ON A HYPERLOGISTIC DELAY EQUATION

by JIANSHE YU, \dagger JIANHONG WU* and XINGFU ZOU
(Received 25 January, 1995)

1. Introduction. Consider the following hyperlogistic equation

$$
\begin{equation*}
\frac{d}{d t} N(t)=r N(t) \prod_{j=1}^{m}\left[1-\frac{N\left(t-\tau_{j}\right)}{K}\right]^{\alpha_{j}}, \quad t \geq 0 \tag{1.1}
\end{equation*}
$$

where $r, K, \tau_{j} \in(0, \infty)$, and $\alpha_{j}=p_{j} / q_{j}$ are rational numbers with q_{j} odd, p_{j} and q_{j} are co-prime, $1 \leq j \leq m$, and $\prod_{j=1}^{m}(-1)^{\alpha_{j}}=-1$.

When $m=1$ and $\alpha_{1}=1$, Eq. (1.1) reduces to the well-known delay logistic equation

$$
\begin{equation*}
\frac{d}{d t} N(t)=r N(t)\left[1-\frac{N(t-\tau)}{K}\right] \tag{1.2}
\end{equation*}
$$

which has been extensively investigated by many authors. See for example $[\mathbf{3}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{1 0}$, 13, 16]. Other related work includes [1, 2, 12] (in the case $m=1$ and $\alpha_{1} \neq 1$) and [4] (in the case $\alpha_{1}=\ldots=\alpha_{m}=1$). Allowing $m \neq 1$, we wish to discuss the effect of different delayed terms on the oscillatory and asymptotic behaviors of solutions.

By making a change of variables

$$
x(t)=\frac{N(t)}{K}-1
$$

one can write (1.1) as

$$
\begin{equation*}
\frac{d}{d t} x(t)+r[1+x(t)] \prod_{j=1}^{m} x^{\alpha_{j}}\left(t-\tau_{j}\right)=0 \tag{1.3}
\end{equation*}
$$

We are interested in those solutions $x(t)$ of (1.3) satisfying $x(t) \geq-1$ which correspond to solutions $N(t)$ of (1.1) satisfying $N(t) \geq 0$. Thus, the initial condition

$$
\left\{\begin{array}{l}
x(t)=\phi(t) \geq-1, \quad t \in\left[t_{0}-\tau, t_{0}\right] \tag{1.4}\\
\phi \in C\left(\left[t_{0}-\tau, t_{0}\right],[-1, \infty)\right) \quad \text { and } \quad \phi\left(t_{0}\right)>-1
\end{array}\right.
$$

should be specified, where $\tau=\max \left\{\tau_{1}, \ldots, \tau_{m}\right\}$. It can be easily shown that for any t_{0} and any ϕ satisfying (1.4) Eq. (1.3)-(1.4) has a unique solution $x\left(t ; t_{0}, \phi\right)$ on $\left[t_{0}-\tau, \infty\right)$ and $x(t)>-1$ for $t \geq t_{0}$.

Of major concern in this paper is the oscillatory property of equation (1.3). We will show that all solutions of (1.3)-(1.4) are oscillatory when $\sum_{j=1}^{m} \alpha_{j}<1$, but at least one non-oscillatory solution exists when $\sum_{j=1}^{m} \alpha_{j}>1$. For the case where $\sum_{j=1}^{m} \alpha_{j}=1$, we will

[^0]Glasgow Math. J. 38 (1996) 255-261.
establish an equivalence, as far as oscillation is concerned, between (1.3) and its so-called quasilinearized equation

$$
\begin{equation*}
\frac{d}{d t} y(t)+r \prod_{j=1}^{m} y^{\alpha_{j}}\left(t-\tau_{j}\right)=0, \tag{1.5}
\end{equation*}
$$

whose oscillation has been thoroughly studied in $[\mathbf{8}, \mathbf{9}, \mathbf{1 4}, \mathbf{1 5}]$. Consequently, some existing results can be applied to give necessary and sufficient conditions for the oscillation of Eq. (1.3) when $\sum_{j=1}^{m} \alpha_{j}=1$.
2. The case $\sum_{j=1}^{m} \alpha_{j}<1$.

Theorem 2.1. If $\alpha=\sum_{j=1}^{m} \alpha_{j}<1$, then every solution of Eq. (1.3)-(1.4) oscillates.
Proof. Assume, by way of contradiction, that Eq. (1.3)-(1.4) has a non-oscillatory solution $x(t)$. We first suppose that $x(t)$ is eventually positive. Then, by (1.3), we eventually have

$$
\frac{d}{d t} x(t)=-r(1+x(t)) \prod_{j=1}^{m} x^{\alpha_{j}}\left(t-\tau_{j}\right)<0
$$

which implies that $x(t)$ is eventually decreasing. thus

$$
x\left(t-\tau_{j}\right) \geq x(t) \quad \text { eventually, for } j=1, \ldots, m
$$

and hence

$$
\frac{d}{d t} x(t)+r(1+x(t)) x^{\alpha}(t) \leq \frac{d}{d t} x(t)+r(1+x(t)) \prod_{j=1}^{m} x^{\alpha_{j}}\left(t-\tau_{j}\right)=0 .
$$

Thus

$$
\frac{d}{d t} x^{1-\alpha}(t) \leq-(1-\alpha) r[1+x(t)] \leq-(1-\alpha) r
$$

which implies that $x^{1-\alpha}(t) \rightarrow-\infty$, as $t \rightarrow \infty$. This is impossible since $x(t)>0$ eventually and $1-\alpha>0$.

We next suppose that $x(t)$ is eventually negative. Noting that $x(t)>-1$ for $t \geq 0$, we have eventually

$$
\begin{aligned}
\frac{d}{d t} x(t) & =-r(1+x(t)) \prod_{j=1}^{m} x^{\alpha_{j}}\left(t-\tau_{j}\right) \\
& =r(1+x(t)) \prod_{j=1}^{m}\left[-x\left(t-\tau_{j}\right)\right]^{\alpha_{j}}>0
\end{aligned}
$$

which implies that $x(t)$ is eventually increasing. Hence, there exists $T_{1}>0$ such that $x\left(t-\tau_{j}\right) \leq x(t)<0$ and $1+x(t)>1+x\left(T_{1}\right)>0$, for all $t>T_{1}$ and $j=1, \ldots, m$. Therefore

$$
\frac{d}{d t} x(t)+r(1+x(t)) x^{\alpha}(t) \geq \frac{d}{d t} x(t)+r(1+x(t)) \prod_{j=1}^{m} x^{\alpha_{j}}\left(t-\tau_{j}\right)=0, \quad t>T_{1}
$$

and hence

$$
\begin{aligned}
\frac{d}{d t} x^{1-\alpha}(t) & \leq-r(1-\alpha)(1+x(t)) \\
& <-r(1-\alpha)\left(1+x\left(T_{1}\right)\right)<0, \quad t \geq T_{1}
\end{aligned}
$$

Integrating the above inequality from T_{1} to $t>0$ and letting $t \rightarrow \infty$, we would get $x^{1-\alpha}(t) \rightarrow-\infty$, as $t \rightarrow \infty$. This is a contradiction to the fact that $x(t)>-1$ for $t \geq 0$, and completes the proof.
3. The case $\sum_{j=1}^{m} \alpha_{j}>1$.

Theorem 3.1. If $\alpha=\sum_{j=1}^{m} \alpha_{j}>1$, then Eq. (1.3) has a non-oscillatory solution.
In order to complete the proof of Theorem 3.1, we will need the following Lemma from [15].

Lemma 3.2. Every solution of Eq. (1.5) with $\sum_{j=1}^{m} \alpha_{j}=1$ oscillates if and only if

$$
r \sum_{j=1}^{m} \alpha_{j} \tau_{j}>\frac{1}{e}
$$

Moreover, the above inequality holds if and only if

$$
\left\{\begin{array}{l}
\frac{d}{d t} y(t)+r \prod_{j=1}^{m} y^{\alpha_{j}}\left(t-\tau_{j}\right) \leq 0 \text { has no eventually positive solution, } \\
\frac{d}{d t} y(t)+r \prod_{j=1}^{m} y^{\alpha_{j}}\left(t-\tau_{j}\right) \geq 0 \text { has no eventually negative solution. }
\end{array}\right.
$$

Proof of Theorem 3.1. Choose rational numbers $\beta_{j}=r_{j} / s_{j} \in[0, \infty)$ with s_{j} odd, $1 \leq j \leq m$, such that

$$
\beta_{j} \leq \alpha_{j}, \quad \text { for } \quad j=1, \ldots, m, \quad \sum_{j=1}^{m} \beta_{j}=1, \quad \prod_{j=1}^{m}(-1)^{\beta_{i}}=-1 .
$$

Let $\varepsilon>0$ satisfy

$$
r \varepsilon \sum_{j=1}^{m} \beta_{j} \tau_{j} \leq \frac{1}{e}
$$

Then, by Lemma 3.2, the following equation

$$
\begin{equation*}
\frac{d}{d t} x(t)+r \varepsilon \prod_{j=1}^{m} x^{\beta_{i}\left(t-\tau_{j}\right)=0 .} \tag{3.1}
\end{equation*}
$$

has a positive solution $x(t)$ defined on $\left[t_{0}, \infty\right)$ for some $t_{0} \geq 0$. It is clear that $x(t) \rightarrow 0$, as $t \rightarrow \infty$. Since $\beta_{j} \leq \alpha_{j}$ and $\sum_{j=1}^{m} \beta_{j}<\sum_{j=1}^{m} \alpha_{j}$, we have

$$
\lim _{t \rightarrow \infty}\left(1+x(t) \frac{\prod_{j=1}^{m} x^{\alpha_{i}\left(t-\tau_{j}\right)}}{\prod_{j=1}^{m} x^{\beta_{j}\left(t-\tau_{j}\right)}}=0 .\right.
$$

Thus, there exists $t_{1}>t_{0}$ such that

$$
(1+x(t)) \prod_{j=1}^{m} x^{\alpha_{j}\left(t-\tau_{j}\right)<\varepsilon \prod_{j=1}^{m} x^{\beta_{,}\left(t-\tau_{j}\right),} \text { for } t \geq t_{1}, ~, ~}
$$

and hence

Set $y(t)=\ln (1+x(t))$. Then, from (3.2) we have

$$
\frac{d}{d t} y(t)+r \prod_{j=1}^{m}\left[e^{y\left(t-\tau_{i}\right)}-1\right]^{\alpha_{i}}<0, \quad \text { for } \quad t \geq t_{1},
$$

which yields

$$
\begin{equation*}
y(t)>r \int_{t}^{\infty} \prod_{j=1}^{m}\left[e^{y\left(s-\tau_{j}\right)}-1\right]^{\alpha_{j}} d s, \text { for } t \geq t_{1} . \tag{3.3}
\end{equation*}
$$

Define \mathbf{X} to be the set of piecewise continuous functions $z:\left[t_{1},-\tau, \infty\right) \rightarrow[0,1]$ and endow \mathbf{X} with the usual pointwise ordering \leq, that is

$$
z_{1} \leq z_{2} \Leftrightarrow z_{1}(t) \leq z_{2}(t), \text { for all } t \geq t_{1}-\tau .
$$

Then ($\mathbf{X} ; \leq$) becomes an ordered set. It is obvious that for any nonempty subset \mathbf{M} of \mathbf{X}, $\inf (M)$ and $\sup (M)$ exist. So $(\mathbf{X} ; \leq)$ is actually a complete lattice. Define a mapping Ψ on \mathbf{X} as follows:

$$
(\Psi z)(t)=\left\{\begin{array}{l}
\frac{r}{y(t)} \int_{t}^{x} \prod_{j=1}^{m}\left[e^{y(s-\tau) 2\left(s-\tau_{j}\right)}-1\right]^{a_{j}} d s, \quad t \geq t_{1} \\
\frac{t}{t_{1}}(\Psi z)\left(t_{1}\right)+\left(1-\frac{t}{t_{1}}\right), \quad t_{1}-\tau \leq t \leq t_{1}
\end{array}\right.
$$

For each $z \in \mathbf{X}$, we can show that

$$
0 \leq\left(\Psi_{z}\right)(t) \leq \frac{r}{y(t)} \int_{t}^{\infty} \prod_{j=1}^{m}\left[e^{y\left(s-\tau_{j}\right)}-1\right] d s<1, \text { for } t \geq t_{1}
$$

and

$$
0 \leq(\Psi z)(t) \leq 1, \quad \text { for } \quad t \in\left[t_{1}-\tau, t_{1}\right]
$$

This shows that $\Psi \mathbf{X} \subseteq \mathbf{X}$. Moreover, it can be easily verified that Ψ is a monotone increasing mapping. Therefore, by the Knaster-Tarski fixed-point theorem (see [11]), we know that there exists a $z \in \mathbf{X}$ such that $\Psi_{z}=z$, that is

$$
z(t)=\left\{\begin{array}{l}
\frac{r}{y(t)} \int_{t}^{\infty} \prod_{j=1}^{m}\left[e^{y\left(s-\tau_{j}\right) z\left(s-\tau_{j}\right)}-1\right]^{\alpha,} d s, \text { for } t \geq t_{1}, \tag{3.4}\\
\frac{t}{t_{1}}(\Psi z)\left(t_{1}\right)+\left(1-\frac{t}{t_{1}}\right), \quad t_{1}-\tau \leq t \leq t_{1} .
\end{array}\right.
$$

By (3.4), $z(t)$ is continuous on $\left[t_{1}-\tau, \infty\right)$. Moreover, since $z(t)>0$ for $t \in\left[t_{1}-\tau, t_{1}\right)$, we must have $z(t)>0$, for all $t \geq t_{1}$. Set $w(t)=y(t) z(t)$. Then $w(t)$ is positive, continuous on $\left[t_{1}-\tau, \infty\right)$ and satisfies

$$
\begin{equation*}
w(t)=r \int_{t}^{\infty} \prod_{j=1}^{m}\left[e^{w\left(s-\tau_{j}\right)}-1\right]^{\alpha} d s, \text { for } t \geq t_{1} \tag{3.5}
\end{equation*}
$$

Differentiating (3.5) yields

$$
\frac{d}{d t} w(t)+r \prod_{j=1}^{m}\left[e^{w\left(t-\tau_{j}\right)}-1\right]^{\alpha_{j}}=0, \quad \text { for } \quad t \geq t_{1}
$$

which shows that $e^{w(t)}-1$ is a positive solution of (1.3) on $\left[t_{1}, \infty\right)$. This completes the proof.

4. The case $\sum_{j=1}^{m} \alpha_{j}=1$.

The following theorem establishes an equivalence between the oscillation of Eq. (1.3)-(1.4) and the oscillation of Eq. (1.5):

Theorem 4.1. When $\sum_{j=1}^{m} \alpha_{j}=1$, every solution of Eq. (1.3)-(1.4) oscillates if and only if every solution of Eq. (1.5) oscillates.

Proof. \Rightarrow : Assume that Eq. (1.5) has a non-oscillatory solution $y(t)$. Since $-y(t)$ is also a solution of Eq. (1.5), we may assume that $y(t)$ is eventually positive. We will prove that Eq. (1.3)-(1.4) has a non-oscillatory solution for some t_{0}. To this end, we only need to prove that the following equation

$$
\begin{equation*}
\frac{d}{d t} z(t)+r \prod_{j=1}^{m}\left(1-e^{-z\left(t-\tau_{j}\right)}\right)^{\alpha_{j}}=0 \tag{4.2}
\end{equation*}
$$

has an eventually positive solution. Let t_{0} be such that $y(t-\tau)>0$ for $t \geq t_{0}$. Using the inequality $1-e^{-x} \leq x$ for $x \geq 0$, we have

$$
\begin{equation*}
\frac{d}{d t} y(t)+r \prod_{j=1}^{m}\left(1-e^{-y\left(t-\tau_{j}\right.}\right)^{\alpha_{j}} \leq \frac{d}{d t} y(t)+r \prod_{j=1}^{m} y^{\alpha_{j}}\left(t-\tau_{j}\right)=0, \quad \text { for } \quad t \geq t_{0} \tag{4.3}
\end{equation*}
$$

It can be easily shown that $y(t) \rightarrow 0$, as $t \rightarrow \infty$. Integrating the above inequality from t to ∞, we obtain

$$
y(t) \geqslant r \int_{t}^{\infty} \prod_{j=1}^{m}\left(1-e^{-y\left(s-\tau_{j}\right)}\right)^{\alpha_{j}}, \quad \text { for } \quad t \geq t_{0}
$$

Now a similar argument to the proof of Theorem 3.1 shows that (4.2) would have an eventually positive solution $z(t)$ on $\left[t_{0}, \infty\right)$ satisfying $z(t)>0$ for all $t \geq t_{0}$.
$\Leftarrow:$ Assume, for the sake of contradiction, that (1.3)-(1.4) has a non-oscillatory solution $x(t)$ for every t_{0}. Then $1+x(t)>0$, for $t \geq t_{0}$. We now distinguish two cases:

Case (i): $x(t)$ is eventually positive. Then there exists $T \geq t_{0}$ such that $x(t)>0$, for $t \geq T$. From (1.3) it follows that

$$
\begin{equation*}
\frac{d}{d t} x(t)+r \prod_{j=1}^{m} x^{\alpha_{j}}\left(t-\tau_{j}\right) \leq \frac{d}{d t} x(t)+r(1+x(t)) \prod_{j=1}^{m} x^{\alpha_{j}}\left(t-\tau_{j}\right)=0 . \tag{4.4}
\end{equation*}
$$

This, together with Lemma 3.2, implies that (1.5) has a non-oscillatory solution, contrary to the assumption that every solution of (1.5) oscillates.

Case (ii): $x(t)$ is eventually negative. Since $1+x(t)>0$, for $t \geq t_{0}$, and $x(t)<0$ for $t \geq T$, for some $T \geqq t_{0}$, we have

$$
\frac{d}{d t} x(t)=r(1+x(t)) \prod_{j=1}^{m}\left[-x\left(t-\tau_{j}\right)\right]^{\alpha_{j}}>0, \quad \text { for } \quad t \geq T
$$

from which we can easily see that $x(t) \nearrow 0$ as $t \rightarrow \infty$. On the other hand, in view of Lemma 3.2, we can choose $\varepsilon \in(0,1)$ such that

$$
\begin{equation*}
r(1-\varepsilon) \sum_{j=1}^{m} \alpha_{j} \tau_{j}>\frac{1}{e} \tag{4.5}
\end{equation*}
$$

Now, let $T_{1}>T$ be sufficiently large such that $1>1+x(t)>1-\varepsilon$, for $t \geq T$. Then, by (1.3) we have

$$
\begin{align*}
\frac{d}{d t} x(t)+r(1-\varepsilon) \prod_{j=1}^{m} x^{\alpha_{j}}\left(t-\tau_{j}\right) \geq \frac{d}{d t} x(t)+r(1+x(t)) \prod_{j=1}^{m} x^{\alpha_{j}}\left(t-\tau_{j}\right) & =0 \\
\text { for } t & \geq T+\tau \tag{4.6}
\end{align*}
$$

which is also a contradiction since, by Lemma 3.2, (4.5) implies that the inequality

$$
\frac{d}{d t} x(t)+r(1-\varepsilon) \prod_{j=1}^{m} x^{\alpha_{j}}\left(t-\tau_{j}\right) \geq 0
$$

can not have an eventually negative solution. This completes the proof.
The following corollary is an immediate result of Theorem 4.1 and Lemma 3.2.
Corollary 4.2. If $\sum_{j=1}^{m} \alpha_{j}=1$, then every solution of (1.3)-(1.4) oscillates (or every positive solution of (1.1) oscillates about the steady state K) if and only if

$$
r \sum_{j=1}^{m} \alpha_{j} \tau_{j}>\frac{1}{e}
$$

REFERENCES

1. O. W. G. Aliello, The existence of nonoscillatory solutions to a generalized nonautonomous delay logistic equation, Math. Model. 149 (1990), 114-123.
2. Ming-Po Chen, J. S. Yu, D. Zeng and J. W. Li, Global attractivity in a generalized nonautonomous delay logistic equation, Bull. Inst. Math. Acad. Sinica 22 (1994), 91-99.
3. M. E. Gilpin and F. J. Ayala, Global models of growth and competition, Proc. Nat. Acad. Sci. U.S.A. 70 (1973), 3590-3593.
4. K. Gopalsamy and B. S. Lalli, Oscillatory and asymptotic behavior of a multiplicative delay logistic equation, Dynamics and Stability of Systems 7 (1992), 35-42.
5. G. E. Hutchinson, Circular causal systems in ecology, Ann. New York Acad. Sci. 50 (1948), 221-246.
6. G. S. Jones, On the nonlinear differential difference equations $f(x)=-f(x-1)[1+f(x)], J$. Math. Anal. Appl. 4 (1962), 440-469.
7. S. M. Lenhart and C. C. Travis, Global stability of a biological model with time delay, Proc. Amer. Math. Soc. 96 (1986), 75-78.
8. H. Onose, Oscillatory properties of the first order nonlinear advanced and delayed differential inequalities, Nonlinear Anal. 8 (1984), 171-180.
9. I. P. Stavroulakis, Nonlinear delay differential inequalities, Nonlinear Anal. 6 (1982), 382-396.
10. J. Sugie, On the stability for a population growth equation with time delay. Proc. Roy. Soc. Edinburgh 120A (1992), 179-184.
11. A. Tarski, A lattice theoretical fixed-point theorem and its applications, Pacific J. Math. 5 (1955), 285-309.
12. Z. C. Wang, J. S. Yu and L. H. Huang, The nonoscillatory solutions of delay logistic equations, Chinese J. Math. 21 (1993), 81-90.
13. E. M. Wright, A nonlinear difference differential equation, J. Reine Angew. Math. 194 (1955), 66-87.
14. J. Yan, Oscillation of solutions of first order delay differential equations, Nonlinear Anal. 11 (1987), 1279-1287.
15. J. S. Yu, First order nonlinear differential inequalities with deviating arguments, Acta Math. Sinica 33 (1990), 152-159.
16. B. G. Zhang and K. Gopalsamy, Global attractivity in the delay logistic equation with variable parameters, Math. Proc. Camb. Phil. Soc. 107 (1990), 579-590.

Yu

Department of Applied Mathematics
Hunan University
Changsha
Hunan 410082, P.R. China

Wu and Zou
Department of Mathematics and Statistics
York University
North York
Ontario
Canada M3J 1P3

[^0]: \dagger Research partially supported by NNSF-P. R. China.

 * Research partially supported by NSERC-Canada.

