (1.4) obtained in [10].

X1

h*(¢) = X2 , <i1) =ht(¢) for ¢ e bdtWU{z4}\ O,
1—x§—x§ 2
X1
h* (@) = *2 (il) =h(¢) for p ebd"WU{z_}\O,
- l—x%—x% 2

is a homeomorphism fromd W onto 52.

4. Sincellz defines a homeomorphism from ontoIT3 W, it suffices to show that there is a homeomorphism from
I[13W onto D3 such that the homeomorphism sertig(hd W) onto S2. The Lipschitz continuity ol‘Igl and
(i) imply that IT3(bd W) is homeomorphic t2. Therefore, the Jordan-Brouwer Separation Theorem shows
that the seR3 \ IT3(bd W) has two connected components, one bounded and the other unbounded. Denote the
bounded component by i{fi3(bdW)) and the unbounded component by @k$(bd W)). We can show that
int(T13(bdW)) = I13W, which implies that

[13W = T3(bd W) U int(T13(bd W)).

5. We show that intfTz(bdW)) is uniformly locally 1-connectet.. Then applying Bing’s Theorem [3] with
A = TI3(bd W), we complete the proof.

L The diameter diartX) of a setx € R3 is defined by diariX) = sup{|x — ylrs;x € X,y € X}. AsetX C R3 is calleduniformly locally
1-connectedf for everye > 0 there existg > 0 such that every continuous map 3([0, 1] x [0, 1]) — X with diam(a(3([0, 1] x [0, 1]))) < §
can be extended to a continuous néep[0, 1] x [0, 1] — X with diam(b([0, 1] x [0, 1])) < .
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7. Concluding remarks

We considered a global forward extensiBhof a leading unstable manifold of the origin. We proved that
contains a phase-locked periodic orfitand 3 equilibria 0z_ andz.. The periodic orbit is linear unstable and its
basin of attraction withir is the diskW N S minus the trivial equilibrium. Other orbits iW \ S are heteroclinic
orbits from either® or 0 to the two nontrivial equilibria. The dynamics 6dW \ {z_, z4} and its identification
with the unstable se’¥(©) of O enabled us to construct a homeomorphism fiafi onto $2, which leads to
a homeomorphism fror onto D3 by using the Bing’s theorem and the Jordan—Brouwer Separation Theorem.
Smoothness diV andW N S were also established. Vaguely speakifggan be regarded as a smooth solid spindle
with two tipsz_ andz.. and a separating disk N S bordered by the phase-locked orbit, as shown in Fig. 1. Such a
spindle was previously observed in [10] for the scalar equation (1.4) and our results here show a complete analogue
of their results for the system (1.5).

In the recent work of Krisztin and Walther [9], it was proved that foin a certain range, the closure of the
forward extension of a three-dimensior&l-submanifold of the local unstable manifold at the trivial solution for
the scalar equation (1.4) is exactly the global attractor. The same result should hold for system (1.5). More precisely,
we expect that all periodic solutions of Eq. (1.5) are either synchronous or phase-locked, and that for

. (7‘[ — arccogu/f'(0)) 2w — arcco$u/f’(0))>
VIO -2 [F(0]2 — 12

W is the global attractor for system (1.5).
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