
Tόhoku Math. J.
48 (1996), 391-416

NONLINEAR OSCILLATIONS IN A DISCRETE DIFFUSIVE
NEUTRAL LOGISTIC EQUATION

HUAXING XlA AND JlANHONG Wu

(Received March 20, 1995, revised October 11, 1995)

Abstract. We consider the dynamics of a logistic neutral delay system which is
continuous in time and discrete in space. Such a system models the growth of a
single-species population distributed over a ring of identical patches and it allows for
population dispersing from one patch to its nearest neighbors. We shall show that (i)
in the case of instantaneous dispersion feedback, the dispersal in the local growth rate
and the neutral term have a stablizing effect on the population dynamics; (ii) increasing
the delay in the growth phase changes the stability of a positive equilibrium and leads
to a Hopf bifurcation of synchronous or phase-locked oscillations if the dispersion is
small; (iii) the neutral term may bring about several global branches of phase-locked
oscillations which would not occur in the absence of a neutral term, and hence the
neutral term in this situation has a destablizing influence.

1. Introduction. The purpose of this paper is to consider the dynamics of a
logistic neutral delay system which is continuous in time and discrete in space. Such a
system models the growth of a single-species population distributed over a ring of
identical patches (islands or habitats) and it allows for population dispersing from one

patch to its nearest neighbors. We shall study phase-locked oscillations in the model
and draw some conclusions about the effect of dispersion as well as the delay and
neutral term on population dynamics.

The role of space and dispersal in interactions among biological populations has
been the subject of much theoretical and experimental work (cf. [6], [20], [28]-[31],
[35], [38] and references therein). It is widely recognized that the spatial heterogeneity
of environment, which leads to ecological interactions, operates in general to increase
species diversity. For example, it has been asserted that in some cases dispersal can
lend stability to interactions (cf. [18], [19], [35], [38], [44]) while in other cases dispersal
can also give rise to instability (cf. [28], [35], [38], [44]). For the references related
to this subject, we refer to [18], [27], [28], [34], [35] and [43] for the study of

Lotka-Volterra models in a spatially heterogeneous environment on persistence and
stability, and to [5], [7], [8], [11], [12], [17], [19], [22], [35], [38], [40], [44] and
[46] for similar discussions on single-species models in a patchy environment.
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Our point of departure in this paper is the classical single-species delay logistic
model. By introducing a spatially heterogeneous environment to this model, we arrive
at a system which describes a population that grows and disperses in two different
phases. The growth phase (or the local growth rate) is modeled by a neutral logistic
equation that arises in the study of "food limited" population. The dispersal phase is
modeled by a linear operator that accounts for the redistribution (or migration) of the
population in its spatial habitat. There are a neutral term and time delays in the local
growth rate, which could affect the stability of a positive equilibrium and give rise to
Hopf bifurcations of symmetric periodic solutions which exhibit the phase-locked
oscillations and synchronous oscillations (cf. [2], [4], [14], [15], [27] and [32] for the
effect of delay on dynamics in other cases). We will show that (i) in the case of
instantaneous dispersion feedback, the dispersal in the local growth rate and the neutral
term have a stabilizing effect on the population dynamics; (ii) increasing the delay in
the growth phase changes the stability of a positive equilibrium and leads to a Hopf
bifurcation of synchronous as well as phase-locked oscillations if the dispersions are
small; (iii) the neutral term may bring about several global branches of phase-locked
oscillations which would not occur in the absence of the neutral term. In this situation,
the neutral term has a destablizing influence.

We have chosen the single species logistic equation as a beginning to an investigation
of spatial heterogeneity and phase-locked oscillations for two reasons. First, it is the
simplest single-species population model and contains no complex regulatory
mechanisms that might obscure the effects of environmental variation. Second, there
has been considerable literature, both mathematical and biological, available on the
study of the logistic equation, and its dynamics are well-known, so any change of its
behavior due to environmental heterogeneity will be apparent.

We emphasize that our study on single-species population dynamics in a patchy
environment is limited to a theoretical aspect and we have not tried to find any
experimental (or laboratory) data to fit the theory. We treat spaces as discrete ones, so
only patch models are considered and dispersal is thus viewed as a between-habitat
phenomenon. The continuous space diffusion model is left for a future investigation.

The remaining part of this paper is organized as follows. In Section 2, we present
the model equation by introducing the discrete diffusion to a neutral logistic equation
[15] which models the single-species population dynamics in a food-limited environment.
The Hopf bifurcation of phase-locked oscillations as well as synchronous oscillations
are considered in Section 3 in the case where the diffusion feedback in local dynamics
is instantaneous. We draw some conclusions about the effect of the delay and diffusion
on the stability of a positive equilibrium. Section 4 is devoted to an analysis of
phase-locked oscillations when the feedback in the local dynamics is delayed. In Section
5, we deal with the global bifurcation of phase-locked oscillations in the appearance of
the neutral term. In some special cases, several global branches of phase-locked and
synchronous periodic solutions are obtained. Finally, in the appendix, we describe some
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local and global symmetric Hopf bifurcation theorems for general neutral functional
differential equations which are used in the main body of the paper.

Our study in this paper is a continuation of that initiated in [22].

ACKNOWLEDGEMENT. The authors thank Professor H. I. Freedman for his helpful
comments and fruitful discussions on the model (2.6). The second author was supported
by the Natural Sciences and Engineering Council of Canada.

2. The model equation. Let N(t) denote the numerical size of a single-species
population growing in a constant homogeneous environment closed to immigration
and emigration. The classical Verhulst-Pearl logistic equation, which models the
dynamics of population growth, takes the following form

(2.1)v } dt _ K

where r>0 is the intrinsic growth rate, K>0 is the saturation level or the carrying
capacity of the environment. The basic assumption in the equation (2.1) is that the per
capita growth rate (l/N)(dN)/(dt) is a linear function of the population size N. Due to

its mathematical simplicity and biological clarity, this model has been widely used not
only in ecology but also in biology and chemical engineering. For more details, we refer
to [9], [16], [33], [36], [39] and the references therein.

In his studies, however, Nicholson [37] observed that population sizes (or densities)
usually have a tendency to fluctuate around an equilibrium and in cases of convergence
to a positive equilibrium, such a convergence is rarely monotonic. This observation

obviously does not agree with the dynamics of the equation (2.1). To incorporate such
oscillations in population model system, Hutchinson [21] therefore suggested the
following modification of (2.1)

(2.2) = rN(t)\ 1- — , τe(0, oo).
dt L K J

This equation is commonly known as the "delay-logistic" equation. The delay τ
comprises various factors causing delayed growth rate response such as slow replacement
of food supplies, maturation and gestation periods. The equation (2.2) has been
extensively investigated and the validity of this model has been observed in several
different practical situations (cf. [36]). It is proved that if rτ<3/2, then the unique
positive equilibrium K is globally stable and the (local) asymptotic stability continues
for rτ<π/2. rτ = π/2 is a critical value which gives rise to a Hopf bifurcation and for
every rτ>π/2, the eauation (2.2) has a nonconstant periodic solution. For details, see

[4], [32] and [48].
Of course, due to the complexity of biological systems and the diversity of

environments in the real world, the models (2.1) and (2.2) are often unrealistic. In his
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experiments on the population dynamics of Daphnia magna, Smith [42] observed that
the per capita growth rate (l/N)(dN)/(dt) is not a linear function of the density but
rather a concave function. For a food-limited population, Smith argued that the term

(l—N/K) should then be replaced with a term representing the proportion of "the rate
of food supply not momentarily being used by the population." Therefore

(2.3) i

where Fis the rate at which a population of density TV uses food and Γis the correspond-
ing rate when the population reaches saturation level. The ratio F/Tis not the same as
N/K. Clearly, a growing population will use "food" faster than a saturated popula-
tion. This is due to the fact that F/T, during the growth phase of a population, food
is consumed both for maintenance and growth whereas when the population reaches
saturation level, food is used mainly for maintenance only. Thus it is reasonable to
assume that F depends on TV (the size of the population being maintained) and dN/dt
(the rate at which the population is growing). As a first approximation, Smith then
suggested a linear function F as follows

dN
F=c1N+c2 , cί>0, c 2 >0.

dt

When saturation is attained, dN/dt = 0, N=F and T=K. Thus the equation (2.1)
becomes

(2.4) 1 —
dt

K

where c = c2/c1 >0. Again, it is realistic to incorporate the delayed growth rate response
by putting a discrete delay τ in the per capita growth rate in (2.4). This has led Gopalsamy
and Zhang [15] to consider the following neutral logistic equation as a generalization
of Hutchinson's equation (2.2)

(2.5)
dt I K J

in which c is a real number and r, τ, K are as in (2.2). cN'(t — τ) is called the neutral
term. The equation (2.5) has been studied by several authors. It is proved that the
positive steady state N(t) = K is stable if 0<\cr\<\ and 0<rr</?0(l — c2r2) where

βo = βo(c, τ)e(π/2, π). Consequently, the presence of the neutral term has brought about

a stabilizing influence in the system (cf. [15]). The equation (2.5) and its modifications
are also studied by other authors. We refer to [10], [12], [24]-[26] for the asymptotic
behaviour of the solutions and [13] for the existence of mτ periodic solutions, where
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ra>0 is an integer.

The equation (2.5) and all others above are modeled in a constant homogeneous

environment and the spatial heterogeneity is therefore neglected. However, since all

ecological systems of varying complexity exist on landscapes or seascapes, the dynamics

of population and processes cannot be divorced from these spatial contexts. Following
Levin [28]-[31], we therefore consider a single-species population distributed over a
ring of n patches. Assume, for simplicity, that the growth of the species in each patch

can be described by the model equation (2.5) and that the dispersion from one patch

to the other occurs only in nearest neighbors and is proportional to the difference of
population sizes between two patches. Since a portion of the population in one patch

affects a portion of the population in another patch through movement of population

members or transmission of signals through space, and since the physical environment

varies from point to point in space, rates of population growth and interspecific

interactions also vary, and, as a consequence, population density varies through space,

too. Therefore, we arrive at the following system of neutral delay equations

dt I K J

(2.6)

ή-Wti-ή + Nj-άt-σ)^

K J

l<i<n, (moan)

where Nt(t) denotes the population size in the /-th patch, Nn+l(t) = Nί(t), N0(t) = Nn(t)9

d^ is the transfer rate at which the dispesion serves as a feedback in the localized per

capita growth rate and d2 is the transfer rate at which the dispersion affects the growth

rate in each patch. d± may be negative and, if that occurs, the dispersion is a positive
feedback to the system. The feedback can be delayed and σ>0 is incorporated to reflect

this delay, d2>0. In the equation (2.6), we have assumed the forward and backward

dispersion are the same and the anisotropy of the dispersion is neglected.

It should be mentioned that the model (2.6) ignores the consequences of structure

other than space within the population modelled. This can be age structure, physiological

structure, genetic or phenotypic structure. We incorporate a diffusion term in the

localized per capita growth rate (i.e. d± may not be zero), which is not seen in the
literature, by assuming that the dispersion may make a contribution to the local

dynamics, at least in the "food-limited" environment situation. This is motivated by a

similar consideration in [41] where the population's per capita growth rate is assumed

to be a function of a linear combination of the densities of the individual population
(called the weighted total density) as in the predator-prey or competitive systems. Even
though the system (2.6) is a much simplified model, as we will see in the subsequent
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sections, the mathematical analysis of the dynamics of the model is still a problem of
formidable complexity. However, the tractable analysis does give some of the
implications of the dispersion and delay eίfect on the oscillation of population growth.

Clearly, if N(t) is a solution of the neutral delayed logistic equation (2.5), then
(N(t), N(t), . . . , N(t)) is a solution of the system (2.6). In particular, (K, K,..., K) is a
positive (homogeneous) equilibrium of the system (2.6).

We are interested in the stability of the equilibrium (K, K,..., K) and in the case
when there is a change of stability, we shall study the Hopf bifurcation from this
equilibrium. Let xi(t) = Ni(t) — K. The equation (2.6) is transformed into

(beat)

!</<«, (moan).

For later use, we give its linearized equation at the origin as follows:

at
(2.7)

\<ί<n, (mod «).

Noting that the discrete Laplacian operator Δ : R"-*Rn defined by (Ax)i = xi+ί—2xi +

Xi-i, !</<«, (modri)9xeRn, has eigenvalues Qxp(ί2πj/n) and associated eigenvectors
•̂ = (1, eί2πjln, . . . , e

i2*(»-UJi«)T

9 0<j<n- 1, from the analysis in the appendix, we obtain

the characteristic equation of (2.7)

(2.8) p(λ, τ, σ, c) = Π Pjtt, τ, σ,c) = 0

where

Pj(λ, τ, σ, c) = λ + r(l +λc)e'λτ-rd1aje~λσ + d2aj ,
(2.9)

α7 = 4sin2 — , Q<j<n-l .
n

PROPOSITION 2.1. Let φeC([-max{σ, τ}, 0]; Rn). If φ(s)eRn+, the positive cone
in /?", for every se\_ — max{σ, τ}, 0], then the solution (Ni(φ)(t)) through (0, φ) of the
equation (2.6) remains in R\ for all />0.
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PROOF. Suppose to the contrary that (Nt(φ)(t))φRn

+ for some />0. Then
7=min{/>0; Λ^((/>)(ί) = 0, for some l<i<n} and / O e{l, 2,...,«} exist such that
NiQ(φ)(T) = Q and N'iQ(φ)(T)<0 with N^)(T)>0 for all l<i<n. It follows from (2.6)
that

'̂°̂  ,

a contradiction to N'io(φ)(ϊ)<0. This completes the proof.

3. Stability and Hopf bifurcation: Instantaneous feedback. Throughout this
section, we assume that the dispersion feedback is instantaneous, i.e. σ = 0 in the equation
(2.6).

Recall that in this case, we have the characteristic equation

(3.1) p(λ, τ, c}= Y[ Pj(λ, τ, c) = 0
j=o

where

Pj(λ, τ, c) = λ + r(l +λc)e-λτ-(rdί-d2)aj,
(3.2)

We first present a result on the local asymptotic stability of the positive equilibrium

THEOREM 3.1. Assume that σ = 0.
( i ) I f \ r c \ > l , the positive equilibrium (K,. . . , K) of (2.6) is not stable for all τ>0;
(ii) I f \ r c \ < \ and there exist two disjoint subsets J± and J2 of {0, 1, . . . , [ft/2]}

such that r< \(rd^ — d^a^ \ for alljeJί andr>\(rdί—d2)aj\ for alljεJ2, then
(K, ..., K) is stable when τ<τ* = min / e j 2τ / , where τj = θj/Wj and

(3.3)

~ - 0<y<
Wi(\+c(rdl-d2)aj>

(iii) I f \ r c < 1 and r > \ (rdl - d2)aj \ for some j e {0, 1 , . . . , [«/2]}, then (K,...,K)
is not stable ifτ> τ}, where τs is given in (ii).

PROOF. Note that the characteristic equation at (K, ..., K) has the forms
(3.1)-(3.2). The conclusions follow directly from Theorem 4.2 of Kuang [25, Chapter
1] and Theorem 3.1 of Freedman and Kuang [10].
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REMARK 3.1. If d± = 0 (i.e. there is no feedback in the local dynamics) and c =
(i.e. no neutral term), then we have from (3.3)

and hence Θj/Wj>π/2r. By (ii), (K, . . . , K) is stable if rτ<π/2. This implies that for the
delay logistic system with discrete diffusion, dispersion cannot change the stability of

the local dynamics. This generalizes a result in [22].

REMARK 3.2. Let bj = (rdί-d2)aj, J1 = {1,2,...9 [n/2]} and /2 = {0} It follows
from (ii) that if

(3.4) r<\bj\ for 1
. ΓnΊH.τJ

(3.5) τ<τ 0 = v l ' u cot "1

then (K,..., K) is stable. Note that (3.5) allows us to choose r, c>0 so that we still
could have the stability in case rr>π/2. However, this is impossible when c = 0 (i.e. the
neutral term does not appear). The condition (3.4) can be satisfied by increasing the
dispersals. Therefore, the dispersals as well as the neutral term here exhibit a stabilizing
influence on the population dynamics (see also Gopalsamy and Zhang [15] and Kuang
[25]).

From Theorem 3.1, if | re \ > 1, (K,..., K) is always unstable. In what follows, we
therefore assume | re \ < 1.

We fix a, r, d^ and d2, regard the delay τ as a parameter and consider the Hopf
bifurcation in the equation (2.6). We find that when the dispersion is small, there are
phase-locked oscillations on the population growth, as the following theorem shows.

THEOREM 3.2. Assume that σ = 0, | rc |<l and \(rd1—d2)aj\<r for some ye

{0,l9...,[n/2]}.Let

\-r2c2 2(3.6)

Then τ = τ7 is a Hopf bifurcation point of phase-locked oscillations for the equation (2.6).

More precisely, there exists a sequence of p^-periodic solutions Nk(t) of (2.6) with τ — τk

such that
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uniformly for t e R as k -> oo

Nk

i_1(t) = NΪ(t-pkj/n), l<i<n, (modn), fc>l,

PROOF. Recall that pj(λ) = λ + (r + rcλ)e ~λτ- (rd^ - d2)aj. Let λ = iβ, β > 0, and set

Pj(iβ) = 0. Separating the real parts and imaginary parts gives

f r cos βτ + rcβ sin βτ = (rdl — d2)aj
<
( rcβ cos βτ — rsinβτ=—β.

Squaring them and solving for cosβτ in (3.8) yield

(3.8)

(3.9)

Therefore, by (3.6)

smpτ = -
r\l+c2β2)

r2(\+c2β2)

satisfies Pj(iβj) = 0 and solving for τ in (3.9) gives τ7 in (3.7).

On the other hand, differentiating />,• (λ) = 0 with respect to τ, we get

Note that

Sign {— (Re λ)
dτ

-^ .̂-λ. It follows from (3.10) and (3.9) that

-Sign<|Re

= SignH
(3.H)

= Sign < Re
I
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= Sign<Re- -- hRe — -
λ(rcλ + r ) )

r2c2

2 2

This implies that degB(pj( , τ/ + β), Ω)^dQgB(pj( 9 τ/ — ε), Ω) for some small ε>0, where
Ω = {Λ; + /J;; 0<;c<(5, βj — δ<y<βj + δ} and <5>0 is a sufficiently small number.

Consequently, the theorem follows from Theorem A in the appendix.

Let d± = d2 = Q in (2.6). Then all the local dynamics are identical, and are described
by the neutral delay logistic equation (2.5). Recall that

τ0= " "

It follows from Theorem 3.2 that τ = τ0 is a local Hopf bifurcation point for the equation

(2.5). This leads to a branch of synchronous oscillations in (2.6).

COROLLARY 3.3. Assume that σ = 0 and \rc\<\. Then τ = τ0 is a Hopf bifurcation

point of synchronous oscillations for the equation (2.6). More precisely, there exists a

sequence of pk-periodic solutions Nk(t) = (nk(t), . . . , nk(t)) of (2.6) with τ = τk such that
nk(t) is a pk-periodic solution for (2.5) and

uniformly for t e R as k -> oo .

PROOF. Note that β0 = r/^/\-r

2

c

2. The proof then follows from Theorem 3.2

by letting dί=d2 = 0

Note that <z/. = 4sin2π///ί>0. If d1/d2> l/r, then (rd1 — d2)aj increases with/ This
implies that if (rd1 — d2)aj<r for some ye{ l , . . . , [ft/2]}, then (rd1—d2)al<r for all
0</<y'. By Theorem 3.2, we have also bifurcation points τt other than τ,-, where 1 </<y,
Ty is given by (3.6)-(3.7) withy replaced by /. Moreover, the crossing number at each

bifurcation point is always — 1 . Theorem B in the appendix implies the following simple

observation:

THEOREM 3.4. Assume σ = 0 and \rc\<\. If \ (rd1—d2)aj \<r for some je (1, . . . ,
[n/2]}. Then there undergoes a global Hopf bifurcation at each τ = τz, 1 </<y', such that
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every branch of phase-locked solutions of (2.6) in C^S1; Rn) x (0, oo) x (0, oo), bifurcating
from each (0, τh wt) with τl defined by (3.7) andwt = 2π/βh does not terminate at (0, τm, βm)
with mφL

4. Stability and Hopf bifurcation: Delayed feedback. In this section we consider
the case where the dispersion feedback in the local dynamics is delayed, i.e. σ>0. We
regard σ as a parameter.

Note that in this case, we have

(4.1) pj(λ, σ) = λ + r(l+λc)e-λτ-rd1aje~λσ + d2aj

where a^ is as in (3.2).

We first obtain the following result on the asymptotic stability of the equilibrium

(&,..., K)

THEOREM 4.1. Assume that (iii) of Theorem 3.1 hold. If Q<\rd1\<d2 and the
equation

(4.2)
+ 2d2aj(r cosyτ + yrc sin yτ)

has no positive solution y for every ye {1, . . . , [ft/2]}, then (K, . . . , K) is asymptotically
stable for (2.6) with any σ>0 and τ<τ*, where τ* is given by (ii) of Theorem 3.1.

PROOF. We show that for every σ>0, all roots of Pj(λ, τ) have negative real parts.

To see this, let P(λ) = λ + r(l+λc)e~λτ + d2aj and Q(λ)= -rd^aj9 1 <j<[n/2]. We have
( i ) P( — ίy) = P(ίy) and Q( — iy) = Q(iy) for every real y;

( ii ) P(0) -f β(0) = r- (rdi - d2)aj > 0 since \rdί\<d2;
(iii) Pj(λ, 0) = λ + r(\ + λc)e ~λτ — (rd1 — d2)aj has all roots of negative real parts for

τ<τ* by Theorem 3.1;
(iv) F(y) = \P(iy)\2 — \Q(iy)\2 has neither positive nor negative zeros, since the

right-hand side of (4.2) is an even function of y.
Note that Q(λ) is a non-zero constant function. Q(λ) and P(λ) have no common imaginary
zeros. By a result of Cooke and van den Driessche [3] (see also Freedman and Kuang

[10]), Pj(λ9 τ) has only roots with negative real parts when τ<τ* and the asymptotic

stability of (K, . . . , K) follows.
This completes the proof.

REMARK 4.1. The assumption that the equation (4.2) has no positive solutions
seems a complicated condition. However, we can show that if

(I -re]2

(4.3) τd2aj(τ - 2c) + 2τ< - - — , cd2aj < 1 ,

then (4.2) has no positive solutions. Indeed, under (4.3) and | rd1 \<d2, for all y>0
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y [(1 + c 2r 2}y + 2ycr cos yτ 4- (λά^a^rc — 2r) sin τy] + 2d2a^ cos yτ

>y2[\+c2r2-2rc + (2d2ajrc-2r)τ~]+2rd2ajcosyτ

=y2l(l- re)2 + 2rτ(cd2aj - 1 )] + 2rd2aj cos jτ

while the left hand side of (4.2) is negative, implying that (4.2) has no positive solutions.
Theorem 4. 1 seems to indicate that the delay in the dispersion feedback may not have

destablizing influence.

To obtain Hopf bifurcation, we now assume that the equation (4.2) has at least
one positive solution for some ye (1, . . . , [w/2]}. Let us denote this solution by j7 . Then

(r cosyji Λ yjrc sin j^ τ + d2a^)2 + (y^ — r sin yp +yjΓc cos ^ τ)2 = r2d\a2 .

This implies that there exists a unique θj e (0, 2π] such that

( . .. ί d2dj + r cos yp + y^rc sin y^τ = rdva^ cos θj

l y j — rsin^ τ+^ rccos^τ^ — rd^a^ sinθj .

Define

,«, .,.*-.
It follows from (4.4) thatpj(ίyj9 σ7 ) = 0, i.e. ίyj is a purely imaginary root ofpj(λ, σ) with
σ = σ7 . This leads us to the following Hopf bifurcation of phase-locked oscillations.

THEOREM 4.2. Assume that there exists 76 {1, . . . , [n/2]} such that (4.2) has a
positive solution yjt If yj satisfies

(4.6) (1 +r2c2)yj-r(l -cy2 + (c- I)d2aj)smy^^r[l -2c-cd2aj~\yj cos^τ ,

then σj is a Hopf bifurcation point of phase-locked oscillations, whre σ7 is defined by (4.5).

PROOF. By Theorem A in the appendix, we need only to check that

dσ

where λ is a root of Pj(λ, σ) = 0.
To see this, let us differentiate Pj(λ, σ) = Q with respect to σ (by viewing λ as a

function of σ). It follows that

dλ

dσ l+rce-λτ-r(l+λc)e~λτ

Note that pj(λ, σ) = 0 is equivalent to
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(4.8) r(l+λc)e~λτ= -

Combining (4.7) and (4.8), we obtain

(4.9)

(dλ^-1

w,
l-σ

0 — λσ

Therefore, from (4.9),

dσ

:Sign(Re(~)
\ aσ

-λrd ίyj

-- Sign I Re

= Sign ( R e
— iy^rd^afi ίθ

1 -\-d2cii)elΘj
J- Re

ίyjrd1aje
Wj

(1 + d2aj) sin θj — re sin(^-—yp) —yj cos θj

whenever

(4.10) dj) sin ̂
7- — ̂ 7 τ) - yj cos Θ7 .

A direct calculation, by noting that θj satisfies (4.4), shows that (4.6) and (4.10) are

equivalent. This proves the theorem.

REMARK 4.2. The conditions given by (4.2) and (4.6) are usually difficult to verify.

However, we do have some solutions J7 >0 to (4.2) and (4.6) in some special cases.
Take c = 0 and 4 = 0, for example. Then (4.2) and (4.6) simplify to

(4.11) r2(dlat-l)=y(y-2rsmyτ),
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(4.12) yj — r sin yjT^ryj cosy jτ .

Define f(y} = r\d\a]-V)ly and g(y)=y-2rsinyτ, y>0. If d\a}>\ and 2rτ<l. Then
f(y) is decreasing and g(y) is increasing. It follows that there exists a unique 7j>0 such

that f(yj) = g(yj). This j>/>0 gives a positive solution to (4.11).
On the other hand, note that if r < 1/2,

and ~^—>\.
1— rcosj^ τ 1 —r

So yj satisfies (4.12). Therefore, if

d\a]>\ , 2rr<l and r< —

then ^i>0 exists such that both (4.11) and (4.12) are satisfied. For the general case,
when the coefficients are specified we may use the computer to verify (4.2) and (4.6).

5. Global Hopf bifurcation: Neutral term effect. We now consider the global
aspects of phase-locked as well as synchronous oscillations in the system (2.6). For
simplicity, we only deal with the case where σ = 0.

In order to examine local bifurcation points, we shall regard a = rc<l as a
parameter. Recall that we have the y-th characteristic equation as follows

p,μ,α) =
(5.1)

^r^-djaj, je JO, 1, 2, . . . , lj-1 j .

We look for purely imaginary roots of (5.1) for a fixed 1 <j<[n/2].
Let λ = iβ, /?>0, be a root of Pj(λ, α), i.e. pj(iβ,oc) = 0. Separating the real and

imaginary parts, respectively, we get

^ ' βcosβτ-bjS\nβτ=-oιβ.

Squaring both sides of (5.2) and adding them yield

(,3, «-̂ ±&,

if bj<r2. Also, solving for cosβτ and sinβτ in (5.2) gives us

(5.4)

Substituting (5.3) into (5.4), we then obtain
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(5.5)

Let

Assume 6/>0. It follows that /'(/?)>() for all β>^/r2-bj and hence z=f(β) is an
increasing function. Note that f(^/r2-b2) = ̂ /r2-b2/bj>Q and lim/ϊ_00/08) = 0,
lim^r- f(β)= + oo and lim^r+ f(β)= — oo. We have infinitely many solutions for β to
the equation (5.5), which correspond to the β-coordinates of the intersection points of

two graphs z = tanβτ and z = f(β).
Let 0<rr<π/2. Then we have solutions βm to the equation (5.5) as follows:

(2m— l)π Λ raπ 4 Λ „
(5.6) ; <ff m < - , m= 1, 2, 3, . . . .

2τ τ

More generally, if there is a positive integer N such that (TV— \)π/τ<r<(2N— l)π/2τ,

then

3], [Aί+,n-2]π m = U 2 )

2τ τ

exist as solutions to the equation (5.4) and if (N— q — l)π/τ <^r2 — b2<(N— q)π/τ for

some positive integer q, then

(N-l-l)π n (2N-2ί-l)π
(5.8) -̂ - —<β-ι<- - - - — , l</<^

τ 2τ

also exist as solutions other than βm to the equation (5.6). Thus, we get α values from

(5.3) as follows:

, A 2 _ 2

(5.9) α m = m J

This leads us to the following local bifurcation result.

THEOREM 5.1. Assume 0<bj<rfor someje{l, 2, . . . , [n/2]}. If

(5.10) (AΓ

/or .some integer N>0, then (0, αm, jSJ, m= -^r, -ςr+ 1, . . . , -1,1,2,..., wi'fA αm< 1
αr^ α// focα/ bifurcation points of phase-locked oscillations for (2.6).
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PROOF. It suffices to show that

d

dσ
Re/ί

for each m. To see this, we differentiate both sides of (λ — bj)eλτ

to α and obtain
= Q with respect

(5.11)
dλ

Setting pj(λ, α) = 0 implies that (λ — bj)eλτ = — r — aλ. Substituting this into (5.11) gives

(5.12)
dλ — rτ

λ λ

Consequently, using (5.2) in the last step, we have

--fατ .

Sign (Re λ)
doc λ=iβ;

= Sign Re
dλ

(5.13)

= Sign Re

= SignRel — + ατ-

= Sign(αmτ-

α — rτ

λ

sin/?mτ

= Sign( ατ —Re

- + ««τ ] =
βm

as desired. This completes the proof.

To study the global Hopf bifurcation, we choose any 0 < k < 1 and let | α | < k and
investigate the equation on the region D: = {xeRn

+;Q<\x\<K/k}, where | x \ =
max^ <j < n || x^ I j lor x^K. .

We need the following lemma concerning the periods of periodic solutions to the
equation (2.6).

LEMMA 5.2. For any integer ra>0, the equation (2.6) has no nonconstant 2τ/m-

periodic positive solution {*;(£)} ?=ι with xi-i(t) = xi(t — τ/m) in D.

PROOF. It suffices to show that the lemma holds for m= 1, 2. In the following we
only give the proof for m = 1. The case m = 2 can be treated analogously.

By way of contradiction, we suppose that x(t) = {xi(t)}"=1 is a nonconstant
2τ-periodic positive solution of (2.6) with xί_1(t) = xi(t — τ). Then xi+ί(t) = xi(t — τ),

xi + 1(t — τ) = xi(t) and xi_1(t — τ) = xi(t). Let yi(t) = xi(t — τ). We have
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and

(5.14)

Put

X,— l

yt=t

-4H \ + 2d2(yi-Xi)
& >

K
and

K

and δί = 2di, i=\, 2. The equation (5.14) becomes an implicit differential equation of
u and v

which, by solving for u' and v', leads to an ordinary differential system

(5.15)

where

, = KM~ !)[/(", *0 + gK^~ l)/(ϋ> M) + flf(ϋ, u)] + 0(u, ϋ)

l-r2c2(w-l)(t;-l)

ϋ, M) + cr(u - l)/(u, v) + gf(u, ϋ)] + g(v, u)

\-r2c2(u-\)(v-\)

f(u, v) = v-δί(u-v), g(u, v) = δ2K(u - v ) ,

(ii, v)e{(u, v)eR2; \x-1\< l/k, \y-1 \ < l / k } .

Note that (5.15) is symmetric about u and v. The diagonal Δ^{(w, v)eR2; \u— 1 \<

l/k,u = v} is invariant under the system (5.15) of ordinary differential equations.
Since any autonomous one-dimensional ordinary differential equation has no non-
constant periodic solutions, (u(t\ v(t))φΔ for all t. Without loss of generality, we as-
sume that

(5.16) u(t)<v(t) for all teR.

Replacing / by t — τ in (5.16), we get

(5.17) u(t-τ)<v(t-τ) for all tεR.

On the other hand, we have
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.
k k

Consequently, (5.17) implies that v(t)<u(t) for all tεR, which contradicts (5.16). This
completes the proof.

We now state and prove the following global bifurcation theorem.

THEOREM 5.3. Assume n is even and Q<(rdi—d2)<r/4. Suppose that there exists
a positive integer N satisfying (5.10). Let q be an integer such that

τ

Then for each integer m such that

at least one of the following conclusions holds:
( i ) For any ce(0, αm/r), the system (2.6) has a p-perίodic solution {Ni(t)}1=1 with

τ/(N+m -\)<p< 2τ/(2(N+m) - 3) and satisfying

(ii) For any ce(αm/r, fc/r), the conclusion in (i) holds
(iii) For any A e (0, K), there exists a CA > 0 and a p-periodίc solution { Nt(t)} "= ± to

(2.6) with C = CA, with period p > 0 as in (i) and satisfying

max \Nt(t)\=A9 /=!, 2, . . . , / ι ;
ί<ί<n

ίefl

(iv) For any Aε(K, K/k), the conclusion in (iii) holds',

where αm is given by (5.9).

PROOF. We choose 7' = «/2. Then by (3.2), an/2 = 4anά bj = 4(rd1-d2)<r. It follows
that, from (5.3) and (5.7)-(5.8), βm and β.l exist to the equation (5.5), where 1 <l<q and

and the locations of βm, β_t are estimated by (5.7) and (5.8). Let αm be any αm given
by (5.9). By Theorem 5.1, (0, αm, βm) is a bifurcation point with rc/2-th crossing number

7M/2(αw, βm)<0. Consequently, the assertion of Theorem B in the appendix implies that
each bifurcating branch ^m from (0, αm, βm) of phase-locked periodic solutions continues
to the boundary dG, where
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G : = {(N(pt\ α,/>); N(pt)eD is a 1-periodic solution of (2.6),

Note that by Lemma 5.2, (2.6) has no nonconstant 2τ/ra-periodic phase-locked solu-
tions in D with Ni_1(t) = Nί(t — τ/m). Every bifurcating branch ^m has the property

if
TV+w-1 2(TV+m)-3

or

2τ τ
,

27V— 2m— 1 TV— ra— I
if

This implies that each ^m contains a least one point from dG with α = fc, or α = 0, or
N(pt)edD. Consequently, at least one of (i)-(iv) holds. This completes the proof.

Let us now consider the global Hopf bifurcation of synchronous oscillations, i.e.
bifurcation of periodic solutions of the form N(t) = (n(t\ n(t\ . . . , n(t)). We need only
to study the Hopf bifurcation for the scalar logistic equation (2.5). The characteristic
equation for the linearized equation at K of (2.5) reads

(5.18) p(λ, α)-/l + (r + α/ί)e-Aτ-0 ,

where α = rc< 1. We again use α as a bifurcation parameter.

As before, we first look at local bifurcation points. It follows that p(λ, α) = 0 has
purely imaginary roots iβ where each β is a solution of the equation

(5.19) tanβτ=--

We can also estimate the locations of β by viewing the solution β of (5.19) as the

intersection points of two graphs z = tanβτ and z = — r/^/β2 — r2. If r<π/2τ, then we

have

(2m—l)π Λ raπ ^ ^
(5.20) </?m< , m-1,2,. . .

2τ τ

and

/ g 2 _ _ 2

(5.21) α m = V P J m = l , 2 , . . . .

A calculation similar to that of (5.13) shows that each (0, αm, jSJ is a local bifurcation

point and their crossing numbers are all of the same sign.
We need a similar result concerning the periods of periodic solutions to (2.5).
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LEMMA 5.4. For each integer m>0 and constant 0<k<l, the equation (2.5) has
no nonconstant 2τ/m-periodίc solution 7V(ί)e(0, K/k).

PROOF. It suffices to show the lemma for m = 1. Suppose that N(t) is a nonconstant
2τ-ρeriodic solution of (2.5) with N(t)ε(Q, K/k). Let M(t) = N(t-τ). We have

(5.22)

Put

N'(t) = ι 1-
M(t) + cM'(t)'

K

N(t) + cN'(t)'

K

u(t)=l-
N(t)

K
and v(t)=l-

M(t)

K

Then (5.21) simplifies to

An argument similar to that in the proof of Lemma 5.2 now leads to a contradiction.
This completes the proof.

We now obtain the following global result for the equation (2.5).

THEOREM 5.5. Let ^/3 β<k<\ be given. Assume that π^/l—k2<rτ<π/2. Then
there exist (αm, βm) given by (5.20) and (5.21), m= 1, 2, . . . , q, such that at least one of
(i)-(iv) below holds for the equation (2.5):

( i ) For any ce(0, αm/r), (2.5) has a p-periodic positive solution N(t) with period
τ/m<p<2τ/(2m-l);

(ii) For any ce(αm/r, k/r), the conclusion in (i) holds',
(iii) For any A e (0, K), there is a CA > 0 such that a positive p-periodic solution N(t)

to (2.5) with C = CA exists, with period p as in (i) andma,xteRN(t) = A;
(iv) For any Ae(K, K/k), the conclusion in (iii) holds;

where q is an integer satisfying

rτ

Consequently, the above bifurcating periodic solutions N(t) to (2.5) give rise to a global
Hopf bifurcation of synchronous oscillations (N(t), ..., N(t)) in (2.6).

PEOOF. The proof is similar to that of Theorem 5.3. We therefore omit it.

REMARK 5.1. It is well-known (by a result of Wright [48]) that the unique positive
equilibrium K of (2.2) is globally stable under the condition r<3/2τ. However, Theorem
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5.5 shows that when the neutral term appears, the system (2.5) may have periodic
solutions. This implies, in another aspect, that the neutral term can have a destabilizing
effect on population dynamics.

Theorem 5.5 has the following corollary.

COROLLARY 5.6. Let ΰ<k< 1 be given as in Theorem 5.5 and π^]\ —k2<rτ< 3/2.
Then at least one of the following statements holds for each m> 1 as in Theorem 5.5:

( i ) For any am/r<c< 1/r, the neutral logistic equation (2.5) possesses a periodic

solution',
(ii) For any Q<A<K, there exists a number 0<cA<\/r such that the neu-

tral logistic equation (2.5) with C = CA has a periodic solution N(t) with

max,eR\N(t) + K\ = A;
(Hi) For any K<A<Kjk, the conclusion in (ii) holds',

where

and βm is given by (5.19)-(5.20).

PROOF. Note that the equation (2.5) reduces to (2.2) when c = Q and by Remark
5.1, the equation (2.2) has no nonconstant periodic solutions. This excludes the
alternative (i) in Theorem 5.5 and the conclusion follows.

6. Appendix. In this appendix, we describe two results regarding the existence
and global continuation of symmetric periodic solutions of neutral functional differential

equations.
Let τ>0 be a given constant and C= C([ — τ, 0]; Rn) the Banach space of bounded

continuous functions from [ — τ, 0]-»/?" equipped with the supnorm || ||. As usual,

for ;ceC([-τ, 0]; Rn) and />0, define xtεC by xj(s) = x(t + s)9 se[-τ, 0].
We consider the following neutral functional differential equation

(6.1) ~lx(t)-b(xt,a)-]=F(xt,a),
at

where xeRn, oceR, b, F: CxR-*Rn are continuously differentiate and satisfy
(Al) F: Cx/?->/?" is completely continuous and there exists a constant fce[0, 1)

such that \b(φ9 oc)-b(φ, a)\<k\\φ-ψ\\ for all φ,ψeC,oceR.
(A2) There exists a real orthogonal representation p: Zn-^O(Rn) of Zn on Rn such

that b(p(y}φ, α) = p(y}b(φ, α), F(p(y}φ, α) - p(y}F(φ, α) for all φ e C, α 6 R and γ e ZH,
where p(y}φεC is defined by (p(y)φ)(s} = p(y}φ(s) for all se[ — τ, 0].

(A3) F(0,α) = 0 for all OCE/? and there exists α0e/? such that Z)xF(0,α0): Rn^Rn

is an isomorphism, where F: RnxR-^Rn, the restriction of F on Rn x /?, is
defined by F(x,a) = F(x,a),xeRn,aeR, x is the constant map from [ — τ, 0]
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into Rn with the value xeR" and /V^O, α0) denotes the derivative of F with
respect to x at (0, α0).

We call (0, α) a stationary solution and (0, α0) a nonsingular stationary solution. The
characteristic equation of (6.1) at (0, α) is given by

(6.2) de

where Δ(Λ) is an n x n complex matrix defined by

, φλ' Id)] -

), . . . , Dφb(0, α

and {εl5 . . . , εj is the standard basis of Rn and Cn = Rn + iR".
A solution λ e Cto the equation (6.2) is called a characteristic value of the stationary

solution (0, α). The point (0, α) is called a center of (6.1) if (6.2) has a pair of purely
imaginary characteristic values and it is said to be an isolated center if there is no other
center in some neighborhood of (0, α) in RnxR.

We also make the following assumption:
(A4) (0, α0) is an isolated center of (6.1).

By (A4), there exist constants β0>0 and (5>0 such that detcΔαo(zβ0) = 0 and if
0 < I a - α0 1 < (5, then iR n {λ e C; detcΔβ(λ) = 0} = 0.

Choose now constants £ = &(α0, β0)>0 and c = c(a0, β0)>0 such that the closure of
Q = (0, ft) x(βQ-c,βQ + c}^R2 contains no other zero of detcΔαo(/l). Note that detcΔα(Λ)
is analytic in λeΩ and continuous in αe[α0 — δ, α0 + <5], detcΔαo±<5(/ί)/0 for λedΩ.

The real orthogonal representation p of Zn induces a unitary representation, again

denoted by p, on C". Let us identify Zn = {γεC; γ" = l} and let yn = ei2π/n. Put
Tn = p(γn): Rn^Rn and denote by σ(ΓΛ)eCthe spectrum of Tn.

Define a subset of integers /={7'e{0, 1, ...,«-!}; el'2πj/neσ(Γπ)}. We have the

following isotypical decomposition of Cn

C n _ /T\ /~Ή
— vt/ ^ j ?

jeJ

where C", ye /is the direct sum of all one-dimensional ZΠ-irreducible subrepresentation
spaces VofC" such that each restricted representation p \v is isomorphic to the irreducible
representation of Zn on C given by

p(^ί2π^)z-^ί2πj/Mz, zeC, y e / .

Note that Z? and F are ZM-equivariant by (A2). Thus Δ^(A) : Cn -> Cw is ZΠ-equivariant
for all αe/? and A e C with Re/l>0. Therefore, Δ(A)C"c=C" for each ye/. This gives
for each ye/ a map
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Recall that detcΔαo±)5(A)^0 for λedΩ. We have detcΔαo±(5J(/l)^0 for λedΩ and jeJ.
Consequently, we obtain a well-defined number

c/α0, j80) = detJl(detcΔβo_ί tχ ), Ω)-detβ(detcΔαo+<5J( ), Ω)

for each j e /, where detB denotes the classical Brouwer degree. We will call Δαj7 (λ) = 0
the 7-th characteristic equation and c7 (α0, β0) the 7-th crossing number of (αθ5 /?0).

We can now state a local symmetric Hopf bifurcation theorem.

THEOREM A. Assume that (A1)-(A4) hold. If there exists a jeJ such that
c7 (α0, /?0)τ^0, then (α0, /?0) w a bifurcation point. More precisely, there is a sequence of

triples {(xk, αfc, βk)}™ such that
( i ) (xk, αfc, βfc) — » (0, α0, β0) uniformly for teR as k->ao;

(ii) xk(t) is a 2π/β Aperiodic solution of (I) with α = αk, k= 1, 2, . . .

(iii) p(ei2«ln)x&) = xk(t + 2πj/(βkn)) for teR,k=l,2, ... .

For a global bifurcation theorem, we need the following assumptions:
(A5) F(x,α) = 0 with JCG/?" such that p(ei2π/n)x = x if and only if x = 0. Moreover,

(̂0, α)eGL(Λ") for every αe/?.
(A 6) The set {αe/?; the stationary solution (0, α) has purely imaginary charac-

teristic values} is discrete.
For every jeJ, denote by ^J the closure in H1(S1; R") x R2 of the set consisting

of (z, α, p) such that x(t) = z(t/p) is a /^-periodic solution of (6.1) with p ( e l 2 π / n ) z ( t ) =

z(t+j/n). Put

M = {(0, α, p); α e /?, /?>0} cz //^S1; ^M) x R2 .

The global Hopf bifurcation theorem can be stated as follows:

THEOREM B. Let (Al), (A2), (A5) αrcc/ (A6) hold. If there exists an integer j such
that yι has a bounded connected component ,̂ then <$* Γ n M is a finite set and

=0.

Theorems A and B are proved in Xia [49] by using the equivariant degree for
set-condensing mappings. They can also be proved by first using the symmetry condition
(iii) in Theorem A and then applying the S1 -degree developed in [23]. For details, see

[47].
In our applications to system (2.6), Zn acts linearly on Rn by

, xeR"

and the associated mappings b and F are equivariant with respect to this action.
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