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PERMANENCE AND CONVERGENCE

IN MULTI-SPECIES COMPETITION SYSTEMS WITH DELAY

JIANHONG WU AND XIAO-QIANG ZHAO

(Communicated by Hal L. Smith)

Abstract. The permanence and global attractivity of positive equilibria are
obtained for some multi-species Kolmogorov competition models with delay by
embedding the system into a larger cooperative system with delay and then
appealing to the theory of monotone dynamical systems.

It is now well-known that the theory of monotone dynamical systems provides
a powerful tool for the study of the global dynamics of multi-species cooperative
systems, and that a two-species competition system can be transformed into a co-
operative system by a simple change of variable (see [4] and [7]-[9] for details). The
purpose of this short note is to show that in some situations it is also possible
to apply the theory of monotone dynamical systems to deal with n-species (with
n > 2) competition systems. Our approach is to embed the n-species competi-
tive model into a 2n-cooperative system under quite general conditions. We will
establish the existence and global attractivity of a positive equilibrium for the orig-
inal n-species competition model. For a similar embedding approach and upper-
and lower-solution method, we refer to the recent paper [6] on nonlinear parabolic
systems with time delays.

Let r ≥ 0 be given, and let Cn ≡ C([−r, 0], Rn) (n ≥ 1) be the Banach space of
continuous mappings from [−r, 0] into Rn, equipped with the usual uniform norm
‖φ‖ = sup{|φ(s)|;−r ≤ s ≤ 0}. In what follows, we will use x̂ to denote the
constant mapping in Cn with the value x ∈ Rn. Let

Rn
+ = {x = (x1, · · · , xn);xi ≥ 0 for all 1 ≤ i ≤ n}

and

Cn
+ =

{
φ = (φ1, · · · , φn) ∈ Cn;φ(s) ∈ Rn

+ for all − r ≤ s ≤ 0
}
.

Then (Rn, Rn
+) and (Cn, Cn

+) are strongly ordered Banach spaces with the cones
Rn

+ and Cn
+, respectively. As usual, if x(·) : [−r, α) → Rn is a continuous function,

α > 0 and t ∈ [0, α), then xt ∈ Cn is defined by xt(s) = x(t+ s), −r ≤ s ≤ 0. We
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consider the following system of functional differential equations:

dui(t)

dt
= ui(t)fi(ui(t), ut), 1 ≤ i ≤ n,(1)

where u(t) = (u1(t), · · · , un(t)) and fi(·, ·) : R × Cn → R is locally Lipschitz
continuous for 1 ≤ i ≤ n. We further assume f satisfies the following conditions:

(C1) For each 1 ≤ i ≤ n and for any given φ ∈ Cn
+, fi(ui, φ) is strictly decreasing

for ui ∈ R+; and for each 1 ≤ i ≤ n and for any given ui ∈ R+, fi(ui, φ) is
decreasing for φ ∈ Cn

+.
(C2) There exists u∗ = (u∗1, · · · , u∗n) ∈ intRn

+ such that for each 1 ≤ i ≤ n,

fi(0, 0̂) > 0, fi(u
∗
i , 0̂) = 0 and fi(0, û∗) > 0.

(C3) The algebraic equation F (u, v) = G(u, v) = 0 admits at most one (compo-

nentwise) positive solution (u, v) ∈ R2n, where F (u, v) = (f1(u1, v̂), · · · , fn(un, v̂))
T

and G(u, v) = (f1(v1, û), · · · , fn(vn, û))
T
.

(C1) is the standard assumption for competition. Roughly speaking, (C2) re-
quires that the competitive system without delayed competition terms possesses
a positive equilibrium and the collective effect of instantaneous competition is
stronger than that of delayed competition (at least near the aforementioned posi-
tive equilibrium). (C3) is the standing assumption for our embedding approach to
be applicable. Illustrative examples will be given later.

We will need the following elementary result:

Lemma 1. Consider the scalar autonomous equation

du

dt
= uf(u),(2)

where f : R→ R is locally Lipschitz. Assume that

(i) f(0) > 0 and f(u) is strictly decreasing for u ≥ 0;
(ii) there exists K > 0 such that f(u) ≤ f(K) < 0 for all u ≥ K.

Then equation (2) admits a unique positive equilibrium which is globally attractive
with respect to positive initial values.

Our main result is the following.

Theorem 1. Assume that (C1) and (C2) hold. Then system (1) admits a positive
equilibrium and is permanent, i.e., there exist η > 0 and M > 0 such that for
any φ ∈ Cn

+ with φ(0) � 0 (i.e., φ(0) ∈ int(Rn
+)), there is T = T (φ) > 0 such

that η ≤ ui(t, φ) ≤ M for all t ≥ T and 1 ≤ i ≤ n. If, in addition, (C3) holds,
then system (1) admits a unique positive equilibrium which is globally attractive for
φ ∈ Cn

+ with φ(0) � 0.

Proof. Let e be the vector in Rn with all components equal to 1. Since

lim
ε→0

fi(0, û∗ + εê) = fi(0, û∗) > 0, 1 ≤ i ≤ n,

we can choose ε0 > 0 such that fi(0, û∗ + ε0ê) > 0 for all 1 ≤ i ≤ n. By (C1), (C2)
and Lemma 1, for each 1 ≤ i ≤ n, ui = u∗i > 0 is a globally attractive equilibrium
in R+ \ {0} of the scalar equation

dui
dt

= uifi(ui, 0̂),(3)
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and the scalar equation

dui
dt

= uifi(ui, û∗ + ε0ê)(4)

admits a unique positive equilibrium u∗i which is globally attractive in R+ \ {0}.
For any φ ∈ Cn

+, let [0, β) be the maximal interval of existence of the solution
u(t, φ) of (1) subject to the initial condition u0 = φ. By [8, Theorem 5.2.1], u(t, φ) ≥
0 in Rn, and hence ut(φ) ∈ Cn

+ for all t ∈ [0, β). Furthermore, if φi(0) > 0 for some
1 ≤ i ≤ n, then ui(t, φ) > 0 for t ∈ [0, β). Let u(t, φ) = (u1(t), · · · , un(t)); then for
each 1 ≤ i ≤ n, ui(t) satisfies

dui(t)

dt
= ui(t)fi(ui(t), ut) ≤ uifi(ui(t), 0̂), t ∈ [0, β).(5)

Then, by the standard comparison theorem,

ui(t) ≤ ūi(t), t ∈ [0, β), 1 ≤ i ≤ n,(6)

where ūi(t) is the unique solution of (3) with ūi(0) = ui(0) = φi(0). Therefore,
the global existence of ūi(t) on [0,∞) (1 ≤ i ≤ n) implies that β = ∞. Let
ū(t) = (ū1(t), · · · , ūn(t)), t ≥ 0. For any given φ ∈ Cn

+ with φ(0) � 0, by (6) and
the fact that lim

t→∞ūi(t) = u∗i , there exists T1 = T1(φ) > 0 such that

0 � u(t, φ) ≤ ū(t) ≤ u∗ + ε0e, for all t ≥ T1.(7)

Therefore

0̂ � ut(φ) ≤ û∗ + ε0ê, for all t ≥ T1 + r = T2.(8)

Let Ui(t) = ui(t+ T2), t ≥ 0. Then U(t) = (U1(t), · · · , Un(t)) satisfies

dUi(t)

dt
= Ui(t)fi(Ui(t), Ut) ≥ Ui(t)fi(Ui(t), û∗ + ε0ê), t ≥ 0, 1 ≤ i ≤ n.

Using the standard comparison theorem again, we get

Ui(t) ≥ ui(t), t ≥ 0, 1 ≤ i ≤ n,

where ui(t) is the unique solution of equation (4) with ui(0) = Ui(0) = ui(T2) >
0, 1 ≤ i ≤ n. As lim

t→∞ui(t) = u∗i > 0, 1 ≤ i ≤ n, we conclude that for fixed

0 < η < min
1≤i≤n

u∗i , there exists T3 = T3(φ) > 0 such that

Ui(t) ≥ ui(t) ≥ u∗i − η, for all t ≥ T3.(9)

By (7) and (9), it follows that

0 < u∗i − η ≤ ui(t) ≤ u∗i + ε0, for all t ≥ T = T3 + T2, 1 ≤ i ≤ n.

Therefore, system (1) is permanent. It is easy to employ the above argument to
obtain the permanence of the following autonomous system of ordinary differential
equations:

dui
dt

= uifi(ui, û), 1 ≤ i ≤ n.(10)

Therefore, the semiflow T0(t) : Rn
+ → Rn

+ generated by (10) is compact for each
t > 0, point dissipative in Rn

+ and uniformly persistent with respect to ∂Rn
+. By an

index theorem in [5, Section 19.3] (see also [10, Theorem 2.4] for infinite dimensional
semiflows), T0(t) has an equilibrium in int(Rn

+) and hence system (1) has a positive
equilibrium.
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To prove the global attractivity of positive equilibrium under the additional
condition (C3), we consider the following extended delayed system in R2n:

dui(t)

dt
=uifi(ui(t), vt),

dvi(t)

dt
=vifi(vi(t), ut), 1 ≤ i ≤ n.

(11)

Again by [8, Theorem 5.2.1], X = C2n
+ = Cn

+ × Cn
+ is positively invariant for (11).

By an argument similar to that in the proof of the permanence of system (1), we
can show that system (11) is permanent, i.e., there exist η > 0 and M > 0 such
that for any φ ∈ C2n

+ with φ(0) � 0 in (R2n, R2n
+ ), there is T = T (φ) > 0 such that

the unique solution (u(t, φ), v(t, φ)) = (u1(t, φ), · · · , un(t, φ), v1(t, φ), · · · , vn(t, φ))
of system (11) with (u0(φ), v0(φ)) = φ satisfies η ≤ ui(t, φ) ≤M and η ≤ vi(t, φ) ≤
M for all t ≥ T and 1 ≤ i ≤ n. Let

∂X0 =
{
φ ∈ C2n

+ ; there exists some 1 ≤ i ≤ 2n such that φi(0) = 0
}

and X0 = X \ ∂X0. Let T (t) : X → X be defined by T (t)φ = (ut(φ), vt(φ)), φ ∈
X . Then T (t) : X → X is a continuous semiflow with T (t) : X0 → X0 and
T (t) : ∂X0 → ∂X0 for t ≥ 0. Moreover, by [2, Corollary 3.6.2], T (t) : X → X is
compact for each t ≥ r. Clearly, T (t) : X → X is point dissipative and uniformly
persistent with respect to ∂X0. By [3, Theorem 3.2], there exists a global attractor
A0 in X0 relative to strongly bounded sets in X0.

Let P = Cn
+×(−Cn

+). Then (C2n, P ) is a strongly ordered Banach space with the
cone P . By a change of variables wi = −vi, 1 ≤ i ≤ n, and the comparison theorem
([8, Theorem 5.1.1]), condition (C1) then implies that T (t) : X → X is a monotone
semiflow with respect to the order generated by P , i.e., for any φ, ψ ∈ X with φ ≤ ψ
in (C2n, P ) we have T (t)φ ≤ T (t)ψ in (C2n, P ) for all t ≥ 0. By [4, Theorem 3.1]
and condition (C3), the global attractor A0 contains only one equilibrium (û, v̂) and
hence, by [4, Theorem 3.3], (û, v̂) attracts every point (φ, ψ) ∈ X0. In particular,
for any φ ∈ Cn

+ with φ(0) � 0 in (Rn, Rn
+), let u(t, φ) be the unique solution of (1)

with u0(φ) = φ. Then (φ, φ) ∈ X0, and hence T (t)(φ, φ) = (ut(φ), ut(φ)) → (û, v̂)
as t → ∞. It follows that û = v̂, û is an equilibrium of system (1) and ut(φ) → û
as t→∞. Consequently, lim

t→∞u(t, φ) = u. This completes the proof.

Corollary 1. Let (C1) and (C2) hold. Assume that for each 1 ≤ i ≤ n, fi(ui, v̂)
is a polynomial of degree one with respect to n+ 1 variables (ui, v1, · · · , vn). Then
system (1) has a unique positive equilibrium which is globally attractive with respect
to φ ∈ Cn

+ with φ(0) � 0 in (Rn, Rn
+).

Proof. By Theorem 1, it suffices to verify that condition (C3) holds. By condition
(C2), we can choose ε0 > 0 such that

fi(0, û∗ + ε0ê) > 0, for all 1 ≤ i ≤ n.

Let

Σ =
{
(u, v) ∈ R2n; 0 ≤ ui ≤ u∗i + ε0 and 0 ≤ vi ≤ u∗i + ε0 for all 1 ≤ i ≤ n

}
.

We claim that Σ is a contracting rectangle for the vector field (F,G)T in R2n. For

if (u, v) ∈ Σ with ui = 0 (or vi = 0), then Fi(u, v) = fi(0, v̂) ≥ fi(0, û∗ + ε0ê) > 0

(or Gi(u, v) = fi(0, û) ≥ fi(0, û∗ + ε0ê) > 0); and if (u, v) ∈ Σ with ui = u∗i + ε0
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(or vi = u∗i + ε0), then Fi(u, v) = fi(u
∗
i + ε0, v̂) ≤ fi(u

∗
i + ε0, 0̂) < fi(u

∗
i , 0̂) = 0

(or Gi(u, v) = fi(u
∗
i + ε0, û) ≤ fi(u

∗
i + ε0, 0̂) < fi(u

∗
i , 0̂) = 0). It follows that Σ

is positively invariant for the following system of ordinary differential equations in
R2n: 

du

dt
=F (u, v),

dv

dt
=G(u, v).

(12)

By a standard argument using the Brouwer fixed point theorem, there exists an
equilibrium (u∗, v∗) for (12) in the interior of Σ. Suppose that, for a contra-
diction, there is another positive equilibrium (ū, v̄) 6= (u∗, v∗). By our assump-
tion on fi(ui, v̂) (1 ≤ i ≤ n), it easily follows that t(ū, v̄) + (1 − t)(u∗, v∗) =
(tū + (1 − t)u∗, tv̄ + (1 − t)v∗) is also a solution of F = G = 0 for any t ∈ R,
and then there must be a solution belonging to the boundary of Σ. But this is
impossible since Σ is contracting. Therefore, there is exactly one positive solution
of F = G = 0. Consequently, condition (C3) holds. This completes the proof.

Remark 1. The above corollary shows that if (C1) and (C2) hold for any Lotka-
Volterra type competition system with delay, then the system admits a unique
globally attractive positive equilibrium. Therefore, the delay is harmless for the
global dynamics of the system under (C1) and (C2).

Remark 2. For the delayed competition system (7.1) discussed in [8, Chapter 5],
for each 1 ≤ i ≤ n, we have

fi(ui, φ)

= bi

1− cii

(
aiui + (1− ai)

∫ 0

−r
φi(s)dvii(s)

)
−

n∑
j=1,j 6=i

cij

∫ 0

−r
φj(s)dvij(s)

 .
Then u∗i = 1

aicii
, 1 ≤ i ≤ n, and hence it is easy to see that the condition fi(0, û∗) >

0 (1 ≤ i ≤ n) in (C2) is just the condition (7.4) of [8, Chapter 5]. Therefore,
Corollary 1 implies [8, Theorem 5.7.5], which was proved in [8] by a contracting
rectangles argument.

Remark 3. Gopalsamy in [1] considered the following two-species Lotka-Volterra
competition system

du(t)

dt
=u(t)

[
γ1 − a1u(t)− b1

∫ 0

−r
K1(s)v(t+ s)ds

]
,

dv(t)

dt
=v(t)

[
γ2 − a2

∫ 0

−r
K2(s)u(t+ s)ds− b2v(t)

]
,

(13)

where a1, a2, b1, b2, γ1 and γ2 are positive constants, r > 0 and K1(·) and K2(·) :

[−r, 0] → R are non-negative continuous functions with
∫ 0

−rK1(s)ds = 1 and∫ 0

−rK2(s)ds = 1. Clearly, u∗1 = γ1

a1
, u∗2 = γ2

b2
. Then it easily follows that the

condition fi(0, û∗) > 0 (1 ≤ i ≤ 2) in (C2) is equivalent to a1

a2
> γ1

γ2
> b1

b2
, and

hence, Corollary 1 also implies the main theorem in [1].

We conclude with two simple examples of scalar delayed differential equations
which are not of Lotka-Volterra type.
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Example 1. Consider the scalar delayed equation

du(t)

dt
= u(t)

[
a− bu(t)

m+ u(t)
− cu(t− τ)

]
,(14)

where a, b, c,m and τ are positive constants and b > a. A direct calculation shows
that u∗ = am

b−a > 0. Moreover, f(0, û∗) > 0 is equivalent to b − a > cm, and

(C3) holds if and only if cm 6= b − a. Clearly, (C2) implies (C3). Therefore, by
Theorem 1, equation (14) admits a globally attractive positive equilibrium under
the condition b− a > cm.

Example 2. Consider the scalar delayed equation

du(t)

dt
= u(t)

[
a− bu(t)− cu2(t− τ)

]
,(15)

where a, b, c and τ are positive constants. A direct calculation shows that u∗ =
a
b > 0. Moreover, f(0, û∗) > 0 is equivalent to b2 > ac, and (C3) holds if and only

if either b2 ≤ ac or b2 ≥ 4
3ac. Therefore, by Theorem 1, equation (15) admits a

globally attractive positive equilibrium under the condition b2 ≥ 4
3ac. It should be

mentioned that in this example, (C2) doesn’t imply (C3).
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