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1. Introduction

In [15], we provided an analytic construction of an equivariant topological degree for
compact �elds which preserve certain symmetries. The computation formula for such
a degree in some special cases was given in [26], with the help of which a bifurcation
theory was developed for multi-parameter equivariant �xed point equations.
One of the purposes of this paper is to apply the results in [15, 26] to establish a

general theory of Hopf bifurcations in symmetric functional di�erential equations. This
general theory provides some important bifurcation invariants, called crossing numbers,
to detect the existence of periodic solutions and to describe their orbits and global
continuation. We will show that these crossing numbers can be computed from the
linearization around equilibria and from the isotypical decomposition of representation
spaces.
In comparison to the general theory of symmetric Hopf bifurcations for ordinary

di�erential equations and some parabolic partial di�erential equations developed in
[17, 32, 13], we establish some local symmetric Hopf bifurcation theorems for retarded
functional di�erential equations without requiring genericity conditions on vector �elds,
dimension restrictions on some �xed point subspaces and maximality assumptions on
a certain isotropy group. Unfortunately, due to the topological nature of our approach,
we are unable to study the stability of the obtained branch of periodic solutions. Hopf
bifurcation problems have been extensively studied via degree-theoretical approach and
our approach is based on the equivariant degree theory developed in [15, 26] and is
motivated by the work of [1–5, 7–10, 14, 21, 25, 29, 31] in the Hopf bifurcation theory
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without symmetries. It should be mentioned that Ize, Massab�o and Vignoli [22, 23]
have developed a competing equivariant bifurcation theory.
Another purpose of this paper is to demonstrate the application of the general theory

of Hopf bifurcations of symmetric functional di�erential equations. Of particular interest
is the delay-induced oscillation and the global existence of large-amplitude symmetric
periodic oscillations. As an illustrative example, we will consider a ring of identical
cells coupled by di�usion along a polygon. Such a Turing ring provides a model for
many biological and chemical systems. We incorporate a time delay in the coupling of
adjacent cells because in many biological and chemical oscillators the time needed for
the transport or processing of chemical components or signals may be of considerable
length. To the best of our knowledge, the delay-induced oscillations of a Turing ring
has not been investigated. We will illustrate that the time delay provides an important
resource for the occurrence and global continuation of oscillations in a Turing ring. In
particular, we will show that the delay may give rise to phase-locked oscillations even
when the state of each cell is described by a single variable. This is in sharp contrast
with the observation of [16, 18] that bifurcations of phase-locked oscillations cannot
occur in a Turing ring in which the state of a cell is described by one variable if the
delay is not presented.
The remaining part of this paper is organized as follows. In Section 2, we collect

some results from [26]. In Section 3, we establish some results on the existence, the
minimal period and the global continuation of a branch of periodic solutions for general
symmetric functional di�erential equations. These results are then applied, in Section 4,
to a ring of identical cells coupled by delayed di�usion along the sides of a polygon.

2. Preliminary results

We start with a brief review about equivariant degrees and we refer to [15] for
details. Suppose that G is a �xed compact Lie group. For a subgroup H ≤G, we
use (H) to denote the conjugacy class of H in G which consists of all subgroups
conjugate to H . We will use O(G) to stand for the set of all conjugacy classes of
closed subgroups of G. Also, for each nonnegative integer n, de�ne

On(G)= {(H)∈O(G); dimWH = n};
where WH is the Weyl group NH=H and NH is the normalizer of H in G. We say a
compact Lie group is biorientable if it has an orientation which is invariant under all
left and right translations. De�ne

OAn(G) := {(H)∈On(G); WH is biorientable};
OBn(G) := {(H)∈On(G); WH is not biorientable};
An[G] := ⊕ {Z; (H)∈OAn(G)};
Bn[G] := ⊕ {Z2; (H)∈OBn(G)};
ABn[G] :=An[G]⊕ Bn[G]:
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An element of ABn[G] will be written as 
= {
�}; where


� ∈
{
Z if �∈OAn(G);

Z2 if �∈OBn(G):

Assume that W is a real Banach isometric representation of G. We will consider
the product space W ×Rn, where we assume G acts trivially on Rn. Suppose that 

is an open bounded invariant subset of W ×Rn. A continuous G-equivariant mapping
f :W ×Rn →W is said to be 
-admissible if 0 6∈f(@
) and F := �−f :W ×Rn →W
is compact, where � :W ×Rn →W is the projection onto W .
It was shown in [15] that for any 
-admissible f :W ×Rn →W , we can assign an el-

ement G−Deg(F;
)∈ABn[G]. This element is called the G-(equivariant) degree of the
mapping f with respect to 
 and satis�es all standard properties of a degree (existence,
homotopy invariance, excision, additivity, etc.). In particular, if G −Deg(f;
)= {
�}
and 
� 6=0 for some �∈ABn[G] then there exists x∈
∩f−1(0) such that (Gx)≤ �,
where Gx := {g∈G; gx= x} is the isotropy group of x, (Gx) is called the orbit type
of x, and the partial ordering in O(G) is de�ned as follows: �≤ � for �; �∈O(G)
i� there exists closed subgroups H and K of G such that �=(H), �=(K) and K is
conjugate to a subgroup of H .
Throughout the remainder of this section, we suppose that � is a compact abelian

Lie group, G=�× S1 and W is a real Banach isometric representation of G. Denote
by W0 the set of all �xed points of W with respect to the restricted S1-action, i.e.,
W0 = {x∈W ; �x= x for all �∈ S1}. We consider the nonlinear problem

x=F(x; �); (x; �)∈W ×R2; (2.1)

where F :W ×R2→W is a given G-equivariant completely continuous map which
satis�es the following condition:

(H1) There exists a two-dimensional G-invariant submanifold M ⊂W0×R2 such that
F is continuously di�erentiable on M and, for each (x; �)∈M; x=F(x; �) and
Id − DF(x; �)|W0 ∈GL(W0), where DF(x; �) denotes the derivative with respect
to x.

Each point in M is called a trivial solution of Eq. (2.1) and all other solutions are
said to be nontrivial. A point (x; �)∈M is said to be a bifurcation point if (2.1) has
nontrivial solutions in every neighborhood of (x; �).
It follows from (H1) and the implicit function theorem that for every (x0; �0)∈M

there exist an open neighborhood Ux0 of x0 in W0, an open neighborhood U�0 of �0 in
R2 and a C1-map � :U�0 →Ux0 so that

M ∩ (Ux0 ×U�0 ) = {(�(�); �); �∈U�0}:
As a consequence, the isotropy group �(x0 ; �0) of (x0; �0) with respect to the action of
� is a closed subgroup of � and dim�(x0 ; �0) = dim�.
The set

�= {(x; �)∈M ; Id− DF(x; �) 6∈GL(W )}
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will be called the set of M -singular points. We assume that (x0; �0)∈M is an iso-
lated M -singular point. Choose r; �¿0 su�ciently small so that the so-called special
neighbourhood U (r; �) :=U(x0 ; �0)(r; �) of (x0; �0) de�ned by

U(x0 ; �0)(r; �)= {(x; �)∈W ×R2; ‖x − �(�)‖¡r; |�− �0|¡�}

satis�es
(i) B�(�0)= {�∈R2; |�− �0|¡�}⊂U�0 ;
(ii) (x0; �0) is the only M -singular point in U (r; �)∩M ,
(iii) x 6=F(x; �) for all (x; �)∈U (r; �) with |�− �0|= � and ‖x − �(�)‖ 6=0.
Clearly, U (r; �) is H -invariant, where H =K × S1≤�× S1; K =�(x0 ; �0).
An H -invariant function � :U (r; �)→R is called an auxiliary function if

(a) �(�(�); �)=−|�− �0| for �∈B�(�0),
(b) �(x; �)= r if ‖x − �(�)‖= r and �∈B�(�0);
(c) �(x; �0)= ‖x − �(�0)‖ if ‖x − �(�0)‖≤ r.
Such an auxiliary function exists and the system

x=F(x; �); �(x; �)= 0 (2.2)

has no solution in @U (r; �). Therefore, the H -equivariant degree H −Deg(F�; U (r; �))
is well de�ned, where F� :U (r; �)⊂V ×R→V =W ×R is de�ned by

F�(x; �)= (x − F(x; �);�(x; �)); (x; �)∈U (r; �):

We need a computational formula for H − Deg(F�; U (r; �)). First, there is an iso-
typical decomposition W∞=

⊕∞
n=0Wn; W∞=W , of the space W with respect to the

restricted action of S1 on W , where for each n¿0 and x∈Wn\{0}, the isotropy group
of x with respect to the restricted S1-action is Zn. Since the actions of K and S1 com-
mutes, Wn; n=0; 1; : : : ; are K-invariant. Moreover, each Wn with n≥ 1 has a natural
complex structure. We will use the following notations:

W0i ; i≥ 1: all K-isotypical components of W0 corresponding to the two-
dimensional irreducible subrepresentations of K

W∗; j ; 1≤ j≤m: all K-isotypical components of W0 corresponding to one-
dimensional subrepresentations of K

Wni; n≥ 1; i≥ 1: all K-isotypical components of Wn:

Clearly, all the above K-isotypical components are also H -isotypical components. It
is known that for each x∈Wni\{0} the isotropy group (K×S1)x is exactly the subgroup
Hni= {(
; �); �∈�ni(
); 
∈K}≤K × S1 for a group homomorphism �ni : K → S1 ∼=
S1=Zn:
Let

a(�)= Id− DxF(�(�); �); �∈B�(�0);

aj(�)= a(�)|W∗; j :W∗; j →W∗; j ; 1≤ j≤m;
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ani(�)= a(�)|Wni :Wni →Wni; n≥ 0; i≥ 1;

a00(�)= a(�)|WK×S1 :WK×S1 →WK×S1 ;

where

WK×S1 = {x∈W ; (
; �)x= x for (
; �)∈K × S1}:
De�ne

�ni(x0; �0)=�([ani]);

where [ani] denotes the homotopy class of

ani : S1 ∼= @B�(�0)→ GLC(Wni);

GLc(Wni) is the set of all complex linear isomorphisms of the form Id − A with A
being compact, and � : �1(GLc(Wni))→Z is the well-known natural isomorphism.
Let us de�ne the following element of A1(K × S1) by

�(x0; �0)=
∑

�ni(x0; �0)(Hni);

where the summation is taken over all subindices (n; i) such that dim(K × S1)=Hni=1.
For T ∈GLC(X ) we denote by sign T the number 1 if T belongs to the same con-

nected component as Id, and −1 otherwise. Finally, we de�ne

�j =
{
1 if sign aj =−1;
0 otherwise

for 1≤ j≤m; and de�ne the following element of the Burnside ring A(K × S1):

�(x0; �0)=
m∏

j=1

((K × S1)− �j(Kj × S1));

where Kj =(K)x, for x∈W∗; j\{0}, is the isotropy group of nontrivial element in W∗; j
with respect to the restricted K-action. Then we have

Lemma 2.1. The H − Deg(F�; U (r; �)) is given by
H −Deg(F�; U (r; �))= �(x0; �0)�(x0; �0)�(x0; �0);

where

�(x0; �0)= sign a00(�); �∈ @B�(�0):

For the proof, we refer to [26].
Using the existence property of the equivariant degree, we then have the following

local bifurcation theorem:
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Theorem 2.1. If H − Deg(F�; U (r; �)) 6=0; then (x0; �0) is a bifurcation point for
Eq. (2:1). More precisely; if �ni(x0; �0) 6=0 then Eq. (2:1) has a sequence of nontrivial
solutions (xm; �m) such that ((K×S1)xm)≤ (Hni) for m=1; 2; : : : ; and (xm; �m)→ (x0; �0)
as m→∞.

To describe the global continuation of a local bifurcation of nontrivial solutions, we
need to compute a related G-degree. To achieve this, we �rst extend � to a G-invariant
function �� :GU (r; �)→R and then apply the reduction formula to get

G −Deg (F ��; GU (r; �))= �(x0; �0)�(�(x0; �0)�(x0; �0));

where �(
∑

� 
�(�)H )=
∑

� 
�(�)G; (�)H and (�)G denote the orbit types of � with
respect to H and G, respectively.

Theorem 2.2. Suppose that M is complete and every M -singular point in M is iso-
lated. Let S denote the closure of the set of all nontrivial solutions to (2:1). Then for
each bounded connected component C of S; the set GC∩M is �nite and is composed
of a �nite number of disjoint �-orbits; i.e.

GC∩M =
q⋃

i=1

�(xi; �i):

Moreover;
q∑

i=1

G −Deg(F ��; GU(xi ; �i)(r; �))= 0:

In particular; if M ⊂WG ⊕R2 and Sni denotes the closure of the set of all nontrivial
solutions of Eq. (2:1) whose isotropy group contains (Gni); then for each bounded
connected component Cni of Sni; we have that GCni=Cni and Cni ∩M = {(v1; �1); : : : ;
(vq; �q)} is a �nite set and

q∑
k=1

�(vk ; �k)�ni(vk ; �k)= 0:

We refer to [26] for the proof.

3. Hopf bifurcation theory for symmetric FDEs

Let �≥ 0 be a given constant, N a positive integer and CN; � the Banach space of
continuous functions from [−�; 0] into RN equipped with the usual supremum norm

‖’‖= sup
−�≤�≤ 0

|’(�)|; ’∈CN; �:

In what follows, if x : [−r; A]→RN is a continuous function with A¿0 and if t ∈ [0; A];
then xt ∈CN; � is de�ned by

xt(�)= x(t + �); �∈ [−�; 0]:
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Consider the following retarded functional di�erential equation

ẋ(t) = f(xt); (3.1)

where f :CN; � →RN is a continuously di�erentiable function preserving a certain sym-
metry described by the following condition: There exists a compact Lie group � as
well as an orthogonal representation � : �→GL(RN ) such that

f(�(
)’)= �(
)f(’); ’∈CN; �; 
∈�;
where �(
)’∈CN; � is de�ned by

(�(
)’)(�)= �(
)’(�); �∈ [−�; 0]:

In what follows, a system satisfying the above condition is said to be equivariant with
respect to the action of � on RN .
For a given periodic solution x= x(t) of Eq. (3.1) with the minimal period p¿0,

we use Ox to denote the trajectory of x, i.e.,

Ox := {xt ; t ∈R}⊆CN; �:

De�ne

H := {
∈�; 
Ox =Ox}; (3.2)

K := {
∈�; 
x0 = x0}: (3.3)

K and H describe the spatial symmetry and the dynamic phase-shift symmetry of the
periodic solution. Clearly, H and K are closed subgroups of � and �xt =�x0 for all
t ∈R. From the above de�nitions of H and K , for every h∈H there exists a unique
�(h)∈R=Z such that �(h)x0 = x�(h)p. By the uniqueness of solutions to the Cauchy
initial value problem of (2.1) (see, cf. [19]), we obtain

�(h)xt = xt+�(h)p; t ∈R: (3.4)

The obtained mapping � :H →R=Z is a group homomorphism between H and the
additive group R=Z. Consequently, K =Ker � is a closed normal subgroup of H and

H=K ∼= Im � ∼=
{
Zn :=

{
0; 1n ; : : : ;

n−1
n

}≤R=Z;
Z∞=R=Z ∼= S1:

(3.5)

Following [13], we call the periodic solution x a discrete wave if H=K ∼= Zn with
n¡∞, and a rotating wave if H=K ∼=Z∞:
Suppose, on the other hand, two subgroups K ≤H ≤� are prescribed such that K is

normal in H and H=K ∼= Zn; n≥ 1. We want to look for periodic solutions satisfying
Eqs. (3.2) and (3.3). It clearly su�ces to restrict to the invariant subspace X =(RN )K .
The action of � on RN induces a Zn action on X by

[h]x= �(h)x; x∈X; h∈ [h]∈H=K

and f :CK
N; � →X is equivariant with respect to this induced action, where CK

N; �= {’∈
CN; �; ’(�)∈ (RN )K for �∈ [−�; 0]}. In this sense we will assume, throughout the
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remainder of this paper, that �=Zn; n≤∞. We should emphasize that we make this
assumption mainly for the purpose of simplicity and clarity. However, in order to
discuss the global interaction among di�erent branches of periodic solutions, one needs
to take into consideration the whole group. We will address this general case in another
paper.
With the above preparation, we now consider the following one parameter family of

retarded functional di�erential equations

ẋ=f(xt ; �); (3.6)

where x∈RN ; �∈R; f: CN; �×R→RN is a continuously di�erentiable and completely
continuous mapping satisfying the following conditions:

(A1) There exists a representation � :Zn →GL(RN ) of � :=Zn on RN such that

f(�(
)’; �) = �(
)f(’; �); ’∈CN; �; �∈R; 
∈Zn:

(A2) There exists (x0; �0)∈RN ×R such that f(�x0; �0)= 0 and D �f(x0; �0) :RN →RN

is an isomorphism, where for each x∈RN ; �x denotes the constant mapping in
CN; � with the value x, the mapping �f: RN × R→RN is de�ned by

�f(x; �)=f(�x; �); x∈RN ; �∈R;
and D �f(x0; �0) denotes the derivative of �f with respect to x, evaluated at (x0; �0).

Under the above assumptions, there exists �0¿0 and a C1-mapping � : (�0−�0; �0 +
�0) → RN such that �(�0)= x0 and f( ��(�); �)= 0 for �∈ (�0 − �0; �0 + �0). In what
follows, (�(�); �) will be called a stationary solution of Eq. (3.6). Let CN =RN +iRN

and {�1; : : : ; �N} denote the standard basis of RN . For any �∈C and 1≤ j≤N , de�ne
e�·�j as a mapping from [−�; 0] into CN by

e�·�j(�)= e���j; −�≤ �≤ 0:
A complex number �∈C is said to be an eigenvalue of the stationary solution (�(�); �)
if

detC�(�; �(�))(�)= 0;

where

�(�; �(�))(�) := � Id − Df(�(�); �)(e�· Id); (3.7)

Df(�(�); �)(e�·Id)= (Df(�(�); �)(e�·�1); : : : ;Df(�(�); �)(e�·�N )):

We now make the following assumption:
(A3) There exist a constant �0¿0 and su�ciently small constants b¿0; c¿0; �¿0

such that
(i) the only eigenvalue u+iv of the stationary solution (x0; �0) such that (u; v)∈ @


is i�0 where 
 := (0; b)× (�0 − c; �0 + c);
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(ii) for (�; �)∈ [�0 − �; �0 + �]× [�0 − c; �0 + c], i� is an eigenvalue of (�(�); �) i�
�= �0 and �= �0.

Note that �(�; �(�))(�) is analytic in �∈C and continuous in �∈ [�0 − �; �0 + �]. So
under the assumption (A3), we may assume that detC�(�0±�; �(�0+�))(u + iv) 6=0 for
(u; v)∈ @
.
To give the Hopf bifurcation problem an abstract formulation, we make a change of

variable x(t)= z((�=2�)t) for t ∈R in Eq. (3.6) to obtain

ż(t)=
2�
�

f(zt; �; �); (3.8)

where zt; � ∈CN; � is de�ned by

zt; �(�)= z
(
t +

�
2��

)
; �∈ [−�; 0]:

Evidently, z(t) is an 1-periodic solution of Eq. (3.8) i� x(t) is a (2�=�)-periodic solution
of Eq. (3.6).
Let S1 =R1=Z; W =C(S1;RN ) and de�ne

L :C1(S1;RN )→W; Lz(t)= ż(t); z ∈C1(S1;RN ); t ∈ S1;

K :C1(S1;RN )→W; Kz(t)=
∫ 1

0
z(s) ds; z ∈C1(S1;RN ); t ∈ S1:

It can be easily shown that (L + K)−1 :W →C1(S1;RN ) exists and the map F :W ×
(�0 − �; �0 + �)× (�0 − c; �0 + c)→W de�ned by

F(z; �; �)= (L+ K)−1
[
Kz +

2�
�

Nf(z; �; �)
]

is completely continuous, where Nf :W × (�0 − �; �0 + �)× (�0 − c; �0 + c)→W is
de�ned by

Nf(z; �; �)(t)=f(zt; �; �); t ∈ S1:

Moreover, (z; �; �) is an 1-periodic solution of Eq. (3.8) i� z=F(z; �; �). For the
convenience of later reference, we also point out that

(L+ K)−1y=y;

(L+ K)−1 sin(2�·)y=− 1
2� cos(2�·)y;

(L+ K)−1 cos(2�·)y= 1
2� sin(2�·)y;

(3.9)

for every y∈RN , here and in what follows, for every positive integer k, sin 2k�· and
cos 2k�· are mappings from S1 into R such that

(sin 2k�·)t= sin 2k�t; (cos 2k�·)t= cos 2k�t; t ∈ S1:
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W is an isometric Banach representation of the group G=Zn × S1 with the action
being given by

((
; �)z)(t)= �(
)z(t + �); �; t ∈ S1; 
∈Zn; z ∈W:

With respect to such an action, F is clearly equivariant. De�ne M ⊆WS1 × (�0−�; �0+
�)× (�0 − c; �0 + c) by

M = {(�(�); �; �); (�; �)∈ (�0 − �; �0 + �)× (�0 − c; �0 + c)}:
M is a two-dimensional submanifold of WS1 × (�0−�; �0+�)× (�0−c; �0+c) satisfying
(H1) in Section 2. Note that for �xed �0, the stationary solution (x0; �0) has only �nitely
many eigenvalues on the imaginary axis of the complex plane (see, cf. [19]). So by an
continuity argument and the implicit function theorem, assumption (A3) implies that
(x0; �0; �0) is an isolated M -singular point.
Let r; �¿0 be su�ciently small so that

U(x0 ; �0 ; �0)(r; �)= {(z; �; �)∈W ×R2; ‖z − �(�)‖¡r; (�− �0)2 + (� − �0)2¡�2}
is a special neighborhood of (x0; �0; �0) and � :U(x0 ; �0 ; �0)(r; �)→R is an auxiliary
function. Let K =�x0 ≤�=Zn. The action of � on RN induces an action of K on
CN =RN + iRN by

�(
)(x + iy)= �(
)x + i�(
)y; x + iy∈CN ; 
∈K:

We have the following isotypical decomposition

CN =CN
0 ⊕CN

1 ⊕ · · · ;
where CN

j ; j≥ 0, is the direct sum of all one-dimensional K-irreducible subspaces V
of CN such that the restricted action of K on V is isomorphic to the �-action on C
de�ned by

�j(
)z= 
jz; 
∈K ≤�=Zn ≤ S1⊂C; z ∈C:
By assumption (A1), we can easily show that �(�; �(�))(�) :CN →CN is K-equivariant
for �∈ (�0 − �; �0 + �) and �∈C. So �(�; �(�))(�)CN

j ⊂CN
j for j≥ 0. Put

�(�; �(�)); j(�) :=�(�; �(�))(�)|CN
j
; j≥ 0: (3.10)

With respect to the restricted S1-action on W, we have the following isotypical
decomposition

W =W0⊕W1⊕ · · · ⊕Wk ⊕ · · · ;
where W0 is the space of all constant mappings from S1 into RN , and Wk is the vector
space of all mappings of the form x sin 2k�·+y cos 2k�·; x+ iy∈CN , for every k ≥ 1.

W1 can be endowed with a complex structure by

i·(x sin 2�·+ y cos 2�·)= x cos 2�· − y sin 2�·; x + iy∈CN :
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Clearly, K acts on W1 and the isotypical decomposition of W1 with respect to this
K-action is given by

W1 =W1;0⊕W1;1 · · · ;
where

W1; j = {x sin 2�·+ y cos 2�·; x + iy∈CN
j }; j≥ 0:

Let

a1; j(�(�); �; �) := Id − (L+ K)−1
[
K +

2�
�
DzNf(�(�); �; �)

]∣∣∣∣
W1; j

for j≥ 0 (�; �)∈ (�0 − �; �0 + �)× (�0 − c; �0 + c). Since W1⊆C1(S1;RN ), we have

a1; j(�(�); �; �)= (L+ K)−1
[
L− 2�

�
DzNf(�(�); �; �)

]
:

Lemma 3.1. a1; j(�(�); �; �)= (1=�i)�(�; �(�)); j(i�).

Proof. For z= x sin 2�·+ y cos 2�·, we obtain

a1; j(�(�); �; �)z

= (L+ K)−1
[
ż − 2�

�
Df(�(�); �)z·; �

]

= (L+ K)−1
[
ż − 2�

�
(sin 2�·Df(�(�); �; a)x cos�+cos 2�·Df(�(�); �)x sin�)

− 2�
�
(cos 2�·Df(�(�); �)x cos� − sin 2�·Df(�(�); �)y sin�)

]
;

where cos� and sin� ∈C([−�; 0];R) are de�ned by

cos� �= cos ��; sin� �= sin ��; �∈ [−�; 0]:

So, we can apply Eq. (3.9) to obtain

a1; j(�(�); �; �)(x sin 2�·+ y cos 2�·)

= x sin 2�·+ y cos 2�·+ 1
�
(cos 2�·Df(�(�); �)x cos�

− sin 2�·Df(�(�); �)x sin�)

+
1
�
(− sin 2�·Df(�(�); �)y cos� − cos 2�·Df(�(�); �)y sin�)

= sin 2�·+ y cos 2�· − 1
�i
(sin 2�·Df(�(�); �)x cos�

+sin 2�·Df(�(�); �)(ix sin�))
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− 1
�i
(cos 2�·Df(�(�); �)y cos�+cos 2�·Df(�(�); �)(iy sin�))

=
1
�i
[i� Id − Df(�(�); �)((cos�+i sin�)Id)](x sin 2�·+ y cos 2�·)

=
1
�i
[i� Id − Df(�(�); �)(ei�·Id)](x sin 2�·+ y cos 2�·)

=
1
�i
�(�; �(�))(i�)(x sin 2�·+ y cos 2�·)

This completes the proof.

De�ne

a∗1; j(�; �)= a1; j(�(�); �; �);

r1; j(x0; �0; �0) = degB(detCa
∗
1; j(·); (�0 − �; �0 + �)× (�0 − c; �0 + c));

c1; j(x0; �0; �0) = degB(detC�(�0−�; �(�0−�)); j(·);
)
− degB(detC�(�0+�; �(�0+�)); j(·);
): (3.11)

Then we have

Lemma 3.2. 
i; j(x0; �0; �0)= c1; j(x0; �0; �0).

Proof. By Lemma 3.1, we have


1; j(x0; �0; �0)= degB(detC�1; j(·); (�0 − �; �0 + �)× (�0 − c; � + c));

where

�1; j(�; �)=�(�; �(�)); j(�; �):

On the other hand, by Lemma 3.1 of [12], we have

degB(detC�1; j(·); (�0 − �; �0 + �)× (�0 − c; �0 + c))= c1; j(x0; �0; �0)

from which the conclusion follows.

The following assumption will not be required for the local bifurcation theorem, but
is useful for the complete description of the degree D − Deg(F�; U(x0 ; �0 ; �0)(r; �)).
(A3)k If �(�0 ; �(�0))(ik�0)= 0 then there exist su�ciently small b; c; �¿0 such that (i)

the only eigenvalue u+ikv of the stationary solution (x0; �0) such that (u; v)∈ @

is ik�0, where 
 := (0; b)× (�0−c; �0+c); (ii) for (�; �)∈ [�0−�; �0+�]× [�0−
c; �0 + c], ik� is an eigenvalue of (�(�); �) i� �= �0 and �= �0.

The isotypical decomposition of Wk with respect to the K-action is given by

Wk =Wk;0⊕Wk;1⊕ · · · ; (3.12)
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where

Wk; j = {x sin 2k�·+ y cos 2k�· ; x + iy∈CN
j }; j≥ 0:

De�ne

ak; j(�(�); �; �)= Id− (L+ K)−1
[
K +

2�
�

DzNf(�(�); �; �)
] ∣∣∣∣

Wk; j

;

a∗k; j(�; �)= ak; j(�(�); �; �);


k; j(x0; �0; �0)= degB(det a
∗
k; j(·); (�0 − �; �0 + �)× (�0 − c; �0 + c));

� k
(�; �(�)); j(�)=�(�; �(�)); j(Re �+ ki Im �); �∈C:

(3.13)

Then using a similar argument as those of Lemmas 3.1 and 3.2, we get

Lemma 3.3. If k ≥ 1 is given and (A3)k is satis�ed, then

ak; j(�(�); �; �)=
1
�ki
�(�; �(�))(ik�);


k; j(x0; �0; �0)= ck; j(x0; �0; �0);

where

ck; j(x0; �0; �0)= degB(detC�
k
(�0−�; �(�0−�)); j ;
)− degB(detC� k

(�0+�; �(�0+�)); j ;
):

Moreover, 
k; j(x0; �0; �0)= 
1; j(x0; �0; k�0) if both (A3) and (A3)k are satis�ed.

We now state next result in two distinguished cases:

Lemma 3.4. Assume that (A3)k is satis�ed for each k ≥ 1 and K =Zm with m¡∞.
Then for H =K × S1; we have

H −Deg(F�; U(x0 ; �0 ; �0)(r; �))= �(x0; �0; �0)�(x0; �0; �0)�(x0; �0; �0);

where

�(x0; �0; �0)= (−1)N sign detD �f (x0; �0);

�(x0; �0; �0)=
∑

k≥1; j≥0
ck; j(x0; �0; �0)(Hk; j);

Hk; j =
{(

l
m
;
klj
m

)
∈Zm × S1; l=0; : : : ; m− 1

}
;

�(x0; �0; �0)= (Zm × S1)− �1(x0; �0; �0)(Zm=2× S1):

Moreover, �1(x0; �0; �0)= 0 if RN has no nontrivial one-dimensional subrepresentation
of the Zm-action, and �1(x0; �0; �0)= 1

2 [1 − (−1)dimW∗
� sign detD �f (x0; �0)|W∗

0
] if RN

has nontrivial one-dimensional subrepresentation of the Zm-action with W ∗
0 denoting

the corresponding isotypical component.
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Proof. By Lemma 2.1, we have

�(x0; �0; �0)= sign det a00(�; �); (�− �0)2 + (� − �0)2 = �2;

where

a00(�; �)= Id− (L+ K)−1
[
K +

2�
�

DzNf(�(�); �; �)
] ∣∣∣∣

W0

:

Is can be easily veri�ed that

a00(�; �)=− 1
�
D �f (�(�); �):

Therefore,

�(x0; �0; �0)= (−1)N sign detD �f (x0; �0):
In the case where RN has nontrivial one-dimensional subrepresentation with respect to
the Zm-action, we have

�1(x0; �0; �0)=
1
2
[1− sign a1(x0; �0; �0)];

where

a1(x0; �0; �0)= Id− (L+ K)−1
[
K +

2�
�
DzNf(�(�); �; �)

] ∣∣∣∣
W∗
0

:

Therefore,

a1(x0; �0; �0)=− 1
�
D �f (�(�); �)|W∗

0

and

�1(x0; �0; �0)=
1
2
[1− (−1)dimW∗

0 sign detD �f (x0; �0)|W∗
0
]:

The conclusion then follows from Lemma 2.1.

In a similar way, we can prove the following:

Lemma 3.5. Assume that (A3)k is satis�ed for each k ≥ 1 and K =Z∞. Then for
H =Z∞ × S1;

H −Deg(F�; U(x0 ; �0 ; �0)(r; �))= �(x0; �0; �0)�(x0; �0; �0);

where

�(x0; �0; �0)= (−1)N sign detD �f (x0; �0);

�(x0; �0; �0)=
∑

k≥1; j≥0
ck; j(x0; �0; �0)(Gk; j);

Hk; j = {(�; kj�); �∈Z∞ ∼= S1}:
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Note that z ∈W has isotropy group containing Hk; j means that

�
(
1
m

)
z(t)= z

(
t − j

m

)
; t ∈R if K =Zm¡∞

or

�(�)z(t)= z(t − j�); �∈Z∞; t ∈R if K =Z∞:

Therefore, by using Theorem 2.1, we have the following local Hopf bifurcation
theorem:

Theorem 3.1. Assume that (A1)–(A3) are satis�ed and c1; j(x0; �0; �0) de�ned in
(3.11) in nonzero. Then there exists a sequence of triples {(xk ; �k ; �k)}∞k=1 such
that
(i) �k → �0; �k → �0 and xk(t)→ x0 uniformly for t ∈R as k →∞;
(ii) xk(t) is a nontrivial 2�=�k -periodic solution of Eq. (3.1) with �= �k for k =

1; 2; : : : ;
(iii) If �x0 =Zm with m¡∞; then xk(t) is a discrete wave satisfying �( 1m)xk(t)= xk(t−

(2�=�k)(j=m)) for t ∈R; if �x0 =Z∞ then xk(t) is a rotating wave with �(�)xk(t)
= xk(t − (2�=�k)j�) for �∈Z∞ and t ∈R.

Note that in Theorem 3.1, 2�=�k is not necessarily the minimal period of xk(t). To
obtain further information about the minimal period of xk(t), we need the following:

Lemma 3.6. Suppose that there exists a sequence of real numbers {�k}∞k=1 and an
integer q ≥ 0 such that
(i) for each k; Eq. (3.1) with �= �k has a non-constant periodic solution xk(t) with

the minimal period pk¿0.
(ii) limk→∞ �k = �0; limk→∞ pk =p0¡∞ and limk→∞ xk(t)= x0 ∈RN uniformly for

t ∈R;
(iii) �( 1m)xk(t)= xk(t − pkq=m) if �x0 =Zm; m¡∞; or �(�)xk(t)= xk(t − pkq�) if

�x0 =Z∞; where t ∈R; �∈Z∞ and k =1; 2; : : : :
Then 2�=p0 is an eigenvalue of the stationary solution (x0; �0) and detC�(�0 ; x0); q(i
2�=p0)= 0.

Proof. We �rst show that p0¿0. There exists �0¿0 and L0¿0 such that |f(’; �) −
f( ; �)|≤L0‖’−  ‖ if ‖’− �x0‖; ‖ − �x0‖¡�0 and |�0|¡�0. Therefore, under the as-
sumption (ii), we can apply the argument of [27] to show that inf{pk ; k =1; 2; : : : ; }¿0.
So, p0¿0.
We next use the idea of [29] to show that the linear retarded equation

ẏ(t)=Df( �x0; �0)yt (3.14)

has a periodic solution which is of the minimal period p0 and satis�es �(1=m)y(t)=
y(t − p0q=m) if �x0 =Zm; m¡∞ or �(�)y(t)=y(t − p0q�) if �x0 =Z∞; �∈Z∞. For
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any �∈ (0; 1), de�ne
�k; �= max

t∈R
|xk(t + �pk)− xk(t)|;

y k; �(t) = �−1k; � [xk(t + �pk)− xk(t)]; t ∈R:
Then yk; �(t) satis�es the following equation

d
dt

y k; �(t)=Df( �x0; �0)y
k; �
t + �k; �(t)

with

|�k; �(t)| = �−1k; � |f((xk)t+�pk ; �k)− f((xk)t ; �k)− Df( �x0; �0)((xk)t+�pk − (xk)t)|
→ 0 as k →∞; uniformly for t ∈R:

Since supt∈R |yk; �(t)|=1; {yk; �}∞k=1 has a convergent subsequence, denoted again by
{yk; �}∞k=1 for simplicity. Let y�(t)= limk→∞ yk; �(t). Then y�(t) is a non-constant pe-
riodic solution of Eq. (3.14) and

�
(
1
m

)
y�(t)=y�

(
t − �0

q
m

)
if �x0 =Zm; m¡∞

or

�(�)y�(t)=y�(t − �0q�) if �x0 =Z∞; �∈Z∞:




(3.15)

Denote by T� the minimal period of y�(t). Then p0 =mT� for some positive inte-
ger m. If m=1, then we are done. If m 6=1; then �p0 is not an integer multiple of T�.
For, otherwise, the equality xk(t + m�pk)= xk(t) implies that

0 =
m∑

j=1

[xk(t + j�pk)− xk(t + (j − 1)�pk)]�−1k; � →
m−1∑
j=0

y�(t + j�p0)

=my�(t);

a contradiction to the fact that y�(t) is non-constant.
Since for every rational �∈ (0; 1) there is a periodic solution of Eq. (3.14) satisfying

Eq. (3.15) whose minimal period divides p0 but does not divide �p0, we may choose
some collection {zj} of solutions of Eq. (3.14) satisfying Eq. (3.15) and such that p0
is the smallest number which is a multiple of their minimal periods. It follows that for
almost any choice of real numbers {cj};

∑
cjzj is a periodic solution of Eq. (3.14)

satisfying Eq. (3.15) with the minimal period p0. This completes the proof.

Now we can state the following re�nement of Theorem 3.1, controlling the minimal
period of the branch of periodic solutions.

Theorem 3.2. Suppose that all assumptions in Theorem 3.1 are satis�ed. Let pk

denote the minimal period of xk(t). Then for every convergent subsequence {pkj} of
{pk} there exists a positive integer m such that 2�=�0 =mp0; imp0 is an eigenvalue of
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(x0; �0) and detC�(x0 ; �0); mr(im�0)= 0; where p0 = limj→∞ pkj . In particular, if other
purely imaginary eigenvalues of (x0; �0) are not integer multiple of ±i�0; then 2�=�k

is the minimal period of xk(t).

Proof. Since pkj divides 2�=�kj ; limj→∞ pkj =p0 and limj→∞ 2�=�kj =2�=�0, there
exists a positive integer m such that 2�=�0 =mp0 and 2�=�kj =mpkj , except for a �nite
number of terms. Then our conclusion follows easily from Lemma 3.6.

We now consider global continuation of local bifurcation of discrete=rotating waves.
We need the following assumption:

(A4) M∗ de�ned in (A2) is complete and the set M of (x; �; �)∈M∗ × (0;∞)
such that i� is an eigenvalue of the stationary solution of (x; �) is discrete in
RN×R× (0;∞).

Theorem 3.3. Assume that (A1), (A2), (A3)k and (A4) are satis�ed for every k ≥ 1.
Let S denote the closure in C(S1;RN )×R2 of the set of all (z; �; �) =∈M such that
z((�=2�)t) is a 2�=�-periodic solution of Eq. (3.1). Then for each bounded connected
component C of S; the set (�×S1)C∩M is �nite and is composed of a �nite
number of disjoint �-orbits

(�× S1)C ∩M =
q⋃

i=1

(�xi; �i; �i):

Moreover;

q∑
i=1

�(xi; �i; �i)�(xi; �i; �i)�(xi; �i; �i)= 0:

In particular; if M∗ ⊂(RN )�×R and Sq denotes the closure in C(S1;RN )×R2 of
the set of all (z; �; �) 6∈M such that x(t)= z((�=2�)t) is a 2�=�-periodic solution of
Eq. (3.1) satisfying �(1=m)x(t)= x(t−(2�=�)(q=m)) if �=Zm; t ∈R or �(�)x(t)=x(t−
(2�=�)q�) if �=Z∞; t ∈R; then for each bounded connected component Cq of Sq; we
have (�× S1)Cq∩M is a �nite set

⋃q
i=1(xi; �i; �i) and

∑q
i=1 �(xi; �i; �i)c1; q(xi; �i; �i)= 0.

Proof. For each bounded connected component C of S, we can apply the argument
of [27] to show that inf{2�=�; (z; �; �)∈C}¿0. Consequently, the conclusion follows
from Theorem 2.2.

4. An example: discrete waves caused by delays in identical cells coupled in a ring

In this section, we illustrate our main result for discrete waves with a ring of identical
oscillators with identical coupling between adjacent cells. Such a ring was modelled in
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Fig. 1. Schematic picture of a ring of N coupled identical cells.

the seminar paper by [34] on morphogenesis and provides models for many situations
in biology, chemistry and electrical engineering. The Hopf bifurcation of this Turing
ring has been extensively studied in the literature. We refer to [2,3,13,18,20,30,32,36]
and references therein for the current state of the literature.
Our primary interest is to illustrate how the temporal delay in the kinetics and in

the coupling of cells a�ects the type of oscillation that may be observed in the system.
In particular, we will show that the temporal delay in the coupling between adjacent
cells may cause oscillations in the case where each cell is described by only one state
variable, though it has been shown (cf. [16]) that such oscillations cannot occur if the
temporal delay is neglected.
Our secondary interest is to illustrate how to apply our global bifurcation theorem to

obtain the existence of large-amplitude periodic solutions with prescribed symmetries
when the parameter is far away from a bifurcation value in systems of functional
di�erential equations.
We emphasize the importance of temporal delays in the coupling between cells, since

in many chemical and biological oscillators (cells coupled via membrane transport of
ions), the time needed for transport or processing of chemical components or signals
may be of considerable length. While such delay equations in mathematical biology
have been studied extensively in the literature (see cf. [6, 11, 28]), the qualitative study
of the e�ect of temporal delays on oscillations of coupled oscillators has not been
found, to the best of our knowledge.
We consider a ring of N identical cells which are coupled symmetrically by di�usion

along the sides of an N -gon, as in Fig. 1. Each cell will be regarded as a chemical
system with m distinct chemical species. The concentrations uj; i(t) of the ith species
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in the jth cell is assumed to obey the kinetic equation

d
dt

u j; i(t)=fi(u
j;1
t ; : : : ; u j;m

t ; �); 1≤ i≤m; 1≤ j≤N (4.1)

which can be reformulated in the vector from

d
dt

u j(t)=f(uj
t ; �); 1≤ j≤N; (4.2)

where t ∈R denotes the time, �∈R is parameter, uj(t)= (uj;1(t); : : : ; u j;m(t))T, 1≤
j≤N , and f :C([−�; 0];Rm)→Rm is continuously di�erentiable. The kinetic equation
(4.2) is usually determined by some physical, chemical or biological laws.
We assume that the coupling is “nearest-neighbor” and symmetric in the sense that

the interaction between any neighboring pair of cells takes the same form. For sim-
plicity, we also assume that the coupling between adjacent cells is linear. In practice,
there are a number of mechanisms and transport processes, whereby the concentrations
of a chemical species in one cell could a�ect the concentration of the same species in
the adjacent cells and such an e�ect takes place after a certain amount of time. So we
have a system of retarded functional di�erential equations

d
dt

u j(t)=f(uj
t ; �)− K(�)(2uj

t − uj−1
t − uj+1

t ); 1≤ j≤N; (4.3)

where K(�) :C([−�; 0];Rm)→Rm is a bounded linear operator and the mapping �∈R
→K(�)∈L(C([−�; 0];Rm;Rm) is continuously di�erentiable. K(�) represents coupling
strength and the additional term

K(�)(uj−1
t − uj

t ) + K(�)(uj+1
t − uj

t )

in Eq. (4.3) is usually supported by the ordinary law of di�usion, i.e. each chemical
substance moves from region of greater to region of less concentration, at a rate pro-
portional to the gradient of the concentration. For details, we refer to [13, 16, 34] and
references therein.
Suppose that

f(0; �)= 0: (4.4)

Then (0; : : : ; 0; �) is a stationary solution of Eq. (4.3) and the linearization of Eq. (4.3)
at (0; : : : ; 0; �) is

d
dt

x j(t)=Df(0; �)x j
t − K(�)[2x j

t − x j−1
t − x j+1

t ]; 1≤ j≤N: (4.5)

Consequently, �∈C is an eigenvalue of (0; : : : ; 0; �) i� there exists a nonzero vector
(z1; : : : ; zN )∈CNm such that

diag(�·Id − Df(0; �)(e�:Id))z= �(�; �)z; (4.6)

where diag(�·Id − Df(0; �)(e�:Id)) denotes the block-diagonal mN ×mN matrix and
�(�; �) :CmN →CnN is de�ned by

(�(�; �)z)j =K(�)[e�:(z j−1 + z j+1 − 2z j)]; 1≤ j≤N:
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Therefore, we have

��(�)= diag(� Id − Df(0; �)(e�:Id))− �(�; �) (4.7)

for �∈R and �∈C.
To prevent complicating the argument with generalities, we consider the case where

each chemical system has only one chemical species, i.e. m=1. In this case, Hopf
bifurcation cannot occur if the temporal delay is neglected (see, cf. [16,18]). However,
as we will show, the temporal delay in the coupling cells provides an important resource
for various types of oscillations that may be observed.
In the case where m=1; we have

��(�)= diag(�− Df(0; �)(e�:))− K(�)e�:�;

where � :RN →RN is the discretized Laplacian de�ned by

(�x)i= xi+1 − 2xi + xi−1; 1≤ i≤N:

Let �=ei 2�=N be a primitive N th root of the unity in C. Then

�−j = �
j
= �N−j; 0≤ j≤N − 1:

Put

CN
r := {(1; �r ; �2r ; : : : ; �(N−1)r)Tx; x∈C}; 0≤ r≤N − 1:

Then

CN =CN
0 ⊕ CN

1 ⊕ · · · ⊕ CN
N−1; (4.8)

and for every x∈C; r ∈{0; : : : ; N − 1} and i∈{1; : : : ; N} we have
(��(�)(1; �r ; �2r ; : : : ; �(N−1)r)T x)i

= [��(i−1)r − Df(0; �)(e�:)�(i−1)r − K(�)e�:(�ir − 2�(i−1)r + �(i−2)r)]x

= [�− Df(0; �)e�: − K(�)e�:(�r − 2 + �−r)]�(i−1)rx

= [�− Df(0; �)e�: − K(�)e�:(2Re �r − 2)]�(i−1)rx

=
[
�− Df(0; �)e�: − 2

(
cos

2�r
N

− 1
)

K(�)e�:
]
�(i−1)rx

=
[
�− Df(0; �)e�: + 4 sin2 �r

N
K(�)e�:

]
�(i−1)rx: (4.9)

Consequently, we have

Proposition 4.1. In the case where m=1; we have

det ��(�)=
N−1∏
r = 0

[
�− Df(0; �)e�: + 4 sin2 �r

N
K(�)e�:

]
:
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So �∈C is an eigenvalue of (0; �) i� there exists an r ∈{0; : : : ; N − 1} such that

pr(�; �) := �− Df(0; �)e�: + 4 sin2 �r
N

K(�)e�:=0: (4.10)

Remark 4.1. Note that sin2�r=N = sin2 �(N − r)=N for each r ∈{0; : : : ; N − 1}. So
the zero of det ��(�)= 0 has always an even algebraic multiplicity; except possibly
the zero of

�− Df(0; �)e�:=0
which corresponds to Eq. (4.10) with r=0; and the zero of

�− Df(0; �)e�: + 4K(�)e�:=0 if N is even

which corresponds to Eq. (4.10) with r=N=2. It is a common feature that the pres-
ence of a symmetry forces purely imaginary eigenvalues to be multiple. One may
apply the Hopf bifurcation theorem from a multiple eigenvalue in [9]. But our prim-
inary interest here is the existence of periodic solutions with prescribed symmetries.

It is easy to check that system (4.3) is equivariant with respect to the action of the
dihedral group DN , where the subgroup ZN permutes the variable cyclically, sending
cell j to j − 1 (modN ), whereas the 
ip interchanges, sending cell j to −j (modN ).
More previsely, the dihedral group DN is generated by a rotation � and a re
ection �
such that

〈�〉 ∼= ZN ; 〈�〉 ∼= Z2; ���−1 = �−1

and system (4.3) is equivariant with respect to the representation � :DN →GL(RN )
de�ned by

(�(�)x)j = xj−1; (�(�)x)j = x−j; (modN ); x∈RN :

Note that the isotypical decomposition of CN with respect to the subrepresentation
of ZN is given by Eq. (4.8). By Eq. (4.9) we have

��; r(�)=��(�)|CN
r
=pr(�; �):

Consequently, applying Theorem 3.2 we obtain

Theorem 4.1. Suppose that there exist two positive numbers � and �0 and an integer
r ∈{0; : : : ; N − 1} such that
(i) D �f(0; 0)− 4 sin2(�j=N )K(0) 6=0 for j∈{0; : : : ; N − 1};
(ii) pj(�; i�)= 0 for some j∈{0; : : : ; N−1} and (�; �)∈ [�0−�; �0+�]× [�0−�; �0+�]

i� �=0; �= �0 and j= r (modN );
(iii) pj(�0; u+iv)= 0 for some j∈{0; : : : ; N−1} and (u; v)∈ @
 with 
 := (0; �)× (�0−

�; �0 + �) i� j= r (modN ); u=0 and v= �0;
(iv) degB(pr(�0 − �; ·);
) 6= degB(pr(�0 + �; ·);
):
Then there exists a sequence of triples {(xk ; �k ; �k)}∞k = 1 such that
(a) �k → �0; �k → �0; xk(t)→ 0 uniformly for t ∈R as k →∞.
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(b) xk(t) is a 2�=�k -periodic solution of Eq. (4.3) with �= �k for k =1; 2; : : :.
(c) xk−1i−1 (t)= xki (t − (2�=�k)·(r=N )) for t ∈R and k =1; 2; : : : ; i (modN ).
Moreover; if pj(�0; i�)= 0 implies j= r (modN ) and �= �0; then 2�=�k is the minimal
period of xk(t):

The oscillation obtained in the above result is called a synchronous oscillation in
the case of r=0 in which oscillators are in phase, a phase-locked oscillation in the
case of r 6=0 in which each cell oscillates just like the others except not necessarily
in phase with each other. We refer to [3] for a detailed discussion in the case where
the temporal delay is neglected.
Finally, we demonstrate how to apply our global bifurcation theorem to obtain large-

amplitude periodic solutions with prescribed symmetries when the parameter is far away
from bifurcation values.

Example 4.1. Consider the following system of retarded functional di�erential equa-
tions

ẋi(t)=− �xi(t) + �h(xi(t))[2g(xi(t − 1))− g(xi−1(t − 1))− g(xi+1(t − 1))];
(4.11)

where i (modN ); �≥ 0; h; g :R→R are continuously di�erentiable, h does not vanish
and g(0)= 0; g′(0)¿0. Such a system can be obtained from

ẏi(t)=−f(yi(t)) + d[yi+1(t − �) + yi−1(t − �)− 2yi(t − �)];

by rescaling the time and making a certain change of variables.
Clearly, (0; : : : ; 0; �) is a stationary solution of Eq. (4.11) and the linearization of

this solution is

żi(t)=− �zi(t)− ��[2zi(t − 1)− zi−1(t − 1)− zi+1(t − 1)];
where �= h(0)g′(0). Therefore,

��; r(�)= �+ �+ 4 sin2
�r
N

��e−�: (4.12)

Letting �= i� in Eq. (4.12), we obtain


�+ 4�� sin2
�r
N
cos �=0

� − 4�� sin2 �r
N
sin �=0:

(4.13)

Assume that there exists r ∈{0; : : : ; N − 1} such that

�¿
1

4 sin2(�r=N )
: (4.14)

Let �0; r ∈ ( �2 ; �) denote the unique solution of

cos �0; r =− 1

4� sin2(�r=N )
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and de�ne

�0; r =− �0; r cot �0; r :

Then i�0; r is an eigenvalue of the stationary solution (0; : : : ; 0; �0; r). Moreover, assume
u(�) + iv(�) satis�es Eq. (4.12) with u(�0; r) + iv(�0; r)= i�0; r . Then

u+ �+ 4�� sin2
�r
N
e−u cos v=0; v− 4�� sin2 �r

N
e−u sin v=0:

Di�erentiating both sides of Eq. (4.12) with respect to �; we get

(1 + �0; r)u′(�0; r − (�0; r + �0; r)v′(�0; r)= 0;

(�0; r + �0; r)u′(�0; r) + (1 + �0; r)v′(�0; r)= �0; r

from which it follows that

u′(�0; r)=
(�0; r + �0; r)�0; r

(�0; r + �0; r)2 + (1 + �0; r)2
¿0: (4.15)

Consequently,

cr; �0; r ; �0; r = degB(��0; r−�; r(·);
)− degB(��0; r+�; r(·);
)¡0 (4.16)

for su�ciently small �; �¿0; where 
= (0; �)× (�0; r − �; �0; r + �). Consequently, By
Theorem 3.2 we have

Proposition 4.2. If there exists an r ∈{0; : : : ; N −1} such that Eq. (4.14) is satis�ed,
then there exists a sequence of triples {(xk ; �k ; �k)}∞k=1 such that
(i) �k → �0; r ; �k → �0; r ; xk(t)→ 0 uniformly for t ∈R as k →∞.
(ii) xk(t) is a 2�=�k -periodic solution of Eq. (4.11) with �= �k ; k =1; 2; : : : :
(iii) xk

i−1(t)= xk
i (t − (2�=�k)·(r=N )) for t ∈R and k =1; 2; : : : ; i (modN ).

To obtain a large-amplitude periodic solution of Eq. (4.11) when � is far away from
�0; r , we need the following.

Proposition 4.3. If xg(x)=h(x)¿0 for all x 6=0 and limx→∞ xg(x)=h(x)=∞; then
Eq. (4.11) has no non-trivial 4-periodic solution with xj−1(t)= xj(t−2) for j (modN );
t ∈R.

Proof. By way of contradiction, if Eq. (4.11) has a non-trivial 4-periodic solution
with xj−1(t)= xj(t − 2) for t ∈R, then xj(t) is a nontrivial 4-periodic solution of the
following scalar equation

ẋ1(t) =−�x1(t) + �h(x1(t))[g(x1(t − 3)) + g(x1(t + 1))− 2g(x1(t − 1))]
=−�x1(t) + �h(x1(t))[g(x1(t − 3)) + g(x1(t − 3))− 2g(x1(t − 1))]
=−�x1(t) + 2�h(x1(t))[g(x1(t − 3))− g(x1(t − 1))]:
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Consequently, (x1; x2; x3; x4)T, with xi(t)= x1(t − i + 1); i=1; 2; 3; 4, satis�es the fol-
lowing system of ordinary di�erential equations

ẋ1 =−�x1 + 2�h(x1)[g(x4)− g(x2)];

ẋ2 =−�x2 + 2�h(x2)[g(x1)− g(x3)];

ẋ3 =−�x3 + 2�h(x3)[g(x2)− g(x4)];

ẋ4 =−�x4 + 2�h(x4)[g(x3)− g(x1)]:

(4.17)

Let

V (x1; x2; x3; x4)=
4∑

i=1

∫ xi

0

g(s)
h(s)

ds:

Then V (x1; x2; x3; x4) is positive de�nite and the derivative of V along solutions of
Eq. (4.17) is negative de�nite. Therefore, a standard Liapunov stability theorem implies
that the zero solution of Eq. (4.17) is globally asymptotically stable. Consequently,
Eq. (4.17) has no non-trivial periodic solution, a contradiction. This completes the
proof.

Theorem 4.2. Assume that n is even, �¿ 1
4 ; limx→∞(xg(x)=h(x))=∞; xg(x)=h(x)¿0

for x 6=0 and h; g are both bounded. Then for each �¿�0; n=2 =− �0; n=2 cot �0; n=2;
where cos �0; n=2 =− 1=4� and �0; n=2 ∈ (�=2; �); system (4.11) has a non-trivial pe-
riodic solution satisfying xj(t)= xj(t + p) for some p∈ (2; 4) and xj−1(t)= xj(t −
p
2 ); t ∈R; j (modN ):

Proof. Let

S= cl{(z; �; p); x(t)= z(t=p) is a p-periodic solution of Eq. (4.11) with

xj−1(t)= xj(t − p=2); t ∈R; j (mod n)};

⊂C1(S1;RN )×R2

and C denote the connected component of S containing (0; �0; n=2; 2�=�0; n=2). By
Proposition 4.2, C is nonempty. Moreover, by Theorem 3.3 and Eq. (4.16), C must
be unbounded. On the other hand, since �0; n=2 ∈ (�=2; �), if (z; �; p)∈C is close to
(0; �0; n=2; 2�=�0; n=2), then p∈ (2; 4). Using a similar argument to that in [7], we can
easily show that system (4.11) has no 2-periodic solution satisfying xj−1(t)= xj(t).
Therefore, by Proposition 4.3, we have

{p; (z; �; p)∈C}⊂ [2; 4]:
On the other hand, let Q=supx∈R |h(x)| + supx∈R |g(x)|, then we can easily show
that the absolute value of each component of every periodic solution of Eq. (4.11) is
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bounded by 4Q2. Therefore, the set {�; (z; �; p)∈C} must be unbounded. But Eq. (4.11)
with �=0 clearly has no non-trivial periodic solution. Consequently,

(�0; n=2;∞)⊂{�; (z; �; p)∈C}:
That is, for every �¿�0; n=2 there exists a p-periodic solution x(t) of Eq. (4.11) such
that p∈ (2; 4); xj−1(t)= xj(t − p=2). This completes the proof.

Remark 4.3. Similar arguments can also be applied to examine the global continua of
the local bifurcation from �= �0; r from arbitrary r=0; 1; : : : ; n−1 and for arbitrary n.
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