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Rotating Waves in Neutral Partial Functional
Differential Equations

J. Wu1, 3 and H. Xia2

General results on the existence and global continuation of rotating waves are
established for partial neutral functional differential equations defined on the
unit circle. These results are applied to a class of coupled lossless transmission
lines.

1. INTRODUCTION

It seems that one of the main motivations for the development of neutral
functional differential equations has been the study of a class of linear
hyperbolic partial differential equations subject to certain nonlinear bound-
ary conditions arising from the lossless transmission line theory. We refer
to Abolinia and Mishkis (1960), Brayton (1966), Brayton and Moser
(1964), Cooke and Krumme (1968), Cruz and Hale (1979), Lopes (1975,
1976), Nagumo and Shimura (1961), Slemrod (1971), Hale (1977, 1993),
Hale and Lunel (1993), and Wu and Xia (1996) for a detailed account of
the history, the list of references, and the current status of the subject.

In a recent work, Wu and Xia (1996) have shown that a ring array of
identical resistively coupled lossless transmission lines leads to a system of
neutral functional differential equations with discrete diffusive coupling
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which exhibits various types of discrete waves. By taking a natural limit,
one obtains from this system of neutral equations a scalar partial neutral
functional differential equation defined on the unit circle. Such a partial
neutral functional differential equation was recently investigated by Hale
(1993), where the fundamental existence and uniqueness of the Cauchy
initial value problem, set-condensing property of the solution operator,
Hopf bifurcations, and stability of periodic orbits have been established.
More interestingly, using an argument similar to that in the earlier work of
Hale et al. (1988), Hale established a result on space discretization which
ensures the existence of discrete waves of the system of ordinary neutral
equations near a stable hyperbolic rotating wave of the limiting scalar
partial neutral equation defined on the unit circle. This provides a useful
tool to establish the existence of discrete waves for systems of neutral equa-
tions with discrete diffusive coupling, at least for such systems of sufficiently
large size.

In the present paper, we study the local existence and global continua-
tion of rotating waves for a class of partial neutral functional differential
equations defined on the unit circle. Our approach is as follows. We look
at rotating waves bifurcating from a spatially homogeneous equilibrium
and reduce the partial neutral equations under consideration into a second
order ordinary neutral functional differential equation whose 2P-periodic
solutions give rise to rotating waves of the partial neutral equations. We
then show that finding a 2p-periodic solution of the second-order ordinary
neutral functional differential equation can be formulated as finding a fixed
point of an S1-equivariant set-condensing mapping depending on two
papereters, by using the compact resolvent of a Fredholm operator arising
from the linear part of the second-order ordinary neutral equation. This
abstract formulation allows us to apply the general global Hopf bifurca-
tion theorem of ordinary neutral equations developed by Krawcewicz et al.
(1993) to investigate the existence and maximal continuation of rotating
waves for partial neutral equations.

Our general results will be illustrated by an example arising from a
continuous circular array of transmission lines. The global bifurcation
theorem will be applied to establish the global existence of slowly
oscillatory rotating waves, where slowly oscillatory rotating waves are
those whose time periods are larger than twice of the involved time lag,
denoted by T. In order to achieve this, we need to exclude 4t-periodic rotating
waves. This is equivalent to excluding nontrivial 4r-periodic solutions for a
system of four second-order ordinary differential equations. Fortunately,
the latter resembles a coupled Lienard equation and naturally suggests a
Lienard transformation and a Liapunov function, with the help of which
nontrivial 4r-periodic solutions can be ruled out.
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The rest of this paper is organized as follows: general results on global
bifurcations of rotating waves of partial neutral equations are in Section 2
and their application to a continuous array of transmission lines is provided
in Section 3.

defined on the unit circle XeS1, where d>0 is a given constant, and if ue
C([-t, <5); C ( S 1 ; R ) ) , 6>0, te[0, 6), then u t e X is defined as u , (0 , x) =
u(t + 0, x) for (0, x) e [ - T, 0] x S1.

As Eq. (2 .1) is imposed on the unit circle, we are looking for Hopf
bifurcation of rotating waves from the trivial solution. That is, we seek
Hopf bifurcations of time-periodic solutions u: R x S1 -> R which are
continuously differentiable in t and twice continuously differentiable in x,
satisfy (2.1), and
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2. GENERAL RESULTS ON GLOBAL BIFURCATIONS
OF ROTATING WAVES

A. Rotating Waves and Reductions. Let t>0 be a given constant,
S1 be the unit circle, and X= C([ -T, 0]; C(S 1 ; R ) ) = C([ -T, 0] x S1; R).
For any cpeX, we write <p(0,x) or q>(0)(x) for 0 e [ — T , 0] and x e S 1 .

Assume that D,f: R x C([ —T, 0]; R)-> R are completely continuous
C1 mappings and map bounded subsets into bounded subsets with
D(<x, 0) =f(a, 0) = 0 for a e R. Moreover, we assume that

Define b, D, and f: R x X->C(s1; R) by

for (a, (/), x)e R x Xx S1, We now consider the following partial neutral
functional differential equation
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where p > 0 is a constant.
Let v(t) = u(t, 0). Substituting (2.2) into (2.1), we get

Making a change of variable s = t + (p/2n)x, we obtain

Finally, we normalize the period of v(t) by the transformation

Let ys, (2n/p) e C([ — T, 0]; R) be defined by

Then from (2.4) it follows that

That is,

Summarizing the above discussions, we have the following.

Lemma 2.1. The partial neutral function differential equation (2 .1 )
has a rotating wave satisfying (2.2) and (2.3), if and only if the second-order
ordinary neutral functional differential equation (2.7) has a 2P-periodic solu-
tion.
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Our next goal is to find constants oc and p so that (2.7) has a nontrivial
2P-periodic solution.

B. Abstract Formulation. Denote by C2n the Banach space of
2P-periodic functions from R into R whose k th derivative exists and is con-
tinuous. The norm in C2n is defined by

and C2n will also be written C2n.
Define L: Dom L c C2n -> C2n by

Clearly,

Then L is a closed Fredholm operator of index zero and, hence, has a com-
pact resolvent K: C2n -> C2p. It can be verified that K: C2n -> C2n is given by

and this compact resolvent satisfies the following.

With the above notations, we can state the following.

Lemma 2.2. Assume B>0 is a given constant and geC 2 P . Then
xe C2n is a solution of

if and only if x is a solution in C2n of the operator equation



214 Wu and Xia

Proof. If xe C2p satisfies (2.8), then

from which it follows that

That is, x solves (2.9).
Conversely, if x is a solution of (2.9), then xe C1

p since Ran(L + K)-1

and Ran P are both subspaces of C1
n . By property (C), we then have Px =

(L + K)-1 x and hence

That is, x + x + Kx = ( 1 / B ) x — (1/B) g + x + Kx, from which it follows that
x solves (2.8). This completes the proof. D

We now apply Lemma 2.2 to Eq. (2.7). It follows that ye C2n is a solu-
tion of (2.7) if and only if

Therefore,

Then (D) and (C) imply that F: R x (0, co) x C2n -> C2n is k-set condensing
and the following result holds.



Routing Waves in Neutral Equations 215

Lemma 2.3. u is a rotating wave of (2.1) satisfying (2.2) and (2.3) if
and only if y defined by (2.5) is a fixed point of

C. Abstract Multiparameter Bifurcation Theory. We now reformulate
some global Hopf bifurcation theorems in our setting.

Let the compact Lie group G = S1 act on C2n by shifting arguments.
That is,

Assume that F: R2 x C2n x C2n is a C1-mapping which is equivariant with
respect to the aforementioned S1-action, that is,

Moreover, we assume that there exists a constant ke [0, 1) such that F is
a k-sei condensing mapping.

To describe our bifurcation problem, we first assume the following.

A point (x 0 , p0, y0) eM is called a bifurcation point if in any
neighborhood of (x 0 , p0, y0) there exists a point (a, p, y)$M satisfying
y = F(cn, p, y). Clearly, every bifurcation point belongs to the set

Let (x0 , p0, y0) be an isolated point in A. We identify R2 with C, and
for a sufficiently small p>0 we define B: D-> M, where D = { z e C ;
|z|<1}, by

If p>0 is sufficiently small, then \l/(z) = I d - D y F ( B ( z ) ) , zeSD, defines a
continuous mapping i//: S1 -> GL(C2n). It follows that



The above lemmas are taken from Krawcewicz et al. (1993). One
should also be able to obtain these results by using other multiparameter
bifurcation theories. For details, we refer to Krawcewicz et al. (1993) and
a recent survey paper by Ize (1993).

D. Global Bifurcation of Rotating Waves. We now return to F: R x
(0, oo)xC 2 n ->C 2 p defined by Eq. (2.10) and let M= {(a, p, 0); (a, p) e
Rx(0, oo)}. We assume that
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with Vk being the space spanned by eikt [or (coskt, sin kt) in real space]
in the isotypical direct sum decomposition of V with respect to the
G-action on C2p. Consequently, we get

where \l/k: S
1 -> GL( Vk) = GL(C) and i/>0: S1 -> GL(CG

p) = GL(C) are
defined by

As t l / k ( S 1 ) c GL( Vk] for k > 1, the Brouwer degree

is well defined. It turns out that yk(a.0, p0, y0) is a bifurcation invariant.
More precisely, we have the following.

Lemma 2.4. If (ot0, p0, y0) is an isolated point in A and if
yk(a0, P0, y0) =0 for some k>1, then (x 0 , p0, y0) is a bifurcation point.
That is, there exists a sequence (an, pn, yn) of solutions to y = F(a,p,y)
such that (an, pn, y n ) - > (a0, p0, y0) as n-> oo and yn is (2n/k)-periodic for
each n > 1.

Lemma 2.5. Assume that M is complete and every point of A is
isolated in

Then for every bounded, connected component C of S, the set CnM is finite
and for each k>1,
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Under this assumption, M satisfies assumption (M). Using the Fourier
series expansion, we can verify that (a0, p0, 0) is a point in A if and only
if there exists an integer k> 1 so that A = i(2n/p0)k and a = a0 satisfy the
characteristic equation

We also assume the following.

Let ( x 0 , p0)e R x (0, oo) be given so that A = i(2n/p0) and x = a0

satisfy (2 .11) . By assumption (CF) there exists a sufficiently small p>0
such that for (a, p) edBp(a0, p0) = S1, where B p ( a 0 , p0) = {(a, p0);
(a-a0)2 + (p - p 0 ) 2 < p 2 } , i//(a, p) = Id- Dy F(a, p, 0) e GL(C2n). Define

for (a, p ) e B p ( y 0 , p0). Then



For the sake of application, we need to relate the computation of
l i m p - > 0 + d e g B ( A k ( - , •), BP(A, p}} to the usual transversality condition. First,
by assumption (CF) there exists P 0 >0 so that D(a, p)=0 for (a, p)e
Bp0(a0, p0)\{(a0, P0)}. Define

As d X ( A ) is analytic in A, we can find p > 0 so that SXo(A) = 0 for A + i(2n/p0)
and A = w + ive O = {(u, v); 0 < u <p, \v — (2n/p0}\ <p}. By continuity,
d a o ± p ( A ) = 0 on dO if p>0 is sufficiently small. Therefore, the integer

is well defined, and by Lemma 2.5 of Erbe et al. (1992), we have
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Consequently,

is well defined. Therefore, by Lemmas 2.4 and 2.5 we get

Theorem 2.1. Assume that there exists ( a 0 , p0)e R x (0, cc) so that
A = i ( 2 n / p 0 ) and x = a0 satisfy (2.11) and that l i m p - > 0 + d e g B ( D k ( - , •),
B p (a 0 , p0)) =0 for some integer k> 1. Then (x 0 , p0, 0) is a rotating wave
bifurcation point of system (2.1). That is, there exists a sequence
(an, pn, un) c R x (0, oo) x C(R x S1; R) such that each un is a solution of
(2.1) with a = an and satisfies (2.2)-(2.3) with p = pn, and such that
a n —>a 0 , Pn-> P0, un(t, x)-> 0 as n - > c o , uniformly for (t, x ) e R x S 1 .
Furthermore, let

Then for each bounded, connected component C of S, the set Cn M is finite
and for each k>1,
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Therefore, if L: (oc0 —p, a0 + p) -> C is a smooth curve of solutions of
da(L) = 0 with L(a0) = i(2p/p0), then the transversality condition

In many applications, it happens that for every (oc0, p0)e R x (0, oo)
such that 6 X g ( i ( 2 P / p 0 ) = 0, (d/da} ReA(a)\x = a0 has the same sign. Conse-
quently, the summation formula in Theorem 2.1 rules out the possibility of
the occurrence of any bounded connected component of S. This is exactly
the case in our later application to neutral equations arising from lossless
transmission lines.

3. GLOBAL EXISTENCE OF ROTATING WAVES IN
NEUTRAL EQUATIONS

E. The Model. Let N be a positive integer. We consider a ring of N
mutually coupled lossless transmission lines interconnected by a common
resistor R, shown in Fig. 1. Assume that all lines are identical, each of
which is a uniformly distributed lossless transmission line with the series
inductance Ls and parallel capacitance Cs per unit length of the line.
Taking the x-axis in the direction with two ends of the line at x = 0 and
x = 1, we have the following linear hyperbolic partial differential equations
subject to nonlinear boundary conditions:

implies that limp->0+ degB (D 1 ( - , •), B p (a , p0)) =0. More precisely, we have

l i m degB(D1(-, • ) , B p ( x 0 , P 0 ) )
p~>0
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Fig. 1. A ring of mutually coupled lossless transmission lines interconnected by a common
resistor.

where k(mod N), i k ( x , t ) , and v k ( x , t ) are the current flowing and the
voltage across the kth line at time t and distance x down the line, E is the
constant voltage, f(vk( 1, 0) is the current through the nonlinear resistor,
Ik is the network current coupling term, and / is the constant current
indicated in Fig. 1.

It is well known that the linear partial differential Eq. (3.1) has general
solutions



The third boundary condition in (3 .1 ) implies that

Define

This gives

Then

Let

Replacing t by t — 1/a in (3.2), we obtain

and hence

and p k e C 1 ( ( - c o , 1]; R), \j/ke C1([0, oo); R). Substituting this into the
first boundary condition in (3.1) gives

where
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This, together with (3.4) and the second boundary condition in (3.1), gives

Therefore,

Let I = E/R0. Then we get

Denote by

We have

Taking the limit N-> oo, we then formally obtain



where x e S 1 and ute C([ -T, 0]; C(S1; R)). In other words, we can regard
(3.9) as a space discretization of (3.10), where the unit circle S1 is
parametrized by arc length and the spacing is h = 2n/N, uk(t) — u(t, kh],
h=1,2,...,N.

Hale (1994) proved that if (3.10) has a stable hyperbolic rotating
wave, then for sufficiently large N, (3.9) has a stable hyperbolic discrete
wave, that is, a stable hyperbolic periodic orbit satisfying uk-1(t) =
uk(t — (m/N) p) for some m(mod N), where p is the period.

To conclude this part, let us point out that the foregoing transforma-
tion from a linear hyperbolic partial differential equation subject to non-
linear boundary conditions to a system of neutral equations is not new and
has been systematically studied. Also, single transmission lines have been
extensively investigated and a qualitative theory for the related (usually
scalar and ordinary) neutral functional differential equations has been
developed. We refer to the listed references for details.

F. Analysis of Characteristic Equations. Throughout the remainder
of this paper, we consider

where x e S 1 , a ,d ,r are positive constants, g:R->R is continuously dif-
ferentiable with g(0) = 0, qe(0, 1) is the bifurcation parameter. Note that
the range of q is (0, 1), not the whole real line. But Theorem 2.1 can still
be applied after an obvious transformation between (0, 1) and R (see
Krawcewicz et al., 1993).

Let

Then the characteristic equation of (3.11) takes the form

That is,
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Therefore, there are only finitely many k > 1 so that (3.15) has a pair of
purely imaginary solutions.

For each fix k > 1 so that dk2 < y, we can easily show graphically that
there exists a sequence of positive numbers Bk,1 < Bk, 2 < • • • so that the first
equation of (3.15) is satisfied by Bk, j, j= 1, 2,.... Substituting this Bk, j into
the second equation of (3.15) gives

Therefore, we can conclude that the set {(q, p) e (0, 1) x (0, oo); (3.14) has
a solution i ( 2 p / p ) m for some m>1} is discrete.

Let A = A ( q ) be a smooth curve of zeros of (3.14) so that A(qk, j) = Bk, j.
Differentiating (3.14) with respect to q, we get
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It is easy to show that for a real number B > 0, the second equation of
(3.15) has a solution qe(0, 1) only if

or equivalently,

Let L = iB in (3.14), we get

That is,

Note that (3.14) gives



This leads to

From the remark following Theorem 2.1, we can see that this will be cru-
cial to rule out bounded connected component of rotating waves of ( 3 . 1 1 ) .

Let us summarize the above discussions for the sake of later reference.

Lemma 3.1. Assume that (3.12) is satisfied. Then

(i) The set { ( ( q , p); i(2n/p)k is a solution of (3.14) for some k>1]
is discrete in (0, 1) x (0, oo).

(ii) For each k>1 with dk2 <y, Eq. (3.14) has a sequence of purely
imaginary solutions ±iBk, j, 0 <Bk,1 <Bk,2 < ••• for q = qk, j£
(0, 1) defined by (3.17).

( i i i ) If L(q) is a smooth curve of zeros of (3.14) with A ( q k . j) = iBk, j,
then Re L ' (q k , j) > 0.

and hence

Therefore,
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Figure 2

For the sake of later application, let us look at the location of
B0 = B 1 , 1 . We assume that

Then B0 is the first positive solution of

and hence iB0 is a solution of (3.14) with k = 1 and

It can easily be shown graphically that (see Fig. 2).

Lemma 3.2. If



G. A-Priori Bounds for Rotating Waves. In order to apply the global
bifurcation theorem to establish the global existence of rotating waves, we
need to obtain a priori bounds for rotating waves.

Assume that u ( t , x) is a rotating wave of (3 .11) satisfying (2.2)-(2.3).
Let [u(t0, x0) — qu(t0 — T, x0)]2 be the maximum value of [ u ( t , x)-
qu(t — T, x)]2 over xS1. Then

then

In particular, if

Rotating Waves in Neutral Equations

Then n/2x < B0 < R(a + y — d)(a — y + d), and hence

227
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Without loss of generality, we may assume that u(t0, x0) — qu(t0 — T, x0)
=0. Therefore, from (3.11) it follows that

That is,

Note that

Therefore, we get

Letting m -> oo, we have

Therefore, by (3.25), we obtain

If we assume that



Summarizing the above discussion, we get the following.

Lemma 3.3. If (3.28) is satisfied, then there exists a nondecreasing
function Q: (0, oo)->(0, oo) such that any rotating wave u(t, x) of (3.11)
satisfies \u(t, x)\ <(1/(1- q)) Q(2aq/( 1 - q)) for teR and x e S 1 . In par-
ticular, for any fixed q* e (0, 1) the set of rotating waves of (3.11) corre-
sponding to qe [0, q*) is uniformly bounded in sup-norm.

For a related result in the case of scalar ordinary functional differential
equations of neutral type, we refer to Wu (1993).

H. Excluding 4t-periodic Rotating Waves. The main purpose of this
part is to exclude nontrivial 4r-periodic rotating waves. Assume that u(t, x)
is a nontrivial rotating wave of (3.11) satisfying (2.2)-(2.3) with p = 4t.
Then
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then (3.27) implies the existence of Q — Q(2aq/( 1 — q)) so that

and hence from (3.26) it follows that

So, v(t) = u(t, 0) satisfies
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teR. Let

Then

where

Substituting (3.31) and (3.32) into (3.30), we get

Its similarity to the Lienard equation suggests a transformation which
leads to an equivalent system,

and a related Liapunov function,
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The derivative of V along solutions of (3.33) is given by

We need the following.

Lemma 3.4.

Proof. By using a result of Nussbaums (1985), we have £i=1 z i ( B z ) i

> G £?=1 z
2, zi £ R, 1 < i < 4, where



This completes the proof. D

We also need to compute the eigenvalues of BTB. While this can be
done directly, we present an approach which could be extended to general
circular matrices.

Lemma 3.5. The minimal eigenvalue of BTB is kmin(B
TB) = (1 — q4)2/

( 1 + q ) 2 and the maximal eigenvalue of BTB is k m a x (B T B} = (1 — q4)2/
(1 -q ) 2 .

232 Wu and Xia



Rotating Waves in Neutral Equations 233

Proof. Let vj = ( 1 , e i ( p / 2 ) j , e i ( 2 p / 2 ) l , e i ( 3 p / 2 ) j ) , j = 0, 1 , 2 , 3 . It can be
shown that Vj is an eigenvector of B corresponding to the eigenvalue

and an eigenvector of BT corresponding to the eigenvalue

Assume that x e C4 is an eigenvector of BTB corresponding to an eigen-
value A e C. Then x = a0v0 + a1v1 + a2v2 + a3v3 and BTBx = Lx is equiv-
alent to

from which it follows that L = ajBj for some j = 0, 1,2,3. Therefore, all
eigenvalues of BTB are given by

from which the conclusion follows.

Lemma 3.6, Assume that

Let x i(t) , i= 1,..., 4, be given by (3.31). Then



Therefore, using Lemma 3.4 we get

By Lemma 3.6, we have

from which (3.36) follows. D

We now return to the estimation of V. Using Lemma 3.5, we get

Therefore, under assumptions (3.34) and (3.35), we get
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Proof. Let t0e R be given so that [ v ( t 0 ) — qv( t 0 — T)]2 = max t e R [v ( t )
— qv(t — r)]2. Therefore, \ x i ( t ) \ < \ v ( t 0 ) — qv(t0 — T)\ for i=1,..., 4, and
te R. From the same argument as that of (3.27) we have
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Consequently, if we assume that

then V is a strictly negative function of (x1,..., x4, y1 . . . , y4) unless xi =
yi = 0 for 1 < i<4 . Therefore, under assumptions (3.34), (3.35), (3.37), and
(3.38), system (3.33) has no nontrivial periodic solution. This implies that
system (3.11) has no nontrivial rotating wave of period 4r. That is, we have
proved the following

Lemma 3.7. Under assumptions (3.34), (3.35), (3.37) and (3.38),
the partial neutral functional differential equation (3.11) has no nontrivial
4p-periodic rotating wave for qe [0, 1 — 6}.

\. Global Existence of Rotating Waves. We can now state our main
result.

Theorem 3.1. Assume that



by using assumption (i). Moreover, it is easy to verify that assumption
(ii) implies that if (p is a constant mapping and aeR is given so that
f(a, <p) = 0, then <? = 0.

Comparing with (2.1), we have

Then Qe(a) is strictly increasing, Qe(a} -> — e as a-> — oo and Qe(a) -»
1 — § — e as a—> oo. So, |Q£(a)| < max{e, 1 — c) — e} <1 for ae R. We con-
sider the system

then for each qe(q0, 1 — d ) , system (3.11) has a slowly oscillating rotating
wave, that is, a rotating wave with a period in (2r, 4r).

Proof. For a sufficiently small e > 0, we reparametrize the system by
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(iii) g ( — y ) = — g ( y ) far y eR . and g(y)/y is nondecreasing in
ye (0, a o ) .

Then for each qe(q0, 1 — S), system (3.11) has a rotating wave with a
period less than 4. If, in addition, we assume

There exist constants 8 e (0, 1) and K> 0 so that — K< g(x)/x for

B0 is the first solution in ((P/2T),

where

of the

and

equation



in Rx[0, a o ) x C ( R x S 1 ; R ) .
Again, by using Lemma 3.1 and Theorem 2.1, C1 must be unbounded

(recall the remark at the end of last section).
Assume, by way of contradiction, that the conclusion of the theorem

is false. Then there exists e > 0 so that the projection nx C1 of C1 onto the
oc-axis is contained in (-co, 1 — 6 - E ) . On the other hand, Q - 1 ( 0 ) e n x C 1

as system (3.11) at q = 0 has no nontrivial rotating wave and its related
characteristic equation has no purely imaginary solution. Therefore, n xC1

S[0, 1 -$ -E).
Therefore, we know from Lemma 3.3 that assumptions ( i i ) and ( i i i )

guarantee the boundedness of nuC1, the projection of C1 onto the space
C ( R x S 1 ; R ) .

On the other hand, condition (i) and Lemma 3.2 imply that npC1 has
nonempty intersection with (4p/m, 4r), where m is a sufficiently large
integer. Lemma 3.7 implies that, under assumption (iii), npC1 is actually
contained in (4 t /m, 4t) as it cannot touch the boundary of (4r/m, 4t).
Therefore, PpC1 £ (4r/m, 4r).

Summarizing the above discussion, we have the boundedness of pa C1,
npC1 , and nuC1 and hence C1 must be bounded. This contradicts to the
established unboundedness of C1.

In the case where (iv) is satisfied, we can take m = 2 in the above argu-
ment and hence establish the required global existence of slowly oscillatory
rotating waves. This completes the proof. D
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[recall formula (2.14)]. Therefore, there exists a nonempty connected com-
ponent C1 containing (x 0 , 2n/B0, 0) of the set
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By Lemma 3.1, for oc0= Q e
- 1 ( q 0 ) , iB0 is a purely imaginary solution of

the characteristic equation and
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