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1. Introduction. Consider the following hyperlogistic equation

«0t (1.1)

where r,K,tje (0,°°), and aj = pj/qj are rational numbers with qj odd, pt and q, are
m

co-prime, 1 <; '<m, and II (-1)"'= - 1 .

When m = 1 and ô  = 1, Eq. (1.1) reduces to the well-known delay logistic equation

which has been extensively investigated by many authors. See for example [3, 5, 6, 7, 10,
13, 16]. Other related work includes [1, 2, 12] (in the case m = 1 and a) i^\) and [4] (in
the case ax = . . . = am = 1). Allowing m^l, we wish to discuss the effect of different
delayed terms on the oscillatory and asymptotic behaviors of solutions.

By making a change of variables

one can write (1.1) as
d

x(t) + r[l + x(t)]Y\
at /=1

(1.3)

We are interested in those solutions x(t) of (1.3) satisfying x(t)>-\ which
correspond to solutions N(t) of (1.1) satisfying N(t)^0. Thus, the initial condition

t) = <f>(t)>-l, ( s [ i o - r , 4 (14)

C([<o-r,ro],[-l,°°)) and

should be specified, where r = maxlt j , . . . , xm). It can be easily shown that for any t0 and
any <f> satisfying (1.4) Eq. (1.3)—(1.4) has a unique solution x(t; t0, 4>) on [to-r, °°) and
j t ( / ) > - l for/>r0-

Of major concern in this paper is the oscillatory property of equation (1.3). We will
m

show that all solutions of (1.3)—(1.4) are oscillatory when 2 a; < 1, but at least one
m ;=1

non-oscillatory solution exists when £ o ,> l . For the case where E aj = l, we will
;=i y=i

t Research partially supported by NNSF-P. R. China.
* Research partially supported by NSERC-Canada.

Glasgow Math. J. 38 (1996) 255-261.



256 JIANSHE YU, JIANHONG WU AND XINGFU ZOU

establish an equivalence, as far as oscillation is concerned, between (1.3) and its so-called
quasilinearized equation

jty(<) + rf\yait-Tj) = o, (1.5)
at ;=1

whose oscillation has been thoroughly studied in [8, 9, 14, 15]. Consequently, some
existing results can be applied to give necessary and sufficient conditions for the

m

oscillation of Eq. (1.3) when 2 a, = 1.

2. The case 2 a, < 1.

m
THEOREM 2.1. If a = 2 a;-<l, then every solution of Eq. (1.3)—(1.4) oscillates.

;=i

Proof. Assume, by way of contradiction, that Eq. (1.3)—(1.4) has a non-oscillatory
solution x(t). We first suppose that x(t) is eventually positive. Then, by (1.3), we
eventually have

which implies that x(t) is eventually decreasing, thus

x(t - Xj) ^-x(t) eventually, for; = 1 , . . . , m.

and hence

d d m

-x(t) + r{\ + x(t))x"(t) < - x ( t ) + r(l + *(*)) U xa'(t - xf) = 0.

Thus

-x^'a{t) < -(1 - a)r[\ + x(t)] < -(1 - a)r,

which implies that xl~a(t)—> -°°, as t—> <». This is impossible since x(t) >0 eventually and
1 - a > 0.

We next suppose that x(t) is eventually negative. Noting that x(t) > - 1 for t s 0, we
have eventually .

jtx(t)=-r(l+x(t))f[x°it-Tj)
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which implies that x(t) is eventually increasing. Hence, there exists Ty>0 such that
x(t-rj)<x(t)<Oandl+x(t)>l+x(Tl)>0, for all f > 7} and / = 1 , . . . , m. Therefore

d d m

~x{t) + r(l+x(t))x%t)2:-x{t) + r(l+x{t))T[xa<{t-T,) = 0, t>Tu

and hence

Integrating the above inequality from 7i to r > 0 and letting f-»°°, we would get
*'""(/)-> -oo, as r-»<». This is a contradiction to the fact that x(t)>-l for r>0 , and
completes the proof.

3. The case 2 a, > 1.

THEOREM 3.1. If a = 2 a, > 1, tfien £g. (1.3) /ias fl non-oscillatory solution.
;='

In order to complete the proof of Theorem 3.1, we will need the following Lemma
from [15].

m

LEMMA 3.2. Every solution of Eq. (1.5) with 2 a, = 1 oscillates if and only if

Moreover, the above inequality holds if and only if

— y(t) + r [ [ ya\t - r;) ^ 0 has no eventually positive solution,

~y(t) + r Y[ ya'{t — tj) ^ 0 has no eventually negative solution.

Proof of Theorem 3.1. Choose rational numbers jS;-= r;-/sy e [0,») with s, odd,
. s / <m, such that

fi,*ah for ; = l , . . . , w ,

Let e > 0 satisfy
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Then, by Lemma 3.2, the following equation

(3.1)

has a positive solution x(t) defined on [/0, °°) for some f0 —0- It is clear that *(?)-> 0, as
m m

t —* oo. Since 6, ^ a, and 2 /3, < 2 or.-, we have

fj x"'(r - r,)

,5
Thus, there exists tx > t0 such that

(l+*(O)fU°'('-*y)<e]

and hence

= 0.

for / a /„

-Ty) = 0, for f^r,. (3.2)

Set y(t) = ln(l + x(t)). Then, from (3.2) we have

jy(r) + r f l K - ^ - i r ^ O , for r>r,,
dt ;=1

which yields

4 n ^ - l ] ' 1 * , for r>r,. (3.3)

Define X to be the set of piecewise continuous functions z: [?i, - r , °°)-»[0,1] and endow
X with the usual pointwise ordering ^ , that is

Zi ^ z 2 » Zi(0 ^ z2(0» for all / > ri - r.

Then (X; ^ ) becomes an ordered set. It is obvious that for any nonempty subset M of X,
inf(/Vf) and sup(M) exist. So (X; ^ ) is actually a complete lattice. Define a mapping V on
X as follows:

r fx m

7 } 7"

For each z e X, we can show that

0£
y ( 0 J( >

, for r > r , ,
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and
s l , for r e f r - T . r , ] .

This shows that WXgX. Moreover, it can be easily verified that W is a monotone
increasing mapping. Therefore, by the Knaster-Tarski fixed-point theorem (see [11]), we
know that there exists a z e X such that Wz = z, that is

roc mn
y(0 Ji ;=1

for r>

(3.4)
. t\ v M'

By (3.4), z(t) is continuous on (/, - r, °°). Moreover, since z(t)>0 for t e [tl - r, t^), we
must have z(t) > 0, for all t^tv Set w(t) = y(f)z(f). Then w(t) is positive, continuous on
ffi - T, oo) and satisfies
1 ' roc m

w(t) = r\ [ I [ e w ( s ~ T i > - l ] a ' d s , for r > f , . (3.5)
J, ; = i

Differentiating (3.5) yields
d ™
— wit) + r I I [ew(l T > ) - i r ' = 0, for f > / h
dt y = i

which shows that ew(l)-l is a positive solution of (1.3) on [fi,00). This completes the
proof.

m
4. The case 2 a, = 1.

/=i

The following theorem establishes an equivalence between the oscillation of Eq.
(1.3)-(1.4) and the oscillation of Eq. (1.5):

m

THEOREM 4.1. When 2 a,- = 1, every solution of Eq. (1.3)-(1.4) oscillates if and only

if every solution of Eq. (1.5) oscillates.
Proof. ^>: Assume that Eq. (1.5) has a non-oscillatory solution y(t). Since —y(t) is also

a solution of Eq. (1.5), we may assume that y{t) is eventually positive. We will prove that
Eq. (1.3)-(1.4) has a non-oscillatory solution for some t0. To this end, we only need to
prove that the following equation

A m

7z(0 + ' - r i ( l -^ ( ' - T ' - ) ) a | = 0 (4-2)
dt , = i

has an eventually positive solution. Let t0 be such that y(t - r)>0 for t^t0. Using the
inequality 1 - e~x ̂  x for x ̂  0, we have

d m d m

j(y(t) + rn(i-e-y^y^jty(t) + rnyai>-rj) = o, for t*t0. (4.3)
It can be easily shown that _y(f)->0, as f-K». Integrating the above inequality from / to
oo, we obtain

y(0^r\ n (1 - e-^yi, for r>/0-

Now a similar argument to the proof of Theorem 3.1 shows that (4.2) would have an
eventually positive solution z(t) on [t0, °°) satisfying z(t) > 0 for all t s t0.
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<=: Assume, for the sake of contradiction, that (1.3)—(1.4) has a non-oscillatory
solution x(t) for every t0. Then 1 + x(t) > 0, for t ^ t0. We now distinguish two cases:

Case (/): x(t) is eventually positive. Then there exists T^t0 such that ;t(r)>0, for
/ > T. From (1.3) it follows that

jx(t) + r ft xa'(t - rj) ^jx(t) + r(l + x(t)) ft x°'(t - x,) = 0. (4.4)
at j=\ at ;=i

This, together with Lemma 3.2, implies that (1.5) has a non-oscillatory solution, contrary
to the assumption that every solution of (1.5) oscillates.

Case (ii): x(t) is eventually negative. Since l + * ( / ) > 0 , for t=zt0, and x(t)<0 for
l > 7 , for some T^t0, we have

d m

-*(0 = r(l + *(0)n[-*('-r,)r>0, for t > T,
at y=cl

from which we can easily see that x(/)/'O as f-»». On the other hand, in view of Lemma
3.2, we can choose e e (0,1) such that

m i

r ( l - e ) 2 <*,*)•>-. (4-5)

Now, let T, > 7 be sufficiently large such that 1 > 1 + x(t) > 1 - e, for t > T. Then, by (1.3)
we have

d m d m

-x(t) + r{\ - O i l *Q'(< - tf * T / (0 + r(l + x(/)) El ^'C - Ty) = 0,

for f > 7 + T, (4.6)

which is also a contradiction since, by Lemma 3.2, (4.5) implies that the inequality

j*(0 + r(l-e) ft *•'('-*/) 2=0
at ;-=i

can not have an eventually negative solution. This completes the proof.

The following corollary is an immediate result of Theorem 4.1 and Lemma 3.2.
m

COROLLARY 4.2. / / E otj = l, then every solution of (1.3)—(1.4) oscillates (or every

positive solution o/( l . l ) oscillates about the steady state K) if and only if
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