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Abstract. We study the global dynamics of n-species competition in a
chemostat with distributed delay describing the time-lag involved in the
conversion of nutrient to viable biomass. The delay phenomenon is
modelled by the gamma distribution. The linear chain trick and a fluctu-
ation lemma are applied to obtain the global limiting behavior of the
model. When each population can survive if it is cultured alone, we
prove that at most one competitor survives. The winner is the popula-
tion that has the smallest delayed break-even concentration, provided
that the orders of the delay kernels are large and the mean delays
modified to include the washout rate (which we call the virtual mean
delays) are bounded and close to each other, or the delay kernels
modified to include the washout factor (which we call the virtual delay
kernels) are close in ¸1-norm. Also, when the virtual mean delays are
relatively small, it is shown that the predictions of the distributed delay
model are identical with the predictions of the corresponding ODEs
model without delay. However, since the delayed break-even concentra-
tions are functions of the parameters appearing in the delay kernels, if the
delays are sufficiently large, the prediction of which competitor survives,
given by the ODEs model, can differ from that given by the delay model.

Key words: Distributed delay — Chemostat — Competitive exclusion —
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1 Introduction

In this paper, we study the global dynamics of the following model of
n-species of microorganisms competing exploitatively for a single
growth limiting nutrient in a well-stirred chemostat:
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for constants a
i
'0 and integers r

i
70. Here S (t) denotes the concen-

tration of nutrient and x
i
(t) denotes the density of the i-th population

of microorganisms in the culture vessel at time t. The parameter D'0
is the dilution (or washout) rate. The concentration of the input
nutrient in the feed vessel is denoted by a postive constant S0. Species
specific death rates are assumed to be insignificant compared to the
dilution rate and are ignored. Each kernel K

i
in (1.2) represents the

distribution of the time delay involved in the conversion of nutrient
to viable cells. Due to the outflow in the chemostat, only
x
i
(h) e~D(t~h)K

i
(t!h), not x

i
(t), of the x

i
(h) microorganisms that

consumed nutrient t!h units previously, survive in the chemostat the
t!h units of time necessary to complete the process of converting the
nutrient to new cells.

We are interested in the global asymptotic behavior of model (1.1).
Throughout, we assume that each nutrient uptake function p

i
, i3I (n),

satisfies the following assumptions:
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Motivated by [4, 15], we call j
i
the delayed break-even concentration of

population x
i
. Under assumptions (1.3) and (1.4), system (1.1) always

has the washout equilibrium E
0
"(S0, 0, 0). Moreover, for each i3I(n)

such that j
i
(S0, there is a nonnegative equilibrium of the form
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Note that the presence of the washout (memory) factor e~D(t~h) in
model (1.1) changes the equilibrium values for the corresponding
ODEs model without delay. Therefore, the equilibria E

i
, i3I (n), differ

quantitatively from those when delays and washout effects are ignored.
A model similar to (1.1) but where all delays are discrete (i.e. the

delay kernels are all degenerate Dirac Delta distributions), was recently
studied in [27] where it was shown that under certain sufficient
conditions, the discrete delay model exhibits competitive exclusion and
the population that wins the competition is the one with the smallest
break-even concentration. The time delay effect on the qualitative
outcome of competition was explored and it was demonstrated that
when the delays are relatively small, the predictions of the discrete
delay model are identical with the predictions given by corresponding
models without time delays, and that introducing large delays in the
model may alter the predicted outcome of competition. More recently,
in [28] model (1.1) was considered in the case where there are only two
(n"2) species engaged in competition. There the global limiting be-
havior of the model was completely determined under assumptions
(1.3) and (1.4) and the generic condition j

1
9j

2
.

The main purpose of this paper is to investigate the question as to
whether and to what extent the global results of [28] can be extended
to the general n-species model (1.1). By using the linear chain trick
technique and a fluctuation lemma, we obtain sufficient conditions
under which at most one population survives in the chemostat. We not
only explore results that are analogues of those for the corresponding
discrete delay model studied in [27], but also obtain new results that
apply only to the distributed delay model (1.1). In the case where each
population can survive in the chemostat when it is cultured alone, it is
shown that the model exhibits competitive exclusion. The population
that wins the competition is the one that has the smallest j

i
value,

provided that either the virtual delay kernels are close in ¸1-norm, or
the orders of the delay kernels are large and the virtual mean delays are
close to each other. Here the virtual delay kernel is a modification of
the delay kernel K

i
in (1.2) to include the washout factor e!Ds and the
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virtual mean delay is a modification of the mean delay to include the
washout rate D. These results are not restricted to the case where the
K

i
’s are weak (r

i
"0) or strong (r

i
"1) kernels. In fact, they can be

applied as well to kernels that have arbitrary orders.
We remark that chemostat models incorporating time delay have

been studied by many authors. Models involving distributed delays
are considered to be more realistic than discrete delay models (see [5, 6,
9, 12, 19—23]). We refer the reader to [27, 28] for an extensive
literature review on chemostat modeling using time delays. In particu-
lar, we mention the papers [10, 11, 16], that are closely related to
model (1.1). For the importance of including the washout factor over
the time delay in chemostat models, we refer the reader to [18] and the
survey paper [20]. It should be noted that the distributed delay model
(1.1) may have more potential to mimic reality, compared to the
corresponding ODEs model without delay, as computer simulations in
[28] indicate.

This paper is organized as follows. In Sect. 2, we give two prelimi-
nary results on positivity and boundedness of solutions of (1.1). In Sect.
3, we state the main results. Some technical lemmas are proved in Sect.
4. Section 5 contains the proofs of the main results. Finally, we give
some concluding remarks in Sect. 6.

2 Positivity and boundedness

Throughout, we denote by BCn`1 the Banach space of bounded
continuous functions mapping from (!R, 0] to Rn`1. From the
general theory of integrodifferential equations (see [2, 24]), we know
that for any initial data /"(/

0
, /

1
, 2 , /

n
)3BCn`1

`
:"M/3BCn`1;

/
i
(h)70, 06i6n, h60 N, there exists a unique solution n (/; t) :"

(S(/; t), x
1
(/; t), 2 , x

n
(/; t)) of (1.1) for all t70 such that

n(/; · ) D (~=,0+
"/. For convenience, we will also use

(S(t), x
1
(t), 2 , x

n
(t)) to denote the solution n (/;t) with /3BCn`1

`
, if

there is no confusion. When we say a solution n (/;t) or
(S(t), x

1
(t), 2 , x

n
(t)) of (1.1) is positive, we mean that the solution has

initial data /3BCn`1
`

and each component of the solution vector is
positive for all t'0.

In this section, we give two preliminary results on positivity and
boundedness of solutions of (1.1). The proof of the following lemma is
similar to the proof of Lemma 2.1 in [28].

Lemma 2.1. For any /3BCn`1
`

with /
0
(0)70 and /

i
(0)'0, i3I (n),

the solution n (/; t ) is positive.
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In what follows, we derive a conservation principle for model (1.1).
To see this, let (S(t), x

1
(t), 2, x

n
(t)) be an arbitrarily fixed positive

solution. Using the linear chain trick technique as in [19], we define
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It follows from (2.4) that ¼@(t)"!D¼(t). Therefore
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where the continuous function o(t ) depends on the initial data of the
solution (S(t), x

1
(t), 2, x

n
(t)) and satisfies o (t)P0 exponentially as

tPR. Formula (2.5) therefore may be viewed as a conservation
principle for the distributed delay model (1.1). We note that similar
conservation principles for chemostat models with or without (dis-
crete) delays can be found in [4, 10, 15, 26—28]. For more details on the
role of conservation principles in analyzing chemostat models, we refer
the reader to the recent monograph [26].

As a direct consequence of the above conservation principle (2.5),
we obtain the following boundedness result.

Lemma 2.2. All positive solutions of (1.1) are bounded for t'0.

Proof. If (S(t), x
1
(t), 2 , x

n
(t)) is a positive solution of (1.1), then all

y
i,j

(t) defined in (2.2) and (2.3) are positive for t'0. The conclusion
now follows from (2.5). K
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Remark 2.3. From formula (2.5), it can be seen that every positive
solution (S(t), x

1
(t), 2 , x

n
(t)) satisfies

lim sup
t?=

S (t)6S0,

(2.6)

lim sup
t?=

n
+
i/1

x
i
(t)6S0.

In later sections, we will obtain better upper limiting bounds for any
positive solution of model (1.1). But (2.6) will be used in some prelimi-
nary estimates.

3 Main results

By rearranging the equations in (1.1) if necessary, we may assume,
without loss of generality, that j

1
6j

2
626j

n
. Our results on

the global dynamics of (1.1) are proved under the following generic
condition

j
1
(j

2
626j

n
. (3.1)

In all of the theorems stated below, except Theorems 3.1 and 3.2, we
always assume that condition (3.1) is satisfied.

Theorem 3.1. ¸et n(/; t) be any given positive solution of (1.1). If j
i
7S0

for some i3I(n), then x
i
(/; t)P0 as tPR.

Theorem 3.1 states that if the delayed break-even concentration
j
i

is larger than the input nutrient concentration, then population
x
i
dies out whether or not there is a competitor. This result immediate-

ly implies the following global result that describes outcomes in which
all populations are eliminated from the chemostat. Note that this
elimination is not a result of competition, but is due to the fact that the
chemostat is an inadequate environment for any of the populations to
survive.

Theorem 3.2. If j
1
7S0, then lim

t?=
n(/; t)"E

0
for every positive

solution n (/; t) of model (1.1).

The case where some of the j
i
’s are smaller than S0 appears to be

much more complicated. In [28], it was shown that any population
x
i
with j

i
(S0 can survive in the chemostat when it is cultured alone. It

is thus of interest to know whether such populations can coexist in the
chemostat when they are cultured together. The following theorem
provides a simple criterion to predict the outcome of such competition.
It gives conditions under which model (1.1) exhibits competitive
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exclusion. The population that wins the competition is the one with the
smallest j

i
value, that is, population x

1
survives in the chemostat, while

all other populations die out.
For convenience, we define the index set

J"M j3I(n); j72 and j
j
(S0 N. (3.2)

Theorem 3.3. Assume that j
1
(S0 and

+
j|J

(S0!j
j
)(S0!j

1
. (3.3)

¹hen lim
t?=

n (/; t)"E
1

for every positive solution n (/; t) of model (1.1).

Condition (3.3) in the above theorem requires that the j
j
value for

population x
j
, j3J, should not be too ‘‘far away’’ from the input

nutrient concentration S0. If we regard S0!j
j
, j3J, as an index

measuring population x
j
’s ability to survive when it is cultured alone,

condition (3.3) can be thought of as requiring the joint index of survival
of all populations x

j
, j3J, to be less than the index of survival of

population x
1
. It is interesting to note that this condition is the same as

condition (3.2) of [27] in the discrete delay case, except that the
j
i
values are defined differently. Thus Theorem 3.3 provides an ana-

logue of Theorem 3.1 in [27] for the corresponding discrete delay
model. On the other hand, we should also note that condition (3.2) is
equivalent to the generic condition (3.1) when only two populations are
involved in competition. Thus Theorem 3.3 includes the main results of
Theorems 3.3 and 3.4 in [28].

The next result shows that even when condition (3.3) fails, the
conclusion of Theorem 3.3 still holds if the delay kernels K

j
, j3J,

modified to include the washout factor (a term that we will make clear
now) are close to each other in ¸1[0, R)-norm. To be more precise, let
us define, for any real number c70 and for any j3J, the following
quantity

l
j
(c)"S0!z*

j
, (3.4)
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Also, for a continuous function K: R
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where J is the index set defined in (3.2), x*
j

is the number given by (1.5)
and the function QD
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`
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`
is defined by
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We note that the function QD
j

as defined in (3.7) has the property that
:=
0

QD
j
(s) ds"1. Thus it can be viewed as a kernel that modifies the

kernel K
j
to include the washout factor e~Ds. We call QD

j
(s) the virtual

delay kernel corresponding to the (physical) delay kernel K
j
(s).

We can now state the following result.

Theorem 3.4. Assume that j
1
(S0. ¹hen every positive solution n (/; t)

of (1.1) satisfies lim
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n (/; t)"E
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ous function K: R
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Remark 3.6. It can be seen from (3.4) and (3.5) that l
j
(c) depends

continuously on c70. Moreover, it is decreasing with c and satisfies
l
j
(0)"j

j
and l

j
(R)"0 for each j3J. Therefore, if c is small, then

condition j
1
(l

j
(c) for all j3J will follow from the generic assump-

tion (3.1). In particular, if the virtual delay kernels QD
j
, j3J, are close to

each other in ¸1[0, R) -norm, by choosing K(u) to be any one of the
QD

j
(u), it follows from (3.6) that c

1
will be small and the hypotheses of

Theorem 3.4 will be satisfied.
Our final result can be applied when the numbers

(r
j
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j
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r
j
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x*
j

is given by (1.5) and k
j
denotes the (global) Lipschitz constant of

p
j
(S) on the interval [0, S0]. Note that the number q

D, j
is the mean of

the virtual delay, kernel QD
j
(s) , and it modifies the (physical) mean delay

q
j
of K

j
(s) to include the washout rate D. In the sequel, we call q

D, j
the

virtual mean delay of QD
j
(s).

Theorem 3.5. Assume that j
1
(S0. ¹hen every positive solution n(/;t)

of (1.1) satisfies lim
t?=

n (/; t)"E
1
, provided that there exist an a'0

and an integer r70 such that j
1
(l

j
(c

2
) for all j3J.

Remark 3.7. Again, due to the continuity of l
j
(c) in c70 and due

to the fact that l
j
(0)"j

j
7j

1
for j72, if either the orders r

j
of

the kernels K
j
, j3J, are large and the virtual mean delays q

D, j
are bounded and close to each other, or if the virtual mean delays
q
D,j

are small for fixed orders r
j

(not necessarily large), by choosing
the pair (r, a) to be any one of (r

j
, a

j
), j3J, it can be seen from (3.8)

that c
2

will be small and so the hypotheses of Theorem 3.5 will be
satisfied.

Remark 3.8. In the statement of Theorem 3.3, it should be noted that if
the index set J is empty, i.e. j

j
7S0 for all j72, then condition (3.2) is

not needed in Theorem 3.3. Similarly, if J"0, condition j
1
(l

j
(c

1
) or

j
1
(l

j
(c

2
) is not needed in Theorems 3.4 and 3.5. For convenience,

throughout, we adopt the convention that +k
i/j

a
j
,0 if k(j, and

+
i|I

a
j
,0 if the index set I is empty. Also, a condition will be thought

of as always being satisfied if it involves an index i3I where I is the
empty set.

We conclude this section by noting that Theorems 3.4 and 3.5 are
new and particular for the distributed delay model (1.1), and no similar
results seem to be available for the discrete delay models.

4 Some technical lemmas

In this section, we study a related system of ordinary differential
equations and prove several technical lemmas describing some quali-
tative properties of positive solutions of the ODEs system. These
lemmas will be useful in the proofs of the main theorems stated in the
previous section.

Let N71 be a positive integer, u: R
`
PR be a continuous

function with u(t)P0 as tPR, and D, S0, a
i
, r

i
, j

i
, p

i
, i3I(N), be

the same as in previous sections. We consider the following
+N

i/1
(r
i
#2) -dimensional system of ordinary differential equations for
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u
i,k

, i3I(N), k3I(r
i
#1) :

u@
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(t)"!Du
i,0

(t)#ui, r
i
#1 (t)piAS0!

N
+
j/1

u
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(t)#u(t)B ,

(4.1)

u@
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(t)"!(D#a
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) u

i,k
(t)#a

i
u
i,k~1

(t) ,

S0!
N
+
j/1

u
j,0

(0)#u (0)70.

We will only be interested in solutions of (4.1) for t70 that satisfy
S0!+N

j/1
u
j,0

(t)#u(t)70. Such solutions will be denoted by
u(t)"(u

i,k
(t)) for i3I(N) and k"0, 1, 2, 2 , r

i
#1, t70. We call

such a solution of (4.1) a positive solution if each component u
i,k

(t) of
u(t) is positive for t'0. By an argument similar to that for Lemma 2.1
in [28], we can show that every such solution of (4.1) with positive
initial data is a positive solution. It follows easily that every positive
solution u(t) of (4.1) is bounded for t'0.

Throughout this section, we always assume that the following
condition is satisfied:

j
1
(j

2
6j

3
626j

N
(S0 . (4.2)

In the case that N"1, condition (4.2) is simply j
1
(S0.

We begin with the following elementary but useful result.

Lemma 4.1. ¸et f : R
`
PR be a bounded differentiable function.

(i) If lim
t?=

f (t) exists (finite) and the derivative function f @ (t) is uni-
formly continuous on R

`
, then lim

t?=
f @ (t)"0.

(ii) If lim
t?=

f (t) does not exist, then there exist sequences Mt
m
NCR and

Ms
m
NCR such that

lim
m?=

f (t
m
)"lim sup

t?=

f (t), f @ (t
m
)"0,

lim
m?=

f (s
m
)"lim inf

t?=

f (t), f @ (s
m
)"0.

We remark that the first part of the lemma is due to Barba\ lat [1]
and it is sometimes referred to as the Barba\ lat lemma in the literature.
See [12] for a proof. The second part is proved in [14] and has been
called the fluctuation lemma. This lemma will be useful, since if u (t) is
a positive solution of (4.1), then each component of this solution vector
and its derivative function is a uniformly continuous function on
R

`
and Lemma 4.1 can be applied. To see this, note that all of the

components of this solution vector are bounded functions on R
`
.

Therefore, all of their derivatives are continuous and bounded
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functions on R
`
, as they are defined by (4.1). By the Mean Value

Theorem, all the component functions are thus Lipschitz continuous
and hence uniformly continuous. Note that each function p

i
, i3I(N),

is uniformly continuous on [0, S0]. It follows from (4.1) that the
derivative of each component of the solution vector is defined as the
sum, difference, product and composition of uniformly continuous
functions and hence, is also uniformly continuous. This lemma has
played an important role in the analysis of chemostat models (see [10,
27, 28]).

We now study the asymptotic behavior of the positive solutions of
(4.1). Let u (t)"(u

i,k
(t)) be such an arbitrarily fixed solution. We define

a
i,k
"lim inf

t?=

u
i,k

(t), b
i,k
"lim sup

t?=

u
i,k

(t),

for i3I(N) and k"0, 1, 2, 2 , r
i
#1. As we argued before, a

i,k
and

b
i,k

are all finite nonnegative numbers. In the following two lemmas, we
give some estimates for a

i,k
and b

i,k
.

Lemma 4.2. For every i3I(N) and k3I(r
i
#1),

A
a
i

D#a
i
B
k
a
i,0

6a
i,k
6b

i,k
6A

a
i

D#a
i
B
k
b
i,0

.

Proof. For any fixed i3I(N) and k3I (r
i
#1), we apply Lemma 4.1 to

find a sequence Ms
m
NCR such that

lim
m?=

u
i,k

(s
m
)"a

i,k
, lim

m?=

u@
i,k

(s
m
)"0.

By (4.1), this implies that

lim
m?=

[!(D#a
i
) u

i,k
(s
m
)#a

i
u
i,k~1

(s
m
)]"0.

Hence,

(D#a
i
) a

i,k
"a

i
lim
m?=

u
i,k~1

(s
m
)7a

i
a
i,k~1

,

which leads to

a
i,k
7A

a
i

D#a
i
B a

i,k~1
7A

a
i

D#a
i
B
k
a
i,0

.

Similarly, we can show that

b
i,k
6A

a
i

D#a
i
B b

i,k~1
6A

a
i

D#a
i
B
k
b
i,0

.

This establishes the lemma. K
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Lemma 4.3. For each i3I(N), we have b
i,0

6S0!j
i
.

Proof. By Lemma 4.1, there exists a sequence Mt
m
NCR such that

lim
m?=

u
i,0

(t
m
)"b

i,0
, lim

m?=

u@
i,0

(t
m
)"0.

Using (4.1), we obtain

Db
i,0

" lim
m?=

[Du
i,0

(t
m
)#u@

i,0
(t
m
)]

" lim
m?=

ui, r
i
#1 (tm

) p
iAS0!

N
+
j/1

u
j,0

(t
m
)#u (t

m
)B

(4.3)

6bi, r
i
#1 piAS0! lim

m?=

u
i,0

(t
m
)B

"bi, r
i
#1 p

i
(S0!b

i,0
).

Note that from Lemma 4.2,

bi, r
i
#16A

a
i

D#a
i
B

r
i
#1

b
i,0

.

We substitute this into (4.3) to obtain

Db
i,0

6b
i,0A

a
i

D#a
i
B

r
i
#1

p
i
(S0!b

i,0
). (4.4)

If b
i,0

"0, there is nothing to prove. If b
i,0

90, then (4.4) implies that

D6A
a
i

D#a
i
B

r
i
#1

p
i
(S0!b

i,0
).

By assumption (1.4), we have S0!b
i,0

7j
i
.

This completes the proof. K

We now introduce the following new variables

v
0
(t)"

N
+
i/2

u
i,0

(t), t70,

(4.5)

b"lim sup
t?=

v
0
(t).

It is obvious that 06b(R. In the sequel, we call a positive solution
u(t) of (4.1) a stack solution if for all k3I(r

1
#1), u

1,k
(t)6u

1,0
(t) for

every t'0. We study certain properties of the stack solutions of (4.1) in
the next two lemmas.
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Lemma 4.4. ¸et u(t) be a positive stack solution of (4.1). If b(S0!j
1
,

then a
1,0

'0.

Proof. In order to obtain a contradiction, assume that a
1,0

"0, i.e.
lim inf

t?=
u
1,0

(t)"0. Define

z(t)"a
1
u
1,0

(t)#
r
1
#1

+
k/1

DA
D#a

1
a
1

B
k~1

u
1,k

(t), t'0.

It follows from (4.1) that

z@ (t)"!a
1
u1, r

1
#1 (t) [M!p

1
(S0!u

1,0
(t )!v

0
(t)#u(t))], (4.6)

where

M"DA
D#a

1
a
1

B
r
1
#1

.

Note that z(t)'0 for all t'0. Since a
1,0

"0, and since u(t) is
a positive stack solution, i.e., for k3I (r

1
#1), 0(u

1,k
(t)6u

1,0
(t) for

all t'0, it follows that lim inf
t?=

z (t)"0. We can therefore find
a sequence Mm

m
NCR such that for all m, z@(m

m
)60, and as mPR,

z(m
m
)P0 and so u

1,0
(m

m
)P0 since 0(u

1,0
(m

m
)(z(m

m
)/a

1
.

Therefore, from (4.6) it follows that

!a
1
u1, r

1
#1 (mm

) [M!p
1
(S0!u

1,0
(m

m
)!v

0
(m

m
)#u (m

m
))]60,

which implies that

p
1
(S0!u

1,0
(m

m
)!v

0
(m

m
)#u(m

m
))6DA

D#a
1

a
1
B

r
1
#1

.

By assumption (1.4), we obtain

S0!u
1,0

(m
m
)!v

0
(m

m
)#u(m

m
)6j

1
.

Consequently, for all m,

v
0
(m

m
)7S0!j

1
!u

1,0
(m

m
)#u(m

m
).

But then,

b7 lim sup
m?=

v
0
(m

m
)7 lim

m?=

(S0!j
1
!u

1,0
(m

m
)#u(m

m
))"S0!j

1
,

contradicting b(S0!j
1
. Therefore, a

1,0
'0 and the proof is

complete. K

Lemma 4.5. ¸et u (t) be a stack solution of (4.1). If

N
+
i/2

(S0!j
i
)(S0!j

1
, (4.7)

then a
1,0

'0 and a
i,k
"b

i,k
"0 for all i72 and k"0, 1, 2, 2 , r

i
#1.
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Proof. First, we note that Lemma 4.3 and assumption (4.7) imply that

b6
N
+
i/2

b
i,0

6

N
+
i/2

(S0!j
i
)(S0!j

1
.

Therefore, by Lemma 4.4, a
1,0

'0. To show that a
i,k
"b

i,k
"0 for all

i72 and k3I(r
i
#1), we need only to prove that a

i,0
"b

i,0
"0 for all

i72, since the conclusion will then follow from Lemma 4.2.
Suppose that b

i,0
O0 for some i72. By Lemma 4.1, there is a se-

quence Mt
m
NCR such that

lim
m?=

u
i,0

(t
m
)"b

i,0
, lim

m?=

u@
i,0

(t
m
)"0.

It then follows from (4.1) and Lemma 4.2 that

Db
i,0

" lim
m?=

[Du
i,0

(t
m
)#u@

i,0
(t
m
)]

" lim
m?=

ui, r
i
#1 (t

m
) p

iAS0!
N
+
j/1

u
j,0

(t
m
)#u(t

m
)B

6bi, r
i
#1 pi

(S0!a
1,0

!b
i,0

)

6b
i,0A

a
i

D#a
i
B

r
i
#1

p
i
(S0!a

1,0
!b

i,0
).

This gives

p
i
(S0!a

1,0
!b

i,0
)7DA

a
i

D#a
i
B

r
i
#1

.

Consequently, by assumption (1.4),

S0!a
1,0

!b
i,0

7j
i
. (4.8)

On the other hand, we can apply Lemma 4.1 again to obtain a
sequence Ms

m
NCR such that

lim
m?=

u
1,0

(s
m
)"a

1,0
, lim

m?=

u@
1,0

(s
m
)"0.

From (4.1) and Lemma 4.2, we have

Da
1,0

" lim
m?=

[Du
1,0

(s
m
)#u@

1,0
(s
m
)]

" lim
m?=

u1, r
1
#1 (sm

) p
1
(S0!u

1,0
(s
m
)!

N
+
j/2

u
j,0

(s
m
)#u(s

m
))
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7a1,r
1
#1 p

1AS0!a
1,0

!

N
+
j/2

b
j,0B

7a
1,0A

a
1

D#a
1
B

r
1
#1

p
1AS0!a

1,0
!

N
+
j/2

b
j,0B.

Since a
1,0

90, it follows that

p
1AS0!a

1,0
!

N
+
j/2

b
j,0B6DA

D#a
1

a
1
B

r
1
#1

.

Consequently, by assumption (1.4),

S0!a
1,0

!

N
+
j/2

b
j,0

6j
1
. (4.9)

Combining (4.8) and (4.9), and applying Lemma 4.3, we obtain

j
i
!j

1
6 +

j91, i

b
j,0

6 +
j91, i

(S0!j
j
) ,

which contradicts assumption (4.7). Therefore, b
i,0

"0 for all i72.
Since 06a

i,0
6b

i,0
, i3I(N), we have a

i,0
"b

i,0
"0 for all i72.

This completes the proof. K

Lemma 4.6. ¸et c70 be a constant satisfying

lim sup
t?=

N
+
i/2
A
D#a

i
a
i
B

r
i
#1

ui, r
i
#1 (t)6c#b, (4.10)

where b is the number defined by (4.5). If b'0, then there exists
k3M2, 3, 2, NN such that b6S0!a

1,0
!l

k
(c), where l

k
(c) is defined

in (3.4) and (3.5).

Proof. Recall that v
0
(t) is a differentiable function as defined in (4.5). It

follows from (4.1) that v
0
(t) satisfies the system of differential equations:

u@
1,0

(t)"!Du
1,0

(t)#u1,r
1
#1 (t)p1

(S0!u
1,0

(t)!v
0
(t)#u (t)),

u@
1,k

(t)"!(D#a
1
) u

1,k
(t)#a

1
u
1,k~1

(t), k3I(r
1
#1),

(4.11)

v@
0
(t)"!Dv

0
(t)#

N
+
i/2

ui, r
i
#1 (t)pi

(S0!u
1,0

(t)!v
0
(t)#u(t)),

u@
i,k

(t)"!(D#a
i
) u

i,k
(t)#a

i
u
i,k~1

(t), i72, k3I(r
i
#1).
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Let Me
q
NB0 be a given positive sequence. Fix any q'0. By Lemma 4.1

and assumption (4.10), we have a sequence Mt
m
NCR such that for all m,

lim
m?=

v
0
(t
m
)"b, lim

m?=

v@
0
(t
m
)"0,

b!
e
q
2
6v

0
(t
m
)6b#

e
q
2

,

N
+
i/2

º
i,m

6c#b#e
q
, u (t

m
)(

e
q
2

,

where

º
i,m

"A
D#a

i
a
i
B

r
i
#1

ui,r
i
#1 (tm

).

Then it follows from (4.11) that

Db" lim
m?=

[Dv
0
(t
m
)#v

0
@(t

m
)]

" lim
m?=

N
+
i/2

ui, r
i
#1 (tm

)p
i
(S0!u

1,0
(t
m
)!v

0
(t
m
)#u (t

m
))

6lim sup
m?=

N
+
i/2

ui, r
i
#1 (tm

)p
i
(S0!a

1,0
!b#e

q
)

"lim sup
m?=

N
+
i/2
A

a
i

D#a
i
B

r
i
#1

p
i
(S0!a

1,0
!b#e

q
)º

i,m

6A
ak

q

D#ak
q
B

rk
q
#1

pk
q
(S0!a

1,0
!b#e

q
) lim sup

m?=

N
+
i/2

º
i,m

6A
ak

q

D#ak
q
B

rk
q
#1

pk
q
(S0!a

1,0
!b#e

q
) (c#b#e

q
) , (4.12)

where k
q
3M2, 3, 2 , NN is chosen so that for all i3M2, 3, 2 , NN .

A
ak

q

D#ak
q
B

rk
q
#1

pk
q
(S0!a

1,0
!b#e

q
)

7A
a
i

D#a
i
B

r
i
#1

p
i
(S0!a

1,0
!b#e

q
).

By choosing a subsequence if necessary, we may assume that
lim

q?=
k
q
"k for some k3M2, 3, 2 , NN. Therefore, letting qPR in
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(4.12), we obtain

Db6A
a
k

D#a
k
B

r
k
#1

p
k
(S0!a

1,0
!b) (c#b).

Since b'0, by (3.4) and (3.5), the above inequality yields
S0!a

1,0
!b7l

k
(c) , i.e. b6S0!a

1,0
!l

k
(c), as desired.

This completes the proof. K

Lemma 4.7. Suppose that u(t) is a stack solution of (4.1) and (4.10) holds
for some constant c70. If j

1
(l

j
(c)(S0 for all 26j6N, then

a
1,0

'0 and a
i,k
"b

i,k
"0 for all i72 and k"0, 1, 2, 2 , r

i
#1.

Proof. We first show that a
1,0

'0. By Lemma 4.4, this is clearly true if
b"0. In the case where b'0, we apply Lemma 4.6 to obtain
b6S0!l

k
(c) for some k72. But j

1
(l

k
(c)(S0, so Lemma 4.4

again implies that a
1,0

'0.
In view of Lemma 4.2, in order to show that a

i,k
"b

i,k
"0 for all

i72 and k"0, 1, 2, 2, r
i
#1, we need only prove that b"0. Sup-

pose, to the contrary, that b'0. Then by Lemma 4.6, there exists
k72 such that

S0!a
1,0

!b7l
k
(c). (4.13)

On the other hand, applying Lemma 4.1, we can find a sequence
Ms

m
NCR such that

lim
m?=

u
1,0

(s
m
)"a

1,0
, lim

m?=

u@
1,0

(s
m
)"0.

By the first equation of (4.11) and Lemma 4.2, we have

Da
1,0

" lim
m?=

[Du
1,0

(s
m
)#u@

1,0
(s
m
)]

" lim
m?=

u1, r
1
#1 (sm

) p
1
(S0!u

1,0
(s
m
)!v

0
(s
m
)#u (s

m
))

7a1,r
1
#1 p

1
(S0!a

1,0
!b)

7a
1,0A

a
1

D#a
1
B

r
1
#1

p
1
(S0!a

1,0
!b).

Since a
1,0

'0, the above inequalities imply

D7A
a
1

D#a
1
B

r
1
#1

p
1
(S0!a

1,0
!b).
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Consequently, by assumption (1.4),

S0!a
1,0

!b6j
1
. (4.14)

By hypothesis, j
1
(l

j
(c) for all j72, and so S0!a

1,0
!b(l

k
(c),

contradicting (4.13). Hence b"0 and the proof is complete. K

Lemma 4.8. If a
1,0

'0 and a
i,k
"b

i,k
"0 for all i72, k3I (r

i
#1),

then

a
1,k

"b
1,k

"(S0!j
1
) A

a
1

D#a
1
B

k

, k"0, 1, 2, 2 , r
1
#1. (4.15)

Proof. We first note that from the proof of Lemma 4.7, the inequality
(4.14) holds if a

1,0
'0. Since a

i,k
"b

i,k
"0 for every i72 and

k3I(r
i
#1), it follows directly from definition (4.5) that b"0. Hence

(4.14) yields S0!a
1,0

6j
1
, i.e. a

1,0
7S0!j

1
. On the other hand,

applying Lemma 4.3, we obtain b
1,0

6S0!j
1
. This implies that

a
1,0

"b
1,0

"S0!j
1
. Formula (4.15) now follows immediately from

Lemma 4.2.
This completes the proof. K

5 Proof of main results

This section is devoted to the proof of the main results stated in Section
3. The proofs of Theorems 3.1 and 3.2 are similar to the analogous
theorems in [28] and hence are omitted. Before we prove Theorems
3.3-3.5, we make some observations. If j

1
(S0, then either the set

J:"M j3I(n); j72 and j
j
(S0N"0, or there exists N72, such that

J"M2, 3, 2, NN. In what follows, we write N"1 if J"0. Let
n(/;t)"(S (t), x

1
(t), 2 , x

n
(t)) be an arbitrarily fixed positive solution

and y
i, j

(t) be defined as in (2.2) and (2.3). It follows from (2.5) that

S (t)"S0!
n
+
i/1
A

r
i

+
j/0

y
i,j

(t)
a
i

#x
i
(t)B#o (t), t70, (5.1)

for some continuous function o(t) satisfying o (t)P0 as tPR. Let

u (t)"!

n
+

i/N`1
A

r
i

+
j/0

y
i, j

(t)
a
i

#x
i
(t)B#o (t), t70. (5.2)

Since j
i
7S0 for all i7N#1, by Theorem 3.1 and an argument

similar to that in the proof of Theorem 3.1, lim
t?=

x
i
(t)"

lim
t?=

y
i,j

(t)"0 for all i7N#1 and j"0, 1, 2, 2, r
i
. Therefore,
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lim
t?=

u(t)"0. Substituting (5.1) and (5.2) into (2.4) and eliminating
the first equation, we obtain

x@
i
(t)"!Dx

i
(t)#yi, r

i
(t) ,

y@
i,0

(t)"!(D#a
i
) y

i,0
(t)

#a
i
x
i
(t) p

iAS0!
N
+
i/1
A

r
i

+
j/0

y
i,j

(t)
a
i

#x
i
(t)B#u(t)B,

y@
i,j

(t)"!(D#a
i
) y

i,j
(t)#a

i
y
i,j~1

(t), i3I (N), j3I(r
i
#1). (5.3)

Define

ui, r
i
#1 (t)"x

i
(t), i3I(N),

(5.4)

u
i,k

(t)"x
i
(t)#

r
i

+
j/k

y
i,j

(t)
a
i

, k"0, 1, 2, 2, r
i
#1.

By using (5.3), it can be shown that u(t)"(u
i,k

(t)) defined by (5.4) is
a positive solution of the ODEs system (4.1) with u (t) given by (5.2).
Moreover, since n (/; t) is positive, y

i,j
(t) are all positive for

t'0, i3I (N) and j"0, 1, 2, 2 , r
i
. So it follows from (5.4) that

u
1,k

(t)6u
1,0

(t) for all k3I (r
1
#1) and t'0. Therefore, according to

Sect. 4, u (t) as defined by (5.4) is a stack solution of (4.1). Clearly,
assumption (4.2) is also satisfied.

We are now in a position to prove Theorem 3.3.
Proof of Theorem 3.3. We first note that the condition (3.2) implies that

N
+
i/2

(S0!j
i
)"+

j|J

(S0!j
j
) (S0!j

1
.

Applying Lemma 4.5, we obtain a
1,0

'0 and a
i,k
"b

i,k
"0 for all

26i6N and k3I (r
i
#1). Furthermore, by Lemma 4.8, we have

a
1,k

"b
1,k

"(S0!j
1
)A

a
1

D#a
1
B
k
,

for all k"0, 1, 2, 2 , r
1
#1. Recall that x

i
(t)"ui,r

i
#1 (t). Therefore,

lim
t?=

x
1
(t)"a1, r

1
#1"(S0!j

1
)A

a
1

D#a
1
B

r
1
#1

,

lim
t?=

x
i
(t)"ai, r

i
#1"0, 26i6N.

On the other hand, since j
i
7S0 for i7N, we can apply Theorem 3.1

to obtain lim
t?=

x
i
(t)"0 for all N#16i6n. Moreover, as in the
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proof of Theorem 3.2, we have lim
t?=

y
i, j

(t)"0 for all i72,
j"0, 1, 2, 2 , r

i
. Therefore, it follows from (5.1) that

lim
t?=

S(t)"S0!lim
t?=

A
r
1

+
j/0

y
1,j

(t)
a
1

#x
1
(t)B!lim

t?=

n
+
i/2
A

r
i

+
j/0

y
i,j

(t)
a
i

#x
i
(t)B

"S0!lim
t?=

u
1,0

(t)

"S0!a
1,0

"S0!(S0!j
1
)"j

1
.

Consequently,

lim
t?=

n (/; t)"Aj1, (S0!j
1
) A

a
1

D#a
1
B

r
1
#1

, 0, 2 , 0B"E
1
,

and the proof is complete. K

To prove Theorems 3.4 and 3.5, we will need the following two
lemmas.

Lemma 5.1. ¸et Q: R
`
PR

`
and g: RPR

`
be continuous functions.

If g is bounded and :=
0
Q (s) ds(R, then

lim sup
t?=

P
t

~=

g (h)Q(t!h) dh6lim sup
t?=

g(t)P
=

0

Q (s) ds. (5.5)

Proof. Let A"sup
t|R

g (t). If A"0, then (5.1) holds trivially. So in
what follows, we assume A'0. Let e'0 be given. We choose
M"M(e)'0 such that

P
=

M

Q (s) ds(
e

2A P
=

0

Q (s) ds.

Then we have

P
t

~=

g(h) Q(t!h) dh"P
=

0

g(t!s)Q (s) ds

"P
M

0

g(t!s)Q (s) ds#P
=

M

g (t!s)Q (s) ds

6P
M

0

g(t!s)Q (s) ds#AP
=

M

Q(s) ds

(P
M

0

g(t!s)Q (s) ds#
e
2 P

=

0

Q(s) ds. (5.6)
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Let ¹"¹ (e)'0 be such that for all t7¹, g (t!s)(
lim sup

t?=
g(t)#e/2 for every s3[0, M]. It then follows from (5.6)

that for all t7¹,

P
t

~=

g(h)Q(t!h) dh(P
M

0
A lim sup

t?=

g (t)#
e
2 BQ(s) ds#

e
2 P

=

0

Q (s) ds

(A lim sup
t?=

g (t)#eBP
=

0

Q(s) ds

from which (5.5) follows and the proof is complete. K

Lemma 5.2. ¸et h : RPR
`

be a bounded continuous function. Suppose
that for every e'0, there exist positive numbers M(e), ¸(e), and ¸ such
that limeP0` ¸(e)"¸ and Dh(t

2
)!h(t

1
) D6¸(e) Dt

2
!t

1
D for all

t
1
, t

2
7M(e). ¹hen for any q'0 and any integer r70,

lim sup
t?=

K P
=

0

h(t!s)G
r
(s) ds!h(t!q) K6

C

Jr#1
, (5.7)

where

C"

2q¸

J2n
, G

r
(s)"

ar`1sr
r!

e~as , a"
r#1

q
. (5.8)

Proof. Let e'0 be given. Find ¹"¹(r, e, q)'max(M(e), q) such that
for t7¹,

P
=

t

G
r
(s) ds(

e
2H

,

where H"sup
t|R

h (t). Note that for t72¹ and s3[0, ¹] , we have
Dh(t!s)!h(t!q) D6¸ (e) Ds!qD. Note that :=

0
G

r
(s) ds"1. This im-

plies that for all t72¹,

K P
=

0

h (t!s)G
r
(s) ds!h(t!q) K

6P
=

0

Dh(t!s)!h(t!q) DG
r
(s) ds

6P
T

0

Dh (t!s)!h (t!q) DG
r
(s) ds#2HP

=

T

G
r
(s) ds

(¸(e)P
=

0

Ds!qDG
r
(s) ds#e.
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Let I":=
0

Ds!qDG
r
(s) ds. We rewrite this as

I"P
q

0

(q!s) G
r
(s) ds#P

=

q
(s!q) G

r
(s) ds

"qAP
q

0

!P
=

q BG
r
(s) ds!AP

q

0

!P
=

q B sG
r
(s) ds.

Applying integration by parts repeatedly, we have

P
q

0

G
r
(s) ds!P

=

q
G

r
(s) ds"1!2e~aq

r
+
k/0

(aq)k
k!

,

P
q

0

sG
r
(s) ds!P

=

q
sG

r
(s) ds"q!2qe~aq

r`1
+
k/0

(aq)k
k!

.

Hence,

I"
2q(aq)r`1

(r#1)!
e~aq"

2q (r#1)r`1

(r#1)!
e~(r`1).

By Stirling’s formula (see [17], Theorem 2, pp. 220), there exists
0(m

r
(1 such that

(r#1)!"J2n(r#1)A
r#1

e B
r`1

e
m
r

12(r#1) ,

and so it follows that

I"
2q

J2n(r#1)
e
!

m
r

12(r#1)(
2q

J2n(r#1)
"

C

¸Jr#1
,

where C'0 is the constant given by (5.8). Consequently, for all
t72¹,

K P
=

0

h (t!s)G
r
(s) ds!h(t!q) K(

¸(e)C

¸Jr#1
#e.

This immediately leads to (5.7) and completes the proof. K

Remark 5.3. The condition on h in the above lemma is satisfied if h is
continuously differentiable and lim sup

t?=
Dh@ (t) D6¸. In fact, for every

e'0, we may choose ¸(e)"¸#e , and appeal to the Mean Value
Theorem.

We now give the proofs of Theorems 3.4 and 3.5.

Proof of Theorem 3.4 As in the proof of Theorem 3.3, it suffices to
show that a

1,0
'0 and a

i,k
"b

i,k
"0 for all 26i6N and

k"0, 1, 2, 2, r
i
#1. Recall that u(t) is a stack solution of (4.1). By
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Lemma 4.7, it is sufficient to show that (4.10) holds for c"c
1
, where

c
1
70 is the constant defined in (3.5). To this end, we first note that

N
+
i/2
A
D#a

i
a
i
B

r
i
#1

ui,r
i
#1 (t)"

N
+
i/2
A
D#a

i
a
i
B

r
i
#1

x
i
(t)

"

N
+
i/2
CA

D#a
i

a
i
B

r
i
#1

x
i
(t)!P

t

0

u
i,0

(t!s) K (s) dsD
#

N
+
i/2
P

t

0

u
i,0

(t!s)K(s) ds

"

N
+
i/2

¼
i
(t)#P

t

0

v
0

(t!s)K(s) ds, (5.9)

where v
0
(t) is defined as in (4.5) and

¼
i
(t)"A

D#a
i

a
i
B

r
i
#1

x
i
(t)!P

t

0

u
i,0

(t!s)K(s) ds,

for i"2, 3, 2 , N. In what follows, we show that for each 26i6N,

lim sup
t?=

¼
i
(t)6

1
D

x*
i

p
i
(S0)P

=

0

DQD
i
(s)!K(s) D ds, (5.10)

where x*
i

is given by (1.5) and QD
i

is the virtual delay kernel defined as in
(3.8). Indeed, by using the equations in (5.3) and (5.4), we obtain

¼@
i
(t)"A

D#a
i

a
i
B

r
i
#1

(!Dx
i
(t)#yi, r

i
(t))

!P
t

0
Ax@

i
(t!s)#

r
i

+
j/0

y@
i, j

(t!s)
a
i

BK(s) ds!u
i,0

(0)K(t)

"!DA
D#a

i
a
i
B

r
i
#1

x
i
(t)#A

D#a
i

a
i
B

r
i
#1

yi, r
i
(t)

!P
t

0

[!Dx
i
(t!s)#yi, r

i
(t!s)]K (s) ds

!P
t

0
C!

r
i

+
j/0
A
D#a

i
a
i
Byi,j (t!s)#

r
i

+
j/1

y
i, j~1

(t!s)DK(s) ds

!P
t

0

x
i
(t!s)p

i
(S(t!s))K(s) ds!u

i,0
(0)K(t)
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"!DCA
D#a

i
a
i
B

r
i
#1

x
i
(t)!P

t

0
Axi

(t!s)

#

r
i

+
j/0

y
i, j

(t!s)
a
i

BK(s) dsD
#A

D#a
i

a
i
B

r
i
#1

yi, r
i
(t)!P

t

0

x
i
(t!s) p

i
(S(t!s))K (s) ds

"!D¼
i
(t)#P

=

0

x
i
(t!s) p

i
(S(t!s))

]CA
D#a

i
a
i
B

r
i
#1

Gr
iD,a

i
(s)!K (s)D ds

!u
i,0

(0) K(t)!P
=

t

x
i
(t!s)p

i
(S(t!s))K(s) ds

"!D¼
i
(t)#P

=

0

x
i
(t!s)p

i
(S(t!s))[QD

i
(s)!K(s)] ds

!u
i,0

(0)K (t)!P
=

t

x
i
(t!s)p

i
(S(t!s))K (s) ds, (5.11)

where we have used (2.2) and (2.3) for yi, r
i
(t). Notice that ¼

i
(t) is

bounded. It follows from (5.11) that ¼@
i
(t) is also bounded. This implies

that ¼
i
(t) is uniformly continuous. By using (5.11) again, we see that

¼@
i
(t) is uniformly continuous as well. This allows us to apply Lemma

4.1. So we have a sequence Mt
m
NCR such that

lim
m?=

¼
i
(t
m
)"lim sup

t?=

¼
i
(t), lim

m?=

¼@
i
(t
m
)"0.

On the other hand, by assumption we have lim
t?=

K (t)"0 and

lim
t?=

P
=

t

x
i
(t!s) p

i
(S (t!s))K(s) ds6M

iP
=

t

K(s) ds"0,

where M
i
"sup

!R(h60 D/
i
(h)p

i
(/

0
(h)) D and (/

0
, /

1
, 2, /

N
)3BCN`1

`
is the initial data of (S (t), x

1
(t), 2 , x

N
(t)). Therefore, it follows from

(5.11) that

lim sup
t?=

¼
i
(t)" lim

m?=

¼
i
(t
m
)

"

1
D

lim
m?=

P
=

0

x
i
(t
m
!s)p

i
(S(t

m
!s)) [QD

i
(s)!K(s)] ds
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! lim
m?=

u
i,0

(0)K(t
m
)

! lim
m?=

P
=

t
m

x
i
(t!s) p

i
(S(t!s))K(s) ds

6

1
D

lim sup
t?=

P
=

0

x
i
(t!s) p%

i
(S(t!s)) DQD

i
(s)!K(s) D ds. (5.12)

Recall that x
i
(t)"ui, r

i
#1 (t). By (2.6), Lemmas 4.2 and 4.3, we have

lim sup
t?=

x
i
(t)6A

a
i

D#a
i
B

r
i
#1

(S0!j
i
)"x*

i
,

lim sup
t?=

p
i
(S(t))6p

i
(S0). (5.13)

Applying Lemma 5.1 to (5.12) then gives (5.10).
Therefore, upon using Lemma 5.1 again, we obtain from (5.9) that

lim sup
t?=

N
+
i/2
A
D#a

i
a
i
B

r
i
#1

ui, r
i
#1 (t)

6

N
+
i/2

lim sup
t?=

¼
i
(t)#lim sup

t?=
P

=

0

v
0
(t!s)K (s) ds

6

1
D

N
+
i/2

x*
i

p
i
(S0)P

=

0

DQD
i
(s)!K (s) D ds#bP

=

0

K(s) ds

"c
1
#b,

where b"lim sup
t?=

v
0

(t) is defined in (4.5). This proves (4.10) for
c"c

1
and the conclusion follows. K

Finally, we prove Theorem 3.5.

Proof of Theorem 3.5. As before, it suffices to show that (4.10) holds for
c"c

2
, where c

2
70 is the constant defined by (3.7). We proceed as in

the proof of Theorem 3.4 and arrive at (5.11) with K(s) replaced by
Q(s), where

Q (s)"A
D#a

a B
r`1

Gr
D,a(s)

and Gr
D,a(s) is defined as in (2.3). Let

h
i
(t)"x

i
(t)p

i
(S(t)),

»
i
(t)"P

=

0

h
i
(t!s)(QD

i
(s)!Q (s)) ds ,
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for i"2, 3, 2 , N. We rewrite each »
i
(t) as follows

»
i
(t)"P

=

0

h
i
(t!s)QD

i
(s) ds!P

=

0

h
i
(t!s)Q(s) ds

"P
=

0

h
i
(t!s)QD

i
(s) ds!h

i
(t!q

D, i
)

!AP
=

0

h
i
(t!s)Q (s) ds!h

i
(t!q

D
)B

#h
i
(t!q

D, i
)!h

i
(t!q

D
), (5.14)

where q
D, i

"(r
i
#1)/(D#a

i
) and q

D
"(r#1)/(D#a) are the corres-

ponding virtual mean delays of QD
i

and Q. Note that by the first
equation of (1.1), we have

DS@(t) D"DS0D!DS(t)!
n
+
i/1

x
i
(t) p

i
(S(t))D

6maxMS0D, DS(t)#
n
+
i/1

x
i
(t) p

i
(S(t))N,

where we have used the inequality Da!bD6maxMa, bN for all positive
real numbers a and b. Thus by using (2.6), (5.13) and recalling that
lim

t?=
x
i
(t)"0 for all i7N#1, we obtain

lim sup
t?=

DS@ (t) D6max MS0D, S0D#P lim sup
t?=

N
+
i/1

x
i
(t) N

6S0D#PS0"S0 (D#P), (5.15)

where P"max16i6Np
i
(S0). Similarly, we can use (1.1), (5.13) and

Lemma 5.1 to obtain

lim sup
t?=

Dx
i
@(t) D6lim sup

t?=

maxMDx
i
(t), P

t

~=

h
i
(h)Gr

iD,a
i
(t!h) dhN

6lim sup
t?=

max MDx
i
(t), P

t

~=

h
i
(h)QD

i
(t!h) dhN

6max MDx*
i
, lim sup

t?=

h
i
(t)N

6max MDx*
i
, x*

i
p
i
(S0) N

"x*
i

p
i
(S0), 26i6N. (5.16)
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Hence, it follows from (5.15) and (5.16) that for any e'0, there exists
M

i
"M

i
(e) such that for all t

1
, t

2
7M

i
,

Dh
i
(t
2
)!h

i
(t
1
)D"Dx

i
(t
2
) p

i
(S(t

2
))!x

i
(t
1
) p

i
(S (t

1
)) D

6p
i
(S(t

2
)) Dx

i
(t
2
)!x

i
(t
1
) D#k

i
x
i
(t
1
) DS(t

2
)!S(t

1
) D

6¸
i
(e) Dt

2
!t

1
D ,

where k
i
is the global Lipschitz constant of p

i
on the interval [0, S0],

and

¸
i
(e)"x*

i
p
i
(S0) Api (S0)#k

i
S0p~1

i
(S0) (D#P)#eB.

This implies that for all t7M
i
#max (q

D, i
, q

D
) ,

Dh
i
(t!q

D, i
)!h

i
(t!q

D
) D6¸

i
(e) Dq

D
!q

D, i
D.

Recall that A
i
, B

i
and C

i
are the constants defined by (3.8). Since

limeP0` ¸
i
(e)"C

i
, applying Lemma 5.2 to (5.14) gives

lim sup
t?=

»
i
(t)6lim sup

t?=
K P

=

0

h
i
(t!h)QD

i
(s) ds!h

i
(t!q

D, i
) K

#lim sup
t?=

KP
=

0

h
i
(t!h) Q(s) ds!h

i
(t!q

D
) K

#lim sup
t?=

Dh
i
(t!q

D, i
)!h

i
(t!q

D
) D

6

2q
D, i

C
i

J2n(r
i
#1)

#

2q
D

C
i

J2n(r#1)
#C

i
D q

D
!q

D, i
D

"

A
i

Jr
i
#1

#

B
i

Jr#1
#C

i
D q

D
!q

D, i
D.

Therefore, as in (5.12), we obtain

lim sup
t?=

¼
i
(t)6

1
D A

A
i

Jr
i
#1

#

B
i

Jr#1
#C

i
D q

D
!q

D, i
DB,
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and consequently, by (5.9),

lim sup
t?=

N
+
i/2
A
D#a

i
a
i
B

r
i
#1

ui, r
i
#1 (t)6

N
+
i/2

lim sup
t?=

¼
i
(t)#bP

=

0

Q(s) ds

6

1
D

N
+
i/2
A

A
i

Jr
i
#1

#

B
i

Jr#1
#C

i
D q

D
!q

D, i
DB#b

"c
2
#b.

That is, (4.10) holds for c"c
2
. This completes the proof of

Theorem 3.5. K

6 Concluding remarks

In this paper, we considered the global dynamics of an exploitative
competition model of n-species in the chemostat. We used distributed
delays to model the time lag in the process of conversion of nutrient to
new cells. Analogues of the results given in [27] for the corresponding
discrete delay model were obtained and new results for the distributed
delay model were proved. As well, the results extend the recent work
[28] for the two species competition model to the general n-species case.

By selecting delay kernels of exponential type (see (1.2)), we ob-
tained sufficient conditions under which the model exhibits competi-
tive exclusion. In particular, we proved that the population that has the
smallest delayed break-even concentration wins the competition, pro-
vided that either the virtual delay kernels are close to each other in
¸1-norm, or the orders of the delay kernels are large and the virtual
mean delays are close to each other. As noted before, different virtual
delay kernels represent the distributions of the delay involved in the
conversion of nutrient by the different species to new cells modified to
include the washout factor. Also, as will be explained in the last
paragraph of this concluding section, we know that the case where the
order of the virtual delay kernel is large corresponds to a small
stochastic perturbation of the discrete delay case (where the discrete
delay is the virtual mean delay). Our results therefore indicate that the
competitive exclusion principle remains true if the distributed delays
for the different species (whether they are large or small) are close to
each other in the ¸1-sense or if the distributed delays are small
perturbations of discrete delays, provided that the size of the discrete
delays are similar for all of the species. Hence, if the delay kernels of the
different species are similar (as might be expected for similar species),
then our theorems are likely to apply.
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The theorems we proved also imply that when the virtual mean
delays are small, the predictions of the distributed delay model are
identical to the predictions of the corresponding ODEs model without
delay. To see this, let us assume, for simplicity, that the growth
response functions p

i
are strictly increasing. Then it follows from (1.4)

that

j
i
"p~1

i ADA
D#a

i
a
i
B

r
i
#1

B
(6.1)

"p~1
i ADA1#

D
a
i
B

a
i
q
D, i

D#a
i

a
i B .

If the virtual mean delays q
D, i

are small, then the a
i
’s are large and so

(6.1) implies that

j
i
+p~1

i
(Deq

D, i )+p~1
i

(D). (6.2)

Since p~1
i

(D) are the break-even concentrations for the corresponding
ODEs model, it follows from (6.2) that if q

D, i
are small, then

j
1
(j

j
, j72, implies that p~1

1
(D)(p~1

j
(D), j72. By Theorem 4.6 in

[4], the ODEs model predicts that population x
1

is the sole survivor.
This prediction is identical with the prediction given by the distributed
delay model (1.1), as indicated by Theorem 3.5 and Remark 3.7.
However, we should note that when the virtual mean delays are
relatively large, from (6.1), it is possible that j

1
(j

j
and p~1

1
(D)'

p~1
j

(D) hold simultaneously. By Theorem 3.3, it follows that the distrib-
uted delay model may give predictions on the outcome of competition
that are different from those given by the ODEs model. We refer to
[27,28] for more details and a similar discussion of the effects of time
delay on the outcome of competition in the chemostat.

One of the main findings in this paper is the role played by the
so-called virtual delay kernels and the corresponding virtual mean
delays (see Theorems 3.4 and 3.5) for predicting the global dynamics of
model (1.1). To the best of our knowledge, this finding has not been
reported in the literature. Although in [20] MacDonald seemed to
have noticed this, he only gave a very brief discussion on a similar but
different observation. We reiterate that the virtual delay kernels com-
bine two modes of loss of memory of previous events, one occuring on
a time scale (r

i
#1)/a

i
appropriate to the particular mechanism con-

ceived, and the other occuring on the time scale 1/D due to the outflow
in the chemostat. Consequently, the virtual mean delay simulates the
mean delay of this two-mode interaction of loss of memory. Observe
that for any fixed D'0, the virtual mean delay q

D,j
is always smaller
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than the (physical) mean delay (r
i
#1)/a

i
, and that they are close if a

i
is

large. This allows us to conclude that the results in Theorem 3.9 of [27]
may be viewed as the limiting case of Theorem 3.5 of this paper, since
the distributed delay model (1.1) approaches the corresponding dis-
crete delay model when the a

i
’s go to infinity while the mean delays

q"(r
i
#1) /a

i
are kept fixed (see the Appendix of [28] for a proof).

However, when the a
i
’s are relatively small, the results given in The-

orems 3.4 and 3.5 appear to be new.
Finally, we remark that as in [28], we selected a particular class of

delay kernels of the form (1.2) to analyze the global asymptotic behav-
ior of model (1.1), and this selection allowed us to apply the linear chain
trick technique. As discussed in [28], this class of delay kernels are of
unimodal type and are generic in the sense that the linear span of the
functions Me~s, se~s, s2e~s, 2N is dense in ¸1[0, R). Recently, in [13]
the dependence of the global asymptotic dynamics on the delay kernels
was studied and these results seem to provide some theoretical evid-
ence for selecting delay kernels of unimodal type in some integral
infinite delay differential equation models (see also [3, 7]). As well, it is
well-known that integral delay may take into account some stochastic
behavior of species, and very long linear chains of differential equations
provide multi-stages of biological processes with random passage
through each and the overall distribution of the total passage time
leads to a gamma distribution (see [21, 25]). This type of gamma
distribution is known as the special Erlangian from renewal theory (see
[8]), and the weak kernel and the Dirac distribution kernel corre-
sponding to the discrete delay case represent the Erlangian distribu-
tions with the order r"0 and r"R, respectively. Note that by the
Central Limit Theorem, as r increases, the Erlangian distribution tends
to become more normal around the mean. So, as indicated in [25], it is
only necessary to choose a suitable value for r to obtain a good
approximation to many unimodal distributions for t. From this point
of view, in [21], MacDonald also comments that it is important to look
for an overall picture of the dynamics for general order of the delay
kernels. We have done so by committing ourselves to looking for
global dynamics as well as allowing an arbitrary order in the delay
kernels. For slightly more general delay kernels, i.e. gamma distribu-
tion kernels with non-integral orders (i.e. r

i
’s are not integers in K

i
(s)),

our results may also be sufficient, as far as (local) numerical solutions are
concerned, since as suggested by [8], solutions for non-integral orders
may preferably be obtained by interpolating numerically between
solutions for integral orders, rather than proceeding directly with the
theory for the value of non-integral order r

i
concerned. However, from

the global dynamics point of view, it is important that we investigate
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the question as to whether or not the global results we proved in this
paper hold for more general delay kernels. We leave this for future
investigation.
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